Pre prints.org

Article Not peer-reviewed version

Daily Scale Prediction of Arctic Sea Ice
Concentration Based on Recurrent
Neural Network Models

Juanjuan Feng, Jia Li . , Wenjie Zhong, Junhui Wu , Zhigiang Li, Lingshuai Kong, Lei Guo
Posted Date: 8 November 2023
doi: 10.20944/preprints202311.0560.v1

Keywords: sea ice concentration; recurrent neural network; Arctic sea ice prediction; short-term prediction

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently

Lt available and citable. Preprints posted at Preprints.org appear in Web of

(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/992949
https://sciprofiles.com/profile/989845

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2023 d0i:10.20944/preprints202311.0560.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Daily Scale Prediction of Arctic Sea Ice Concentration
Based on Recurrent Neural Network Models

Juanjuan Feng 123, Jia Li 123*, Wenjie Zhong 1?3, Junhui Wu 23, Zhiqiang Li 123,
Lingshuai Kong 2% and Lei Guo 2

1 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
juanjuanfeng77@gmail.com (J.F.); 1ijia20050710@csu.edu.cn (J.L.); 215012183@csu.edu.cn (W.Z.);
225012177@csu.edu.cn (J.W.); 225011015@csu.edu.cn (Z.L.); 235012178@csu.edu.cn (L.K.); tris-
tanblus@csu.edu.cn (L.G.);

2 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring

(Central South University), Ministry of Education; Changsha 410083, China;

3 Laboratory of Geohazards Perception, Cognition and Prediction, Central South University, Changsha
410083, China;

* Correspondence: 1ijia20050710@csu.edu.cn; Tel.: +86-731-88877151

Abstract: Arctic sea ice prediction holds significant importance for facilitating Arctic route planning,
optimizing fisheries management, and advancing the field of sea ice dynamics research. While various deep
learning models have been developed for sea ice prediction, they predominantly operate at the seasonal or sub-
seasonal scale, often focusing on localized areas, and few cater to full-region daily scale prediction. This study
introduces the use of spatiotemporal sequence data prediction models, namely, the convolutional LSTM
(ConvLSTM) and predictive recurrent neural network (PredRNN), for the prediction of sea ice concentration
(SIC). Our analysis reveals that, when solely utilizing SIC historical data as the input, the ConvLSTM model
outperforms the PredRNN model in SIC prediction. To enhance the model's capacity to capture spatiotemporal
relationships between multiple variables, we expanded the range of input data types to form the ConvLSTM-
multi and PredRNN-multi models. Experimental findings demonstrate that the ConvLSTM-multi model excels
in assimilating the influence of reanalysis data on sea ice within the sea ice edge region, thus exhibiting superior
performance in predicting daily Arctic SIC over the subsequent 10 days. Furthermore, sensitivity tests on
various model parameters highlight the substantial impact of sea surface temperature and prediction date on
the accuracy of daily sea ice prediction. Additionally, meteorological and oceanographic parameters primarily
affect the prediction accuracy of the thin ice region at the edge of the sea ice.

Keywords: sea ice concentration; recurrent neural network; Arctic sea ice prediction; short-term
prediction

1. Introduction

Global warming has accelerated the rate of melting of the Arctic sea ice [1]. During 1970-2010,
Arctic sea ice area decreased by an average of 4% per decade [2]. The rate of sea ice area decline
increased dramatically into the 21st century [3-5]. The extent of the Arctic sea ice reached its smallest
value in the recorded history of satellite data in 2012, at about 3.34 million km?, while the second
lowest value occurred in 2020, at about 3.74 million km? [6]. The reduced extent of the sea ice presents
new opportunities for a number of industries, including Arctic shipping, tourism, fisheries, and oil
and gas exploration [7]. Predicting seasonal and daily scale changes in Arctic sea ice is of great
practical significance for the safe operation of Arctic shipping lanes and the development and
utilization of Arctic resources.

Physical interactions between the atmosphere, ocean, and sea ice are the basis for predicting sea
ice. Several studies have already been conducted to predict Arctic sea ice on different spatial and
temporal scales and to explore the predictability in different seasons. Blanchart et al. [8] used the
outputs of the Community Climate System Model, version 3 (CCSM3) to assess the mechanisms of
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sea ice persistence, and comparisons with actual observations demonstrated that the model can be
used for seasonal to annual predictions of sea ice. Krikken et al. [9] used 15 climate models of CMIP5
to analyze the natural variability in Arctic sea ice from an energy balance perspective and found a
strong correlation between the energy balance and the reappearance of sea ice anomalies from the
sea ice melting season to the growing season. Guemas et al. [10] reviewed potential sources of Arctic
sea ice predictability from months to years, including the persistence and advection of sea ice
anomalies, interactions with the oceanic atmosphere, and changes in the radiative forcing.
Mohammadi et al. [11] determined the potential predictability of Arctic winter sea ice using a sea ice—
ocean coupling model, noting high predictability of sea ice concentration (SIC) and sea ice edge
position over a 10-day period. Cruz et al.[12] investigated sea-ice predictability from seasonal to
annual scales using a variety of climate models, emphasizing the importance of the reoccurring
effects of sea ice anomalies, and observed that anomalies in SIC in the Barents Sea are highly
negatively correlated with local sea surface temperature anomalies. Onarheim et al.[13] showed that
ocean heat transport (OHT) variability plays an important role in winter sea ice variability in the
Barents Sea, and that the use of the OHT can lead to predictions two years in advance. These studies
provide knowledge on the predictability of sea ice associated with a wide range of physical processes,
while emphasizing the importance of selecting predictors that are relevant to the target location and
time scale.

The main approaches to Arctic sea ice prediction are numerical simulations, statistical
predictions and deep learning. Numerical simulation methods are based on physical links between
temperature changes, humidity transport, wind field models, cloud cover and ocean heat fluxes.
Major climate simulation centers around the world have released some atmospheric and oceanic
simulation data. Their adoption of climate models relies on real-time inputs of observational
conditions in the data assimilation process. At the same time, due to the limitations of a single climate
model and the large differences in the results of different models, it is necessary to determine the
assigned weights of each climate model based on its contribution to the simulation of the current
climate mean, and then take a weighted average to improve the accuracy of sea ice prediction. In
practice, this treatment does not eliminate the effect of model bias on sea ice prediction. In addition,
many processes in the dynamic model of sea ice need parameterization, and the current model lacks
modeling of rheology, ice thickness distribution, wave—ice interaction, landing ice, melting water and
size distribution of floating ice[14]. Statistical methods are used to predict the state of sea ice
according to historical data. With the thinning of sea ice, the average state of sea ice has changed
significantly. In addition, most statistical models are linear models, which cannot learn the nonlinear
relationship between variables in the Arctic climate system. Because the nonlinear feedback
mechanism plays an important role in the coupling system of Arctic atmosphere, ocean and sea ice,
itisnecessary to predict Arctic sea ice using a nonlinear model. Deep learning technology has a strong
nonlinear learning ability. Chi et al. and Choi et al. input the monthly average SIC data of the National
Snow and Ice Data Center (NSIDC) into the multilayer perceptron (MLP) and the long and short-
term memory (LSTM) models to predict the monthly average of SIC, and found that the results are
better than the traditional autoregressive (AR) model[15,16]. Kim et al.[17] used the integrated data
of a regional climate model (RCM) as input variables, and used the deep neural network (DNN)
method to deal with the nonlinear relationship between SIC and climate variables. As a result, they
predicted the SIC in the Kara Sea and Barents Sea in the next 10-20 years. Fritzner et al.[18] compared
the prediction accuracy of a high-resolution dynamic assimilation model, K-NN model and FCN
model for the next 7 days, and pointed out that the FCN model can provide similar prediction results
to the dynamic assimilation model. Kim et al.[19] input eight predictors into the CNN model to
predict the monthly average SIC in the next month, and the results were better than that of the RF
model. Andersson et al.[20] put forward a model of a probabilistic sea ice prediction system. The
model used climate simulation and observation data as the input data to predict the monthly average
SIC in the next six months. The results showed that the IceNet model has a high accuracy in predicting
the sea ice range, and it is superior to the SEAS5 dynamic model in predicting extreme sea ice events
in summer. Liu et al.[21] used the convolutional LSTM (ConvLSTM) model to predict SIC in the
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Barents Sea over the next six weeks. They added ERA-Interim reanalysis data to the training dataset,
and used the covariance between different variables and the spatiotemporal correlation to complete
the prediction of regional SIC. The results were better than the linear regression model. At present,
the deep learning method is mainly used to predict the sub-seasonal scale of regional sea ice. Because
the daily short-term forecast of SIC is very important for maritime shipping decision-making, it is
urgent to attain the accurate daily short-term forecast of SIC.

The ConvLSTM and predictive recurrent neural network (PredRNN) models exhibit the capacity
to capture spatiotemporal correlations among diverse input parameters, enabling them to
theoretically predict spatiotemporal sequence data. This study introduces these models into the realm
of the high-precision daily scale short-term prediction of Arctic sea ice. Initially, we compare the
predictive performance of the ConvLSTM and PredRNN models when only SIC is utilized as the
input. Subsequently, we enhance the input data by incorporating meteorological parameters that
influence both SIC and the sea boundary, leading to the formation of ConvLSTM-multi and
PredRNN-multi models. Through an investigation of the spatiotemporal correlations between SIC
and meteorological parameters, we observe a substantial enhancement in the model's predictive
capability for the sea ice edge region. Furthermore, this paper conducts a quantitative analysis to
discern the model's sensitivity to the input meteorological parameters, pinpointing the key
meteorological variables that affect the prediction accuracy of SIC.

2. Data and methods

2.1. Data

We used SIC data from the NSIDC and reanalysis data from ERA5, provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF), as the training set, spanning the period from
1988 to 2021. The NSIDC SIC dataset is derived from observations made by the scanning
multichannel microwave radiometer (SMMR) carried by the Nimbus-7 satellite, the special sensor
microwave imager (SSM/I) sensors carried by the National Defense Meteorological Satellite Program
(DMSP)-F8, -F11 and -F13 satellites and the special sensor microwave imager/sounder (SSMIS)
sensors carried by DMSP-F17. Among the NSIDC datasets, we utilized the NASA Bootstrap
algorithm-derived dataset for our research. The product is provided in the form of a daily average,
with polar stereo projection (45°W, 70°N), spatial resolution of 25kmx25km and grid number of
448x304. The values within this dataset range from 0, signifying the absence of ice in the grid, to 100,
indicating complete sea ice coverage. The primary sources of error in these data arise from thin ice
(ranging from 30% to 50%) and surface melting (ranging from 10% to 30%) [22]. The Arctic Ocean
covered by this dataset predominantly encompasses the Sea of Okholtsk, Bering Sea, Chukehi Sea,
Beaufort Sea, Canadian Archipelago, Hudson Bay, Baffin Bay, Greenland Sea, Norwegian Sea,
Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea and Central Arctic Sea. The distribution of sea
areas is illustrated in Figure 1. The NSIDC takes SIC=15% as the sea ice boundary threshold, and the
region with SIC=15% is considered as the sea ice area.
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Figure 1. Distribution map of sea in the study area.

The ERA5 dataset is a global meteorological dataset in which the ECMWEF combines
meteorological model data with observation data from all over the world, with a spatial resolution of
0.25° x 0.25° [23]. Table 1 details the specific parameters within the ERA5 dataset utilized as inputs
for our model, include sea surface temperature (S5T), 2m temperature (T2M), skin temperature (SKT),
surface solar radiation downwards (SSRD), mean sea level pressure (MSL), 10m u-component of
wind (U10) and 10m v-component of wind (V10). The hourly value of ERA5 data is converted into a
daily average, resampled into a grid consistent with SIC data, and the value is normalized to [0,1].

SIC, ERA5 15 days in advance, land mask, cosine and sine values of dates are fused together to
form a series of 10 consecutive days as training samples. The dataset is divided into training dataset
(1988-2018), verification dataset (2019) and test dataset (2020-2021). The Arctic sea ice area in
September 2020 was the second lowest level in the recorded history of satellite data (greater only than
in September 2012)[24], which serves as a fitting evaluation point for assessing the model's predictive
performance under extreme conditions. All three datasets were partitioned into 10-day sequences to
achieve a random input of 10 days of historical data to predict the SIC for the next 10 days. To analyze
to what extent and how the atmospheric conditions and oceanic variables affected the accuracy of the
model predictions, the models were trained using the mode of inputting both single and multiple
predictors (Table 1).

In addition, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) "selected
models"” nominated by the Sea-Ice Model Intercomparison Project (SIMIP) community[25] were used.
SIMIP aims to compare and evaluate the performance of different sea-ice models, collect different
simulation results and establish a standardized database, identify model strengths and weaknesses
and uncertainties, improve the accuracy of sea ice models, and lay the foundation for future sea-ice
prediction studies. The “selected models” in Table A 1 provide the best estimates of the future
evolution of Arctic sea ice, and the daily average SIC provided by three CO2 emission scenarios,
SSP126, SSP245, and SSP585, were chosen for comparison with the deep learning model.

Table 1. The specifications of the eleven predictors used to predict short-term sea ice concentration

(SIC) in the study.
T 1 ial Val
Variable Source Unit empo.ra Spat1? atue
resolution resolution range
Sea ice concentration NSIDC % Daily 25km  [0,1]
Sea surface temperature ECMWF ERA5 K Hourly 0.25° [0,1]

2m temperature ECMWF ERA5 K Hourly 0.25° [0,1]
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5
Skin temperature ECMWF ERA5 K Hourly 0.25° [0,1]
Surface solar radiation downwards ECMWEF ERA5 Jm-2 Hourly 0.25° [0,1]
Mean sea level pressure ECMWEF ERA5  Pa Hourly 0.25° [0,1]
10m u-component of wind ECMWEF ERA5 m s-1 Hourly 0.25° [0,1]
10m v-component of wind ECMWEF ERA5 ms-1 Hourly 0.25° [0,1]

Land mask # # Daily 25 km 0/1

Cosine of initialization day index # # Daily 25km  [-11]
Sine of initialization day index # # Daily 25km  [-1,1]

2.2. Model

SIC data should be predicted using the spatiotemporal sequence prediction model. The
spatiotemporal sequence is a dynamic system in which historical observations with arbitrary length
] evolve over time, and observations at each moment can be represented on an MxN grid. Thus, the
observation at any time can be represented by a tensor X € R/*M*N  where J denotes the domain of
the observed features. If we record observations periodically, we will obtain a sequence of tensors,
while observations over period of T are denoted as X, = {Xy, ..., Xr}. The model is designed to
predict the sequence X,y = {Xr41, ..., Xryx} for the next K time steps, given Xj,. For the training
pairs {(Xi, X))}, formed by all SIC data, a set of parameters 8’ is found by using random gradient
descent to ensure that the log-likelihood of the generated target sequence X,,; is the maximum
when the input data X}, are provided:

@'=argmax 2 logP(Xo”wl X,-Z;é’)

o (Xh.a)

@™

In this study, we present the ConvLSTM model [26] and PredRNN model [27], which are
commonly employed for spatiotemporal sequence data prediction, to realize the prediction of SIC.
The ConvLSTM model replaces matrix multiplication with convolution operations within the LSTM
gating structure unit. This alteration allows it to simultaneously capture both temporal and spatial
features in the data, effectively transforming the traditional encoding—decoding structure into an
encoding—forecasting structure. The gating formula for the ConvLSTM unit is:

g =tanh (W, =X, +W,, * H,, +b, )

I =O-(Wxi X, AWy Ho + W, ©C, +bi)
fi=0(Wy * X, + Wy s H + W,y OCry +by)
G =/ OC.+i Og
0, =0 (W * X, + Wy, Hey + W, OC +1,)
H, =0, O tanh(C,)

@)

where i, is the input gate; f; is the forgetting gate; C; is the unit storage state; o, is the output gate;
H, is the hidden state; W is the weight matrix, with the subscript describing the correspondence
between the weight matrix and the state of each gate; x is the input; b is the bias; * is the
convolution operation; © is the Hadamard product; o is the sigmoid activation function; tanh is
the hyperbolic tangent activation function; and the subscript t denotes the time step. Figure 2
illustrates the ConvLSTM network framework, which consists of a three-layer stack of ConvLSTM
units employed in the encoding—forecasting framework. In this framework, the encoder incorporates
a down-sampling operation, while the forecaster utilizes an up-sampling operation before each layer
of input at each time step. The training data input follows the traditional sequence-to-sequence
approach [28]. Historical observations are input into the encoder during the training phase, and the
state layers generated at each layer of the encoder (the shaded region in Figure 2) are transmitted to
the forecaster. The loss function is determined by comparing predicted values to actual values, and
model parameters are adjusted through backpropagation until Equation 1 is satisfied.
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Figure 2. The convolutional LSTM (ConvLSTM) network framework.

The PredRNN exhibits three distinctions from the ConvLSTM framework: (1) It introduces a
spatiotemporal memory-state circulation method, depicted by the blue arrows in Figure 3, which
enhances the lower layer's capability to learn top-layer features from the previous time step; (2) The
unit responsible for the spatiotemporal memory stream employs a dual-stream memory transition
mechanism involving C, and M, . This results in memory states that cannot be decoupled
spontaneously. To address this, a convolutional layer is added to the C; and M, increments at each
time step, and the spatial distances between them are extended using a novel decoupling loss
function. This approach trains different memory states to focus on long-term and short-term
spatiotemporal changes. (3) The model training approach incorporates the reverse scheduled
sampling (RSS) [29] method for data input. This technique forces the model to randomly conceal true
observations in the encoder to learn long-term dynamics, with the probability of concealing true
observations decreasing with the number of iterations. This ensures that the model has the same
likelihood of inputting true observations during both the training and prediction phases. In (1), the
network is enabled to learn the complex nonlinear variations in short-term motions. However, the
state layer transfer path stretching across time brings the problem of gradient vanishing, making it
challenging to capture long-term dependencies. Therefore, a dual-stream memory transition
mechanism is introduced to achieve a short-term recursion depth and long-term consistency by
combining the original memory unit C; and the new memory unit M, to form a unit named ST-
LSTM, which is calculated as follows:
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g =tanh(W * y, + W, *H, +b,)

i =oWy* g, + Wy *H. +b,)

Ji=oWy* i + Wiy *H, +by)

Cl=10C. +i0g,

g =tanh(W% X AW *M[ +b(;,)

Lb=oWy* y, + W, *M™" +b)

fi=oWy* g+ W, *M™ +1b,)

M/ =f oM™ +i0g,

0, = O(Wyo * i + Wiy * M + Woy * CL+ W, * M +D,)
H/ = o0, O tanh(Wy, *[C! , M)

®)

The PredRNN network framework comprises four layers of interconnected ST-LSTM units. As
illustrated in Figure 3, the input data undergo reverse scheduled sampling (RSS), progressively
increasing the likelihood of true observations being incorporated in the encoder, while inversely
decreasing in the forecaster. The state unit H/} and memory unit M{ circulate along the orange
arrows in the diagram. Subsequently, the memory unit M} flows directly along the blue arrows,
transitioning from the uppermost layer of the preceding time step to the lower layer of the subsequent
time step, thereby establishing the circulation of short-term memory states.
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Figure 3. The predictive recurrent neural network (PredRNN) network framework.

2.3. Evaluation metrics

Mean absolute error (MAE) (Equation 4), root mean square error (RMSE) (Equation 5),
normalized root mean square error (nRMSE) (Equation 6), anomalous correlation coefficient (ACC)
(Equation 7), Nash-Sutcliffe efficiency (NSE) (Equation 8), and structure similarity index measure
(SSIM) (Equation 9) are used to assess the model's performance in predicting SIC. MAE and RMSE
are used to measure the absolute difference between the model's predictions and observed values,
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with lower values indicating superior predictive capability. nRMSE is computed by dividing RMSE
by the standard deviation of observed values, thereby offering a more precise depiction of the
residuals in the sea-ice edge region within the model's predictions. It is expressed as a percentage,
with lower values signifying reduced residuals. ACC serves as an indicator of the fidelity of predicted
anomalies and the degree to which predicted values align with the actual data, producing values
within the range of +1 to -1. A value closer to +1 denotes greater consistency between predicted and
observed values. NSE is employed to gauge the precision of the model's output values within the
range of —o to 1. Values approaching 1 signify a more accurate model. SSIM quantifies the
structural resemblance between predicted and observed values, with values approaching 1 indicating
a higher structural similarity.

|Xobs i Xmodel,i

MAE = @)
n
2
RMSE = Z, 1( obs,ji modelt) (5)
n
Xo S, 1 _Xma el i ?
nRMSE = 2o (KXo ae 1) ©)
Z (X()bsl Xobs)
2" (Xmodeli _Xmodel)(XobS[ _Xobs)
— i=1 ’ 5
ACC = - — : -
\/z i=l (Xnodet.i = X moder) z il (Xopsi = Xons )
obs,i _Xmo el i :
N =1 i Xows = Xowa) o
Zl I(XObYl Xobc)
203 moe+C 20—05m0e+c
SSIM (obs,model) = (2Hotsmads + C1) (2 pomacr +C:) o

(ﬂom + oaer +C, )( o + Ooder + C )

Model prediction errors primarily manifest at the sea ice edge, an area of significance for Arctic
shipping and navigation. Therefore, it is imperative to validate the prediction accuracy of the sea-ice
edge position. Melsom et al. [30] proposed employing three metrics, namely, the mean ice edge
displacement (D), the integrated ice edge error (IIEE) average displacement (Djv¢), and the IIEE
bias (A"EE), to assess the accuracy of the model's sea-ice edge prediction. Di,; measures the shortest
Euclidean distance between the actual observed sea-ice edge grid cell points and the model's sea-ice
edge grid cell points (Equation 10). Here, N,, N, denote the number of grids for observed and
predicted values, while dg, dj, represent the distance displacements between the observed and
predicted values corresponding to the nth grid of the edge. DAVE defines the integral displacement
between the observed and predicted ice edges (Equations 11-12). Error estimation by integration
reduces the effect of small-sized localized ice features (e.g., polygonal openings) on the total
displacement[31]. A"EE quantifies the disparity between observed and predicted ice (Equation 13),
with a positive deviation indicating that the predicted ice exceeds the observed value, and vice versa.

In these equations, ¢y, ¢, and c, represent the predicted values at grid points, the observed
values at grid points, and the constant values defining the sea ice boundaries, respectively. Ly,
Ly are the observed and predicted ice edge lengths. A”EE encompasses the total number of grid cells
in the over-predicted and under-predicted ice regions, with a’’f% representing the difference
between them. y,y; determines the robustness of sea-ice edge error measurement results, with
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larger values indicating greater sensitivity to the formulation of the sea-ice edge displacement error
(Equation 14).
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e 2 NO n=l1 ’ M n=1 ! ( )
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(11)
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a"F=AT -4, A=) a4 =
A O
D[IEE _ 2 AIIEE (12)
AVG —
Lo+ Ly
IIEE — 2 a]IEE (13)
Lo+ Ly
Diic
Tave = (14)
Dl

3. Results and discussion

3.1. Daily scale predictions of sea ice concentration

Figure 4 depicts the distribution of average prediction accuracy metrics (MAE, RMSE, nRMSE,
ACC, NSE, and SSIM) values for the ConvLSTM, PredRNN, ConvLSTM-multi, and PredRNN-multi
models for the years 2020 and 2021. As shown in Figures 4a and 4b, the daily average prediction
accuracy of SIC in 2020 and 2021 follows the order of ConvLSTM-multi, PredRNN-multi, ConvLSTM,
and PredRNN, from high to low, for MAE and RMSE. The metrics nRMSE, ACC, and NSE exhibit
sensitivity to the prediction accuracy of the sea ice edge region. As evidenced by Figure 4c, d, and e,
the prediction accuracy of the multi-predictor models ConvLSTM-multi and PredRNN-multi in the
thin ice region significantly outperforms that of the single predictor models. PredRNN-multi
demonstrates superior prediction accuracy in the initial six days, but it is subsequently surpassed by
ConvLSTM-multi. Figure 4f illustrates that the ConvLSTM model outperforms the PredRNN model
in terms of the SSIM between predicted values and observed values. Notably, the ConvLSTM-multi
model excels, capturing the shape changes in Arctic sea ice coverage for 2020 and 2021. Figure A 2
shows the SIC distribution of observed and predicted values from September 6 to September 15, 2020,
for ConvLSTM, PredRNN, ConvLSTM-multi, and PredRNN-multi models. It is evident that the sea
ice edge's shape in the ConvLSTM-multi model aligns most closely with the observed values.

Overall, the prediction accuracy of the four models significantly surpasses the average
prediction accuracy of the CMIP6 model in three prospective climate scenarios (Table 2). On the 10th
day, the prediction accuracy of the four models reaches its weakest values (MAE: 8.45%, RMSE:
15.96%, nRMSE: 48%, ACC: 0.88, NSE: 0.76), which is superior to the ensemble prediction accuracy
of the best model (SSP126 in 2020: MAE: 19.67%, RMSE: 29.13%, nRMSE: 69%, ACC: 0.76, NSE: 0.53).

Figures 5 and 6 display comparative histograms illustrating the distribution of SIC intervals,
observed from NSIDC data, and those predicted by four distinct models during the melting season
spanning from June to September in the years 2020 and 2021. Since NSIDC assigns all regions with
less than 15% SIC to 0, the number of grids with 0 in the predicted SIC values of the four models is
obviously less than that of NSIDC SIC. The comparison results show that the number of grids
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predicted by ConvLSTM and ConvLSTM-multi models is high in 40%~50% and low in 50%~80%. The
predicted values of PredRNN and PredRNN-multi models exhibit a remarkable level of agreement
with NSIDC SIC in 30%~90%; The predicted values of the four models are low in 90%~95% and high
in 95%~100%. The difference between the predicted grid number and the observed grid number of
the PredRNN-multi model in 80%~100% is smaller than that of the PredRNN model. The interval
distribution of SIC predicted by the PredRNN-multi model is most consistent with the distribution
of NSIDC SIC in the melting season.

(@) (b) ()

NRMSE(%)

0.965
DN
09601
0.955
0.950
0.945
0.940

0.935

0.930
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
Lead time(day) Lead time(day) Lead time(day)
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+— PredRNN(2020) —<— PredRNN-multi(2020) «- PredRNN(2021) - PredRNN-multi(2021)

Figure 4. ConvLSTM, PredRNN, ConvLSTM-multi, and PredRNN-multi models' SIC prediction
accuracies over prediction time in 2020 and 2021.

Table 2. The daily average prediction accuracy of SIC in 2020 and 2021 by the "selected models" in
CMIP6 under three CO2 emission scenarios (SSP126, SSP245 and SSP585).

Year Scenarios MAE RMSE nRMSE ACC NSE
SSP126 19.67% 29.13% 69% 0.76 0.53
2020 SSP245 23.57% 32.94% 78% 0.74 0.47
SSP585 25.44% 35.2% 85% 0.71 0.41
SSP126 20.08% 29.22% 70% 0.76 0.53
2021 SSP245 23.32% 32.11% 76% 0.75 0.49
SSP585 24.58% 33.95% 80% 0.73 0.45
o 165 (@ (b) (© (d)
NSIDC NSIDC NSIDC NSIDC
ConvLSTM |== PredRNN ] ConvLSTM-multi | PredRNN-multi

Count

i - H WFFH:FFFH_‘:
- - T [ T T T T -
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
SIC(%) SIC(%) SIC(%) SIC(%)

Figure 5. Histograms of NSIDC SIC versus four model predictions during the melt season (June-
September 2020). (a), (b), (c), and (d) corresponding to ConvLSTM, PredRNN, ConvLSTM-multi, and
PredRNN-multi, respectively.

The RMSE of the daily scale SIC predicted values of the four models in 2020-2021 changes with
the prediction time, as shown in Figure 7. The prediction error is concentrated within the one-year
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ice region, with minimal error observed in the multi-year ice region. Specifically, RMSE values
initially rise in the Kara Sea and Barents Sea, followed by a gradual increase in the Laptev Sea and
East Siberian Sea. The ConvLSTM-multi model demonstrates superior performance, displaying the
slowest increase in RMSE with respect to the number of prediction days, particularly in the Kara Sea
and Barents Sea. The inflow of warm salt water from the Atlantic Ocean[32,33] and positive solar
radiation accumulated in summer[34] caused the sea ice in Kara Sea and Barents Sea to shrink, and
the SIC to change rapidly, so the model prediction error of these two sea areas was large. There is
annual sea ice drift from the Laptev Sea and East Siberian Sea to Fram Strait[35,36], which causes the
sea ice along the line to change rapidly, and correspondingly increases the prediction error of the
model along the line.

8
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Figure 6. Histograms of NSIDC SIC versus four model predictions during the melt season (June-
September 2021). (a), (b), (c), and (d) corresponding to ConvLSTM, PredRNN, ConvLSTM-multi, and
PredRNN-multi, respectively.

The ACC spatial distribution of the daily scale SIC predicted values of the four models in 2020 -
2021 changes with the prediction time, as shown in Figure 8. The ACC of the one-year ice region is
high, which shows that the anomalies predicted by the model are in good agreement with those
observed in practice, and the model demonstrates its efficacy in accurately capturing the dynamic
transition from sea ice melting to regrowth within the one-year ice region. SIC in the perennial ice
area remains stable throughout the year, and the prediction error is small, so the ACC value is low.
With the increase in forecast days, the consistency between the forecast anomaly and the observation
anomaly in a year's ice area decreases. The ConvLSTM-multi model exhibits the highest performance,
and the ACC of its prediction results decreases the slowest with the number of prediction days.

Figure Al shows the RMSE and ACC of the "selected models" in CMIP6 for three future CO2
emission scenarios (SSP126, SSP245, and SSP585), with the RMSE of the predicted values in the
SSP126 scenario being the best, and the RMSE of the predicted values for the one-year ice ranging
from 20% to 50%, while the RMSE of the predicted values of the four models in the 10th day of the
one-year ice ranges from 12.5% to 25%, indicating that the deep learning models can better predict
the process of sea ice from melting to regrowth in the one-year ice. The ACC of the predicted values
in the S5P126 scenario is optimal and is mainly distributed between 0.7 and 0.8 in the one-year ice,
whereas the ACC of the predicted values of the four models on day 10 in the one-year ice region is
mainly distributed between 0.9 and 1, which indicates that the deep learning models are more capable
of predicting the anomalies that need to be captured.

3.2. Sea ice edge prediction accuracy

Figure 9 shows how the IIEE values of the four models change with the prediction time, and the
IIEE values of the ConvLSTM-multi model increase the slowest with the prediction time. By
contrasting the predictive outcomes of the ConvLSTM model with those of the ConvLSTM model
supplemented with reanalysis data in the training dataset, it becomes evident that the inclusion of
reanalysis data effectively enhances predictive accuracy for the sea ice edge region and mitigates the
decline in accuracy as the prediction time lengthens. Similarly, the incorporation of reanalysis data


https://doi.org/10.20944/preprints202311.0560.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2023 d0i:10.20944/preprints202311.0560.v1

12

in the PredRNN model also bolsters predictive accuracy for the sea ice edge region. In the extreme
year (2020), the PredRNN-multi model yields higher IIEE values in predictions compared to the
ConvLSTM model, while in the standard year (2021), it delivers lower values. This implies that the
PredRNN-multi model falls short of matching the predictive capabilities of the ConvLSTM-multi
model in thin ice region forecasting. Figure A3 provides a visual representation of the spatial
distribution of IIEE for the four SIC prediction models for the period September 6-15, 2020, using
SIC=15% as the threshold for distinguishing over-predicted ice regions (A*) and under-predicted ice
regions (A~ ). The visual analysis corroborates that the ConvLSTM-multi model consistently
demonstrates superior performance by exhibiting the least pronounced increase in IIEE values as the
prediction time extends.
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Figure 7. The change in RMSE of daily scale SIC forecast values of four models from 2020 to 2021 with the increase in forecast days. (al-a10), (b1-b10), (c1-c10) and (d1-
d10), respectively, correspond to the RMSE distributions of ConvLSTM, PredRNN, ConvLSTM-multi and PredRNN-multi models from the first day to the tenth day.
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Figure 8. The change in ACC of daily scale SIC forecast values of four models from 2020 to 2021 with the increase in forecast days. (al-a10), (b1-b10), (c1-c10) and (d1-d10),
respectively, correspond to the ACC distributions of ConvLSTM, PredRNN, ConvLSTM-multi and PredRNN-multi models from the first day to the tenth day.
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Figure 10 shows the distribution of DI, DAEE and across four model predictions during

the winter—spring (freezing) and summer—autumn (melting) periods. DY is the point-to-point
displacement between the predicted and observed ice edge, representing the upper limit of the sea-

ice edge position displacements. DpvE¢ represents the integral area displacement between the

AIIEE

predicted and observed ice edge, delineating the lower limit of the sea-ice edge position
displacement. A"EE quantifies the deviation in the predicted total ice content from the observed total
ice content, and y,y; reflects the sensitivity of the actual error in the predicted ice-edge position
concerning the applied displacement error measure. In the comparison of results from Figure 10 a, c,
and e, it is evident that the deviation between the sea ice edge predicted by the four models during
winter-spring and the observed values is minimal, exhibiting a gradual increase with the extension
of the prediction time. Conversely, when contrasted with the outcomes from Figure 10b, d, and f, it
becomes apparent that the deviation in the sea ice edge predicted by the four models during summer-
autumn increases approximately three times faster than during winter—spring, and the trajectory of
each index displays marked divergence. This discrepancy is primarily attributed to the more
substantial changes in the sea ice edge area during summer-autumn, rendering predictions
inherently more challenging. Analysis of the results from Figure 10 f reveals that the ConvLSTM
model demonstrates a greater ability to anticipate the reduction in total sea ice content during the
melting season compared to the PredRNN model. However, it exhibits inadequate learning capacity
during the early stages of sea ice freezing (October-November). Referring to the sea ice edge
displacement results presented in Table 3, the ConvLSTM-multi model exhibits superior performance
during summer—autumn, while the PredRNN-multi model excels during spring—-winter. Moreover,
the mean values of DY, DAGE, and |A"EE| for the four models during both winter—spring and
summer—autumn in 2021 surpass those of the CMIP6 models within the "selected models". The
accuracy of the four models in predicting the sea ice edge's location is notably superior during
winter-spring when compared to summer—autumn, as well as in contrast to the CMIP6 model.

30
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Figure 9. The change in the integrated ice edge error (IIEE) values of the four model predictions over
the prediction time, (a) and (b) represent the years 2020 and 2021, with IIEE in km?.
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Figure 10. a-b, c-d, and e-f represent the average displacement of the ice edge (D), the average
displacement of the integrated ice edge error (Djv¢), and the deviation in the integrated ice edge error
(A"EE) for the four models in 2021, respectively, and the dashed lines in e and f correspond to the 7,

of the four models.

3.3. Parameter Sensitivity Analysis

Examining the sensitivity of model prediction results to input parameters contributes to
enhancing the selection of model input variables and improving prediction accuracy and efficiency.
To assess the influence of specific parameters, the target parameters and SIC are retained, while all
other parameters are replaced with noise. The RMSE is then for the model's predicted values.
Comparative analysis of the RMSE values generated by different parameter types offers insights into
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the significance of each parameter's impact on the model's predictions. Smaller RMSE values indicate
a stronger influence of the parameter on the model's predictive accuracy. Figures 11 and 12 depict
the RMSE distributions of prediction results for various input parameters in the ConvLSTM-multi
and PredRNN-multi models. SST exhibits the most pronounced influence on model accuracy,
followed by date. Notably, the PredRNN-multi model displays heightened sensitivity to SST in
comparison to the ConvLSTM-multi model, while the ConvLSTM-multi model exhibits greater
sensitivity to date than the PredRNN-multi model. Additionally, the ConvLSTM-multi model
demonstrates a slight but noticeable sensitivity to parameters like T2M, SKT, SSRD, and MSL, with
slightly more sensitivity to these parameters than to the U10/V10. In contrast, the PredRNN-multi
model shows consistent sensitivity to T2M, SKT, SSRD, MSL, and U10/V10.

Table 3. Average sea ice edge displacement (unit: km) in winter-spring and summer—autumn of 2021
under three future CO2 emission scenarios (SSP126, SSP245, and SSP585) for the four deep learning
models in this study and the "selected models" in CMIP6.

ConvLST |, (arnn CONVLSTMPredRNN o0 gopass  sspsss
M -multi -multi

127.4
D&, 5.44 14.97 6.28 18.10 5.45 1551 5.05 16.8630.50 6 28.74 203.26 30.85 217.10

DI¥E 5.03 12.515.15 13.72 4.87 11.74 4.79 13.5225.18 90.62 23.32 124.80 23.36 132.34
|AMEE| 142 470 1.68 5.68 1.55 4.39 1.36 7.73 6.92 66.94 2.62 111.80 3.54 118.79
Tavg  1.07 1.22 1.19 1.27 110 131 1.05 1.23 1.22 14 124 154 133 1.56

Comparison of RMSE distributions for the first-day SIC predictions reveals insights into the
influence of input parameters on model predictions. This assessment is conducted under three
scenarios: when no noise is introduced into the two models, when reanalysis data are treated as noise,
and when SIC is considered as noise, Figures 13 and 14 illustrate the outcomes. When meteorological
data are treated as noise, both the ConvLSTM-multi and PredRNN-multi models exhibit challenges
in accurately predicting the extent of thin ice near the sea ice edge. Notably, the PredRNN-multi
model is more affected, aligning with the prior observation that this model displays heightened
sensitivity to SST. On the other hand, the response of these models differs when input SIC are noisy.
In the case of the ConvLSTM-multi model, the ice-free region's characteristics exert a more significant
impact than those of the sea ice region. This outcome is attributed to the model's capacity to learn
from the SIC, subsequently isolating the ice-free regions. In contrast, the PredRNN-multi model is
primarily influenced by the sea ice region, with minimal impact observed in the ice-free region. This
phenomenon arises from the model's ability to glean predictive insights from the distribution of sea
ice within the SIC.

3.4. Prediction ability of the model under extreme conditions

Since the commencement of SIC data recording by the NSIDC, the Arctic's sea ice area in
September reached historic lows in 2012 and 2020. To ensure the continuity and adequacy of the
model's training data, the data from 2020 and 2021 are reserved for testing to evaluate the model's
predictive performance in both extreme and normal years. In Figure 4a and 4b, the prediction
accuracy of the four models for 2020 is behind that for 2021, with the ConvLSTM-multi model
exhibiting superior predictive capabilities for the abrupt changes in September 2020's sea ice area.
Figure 5 and Figure 6reveal a decrease in the grid count for high-value SIC from June to September
2020, with values approaching 0%. Notably, low-value SIC in 2020 was significantly less than in 2021.
Consequently, metrics such as normalized nRMSE, ACC, NSE, and SSIM, which are sensitive to sea-
ice edge prediction accuracy, performed better in 2020 compared to 2021 (Figure 4c-f).
ComparingFigure 5d and Figure 6d, the PredRNN-multi model tends to overestimate SIC values
from June to September 2020, primarily in the range of 95% to 100%, while its underestimating of
values tends to be clustered around 0%. This indicates that the PredRNN-multi model falls short in
predicting the sharp decline in the sea ice area in 2020, which also elucidates the significant difference
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in IIEE values between its 2020 and 2021 predictions (Figure 9). Conversely, the ConvLSTM-multi
model's IIEE values for SIC predictions in 2020 and 2021 closely align with each other and exhibit less
sensitivity to extreme years. Additionally, in Figures 11-14, the trends in prediction accuracy
corresponding to various input parameters in relation to prediction duration and spatial distribution
remain consistent across different years, suggesting that the influence of input parameters on the
model remains largely independent of yearly variations.

(a) (b)

244 SIC+SST
—e— SIC+T2M
2 = SIC+sKT
—e— SIC+SSRD
SIC+MSL
—e— SIC+U10/V10
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1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 9 10
Lead time(day) Lead time(day)

Figure 11. RMSE distribution of the prediction results corresponding to different input parameters of
the ConvLSTM-multi model. The red line represents the prediction results with all the input
parameters. (a) and (b) correspond to the model predictions for 2020 and 2021, respectively.
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Figure 12. RMSE distribution of the prediction results corresponding to different input parameters of
the PredRNN-multi model. The red line represents the prediction results of inputting all parameters.
(a) and (b) correspond to the model predictions for 2020 and 2021, respectively.
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Figure 13. RMSE distributions of the first day SIC predictions for the ConvLSTM-multi model without
adding any noise (al), (bl), masking the reanalysis data as noise (a2), (b2) and masking the SIC as
noise (cl), (c2). al-a3 and b1-b3 correspond to the predicted values for 2020 and 2021, respectively.
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Figure 14. RMSE distributions of the first day SIC predictions for the PredRNN-multi model without
adding any noise (al), (b1), masking the reanalysis data as noise (a2), (b2) and masking the SIC as
noise (cl), (c2). al-a3 and b1-b3 correspond to the predicted values for 2020 and 2021, respectively.

4. Conclusions

This study explores the integration of multiple predictors into the ConvLSTM and PredRNN
models, thereby creating ConvLSTM-multi and PredRNN-multi models. These models are designed
for the 10-day prediction of SIC across the entire Arctic Ocean. The findings underscore that the
incorporation of meteorological reanalysis data within the ConvLSTM and PredRNN models leads
to a significant enhancement in the daily scale prediction accuracy of SIC. Notably, the predictive
accuracy of the model is most influenced by SST, followed by the date of SIC. The ConvLSTM-multi
model demonstrates the lowest MAE, RMSE and IIEE, with the least increase with the extension in
the prediction time. Moreover, the ConvLSTM-multi model exhibits commendable accuracy,
particularly during extreme years, albeit with a slightly inferior performance in predicting the
distribution of SIC values compared to the PredRNN-multi model. The evaluation of sea-ice edge
displacement indicates that the ConvLSTM-multi model excels during summer and autumn, while
the PredRNN-multi model performs optimally during spring and winter. Consequently, this
comparative analysis highlights that the ConvLSTM-multi model is better suited for predicting SIC
over the next 10 days.

Despite the progress made in this study, it is essential to acknowledge several limitations
inherent to the model. The predictive capacity for SIC hinges on both the quantity of available SIC
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datasets and the diversity of input parameters. However, the quantity of SIC datasets and the spatial
resolution offered by NSIDC are constrained, necessitating a higher volume of datasets to further
refine the model's parameters. Additionally, the model exhibits limited predictive capability for
summer sea ice due to its exclusive reliance on reanalysis data. Crucial parameters such as sea ice
thickness and ice melting pools, which wield a substantial influence on sea ice dynamics, have not
been incorporated into the model. This omission can be attributed to the limited availability and
accessibility of these parameters. Lastly, the study falls short in comprehensively analyzing the
impact of input parameters on prediction outcomes and discerning the intricate nonlinear
relationships between them. Future research endeavors will focus on intensifying the analysis of
physical parameters influencing sea ice variations and enhancing the model's capacity to assimilate
input data, to enhance the prediction ability of the model.
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Appendix A

Table A1l. CMIP6 Models and realizations used in this study. The projections including SSP126,
S5P245 and SSP585, are from 2020 to 2021 in this study.

Spatial
. Frequenc )
Model | resolutio Experiment (ensemble members)
n y
ACCESS SSP126(1 | rlilplf | SSP245(1 | rlilplf | SSP585(1 | rlilplf
360x300 day
-CM2 ) 1 ) 1 ) 1
rlilplf rlilplf
1 1
r2ilplf r2ilplf
CESM2-
SSP126(1 | rlilplf | SSP245(5 1 SSP585(5 1
WACC | 320x384 day
) 1 ) r3ilplf ) r3ilplf
M
1 1
rdilplf rdilplf
1 1
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MIROC SSP126(3 | r2ilplf | SSP245(3 | r2ilplf | SSP585(3 | r2ilplf
360%256 day
6 ) 1 ) 1 ) 1
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1 1 1
MRI- SSP126(1 | rlilplf | SSP245(1 | rlilplf | SSP585(1 | rlilplf
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ESM2-0 ) 1 ) 1 ) 1
100
80 ~
60§
40 §

SSP245
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Figure Al. The distribution of RMSE(a-c) and ACC(d-f) of SIC in Arctic sea area in 2020-2021
predicted by the "selected models" in CMIP6 under three CO2 emission scenarios (SSP126, SSP245
and SSP585) in the future.
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Figure A2. Observations (al-al0) and predictions from the ConvLSTM (b1-b10), PredRNN (c1-c10), ConvLSTM-multi (d1-d10), and PredRNN-multi (e1-e10) models for
the Arctic SIC on September 6-15, 2020. Gray represents land, dark blue represents ice-free ocean, and the red line is the sea ice boundary for observations and the green
line is the sea ice boundary predicted by the model. SIC=15% is the sea ice boundary. The ACC and sea ice area (SIE) errors of the four models' daily predictions are shown
in the lower right corner.
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