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Abstract: Lateral vehicle control is a high importance in automated vehicles as it directly influences

the vehicle’s performance and safety during operation. The Linear Quadratic Regulator (LQR)

controller stands out due to its high-performance characteristics and is used in the open source

for self driving functions. However, a notable limitation of the current approach is the manual

calibration of LQR controllers based on the experience and intuition of the designers, leading to

empirical uncertainties. To address this issue and enhance the lateral control performance, this

paper concentrates on refining the LQR by employing three optimization algorithms: Artificial Bee

Colony Optimization (ABC), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). These

algorithms aim to overcome the reliance on empirical methods and enable a data-driven approach

to LQR calibration. By comparing the outcomes of these optimization algorithms to the manual

LQR controller within an offline multibody simulation as testing platform, the study highlights the

superiority of the best-performing optimization approach. Following this, the optimal algorithm is

implemented on a real-time system for the full vehicle level, revealing the Model-in-the-Loop and the

Hardware-in-the-Loop gap up to 78,89% with lateral velocity when we use Relative Error Criterion

(REC) method to validate and 2.35m with lateral displacement when considering by maximum

absolute value method.

Keywords: linear quadratic regulator; calibration optimization; virtual simulation; automated driving

1. Introduction

The advancement of highly automated vehicles holds a critical position in the field of automotive

engineering. Key advantages of highly automated driving include improving road safety, particularly

by minimizing driver errors and making efficient use of commuters’ travel time[1,2]. Perception,

trajectory planning and control are three main parts in the structure of automated vehicles, where the

control part allows the car to follow the trajectory, which has been determined in the trajectory planning

parts. Because of the complex interconnections between the vehicle’s lateral and longitudinal dynamics,

designing a controller needs to be considered carefully [3] and it continues to remain a challenge.

There are various control techniques that have been used for trajectory tracking in automated vehicles,

such as: PID [4,5], Linear Quadratic Regulator (LQR) [6–9], Sliding Mode Control (SMC) [10,11],

Robust Control [12], Model Predictive Control (MPC) [8,9,12–15] and Reinforcement Learning [16,17].

However, most of them are used to control longitudinal and lateral dynamics separately. Recently,

controlling both longitudinal and lateral dynamics has been applied. Nada et al. [18] designed a

multi-input–multioutput (MIMO) linear MPC with some constraints in the vehicle dynamics, in which

the reference path is tracked based on the steering angle and angular velocity. In [4], Zhou et.al adopted

the MPC and Nonliner Model Predictive Control (NMPC) method to cope with the nonlinear MIMO

problem for the vehicle’s lateral stability. Although MPC controller can use for nonlinear dynamics

to solve with constraints, MPC prevents conducting an experiment on a real-time system because of

the increasing of model complexity and constraints as well as the huge amount of computation. SMC

technique is proposed to control by combining lateral and longitudinal dynamic [19]. However, when

applying SMC technique the chattering phenomenon often appears when acquiring robustness. To
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overcome this obstacle, in [20] the authors applied a new sliding mode that reduces chattering and

makes state variables converge faster. However, rough road surfaces can lead to compromised path

tracking accuracy and overall system stability.

LQR approach is used popularly in automated vehicle controllers because of algorithmic simplicity,

high-precision performance and satisfaction with dynamic constraints. Zhang [21] compared the robust

controller with LQR and MPC in terms of performance as well as computation. In the parking scenario,

the LQR controller has better performance. Regarding computation, LQR requires less in comparison

with MPC while it has the same performance indicators in some cases. However, LQR methods

usually do not consider disturbances which can contribute to system errors. To cope with this problem,

Kapania et al. [22] designed a controller by combining feedback and feedforward steering. The aim is to

keep the stability of the vehicle under hard maneuvering conditions as well as minimize path deviation.

However, the steady-state path deviation drastically increases at high velocity. In [23] the authors

aslo proposed a LQR controller using feedforward and predictive steering for lateral dynamic, which

helps vehicle driving in complex conditions. Although LQR controllers have been widely applied

to automated vehicles, most of LQR choose weight factors based on empirical consideration. To get

rid of empiricism, some studies added algorithms to optimize LQR controller in order to improve

performance. In [24–26] the authors used GA, fuzzy control and PSO to choose the optimize weight

factors for LQR controller. The results show the effectiveness of these algorithms regarding tracking

accuracy and stability of vehicle. Although promising results are shown in these studies, there is still

potential for further improvement in the accuracy of the controller.

On the other hand, because the requirement for automated vehicles level is higher, the scenarios

for testing become complex. Consequently, novel challenges to the reliability of automated vehicles

emerge in testing and validation. Additionally, the growing need for testing and validation in terms

of Advanced Driver Assistance Systems (ADAS) as well as Automated Driving technologies arises

because real-world road scenarios have covered more and more [27,28]. Consequently, X-in-the-Loop

(XiL) has emerged and become a predominant approach for scenario-driven simulation testing of

automated vehicles. The "X" expressed the various development focuses: model, software, processor,

hardware, vehicle, and driver. Hye Young An [29] proposed a path planning algorithm and Pure

Pursuit in real-time to control vehicle by considering detected lanes and some constraints. The authors

considered only a single lane and the error is approximately 1.147m when the car exits the roundabout.

Taekgyu Lee el at. [30] employed a DNN-based controller to control the car. This method reduces the

computational load in comparison with the previous NMPC method. In [31,32], the authors also used

MPC and NMPC to control automated vehicles in real-time system, the results show the efficiency,

robustness as well as feasibility of these methods. In [33] the authors used a low-level MPC to control

the small-scale race cars. Based on the simulation and experimental findings, it appears that opting for

a more cautious approximation with the discriminating kernel leads to a safer driving style. Most of

the previous works did not compare the gap between office simulation and real-time system. This

happened because of the differences in purpose, complexity, resources, and constraints.

The key contributions of this study are:

• Three optimization algorithms, namely Artificial Bee Colony, Particle Swarm Optimization,

and Genetic Algorithm are implemented to find the best coefficient of the LQR controller. The

primary objective is to eliminate the external disturbances arising from the desired trajectory.

The algorithm optimizations is simulated on CarMaker and Matlab/Simulink software. The

effectiveness of three algorithmic enhancements is compared to LQR controller performance

without using them. Afterward, the results obtained from three algorithm optimizations are

compared together to choose the best algorithm for the Model-in-the-Loop (MiL) simulation.
• The best algorithm for MiL simulation is used to simulate on a real-time system to assess

performance. The chosen algorithm is simulated on MiL and Hardware-in-the-Loop (HiL). The

outcomes reveal the gap between the MiL simulation and HiL for the vehicle model under

consideration.
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The remainder of this study is structured as follows: Section 2 contains the vehicle dynamic of the

model, the framework of Apollo as well as the optimization. In Section 3, the model and controllers

are simulated on an office environment and real-time system using the multibody software CarMarker.

Section 4 discusses about results and the Section 5 summarizes the research.

2. Vehicle Dynamics and Control

Apollo is a widely recognized open-source SAE Level 4 AD platform that was introduced by

Baidu company [34]. It includes a comprehensive suite of hardware and software solutions for various

aspects of AD, including perception, planning, and control.

2.1. Vehicle Model

Figure 1 depicts the vehicle dynamic model as:

Figure 1. Vehicle dynamic model.

In this model, we assume that the model is simplified as the lateral dynamic model with two

degrees of freedom, vertical movement is ignored since the vehicle drives in a single plane. α f , αr

are steering angles in the front and rear wheels, respectively. The front and rear steering angle are

small and noted by δ f and δr, so the lateral force and side slip angle has a linear relationship, which

is acceptable for tire slip angles about 3 degree. The lateral load transfer effects which occur due to

lateral acceleration is neglected and the suspension system’s effect is not considered.

O is mass center point, a and b are the distances from O to the front and rear axles, ϕ is the yaw

angle, ϕ̇ is yaw rate. C f and Cr are the lateral stiffness of the tires in the front and rear wheels, Fy f
is

the lateral force of the front wheel and Fyr is the lateral force of the rear wheel. vx, vy are vehicle’s

longitudinal and lateral velocity, respectively.

The dynamic equations of this model are noted as [35]:

may = Fy f
+ Fyr (1)

Iz ϕ̈ = aFy f
− bFyr (2)

v̇x = vy ϕ̇ + ax (3)
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where m is the mass of vehicle, Iz is the rotation inertia of vehicle around vertical axis.

Because the front wheel steering angle is small, so the lateral force and side slip angle has a linear

relationship, the dynamic equations (1) (2) is obtained as follows:



























v̇y =
C f + Cr

mvx
vy + (

aC f − bCr

mvx
− vx)ϕ̇ −

C f

m
δ

ϕ̈ =
aC f − bCr

Izvx
vy +

a2C f + b2Cr

Izvx
ϕ̇ +

aC f

Iz
δ

v̇x = ẏϕ̇ + ax

(4)

When vehicle follows a reference path, lateral error and heading angle error will occur. Illustrated

in Figure 1, the lateral error, denoted as ed represents the shortest distance between the point O and

projected point P on the reference path. Meanwhile, the heading angle error, referred to as eθ is the

difference between the actual heading angle of the vehicle θ and the reference heading angle θr. For

the sake of simplicity, the side slip angle is assumed β = 0 at the point O, and the heading angle error

is calculated as eθ = θ - θr. In practical control, the controller’s task is to promptly eliminate these two

errors in real-time to ensure the vehicle stays on track with the planned path. With these errors in

mind, it becomes possible to compute the first-order derivatives of the lateral error ėd and the heading

angle error ˙eϕ:

ėd = vxeϕ + vy (5)

˙eϕ = ϕ̇ − ϕ̇r (6)

The Equations (5) and (6) are substituted in Equation (4), can be obtained:

ëd =
C f + Cr

mvx
ėd −

C f + Cr

m
eϕ +

aC f − bCr

mvx
˙eϕ + (

aC f − bCr

mvx
− vx)θ̇r −

C f

m
δ f (7)

ëϕ =
aC f − bCr

Izvx
ėd −

aC f − bCr

Iz
eϕ +

a2C f + b2Cr

Izvx
˙eϕ +

a2C f + b2Cr

Izvx
θ̇r −

aC f

Iz
δ f (8)

The equations (7) to (8) can be rewritten as:




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
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

ėd

ëd

ėϕ

ëϕ



















=































0 1 0 0

0
C f + Cr

mvx
−

C f + Cr

m

aC f − bCr

mvx
0 0 0 1

0
aC f − bCr

Izvx
−

aC f − bCr

Iz

a2C f + b2Cr

Izvx


















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



























ed

ėd

eϕ

ėϕ



















+































0

−
C f

m
0

aC f

Iz































δ f (9)

+































0
aC f − bCr

mvx
− vx

0

a2C f + b2Cr

Izvx































θ̇r

Equation (9) can be rewritten in the state - space representations as:

Ẋ = AX + BU + Cθ̇ (10)

with: X=[ ˙ed, ëd, ˙eϕ, ¨eϕ] is the state vector; U = [δ f ] is the control input.
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2.2. Lateral Controller

In this study, the path planning process involves a series of reference points. This discretization of

data is necessary for practical implementation. To control the vehicle along this discrete trajectory, a

discrete Linear-Quadratic Regulator (dLQR) controller is used. The Equation (10) is discretized to

design dLQR controller, which governs the vehicle’s dynamics. During this process, we neglect the

effect of Cθr
and apply the midpoint Euler and the forward Euler approach to clarify the model while

preserving essential characteristics. As a result, we obtain the equation that describes the discrete

tracking errors as:

Ẋk + 1 = ĀX + B̄U (11)

with:

Āk = (I −
Adt

2
)−1(I +

Adt

2
)−1; B̄ = Bdt (12)

Figure 2. Lateral control structure.

Figure 2 shows the entire structure of the LQR controller for an automated vehicle, which includes

four main parts: perception, path planning, controller and vehicle model. In path planning, the EM

planner [36] is used to generate reference path and path tracking errors. As the path planning module

is not the focus of our work, the exact algorithm can be referenced in the GitHub project [37].

The LQR controller is the main center of the second part. In this study, we use three algorithm

optimizations (ABC, GA, PSO) to find the optimized matrix K for the LQR controller as well as

calculate δ f f in the Feedforward control step. Then, the steering angle δ f is sent to the vehicle model

to control a car. We use the BMW5 car model and IPG Carmaker software as a simulation environment.

After comparing the K value from three optimization algorithms, we find the best algorithm for the

car. Finally, we use this algorithm to simulate on the real-time system and compare the gap results

between the MiL and HiL.

The cost function of LQR controller is defined as:

∞

∑
0

(XT
k QXk + UT

k RUk)dt (13)

Q = diag(q1, q2, q3, q4) (14)

R = [q5] (15)

Where Q weighting matrices of the state error and R is weighting matrices of the control signal.

q1, q2, q3, q4, q5 are the weight factors of lateral error, lateral error rate, heading error, heading error

rate and the steering angle in the front wheel, respectively. Substituting equation (11) into (13), the

Lagrange multiplier approach is employed to build the constraints as follows:

J =
n−1

∑
k=0

[XT
k QXk + UT

k RUk + λT
k+1(AkXk + BUk)− λT

k+1Xk + 1] + XT
n QXn (16)
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The Hamiltonian function is defined as:

Hk = XT
k QXk + UT

k RUk + λT
k+1(AkXk + BUk) (17)

From equation (17) and (16) obtain:

J =
n−1

∑
k=0

[Hk − λT
k Xk] + XT

n QXn + λT
0 X0 − λT

n Xn (18)

The extreme value of equation (18) is achieved:

Uk = −(R + B
T

Pk+1B)−1B
T

Pk+1 AkXk (19)

where K = (R + B
T

Pk+1B)−1B
T

Pk+1 Ak

Pk+1 is solved by Riccati equation: P = Q + Ak
T

PAk - Ak
T

PB(R + B
T

PB)−1B
T

PAk

Equation (19) can be rewritten as:

Uk = −KXk (20)

where K = [K1, K2, K3, K4] is the gain of the LQR controller. Substituting equation (20) into equation

(10) obtains:

Ẋ = (Ak − BK)Xk + Ck θ̇ (21)

According to equation (21), irrespective of the specific value assigned to the gain K, the distance error

and heading error of an automated vehicle can not be zero during the control process, indicating the

presence of a steady-state error in the system. Consequently, the influence of C ˙deltar is removed and

use feedforward control δ f f follow as:

U = −KX + δ f f (22)

Substitute equation (22) into (10), so that when Ẋ =0, the formula for the state variable without

steady-state error is as follows:

X = −(Ak − BK)−1(Bδ f f + Ck θ̇r) (23)

By solving and simplifying equation (23), the following is obtained:



















ėd

ëd

ėϕ

ëϕ



















=























1
k1
(δ f f − θ̇r

vx
(a + b − bK3 −

mv2
x

a+b (
b

C f
+ a

Cr
K3 −

a
Cr
))

0

− θ̇r
vx
(b + a

a+b
mv2

x
Cr

)

0























(24)

Following the Equation (24), when ed = 0, the feedforward control is:

δ f f = −
θ̇r

vx
[a + b − bK3 −

mv2
x

a + b
(

b

C f
+

a

Cr
K3 −

a

Cr
)] (25)

In Equation (6), we assume that the real heading error can be calculated as eϕ = ϕ − θr. Reducing

the heading error to zero, as well as ensuring that eϕ = ϕ − θr = −β is crucial when the vehicle reaches

a stable state. Consequently, there is no need to devise a feedforward controller for eliminating the

steady-state error in eϕ. Additionally, Kapania et al. [22] demonstrated that achieving steady-state

equilibrium is still possible even when there are non-zero values for lateral error as well as heading

angle error.
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2.3. Calibration Optimization

• Calibration solution in the state of the art

Matrix K is the gain of the LQR controller and can be calculated from equation (19). The key

to the LQR controller lies in the choose of the weight factors of matrices Q and R in equation

(14), (15). In the previous study [38], Li el at. chose these weight factors based on the empirical

method. First, Q is optimized by setting to R an intermediate value (arbitrarily chosen to be in the

order of 105) and Q is considered diagonal to simply tuning. Q is tested for a small value Qmin

(close to 0) and later for a large value Qmax (in the order of 106). The two results are compared,

then an intermediate value Qa v g is tested and the process is repeated by considering as new

“small” and “large” limits Qa v g and the value between Qmin and Qmax that yielded the best

result. The process is then repeated by choosing a new intermediate value between the two limits

until an acceptable result is produced. For R optimization the same approach is followed setting

Q to the optimized value just found.
• Artificial Bee Colony Algorithm

The flowchart of the ABC algorithm and LQR controller is shown in Figure 3. The employed

bees actively seek K values in the vicinity of their remembered food source, all the while

communicating information about these K values to the onlooker bees. The onlooker bees are

likely to select good K values from those based on the fitness function and also evaluate K values

using the cost function. A few employed bees translate into the scout bees and search for new

food sources until satisfy the condition.

Figure 3. Flow chart of ABC and LQR controller.

Figure 4. Flow chart of GA and LQR controller.
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Figure 5. Flow chart of PSO and LQR controller.

• Genetic algorithm

The GA drawing inspiration from biological principles such as mutation, crossover, and selection.

The GA commences with config the parameters of BMW car, initial K values as well as randomly

generate individuals, initiating the evolutionary journey. In each generation, the fitness of

every individual is evaluated, typically by assessing the value of the fitness function. Stochastic

selection is employed to favor more fit individuals from the current population. These selected

individuals’ genomes are then subject to modifications, such as recombination and possibly

random mutations, to generate a new generation of candidate solutions. This cyclic process

continues, with the newly formed generation becoming the basis for the subsequent iteration.

The GA advances through iterations until it reaches a termination condition. The flowchart of

GA-LQR is shown in Figure 4.
• Particle swarm optimization

Figure 5 illustrates the flowchart of PSO algorithm and LQR controller. The optimal weight factor

is found by searching on the global in order to enhance the LQR controller performance. Firstly,

the parameters of BMW car model are configured. Then, we set the initial particles’s position and

velocities as well as the initial values of LQR matrices. After that, the algorithm will calculate the

fitness function value and find the global best solution. If the condition is satisfied, the algorithm

is stopped, otherwise, the algorithm continues to run until satisfies the condition.

3. Simulation and Results

3.1. Model-in-the-Loop Simulation

In this study, a BMW5 model is used for simulation. The model was calibrated with experiments

done in the Institute of Automotive Engineering laboratory and on a proving ground. Firstly, test the

BMW 5 car on the real road to measure parameters and save it into the datasheet. Then, a simple model

with parameters adjustment from the datasheet is created. After that, the car was simulated on the test

road, compared the parameters were measured with the simulation. Finally, calibrate the steering

model and stabilizer model for good fitting of the curves and choose the best tire model.The results of

the model calibration refer to [39]. The BMW5 model is simulated in the CarMaker environment on a

50-meter circular road, as depicted in Figure 6. Lateral position error was evaluated during a total

driving duration of 48 seconds, with a maximum speed is 50km/h.
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Figure 6. Road test for automated vehicle.

Figure 7 illustrates the vehicle’s steering angle under four control schemes: the manual LQR

controller, the PSO based on LQR (PSO-LQR) controller, the ABC based on LQR (ABC-LQR) and GA

based on LQR controller (GA-LQR).

Figure 7. Steering angle of automated vehicle.

Table 1. Lateral error comparison between optimization algorithms.

Compare Manual ABC GA PSO

Absolute max values dL 1.2026 2.6069 1.5611 0.0576
Absolute mean values dL 0.0249 0.0242 0.0207 0.0061

Absolute max values L 3.5481 4.4860 3.5151 0.7532
Absolute mean values L 0.5854 0.7696 0.5549 0.1582

3.2. Hardware-in-the-Loop Simulation

In the previous works, Li et al. [27,28,40] the co-simulation framework for Virtual Vehicle Test

Bench is introduced. CarMaker and Matlab/Simulink are used together to build a co-simulation

software system. The Multi-Body Simulation (MBS) environment is provided by CarMaker software,

including vehicle dynamics, sensor models as well as virtual environment. The CarMaker is

implemented on a real-time processing unit called "Xpack4". Both CarMaker and Xpack 4 are from IPG

Automotive GmbH [41]. Moreover, the whole vehicle test bench is controlled by the automation-system

software Tornado from KS Engineers [42]. The users has capacity to configure Virtual Vehicle Test

Bench using Tornado. In adddition, ADAC (5 kHz) from KS Engineers [42], which is real-time
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testing, controlling and monitoring system which developed for the Virtual Vehicle Test Bench in

real-time. EtherCAT topology protocol enables real-time synchronous simulation communication

between Tornado, ADAC and XPack4 real-time systems. In this study, the same framework is used,

which comprises a virtual environment and a Virtual Vehicle Test Bench. This framework (RT-ADF)

allows multiple software are integrated and executed on real-time hardware platforms. This work

demonstrates an offline Virtual Vehicle Test Bench. If the simulation model is successfully executed

and validated offline, it can be transferred to the real test bench. Therefore, this is a good approach

to improve efficiency and optimize the work. Table 2 depicts the results of the vehicle model in a

real-time system.

Table 2. Lateral error comparison between MiL and HiL.

Compare Absolute max values dL Absolute mean values dL Absolute max values L Absolute mean values L

MiL 0.0576 0.0061 0.7532 0.1582
HiL 0.2894 0.0098 2.5857 0.5339

In [43], a quantitative comparison method is the Relative Error Criterion (REC) is used to validate

results as:

ErrorL =
|Peaktest − Peaksim|

|Peaktest|
∗ 100% = 53.23% (26)

ErrordL =
|Peaktest − Peaksim|

|Peaktest|
∗ 100% = 78.89% (27)

We use the calculate the maximum absolute value of the error as:

ErrorL = max(|Ltest − Lsim|) = 2.35 (28)

ErrordL = max(|dLtest − dLsim|) = 0.28 (29)

4. Discussion

Figure 7 shows the steering angle of the vehicle in four cases using manual calibration, ABC,

GA and PSO algorithms. In the interval spanning from the 4th to the 10th second, alterations in

the steering angle were observed for the Manual calibration, GA, and ABC algorithms, registering

an approximate variation of 1.9 rad. Conversely, the steering angle adjustment remained negligible

when employing the PSO algorithm. Moreover, at the 24th second, a sudden soar in the steering

angle occurred within a span of 3 seconds, for the Manual calibration, GA, and ABC algorithms.

This value then stabilized thereafter at approximately 11 rad. In contrast, the steering angle change

generated by the PSO algorithm exhibited a gradual increment, culminating at 8 rad by the conclusion

of the aforementioned timeframe. Therefore, PSO algorithms can prevent the centrifugal acceleration

experienced in the vehicle. Consequently, this incremental approach has the capacity to enhance both

the precision of lateral displacement and lateral velocity measurements.

Table 1 compares the lateral error and lateral velocity using three algorithms as well as manual

calibration. Regarding root mean square values for lateral displacement, the PSO algorithm exhibits a

value of 0.2274 meters, outperforming manual calibration (1.124 meters), ABC (1.5092 meters), and

GA (1.0747 meters). Moreover, the results across various values in the PSO algorithm consistently

demonstrate superior performance compared to the other algorithms under consideration.

The lateral displacement and lateral velocity differences between the MiL and HiL are evident in

Table 2. Notably, simulation values obtained from the HiL are larger than those generated by the

MiL. Similarly, there are errors between the results obtained from the MiL and the HiL, particularly

up to 53.23% with lateral displacement and 78,89% lateral velocity when we use REC method to

validate. Because the value of lateral velocity is too small, this REC value is too much. When we use

the maximum absolute value method to validate the difference between the results obtained from
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the MiL and the HiL, the figure for lateral displacement and lateral velocity are 2.35m and 0.28m/s,

respectively. This divergence can be caused by the cyclic delay existing between Xpack and ADAS and

the computer.

5. Conclusions

This study presents three optimization algorithms ABC, GA and PSO to fine-tune LQR parameters

based on open source software for automated vehicle Apollo frameworks. These algorithms aim to

overcome the reliance on empirical methods and enable a data-driven approach to LQR calibration. The

study highlights the superiority of the PSO algorithm by comparing the outcomes of this optimization

algorithm to the manual, ABC, GA LQR controller within the MiL simulation. Finally, the PSO

algorithm is simulated on a HiL, the result shows the gap between the MiL and the HiL simulation.

In the future, our works will continue to focus on optimizing and enhancing our system, especially

focusing on the controllers and path planning, where MPC and Reinforcement learning can be applied.

Moreover, the more complex traffic scenarios will be used to test and validate the reality of Apollo on

the test bench and real car.
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