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Abstract: Arctic sea ice prediction holds significant importance for facilitating Arctic route planning, 
optimizing fisheries management, and advancing the field of sea ice dynamics research. While various deep 
learning models have been developed for sea ice prediction, they predominantly operate at the seasonal or sub-
seasonal scale, often focusing on localized areas, and few cater to full-region daily scale prediction. This study 
introduces the use of spatiotemporal sequence data prediction models, namely, the convolutional LSTM 
(ConvLSTM) and predictive recurrent neural network (PredRNN), for the prediction of sea ice concentration 
(SIC). Our analysis reveals that, when solely utilizing SIC historical data as the input, the ConvLSTM model 
outperforms the PredRNN model in SIC prediction. To enhance the model's capacity to capture spatiotemporal 
relationships between multiple variables, we expanded the range of input data types to form the ConvLSTM-
multi and PredRNN-multi models. Experimental findings demonstrate that the ConvLSTM-multi model excels 
in assimilating the influence of reanalysis data on sea ice within the sea ice edge region, thus exhibiting superior 
performance in predicting daily Arctic SIC over the subsequent 10 days. Furthermore, sensitivity tests on 
various model parameters highlight the substantial impact of sea surface temperature and prediction date on 
the accuracy of daily sea ice prediction. Additionally, meteorological and oceanographic parameters primarily 
affect the prediction accuracy of the thin ice region at the edge of the sea ice. 

Keywords: sea ice concentration; recurrent neural network; Arctic sea ice prediction; short-term 
prediction 
 

1. Introduction 

Global warming has accelerated the rate of melting of the Arctic sea ice [1]. During 1970-2010, 
Arctic sea ice area decreased by an average of 4% per decade [2]. The rate of sea ice area decline 
increased dramatically into the 21st century [3–5]. The extent of the Arctic sea ice reached its smallest 
value in the recorded history of satellite data in 2012, at about 3.34 million kmଶ, while the second 
lowest value occurred in 2020, at about 3.74 million kmଶ [6]. The reduced extent of the sea ice presents 
new opportunities for a number of industries, including Arctic shipping, tourism, fisheries, and oil 
and gas exploration [7]. Predicting seasonal and daily scale changes in Arctic sea ice is of great 
practical significance for the safe operation of Arctic shipping lanes and the development and 
utilization of Arctic resources. 

Physical interactions between the atmosphere, ocean, and sea ice are the basis for predicting sea 
ice. Several studies have already been conducted to predict Arctic sea ice on different spatial and 
temporal scales and to explore the predictability in different seasons. Blanchart et al. [8] used the 
outputs of the Community Climate System Model, version 3 (CCSM3) to assess the mechanisms of 
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sea ice persistence, and comparisons with actual observations demonstrated that the model can be 
used for seasonal to annual predictions of sea ice. Krikken et al. [9] used 15 climate models of CMIP5 
to analyze the natural variability in Arctic sea ice from an energy balance perspective and found a 
strong correlation between the energy balance and the reappearance of sea ice anomalies from the 
sea ice melting season to the growing season. Guemas et al. [10] reviewed potential sources of Arctic 
sea ice predictability from months to years, including the persistence and advection of sea ice 
anomalies, interactions with the oceanic atmosphere, and changes in the radiative forcing. 
Mohammadi et al. [11] determined the potential predictability of Arctic winter sea ice using a sea ice–
ocean coupling model, noting high predictability of sea ice concentration (SIC) and sea ice edge 
position over a 10-day period. Cruz et al.[12] investigated sea-ice predictability from seasonal to 
annual scales using a variety of climate models, emphasizing the importance of the reoccurring 
effects of sea ice anomalies, and observed that anomalies in SIC in the Barents Sea are highly 
negatively correlated with local sea surface temperature anomalies. Onarheim et al.[13] showed that 
ocean heat transport (OHT) variability plays an important role in winter sea ice variability in the 
Barents Sea, and that the use of the OHT can lead to predictions two years in advance. These studies 
provide knowledge on the predictability of sea ice associated with a wide range of physical processes, 
while emphasizing the importance of selecting predictors that are relevant to the target location and 
time scale. 

The main approaches to Arctic sea ice prediction are numerical simulations, statistical 
predictions and deep learning. Numerical simulation methods are based on physical links between 
temperature changes, humidity transport, wind field models, cloud cover and ocean heat fluxes. 
Major climate simulation centers around the world have released some atmospheric and oceanic 
simulation data. Their adoption of climate models relies on real-time inputs of observational 
conditions in the data assimilation process. At the same time, due to the limitations of a single climate 
model and the large differences in the results of different models, it is necessary to determine the 
assigned weights of each climate model based on its contribution to the simulation of the current 
climate mean, and then take a weighted average to improve the accuracy of sea ice prediction. In 
practice, this treatment does not eliminate the effect of model bias on sea ice prediction. In addition, 
many processes in the dynamic model of sea ice need parameterization, and the current model lacks 
modeling of rheology, ice thickness distribution, wave–ice interaction, landing ice, melting water and 
size distribution of floating ice[14]. Statistical methods are used to predict the state of sea ice 
according to historical data. With the thinning of sea ice, the average state of sea ice has changed 
significantly. In addition, most statistical models are linear models, which cannot learn the nonlinear 
relationship between variables in the Arctic climate system. Because the nonlinear feedback 
mechanism plays an important role in the coupling system of Arctic atmosphere, ocean and sea ice, 
it is necessary to predict Arctic sea ice using a nonlinear model. Deep learning technology has a strong 
nonlinear learning ability. Chi et al. and Choi et al. input the monthly average SIC data of the National 
Snow and Ice Data Center (NSIDC) into the multilayer perceptron (MLP) and the long and short-
term memory (LSTM) models to predict the monthly average of SIC, and found that the results are 
better than the traditional autoregressive (AR) model[15,16]. Kim et al.[17] used the integrated data 
of a regional climate model (RCM) as input variables, and used the deep neural network (DNN) 
method to deal with the nonlinear relationship between SIC and climate variables. As a result, they 
predicted the SIC in the Kara Sea and Barents Sea in the next 10-20 years. Fritzner et al.[18] compared 
the prediction accuracy of a high-resolution dynamic assimilation model, K-NN model and FCN 
model for the next 7 days, and pointed out that the FCN model can provide similar prediction results 
to the dynamic assimilation model. Kim et al.[19] input eight predictors into the CNN model to 
predict the monthly average SIC in the next month, and the results were better than that of the RF 
model. Andersson et al.[20] put forward a model of a probabilistic sea ice prediction system. The 
model used climate simulation and observation data as the input data to predict the monthly average 
SIC in the next six months. The results showed that the IceNet model has a high accuracy in predicting 
the sea ice range, and it is superior to the SEAS5 dynamic model in predicting extreme sea ice events 
in summer. Liu et al.[21] used the convolutional LSTM (ConvLSTM) model to predict SIC in the 
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Barents Sea over the next six weeks. They added ERA-Interim reanalysis data to the training dataset, 
and used the covariance between different variables and the spatiotemporal correlation to complete 
the prediction of regional SIC. The results were better than the linear regression model. At present, 
the deep learning method is mainly used to predict the sub-seasonal scale of regional sea ice. Because 
the daily short-term forecast of SIC is very important for maritime shipping decision-making, it is 
urgent to attain the accurate daily short-term forecast of SIC. 

The ConvLSTM and predictive recurrent neural network (PredRNN) models exhibit the capacity 
to capture spatiotemporal correlations among diverse input parameters, enabling them to 
theoretically predict spatiotemporal sequence data. This study introduces these models into the realm 
of the high-precision daily scale short-term prediction of Arctic sea ice. Initially, we compare the 
predictive performance of the ConvLSTM and PredRNN models when only SIC is utilized as the 
input. Subsequently, we enhance the input data by incorporating meteorological parameters that 
influence both SIC and the sea boundary, leading to the formation of ConvLSTM-multi and 
PredRNN-multi models. Through an investigation of the spatiotemporal correlations between SIC 
and meteorological parameters, we observe a substantial enhancement in the model's predictive 
capability for the sea ice edge region. Furthermore, this paper conducts a quantitative analysis to 
discern the model's sensitivity to the input meteorological parameters, pinpointing the key 
meteorological variables that affect the prediction accuracy of SIC. 

2. Data and methods 

2.1. Data 

We used SIC data from the NSIDC and reanalysis data from ERA5, provided by the European 
Centre for Medium-Range Weather Forecasts (ECMWF), as the training set, spanning the period from 
1988 to 2021. The NSIDC SIC dataset is derived from observations made by the scanning 
multichannel microwave radiometer (SMMR) carried by the Nimbus-7 satellite, the special sensor 
microwave imager (SSM/I) sensors carried by the National Defense Meteorological Satellite Program 
(DMSP)-F8, -F11 and -F13 satellites and the special sensor microwave imager/sounder (SSMIS) 
sensors carried by DMSP-F17. Among the NSIDC datasets, we utilized the NASA Bootstrap 
algorithm-derived dataset for our research. The product is provided in the form of a daily average, 
with polar stereo projection (45°W, 70°N), spatial resolution of 25km×25km and grid number of 
448×304. The values within this dataset range from 0, signifying the absence of ice in the grid, to 100, 
indicating complete sea ice coverage. The primary sources of error in these data arise from thin ice 
(ranging from 30% to 50%) and surface melting (ranging from 10% to 30%) [22]. The Arctic Ocean 
covered by this dataset predominantly encompasses the Sea of Okholtsk, Bering Sea, Chukehi Sea, 
Beaufort Sea, Canadian Archipelago, Hudson Bay, Baffin Bay, Greenland Sea, Norwegian Sea, 
Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea and Central Arctic Sea. The distribution of sea 
areas is illustrated in Figure 1. The NSIDC takes SIC=15% as the sea ice boundary threshold, and the 
region with SIC≥15% is considered as the sea ice area. 
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Figure 1. Distribution map of sea in the study area. 

The ERA5 dataset is a global meteorological dataset in which the ECMWF combines 
meteorological model data with observation data from all over the world, with a spatial resolution of 0.25° × 0.25° [23]. Table 1 details the specific parameters within the ERA5 dataset utilized as inputs 
for our model, include sea surface temperature (SST), 2m temperature (T2M), skin temperature (SKT), 
surface solar radiation downwards (SSRD), mean sea level pressure (MSL), 10m u-component of 
wind (U10) and 10m v-component of wind (V10). The hourly value of ERA5 data is converted into a 
daily average, resampled into a grid consistent with SIC data, and the value is normalized to [0,1]. 

SIC, ERA5 15 days in advance, land mask, cosine and sine values of dates are fused together to 
form a series of 10 consecutive days as training samples. The dataset is divided into training dataset 
(1988-2018), verification dataset (2019) and test dataset (2020-2021). The Arctic sea ice area in 
September 2020 was the second lowest level in the recorded history of satellite data (greater only than 
in September 2012)[24], which serves as a fitting evaluation point for assessing the model's predictive 
performance under extreme conditions. All three datasets were partitioned into 10-day sequences to 
achieve a random input of 10 days of historical data to predict the SIC for the next 10 days. To analyze 
to what extent and how the atmospheric conditions and oceanic variables affected the accuracy of the 
model predictions, the models were trained using the mode of inputting both single and multiple 
predictors (Table 1). 

In addition, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) "selected 
models" nominated by the Sea-Ice Model Intercomparison Project (SIMIP) community[25] were used. 
SIMIP aims to compare and evaluate the performance of different sea-ice models, collect different 
simulation results and establish a standardized database, identify model strengths and weaknesses 
and uncertainties, improve the accuracy of sea ice models, and lay the foundation for future sea-ice 
prediction studies. The “selected models” in Table A 1 provide the best estimates of the future 
evolution of Arctic sea ice, and the daily average SIC provided by three CO2 emission scenarios, 
SSP126, SSP245, and SSP585, were chosen for comparison with the deep learning model. 

Table 1. The specifications of the eleven predictors used to predict short-term sea ice concentration 
(SIC) in the study. 

Variable Source Unit Temporal 
resolution 

Spatial 
resolution 

Value 
range 

Sea ice concentration NSIDC % Daily 25 km [0,1] 
Sea surface temperature ECMWF ERA5 K Hourly 0.25° [0,1] 

2m temperature ECMWF ERA5 K Hourly 0.25° [0,1] 
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Skin temperature ECMWF ERA5 K Hourly 0.25° [0,1] 
Surface solar radiation downwards ECMWF ERA5 J m-2 Hourly 0.25° [0,1] 

Mean sea level pressure ECMWF ERA5 Pa Hourly 0.25° [0,1] 
10m u-component of wind ECMWF ERA5 m s-1 Hourly 0.25° [0,1] 
10m v-component of wind ECMWF ERA5 m s-1 Hourly 0.25° [0,1] 

Land mask # # Daily 25 km 0/1 
Cosine of initialization day index # # Daily 25 km [–1,1] 

Sine of initialization day index # # Daily 25 km [-1,1] 

2.2. Model 

SIC data should be predicted using the spatiotemporal sequence prediction model. The 
spatiotemporal sequence is a dynamic system in which historical observations with arbitrary length 
J evolve over time, and observations at each moment can be represented on an M×N grid. Thus, the 
observation at any time can be represented by a tensor 𝒳 ∈ ℝ௃×ெ×ே , where J denotes the domain of 
the observed features. If we record observations periodically, we will obtain a sequence of tensors, 
while observations over period of T are denoted as 𝒳௜௡ = ሼ𝒳ଵ, … , 𝒳்ሽ. The model is designed to 
predict the sequence 𝒳෡out = ൛𝒳෡்ାଵ, … , 𝒳෡்ା௄ൟ for the next K time steps, given 𝒳௜௡. For the training 
pairs ሼሺ𝒳in

௡, 𝒳out
௡ ሻሽ௡ formed by all SIC data, a set of parameters 𝜃ᇱ is found by using random gradient 

descent to ensure that the log-likelihood of the generated target sequence 𝒳௢௨௧  is the maximum 
when the input data 𝒳௜௡ are provided: 

( )
( )

,
' arg max log ;
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θ
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 
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In this study, we present the ConvLSTM model [26] and PredRNN model [27], which are 
commonly employed for spatiotemporal sequence data prediction, to realize the prediction of SIC. 
The ConvLSTM model replaces matrix multiplication with convolution operations within the LSTM 
gating structure unit. This alteration allows it to simultaneously capture both temporal and spatial 
features in the data, effectively transforming the traditional encoding–decoding structure into an 
encoding–forecasting structure. The gating formula for the ConvLSTM unit is: 
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 (2) 

where 𝑖௧ is the input gate; 𝑓௧ is the forgetting gate; ∁௧ is the unit storage state; 𝑜௧ is the output gate; ℋ௧ is the hidden state; W is the weight matrix, with the subscript describing the correspondence 
between the weight matrix and the state of each gate; χ  is the input; b  is the bias; ∗  is the 
convolution operation; ⊙ is the Hadamard product; σ is the sigmoid activation function; tanh is 
the hyperbolic tangent activation function; and the subscript t  denotes the time step. Figure 2 
illustrates the ConvLSTM network framework, which consists of a three-layer stack of ConvLSTM 
units employed in the encoding–forecasting framework. In this framework, the encoder incorporates 
a down-sampling operation, while the forecaster utilizes an up-sampling operation before each layer 
of input at each time step. The training data input follows the traditional sequence-to-sequence 
approach [28]. Historical observations are input into the encoder during the training phase, and the 
state layers generated at each layer of the encoder (the shaded region in Figure 2) are transmitted to 
the forecaster. The loss function is determined by comparing predicted values to actual values, and 
model parameters are adjusted through backpropagation until Equation 1 is satisfied. 
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Figure 2. The convolutional LSTM (ConvLSTM) network framework. 

The PredRNN exhibits three distinctions from the ConvLSTM framework: (1) It introduces a 
spatiotemporal memory-state circulation method, depicted by the blue arrows in Figure 3, which 
enhances the lower layer's capability to learn top-layer features from the previous time step; (2) The 
unit responsible for the spatiotemporal memory stream employs a dual-stream memory transition 
mechanism involving ∁௧ and Μ௧ . This results in memory states that cannot be decoupled 
spontaneously. To address this, a convolutional layer is added to the ∁௧ and Μ௧ increments at each 
time step, and the spatial distances between them are extended using a novel decoupling loss 
function. This approach trains different memory states to focus on long-term and short-term 
spatiotemporal changes. (3) The model training approach incorporates the reverse scheduled 
sampling (RSS) [29] method for data input. This technique forces the model to randomly conceal true 
observations in the encoder to learn long-term dynamics, with the probability of concealing true 
observations decreasing with the number of iterations. This ensures that the model has the same 
likelihood of inputting true observations during both the training and prediction phases. In (1), the 
network is enabled to learn the complex nonlinear variations in short-term motions. However, the 
state layer transfer path stretching across time brings the problem of gradient vanishing, making it 
challenging to capture long-term dependencies. Therefore, a dual-stream memory transition 
mechanism is introduced to achieve a short-term recursion depth and long-term consistency by 
combining the original memory unit ∁௧ and the new memory unit Μ௧ to form a unit named ST-
LSTM, which is calculated as follows: 
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The PredRNN network framework comprises four layers of interconnected ST-LSTM units. As 
illustrated in Figure 3, the input data undergo reverse scheduled sampling (RSS), progressively 
increasing the likelihood of true observations being incorporated in the encoder, while inversely 
decreasing in the forecaster. The state unit ℋ௧௟  and memory unit 𝑀௧௟  circulate along the orange 
arrows in the diagram. Subsequently, the memory unit 𝑀௧௟  flows directly along the blue arrows, 
transitioning from the uppermost layer of the preceding time step to the lower layer of the subsequent 
time step, thereby establishing the circulation of short-term memory states. 

 

Figure 3. The predictive recurrent neural network (PredRNN) network framework. 

2.3. Evaluation metrics 

Mean absolute error (MAE) (Equation 4), root mean square error (RMSE) (Equation 5), 
normalized root mean square error (nRMSE) (Equation 6), anomalous correlation coefficient (ACC) 
(Equation 7), Nash–Sutcliffe efficiency (NSE) (Equation 8), and structure similarity index measure 
(SSIM) (Equation 9) are used to assess the model's performance in predicting SIC. MAE and RMSE 
are used to measure the absolute difference between the model's predictions and observed values, 
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with lower values indicating superior predictive capability. nRMSE is computed by dividing RMSE 
by the standard deviation of observed values, thereby offering a more precise depiction of the 
residuals in the sea-ice edge region within the model's predictions. It is expressed as a percentage, 
with lower values signifying reduced residuals. ACC serves as an indicator of the fidelity of predicted 
anomalies and the degree to which predicted values align with the actual data, producing values 
within the range of +1 to -1. A value closer to +1 denotes greater consistency between predicted and 
observed values. NSE is employed to gauge the precision of the model's output values within the 
range of −∞  to 1. Values approaching 1 signify a more accurate model. SSIM quantifies the 
structural resemblance between predicted and observed values, with values approaching 1 indicating 
a higher structural similarity. 
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Model prediction errors primarily manifest at the sea ice edge, an area of significance for Arctic 
shipping and navigation. Therefore, it is imperative to validate the prediction accuracy of the sea-ice 
edge position. Melsom et al. [30] proposed employing three metrics, namely, the mean ice edge 
displacement (D୅୚ୋ୍୉ ), the integrated ice edge error (IIEE) average displacement (𝐷୅୚ୋ୍୍୉୉), and the IIEE 
bias (Δ୍୍୉୉), to assess the accuracy of the model's sea-ice edge prediction. D୅୚ୋ୍୉  measures the shortest 
Euclidean distance between the actual observed sea-ice edge grid cell points and the model's sea-ice 
edge grid cell points (Equation 10). Here, 𝑁௢ , 𝑁௠  denote the number of grids for observed and 
predicted values, while 𝑑௢୬ , 𝑑௠୬  represent the distance displacements between the observed and 
predicted values corresponding to the nth grid of the edge. 𝐷୅୚ୋ୍୍୉୉ defines the integral displacement 
between the observed and predicted ice edges (Equations 11-12). Error estimation by integration 
reduces the effect of small-sized localized ice features (e.g., polygonal openings) on the total 
displacement[31]. Δ୍୍୉୉ quantifies the disparity between observed and predicted ice (Equation 13), 
with a positive deviation indicating that the predicted ice exceeds the observed value, and vice versa. 

In these equations, 𝑐௠, 𝑐௢ and 𝑐௘ represent the predicted values at grid points, the observed 
values at grid points, and the constant values defining the sea ice boundaries, respectively. 𝐿ை , 𝐿ெ are the observed and predicted ice edge lengths. 𝐴ூூாா encompasses the total number of grid cells 
in the over-predicted and under-predicted ice regions, with 𝛼ூூாா  representing the difference 
between them. 𝛾஺௏ீ  determines the robustness of sea-ice edge error measurement results, with 
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larger values indicating greater sensitivity to the formulation of the sea-ice edge displacement error 
(Equation 14). 

 

1 1

1 1 1
2

O MN N
IE n n
AVG o m

O Mn n

D d d
N N= =

 = + 
 

   (10) 

0
,

,

,
,

0

,

,

m e o eIIEE

A

o e eIIEE

A

m

a c c c c
A A A A a a

a c c c c
A A A a aα

+ − + + +

+ − − − −

> ∧ <
= + = = 


> ∧ <

= = = 


−




 (11) 

2IIEE IIEE
AVG

O M
D A

L L
=

+
 (12) 

2IIEE IIEE

O M
Δ

L L
α=

+
 (13) 

IE
AVG

AVG IIEE
AVG

Dr
D

=  (14) 

3. Results and discussion 

3.1. Daily scale predictions of sea ice concentration 

Figure 4 depicts the distribution of average prediction accuracy metrics (MAE, RMSE, nRMSE, 
ACC, NSE, and SSIM) values for the ConvLSTM, PredRNN, ConvLSTM-multi, and PredRNN-multi 
models for the years 2020 and 2021. As shown in Figures 4a and 4b, the daily average prediction 
accuracy of SIC in 2020 and 2021 follows the order of ConvLSTM-multi, PredRNN-multi, ConvLSTM, 
and PredRNN, from high to low, for MAE and RMSE. The metrics nRMSE, ACC, and NSE exhibit 
sensitivity to the prediction accuracy of the sea ice edge region. As evidenced by Figure 4c, d, and e, 
the prediction accuracy of the multi-predictor models ConvLSTM-multi and PredRNN-multi in the 
thin ice region significantly outperforms that of the single predictor models. PredRNN-multi 
demonstrates superior prediction accuracy in the initial six days, but it is subsequently surpassed by 
ConvLSTM-multi. Figure 4f illustrates that the ConvLSTM model outperforms the PredRNN model 
in terms of the SSIM between predicted values and observed values. Notably, the ConvLSTM-multi 
model excels, capturing the shape changes in Arctic sea ice coverage for 2020 and 2021. Figure A 2 
shows the SIC distribution of observed and predicted values from September 6 to September 15, 2020, 
for ConvLSTM, PredRNN, ConvLSTM-multi, and PredRNN-multi models. It is evident that the sea 
ice edge's shape in the ConvLSTM-multi model aligns most closely with the observed values. 

Overall, the prediction accuracy of the four models significantly surpasses the average 
prediction accuracy of the CMIP6 model in three prospective climate scenarios (Table 2). On the 10th 
day, the prediction accuracy of the four models reaches its weakest values (MAE: 8.45%, RMSE: 
15.96%, nRMSE: 48%, ACC: 0.88, NSE: 0.76), which is superior to the ensemble prediction accuracy 
of the best model (SSP126 in 2020: MAE: 19.67%, RMSE: 29.13%, nRMSE: 69%, ACC: 0.76, NSE: 0.53). 

Figures 5 and 6 display comparative histograms illustrating the distribution of SIC intervals, 
observed from NSIDC data, and those predicted by four distinct models during the melting season 
spanning from June to September in the years 2020 and 2021. Since NSIDC assigns all regions with 
less than 15% SIC to 0, the number of grids with 0 in the predicted SIC values of the four models is 
obviously less than that of NSIDC SIC. The comparison results show that the number of grids 
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predicted by ConvLSTM and ConvLSTM-multi models is high in 40%~50% and low in 50%~80%. The 
predicted values of PredRNN and PredRNN-multi models exhibit a remarkable level of agreement 
with NSIDC SIC in 30%~90%; The predicted values of the four models are low in 90%~95% and high 
in 95%~100%. The difference between the predicted grid number and the observed grid number of 
the PredRNN-multi model in 80%~100% is smaller than that of the PredRNN model. The interval 
distribution of SIC predicted by the PredRNN-multi model is most consistent with the distribution 
of NSIDC SIC in the melting season. 

 
Figure 4. ConvLSTM, PredRNN, ConvLSTM-multi, and PredRNN-multi models' SIC prediction 
accuracies over prediction time in 2020 and 2021. 

Table 2. The daily average prediction accuracy of SIC in 2020 and 2021 by the "selected models" in 
CMIP6 under three CO2 emission scenarios (SSP126, SSP245 and SSP585). 

Year Scenarios MAE RMSE nRMSE ACC NSE 

2020 
SSP126 19.67% 29.13% 69% 0.76 0.53 
SSP245 23.57% 32.94% 78% 0.74 0.47 
SSP585 25.44% 35.2% 85% 0.71 0.41 

2021 
SSP126 20.08% 29.22% 70% 0.76 0.53 
SSP245 23.32% 32.11% 76% 0.75 0.49 
SSP585 24.58% 33.95% 80% 0.73 0.45 

 

Figure 5. Histograms of NSIDC SIC versus four model predictions during the melt season (June-
September 2020). (a), (b), (c), and (d) corresponding to ConvLSTM, PredRNN, ConvLSTM-multi, and 
PredRNN-multi, respectively. 

The RMSE of the daily scale SIC predicted values of the four models in 2020–2021 changes with 
the prediction time, as shown in Figure 7. The prediction error is concentrated within the one-year 
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ice region, with minimal error observed in the multi-year ice region. Specifically, RMSE values 
initially rise in the Kara Sea and Barents Sea, followed by a gradual increase in the Laptev Sea and 
East Siberian Sea. The ConvLSTM-multi model demonstrates superior performance, displaying the 
slowest increase in RMSE with respect to the number of prediction days, particularly in the Kara Sea 
and Barents Sea. The inflow of warm salt water from the Atlantic Ocean[32,33] and positive solar 
radiation accumulated in summer[34] caused the sea ice in Kara Sea and Barents Sea to shrink, and 
the SIC to change rapidly, so the model prediction error of these two sea areas was large. There is 
annual sea ice drift from the Laptev Sea and East Siberian Sea to Fram Strait[35,36], which causes the 
sea ice along the line to change rapidly, and correspondingly increases the prediction error of the 
model along the line. 

 
Figure 6. Histograms of NSIDC SIC versus four model predictions during the melt season (June-
September 2021). (a), (b), (c), and (d) corresponding to ConvLSTM, PredRNN, ConvLSTM-multi, and 
PredRNN-multi, respectively. 

The ACC spatial distribution of the daily scale SIC predicted values of the four models in 2020 -
2021 changes with the prediction time, as shown in Figure 8. The ACC of the one-year ice region is 
high, which shows that the anomalies predicted by the model are in good agreement with those 
observed in practice, and the model demonstrates its efficacy in accurately capturing the dynamic 
transition from sea ice melting to regrowth within the one-year ice region. SIC in the perennial ice 
area remains stable throughout the year, and the prediction error is small, so the ACC value is low. 
With the increase in forecast days, the consistency between the forecast anomaly and the observation 
anomaly in a year's ice area decreases. The ConvLSTM-multi model exhibits the highest performance, 
and the ACC of its prediction results decreases the slowest with the number of prediction days. 

Figure A1 shows the RMSE and ACC of the "selected models" in CMIP6 for three future CO2 
emission scenarios (SSP126, SSP245, and SSP585), with the RMSE of the predicted values in the 
SSP126 scenario being the best, and the RMSE of the predicted values for the one-year ice ranging 
from 20% to 50%, while the RMSE of the predicted values of the four models in the 10th day of the 
one-year ice ranges from 12.5% to 25%, indicating that the deep learning models can better predict 
the process of sea ice from melting to regrowth in the one-year ice. The ACC of the predicted values 
in the SSP126 scenario is optimal and is mainly distributed between 0.7 and 0.8 in the one-year ice, 
whereas the ACC of the predicted values of the four models on day 10 in the one-year ice region is 
mainly distributed between 0.9 and 1, which indicates that the deep learning models are more capable 
of predicting the anomalies that need to be captured. 

3.2. Sea ice edge prediction accuracy 

Figure 9 shows how the IIEE values of the four models change with the prediction time, and the 
IIEE values of the ConvLSTM-multi model increase the slowest with the prediction time. By 
contrasting the predictive outcomes of the ConvLSTM model with those of the ConvLSTM model 
supplemented with reanalysis data in the training dataset, it becomes evident that the inclusion of 
reanalysis data effectively enhances predictive accuracy for the sea ice edge region and mitigates the 
decline in accuracy as the prediction time lengthens. Similarly, the incorporation of reanalysis data 
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in the PredRNN model also bolsters predictive accuracy for the sea ice edge region. In the extreme 
year (2020), the PredRNN-multi model yields higher IIEE values in predictions compared to the 
ConvLSTM model, while in the standard year (2021), it delivers lower values. This implies that the 
PredRNN-multi model falls short of matching the predictive capabilities of the ConvLSTM-multi 
model in thin ice region forecasting. Figure A3 provides a visual representation of the spatial 
distribution of IIEE for the four SIC prediction models for the period September 6-15, 2020, using 
SIC=15% as the threshold for distinguishing over-predicted ice regions (𝐴ା) and under-predicted ice 
regions ( 𝐴ି ). The visual analysis corroborates that the ConvLSTM-multi model consistently 
demonstrates superior performance by exhibiting the least pronounced increase in IIEE values as the 
prediction time extends. 
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Figure 7. The change in RMSE of daily scale SIC forecast values of four models from 2020 to 2021 with the increase in forecast days. (a1-a10), (b1-b10), (c1-c10) and (d1-
d10), respectively, correspond to the RMSE distributions of ConvLSTM, PredRNN, ConvLSTM-multi and PredRNN-multi models from the first day to the tenth day. 
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Figure 8. The change in ACC of daily scale SIC forecast values of four models from 2020 to 2021 with the increase in forecast days. (a1-a10), (b1-b10), (c1-c10) and (d1-d10), 
respectively, correspond to the ACC distributions of ConvLSTM, PredRNN, ConvLSTM-multi and PredRNN-multi models from the first day to the tenth day. 
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Figure 10 shows the distribution of D୅୚ୋ୍୉ , 𝐷୅୚ୋ୍୍୉୉ and Δ୍୍୉୉ across four model predictions during 
the winter–spring (freezing) and summer–autumn (melting) periods. D୅୚ୋ୍୉  is the point-to-point 
displacement between the predicted and observed ice edge, representing the upper limit of the sea-
ice edge position displacements. 𝐷୅୚ୋ୍୍୉୉  represents the integral area displacement between the 
predicted and observed ice edge, delineating the lower limit of the sea-ice edge position 
displacement. Δ୍୍୉୉ quantifies the deviation in the predicted total ice content from the observed total 
ice content, and 𝛾஺௏ீ  reflects the sensitivity of the actual error in the predicted ice-edge position 
concerning the applied displacement error measure. In the comparison of results from Figure 10 a, c, 
and e, it is evident that the deviation between the sea ice edge predicted by the four models during 
winter–spring and the observed values is minimal, exhibiting a gradual increase with the extension 
of the prediction time. Conversely, when contrasted with the outcomes from Figure 10b, d, and f, it 
becomes apparent that the deviation in the sea ice edge predicted by the four models during summer–
autumn increases approximately three times faster than during winter–spring, and the trajectory of 
each index displays marked divergence. This discrepancy is primarily attributed to the more 
substantial changes in the sea ice edge area during summer–autumn, rendering predictions 
inherently more challenging. Analysis of the results from Figure 10 f reveals that the ConvLSTM 
model demonstrates a greater ability to anticipate the reduction in total sea ice content during the 
melting season compared to the PredRNN model. However, it exhibits inadequate learning capacity 
during the early stages of sea ice freezing (October–November). Referring to the sea ice edge 
displacement results presented in Table 3, the ConvLSTM-multi model exhibits superior performance 
during summer–autumn, while the PredRNN-multi model excels during spring–winter. Moreover, 
the mean values of D୅୚ୋ୍୉ , 𝐷୅୚ୋ୍୍୉୉ , and |Δ୍୍୉୉| for the four models during both winter–spring and 
summer–autumn in 2021 surpass those of the CMIP6 models within the "selected models". The 
accuracy of the four models in predicting the sea ice edge's location is notably superior during 
winter–spring when compared to summer–autumn, as well as in contrast to the CMIP6 model. 

 
Figure 9. The change in the integrated ice edge error (IIEE) values of the four model predictions over 
the prediction time, (a) and (b) represent the years 2020 and 2021, with IIEE in kmଶ. 
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Figure 10. a-b, c-d, and e-f represent the average displacement of the ice edge (D୅୚ୋ୍୉ ), the average 
displacement of the integrated ice edge error (𝐷୅୚ୋ୍୍୉୉), and the deviation in the integrated ice edge error 
(Δ୍୍୉୉) for the four models in 2021, respectively, and the dashed lines in e and f correspond to the 𝑟஺௏ீ  
of the four models. 

3.3. Parameter Sensitivity Analysis 

Examining the sensitivity of model prediction results to input parameters contributes to 
enhancing the selection of model input variables and improving prediction accuracy and efficiency. 
To assess the influence of specific parameters, the target parameters and SIC are retained, while all 
other parameters are replaced with noise. The RMSE is then for the model's predicted values. 
Comparative analysis of the RMSE values generated by different parameter types offers insights into 
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the significance of each parameter's impact on the model's predictions. Smaller RMSE values indicate 
a stronger influence of the parameter on the model's predictive accuracy. Figures 11 and 12 depict 
the RMSE distributions of prediction results for various input parameters in the ConvLSTM-multi 
and PredRNN-multi models. SST exhibits the most pronounced influence on model accuracy, 
followed by date. Notably, the PredRNN-multi model displays heightened sensitivity to SST in 
comparison to the ConvLSTM-multi model, while the ConvLSTM-multi model exhibits greater 
sensitivity to date than the PredRNN-multi model. Additionally, the ConvLSTM-multi model 
demonstrates a slight but noticeable sensitivity to parameters like T2M, SKT, SSRD, and MSL, with 
slightly more sensitivity to these parameters than to the U10/V10. In contrast, the PredRNN-multi 
model shows consistent sensitivity to T2M, SKT, SSRD, MSL, and U10/V10. 

Table 3. Average sea ice edge displacement (unit: km) in winter–spring and summer–autumn of 2021 
under three future CO2 emission scenarios (SSP126, SSP245, and SSP585) for the four deep learning 
models in this study and the "selected models" in CMIP6. 

 ConvLST
M 

PredRNN ConvLSTM
-multi 

PredRNN
-multi 

SSP126 SSP245 SSP585 D୅୚ୋ୍୉  5.44 14.97 6.28 18.10 5.45 15.51 5.05 16.86 30.50 127.4
6 

28.74 203.26 30.85 217.10 𝐷୅୚ୋ୍୍୉୉ 5.03 12.51 5.15 13.72 4.87 11.74 4.79 13.52 25.18 90.62 23.32 124.80 23.36 132.34 |Δ୍୍୉୉| 1.42 4.70 1.68 5.68 1.55 4.39 1.36 7.73 6.92 66.94 2.62 111.80 3.54 118.79 𝑟஺௏ீ 1.07 1.22 1.19 1.27 1.10 1.31 1.05 1.23 1.22 1.4 1.24 1.54 1.33 1.56 

Comparison of RMSE distributions for the first-day SIC predictions reveals insights into the 
influence of input parameters on model predictions. This assessment is conducted under three 
scenarios: when no noise is introduced into the two models, when reanalysis data are treated as noise, 
and when SIC is considered as noise, Figures 13 and 14 illustrate the outcomes. When meteorological 
data are treated as noise, both the ConvLSTM-multi and PredRNN-multi models exhibit challenges 
in accurately predicting the extent of thin ice near the sea ice edge. Notably, the PredRNN-multi 
model is more affected, aligning with the prior observation that this model displays heightened 
sensitivity to SST. On the other hand, the response of these models differs when input SIC are noisy. 
In the case of the ConvLSTM-multi model, the ice-free region's characteristics exert a more significant 
impact than those of the sea ice region. This outcome is attributed to the model's capacity to learn 
from the SIC, subsequently isolating the ice-free regions. In contrast, the PredRNN-multi model is 
primarily influenced by the sea ice region, with minimal impact observed in the ice-free region. This 
phenomenon arises from the model's ability to glean predictive insights from the distribution of sea 
ice within the SIC. 

3.4. Prediction ability of the model under extreme conditions 

Since the commencement of SIC data recording by the NSIDC, the Arctic's sea ice area in 
September reached historic lows in 2012 and 2020. To ensure the continuity and adequacy of the 
model's training data, the data from 2020 and 2021 are reserved for testing to evaluate the model's 
predictive performance in both extreme and normal years. In Figure 4a and 4b, the prediction 
accuracy of the four models for 2020 is behind that for 2021, with the ConvLSTM-multi model 
exhibiting superior predictive capabilities for the abrupt changes in September 2020's sea ice area. 
Figure 5 and Figure 6reveal a decrease in the grid count for high-value SIC from June to September 
2020, with values approaching 0%. Notably, low-value SIC in 2020 was significantly less than in 2021. 
Consequently, metrics such as normalized nRMSE, ACC, NSE, and SSIM, which are sensitive to sea-
ice edge prediction accuracy, performed better in 2020 compared to 2021 (Figure 4c-f). 
ComparingFigure 5d and Figure 6d, the PredRNN-multi model tends to overestimate SIC values 
from June to September 2020, primarily in the range of 95% to 100%, while its underestimating of 
values tends to be clustered around 0%. This indicates that the PredRNN-multi model falls short in 
predicting the sharp decline in the sea ice area in 2020, which also elucidates the significant difference 
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in IIEE values between its 2020 and 2021 predictions (Figure 9). Conversely, the ConvLSTM-multi 
model's IIEE values for SIC predictions in 2020 and 2021 closely align with each other and exhibit less 
sensitivity to extreme years. Additionally, in Figures 11-14, the trends in prediction accuracy 
corresponding to various input parameters in relation to prediction duration and spatial distribution 
remain consistent across different years, suggesting that the influence of input parameters on the 
model remains largely independent of yearly variations. 

 

Figure 11. RMSE distribution of the prediction results corresponding to different input parameters of 
the ConvLSTM-multi model. The red line represents the prediction results with all the input 
parameters. (a) and (b) correspond to the model predictions for 2020 and 2021, respectively. 

 

Figure 12. RMSE distribution of the prediction results corresponding to different input parameters of 
the PredRNN-multi model. The red line represents the prediction results of inputting all parameters. 
(a) and (b) correspond to the model predictions for 2020 and 2021, respectively. 
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Figure 13. RMSE distributions of the first day SIC predictions for the ConvLSTM-multi model without 
adding any noise (a1), (b1), masking the reanalysis data as noise (a2), (b2) and masking the SIC as 
noise (c1), (c2). a1-a3 and b1-b3 correspond to the predicted values for 2020 and 2021, respectively. 

 

Figure 14. RMSE distributions of the first day SIC predictions for the PredRNN-multi model without 
adding any noise (a1), (b1), masking the reanalysis data as noise (a2), (b2) and masking the SIC as 
noise (c1), (c2). a1-a3 and b1-b3 correspond to the predicted values for 2020 and 2021, respectively. 

4. Conclusions 

This study explores the integration of multiple predictors into the ConvLSTM and PredRNN 
models, thereby creating ConvLSTM-multi and PredRNN-multi models. These models are designed 
for the 10-day prediction of SIC across the entire Arctic Ocean. The findings underscore that the 
incorporation of meteorological reanalysis data within the ConvLSTM and PredRNN models leads 
to a significant enhancement in the daily scale prediction accuracy of SIC. Notably, the predictive 
accuracy of the model is most influenced by SST, followed by the date of SIC. The ConvLSTM-multi 
model demonstrates the lowest MAE, RMSE and IIEE, with the least increase with the extension in 
the prediction time. Moreover, the ConvLSTM-multi model exhibits commendable accuracy, 
particularly during extreme years, albeit with a slightly inferior performance in predicting the 
distribution of SIC values compared to the PredRNN-multi model. The evaluation of sea-ice edge 
displacement indicates that the ConvLSTM-multi model excels during summer and autumn, while 
the PredRNN-multi model performs optimally during spring and winter. Consequently, this 
comparative analysis highlights that the ConvLSTM-multi model is better suited for predicting SIC 
over the next 10 days. 

Despite the progress made in this study, it is essential to acknowledge several limitations 
inherent to the model. The predictive capacity for SIC hinges on both the quantity of available SIC 
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datasets and the diversity of input parameters. However, the quantity of SIC datasets and the spatial 
resolution offered by NSIDC are constrained, necessitating a higher volume of datasets to further 
refine the model's parameters. Additionally, the model exhibits limited predictive capability for 
summer sea ice due to its exclusive reliance on reanalysis data. Crucial parameters such as sea ice 
thickness and ice melting pools, which wield a substantial influence on sea ice dynamics, have not 
been incorporated into the model. This omission can be attributed to the limited availability and 
accessibility of these parameters. Lastly, the study falls short in comprehensively analyzing the 
impact of input parameters on prediction outcomes and discerning the intricate nonlinear 
relationships between them. Future research endeavors will focus on intensifying the analysis of 
physical parameters influencing sea ice variations and enhancing the model's capacity to assimilate 
input data, to enhance the prediction ability of the model. 
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Appendix A 

Table A1. CMIP6 Models and realizations used in this study. The projections including SSP126, 
SSP245 and SSP585, are from 2020 to 2021 in this study. 

Model 
Spatial 

resolutio
n 

Frequenc
y 

Experiment (ensemble members) 

ACCESS
-CM2 

360×300 day 
SSP126(1

) 
r1i1p1f

1 
SSP245(1

) 
r1i1p1f

1 
SSP585(1

) 
r1i1p1f

1 

CESM2-
WACC

M 
320×384 day 

SSP126(1
) 

r1i1p1f
1 

SSP245(5
) 

r1i1p1f
1 

SSP585(5
) 

r1i1p1f
1 

r2i1p1f
1 

r2i1p1f
1 

r3i1p1f
1 

r3i1p1f
1 

r4i1p1f
1 

r4i1p1f
1 
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r5i1p1f
1 

r5i1p1f
1 

MIROC
6 

360×256 day 
SSP126(3

) 

r11p1f1 

SSP245(3
) 

r1i1p1f
1 

SSP585(3
) 

r1i1p1f
1 

r2i1p1f
1 

r2i1p1f
1 

r2i1p1f
1 

r3i1p1f
1 

r3i1p1f
1 

r3i1p1f
1 

MRI-
ESM2-0 

360×364 day 
SSP126(1

) 
r1i1p1f

1 
SSP245(1

) 
r1i1p1f

1 
SSP585(1

) 
r1i1p1f

1 
 

 

Figure A1. The distribution of RMSE(a-c) and ACC(d-f) of SIC in Arctic sea area in 2020-2021 
predicted by the "selected models" in CMIP6 under three CO2 emission scenarios (SSP126, SSP245 
and SSP585) in the future. 
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Figure A2. Observations (a1-a10) and predictions from the ConvLSTM (b1-b10), PredRNN (c1-c10), ConvLSTM-multi (d1-d10), and PredRNN-multi (e1-e10) models for 
the Arctic SIC on September 6-15, 2020. Gray represents land, dark blue represents ice-free ocean, and the red line is the sea ice boundary for observations and the green 
line is the sea ice boundary predicted by the model. SIC=15% is the sea ice boundary. The ACC and sea ice area (SIE) errors of the four models' daily predictions are shown 
in the lower right corner. 

P
rep

rin
ts.o

rg
 (w

w
w

.p
rep

rin
ts.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
sted

: 8 N
o

vem
b

er 2023                   d
o

i:10.20944/p
rep

rin
ts202311.0560.v1

https://doi.org/10.20944/preprints202311.0560.v1


 23 

 

 
Figure A3. IIEE distribution of predicted SIC of four models from September 6 to 15, 2020. The red represents 𝐴ା, and the blue represents 𝐴ି. 𝐴ା and 𝐴ି in the lower 
right corner represent the areas of the multi-prediction and the under-prediction of the model (unit: 10ସ𝑘𝑚ଶ). (a1-a10), (b1-b10), (c1-c10) and (d1-d10) correspond to the 
IIEE distributions of ConvLSTM, PredRNN, ConvLSTM-multi and PredRNN-multi models from the first day to the tenth day.
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