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Article 

Diagnosing Alzheimer’s Disease and Discriminating 
between Its Stages from Brain FDG PET Images 
Using a New Platform for Radiomic Analysis 
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1 Institute of Biomedical Engineering Boğaziçi University, Türkiye; guvenis@boun.edu.tr 
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† Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to 

the design and implementation of ADNI and/or provided data but did not participate in analysis or 

writing of this report. A complete listing of ADNI investigators can be found at: 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 

Abstract: This study presents a methodological framework for AD and MCI diagnosis using radiomic analysis 

of 18FDG-PET imaging and conducts non-invasive predictions and in-depth analysis of AD and MCI and the 

associated small number of regions and features. Our methodology follows a structured process commencing 

with data preprocessing and labeling, facilitating segmentation through FastSurfer, a tool that efficiently 

segments the brain into 95 ROIs using the DKT-atlas. Subsequently, Feature extraction was carried out using 

PyRadiomics, calculating 120 features for each of the 95 ROIs (11,400 per image). These extracted features form 

the foundation of our radiomics analysis, primarily for early diagnostic purposes. In the feature selection phase, 

we explored a set of eight commonly employed techniques, including ANOVA, PCA, and LASSO, originating 

from the four main categories, namely filtered, embedded, wrapper, and hybrid methods, to identify a 

pertinent subset of features. Our evaluation assessed the performance of nine classification methods, such as 

GradientBoosting, RandomForest, and GaussianNB, in conjunction with eight feature selection techniques. The 

choice of feature selection method and classifiers was predicated on their ability to achieve the best area under 

the ROC curve with independent data. For all three predictions AD vs. CN, AD vs. MCI, and CN vs. MCI the 

Random Forest (RF) classifier with LASSO feature selection demonstrated the highest accuracy with an AUC 

of 0.976 for AD vs CN, AUC=0.917 for AD vs MCI, and AUC=0.877 for MCI vs CN. In conclusion, our RAB-

PET platform enables efficient AD and MCI diagnosis from FDG-PET images using a radiomics pipeline.  It 

also offers a general hardware and software tool for the investigation of other brain disorders. 

Keywords: Alzheimer’s disease (AD); mild cognitive impairment (MCI); FDG PET; radiomics 

 

1. Introduction 
Alzheimer’s disease (AD), the most common progressive neurological disease among elderly 

individuals, is a neuropsychiatric disorder that causes many economic and psychological difficulties 

for the patient’s community and family1. According to the estimation of WHO the number of people 

with age over the 60 years old will reach to 2.1 billion people by 20502. In a study researchers show 

that Alzheimer's disease starts building up in the brain long before symptoms appear3, so it is possible 

to detect this pathology in vivo using biomarkers such as molecular imaging techniques in the early 

stage of formation4. Conversely, the challenge of identifying Alzheimer's disease (AD) in its initial 

stages remains a prominent concern in its treatment. Given the intricate nature of AD as a gradual, 

multifaceted ailment, healthcare professionals employ an array of clinical assessments and 

neuroimaging methods in their endeavors to detect dementia during its early phases. This is a crucial 

aspect of managing the disease effectively5,6. Advanced imaging techniques play a pivotal role in the 

timely identification of medical conditions and contribute significantly to the development of tailored 

treatment approaches within the realm of precision medicine. These techniques not only enhance the 

ability to detect diseases at their early stages but also facilitate the delineation of novel therapeutic 
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strategies that are customized to individual patients, leading to more effective and personalized 

healthcare7. In the present work, we hypothesize that we can predict different stages of AD 

noninvasively from 18FDG-PET images using a radiomic analysis platform. There have been studies 

to predict AD from various biomarkers that can provide early information on the pathology of the 

disease before even symptoms occur8. Over the past few years, there have been notable advancements 

in the utilization of radiomics in conjunction with machine learning (ML) and deep learning (DL) 

techniques for the analysis of medical images as data. In the realm of machine learning, a substantial 

quantity of manually crafted features that describe various aspects of medical images are extracted. 

These features are then scrutinized to discern their associations with patient prognosis and other 

relevant attributes9. Radiomic methods try to extract visible and invisible information from medical 

imaging using various computations on different regions. It has been introduced as an effective 

solution to deduce a number of disease characteristics using a high number of low-level imaging 

features as an extension of computer-assisted medical decision support (CMD) systems 10,11. 

The radiomics approach encompasses a sequence of distinct stages, including image acquisition, 

image processing, delineation of regions of interest or volumes of interest (ROI/VOI), extraction of 

relevant features, feature selection, and the development of classification or regression models. These 

methods can employ manual, semi-automated, or fully automated delineation algorithms. However, 

manual and semi-automated segmentation methods are influenced by individual users, potentially 

making the extracted features within the ROI/VOI susceptible to variations caused by both intra- and 

interobserver discrepancies. Consequently, the adoption of artificial intelligence and deep learning 

techniques for automated segmentation, aimed at mitigating the impact of subjective biases, stands 

out as a critical and indispensable domain of radiomics research 12. In order to streamline and 

mechanize the procedure, we have integrated FastSurfer13 into our workflow for volumetric analysis. 

FastSurfer is a tool that emulates the anatomical segmentation method employed by FreeSurfer14, 

enabling us to divide the entire brain into 95 distinct categories by utilizing the DKT-atlas. 

The primary objective of this research is to develop a tailored platform for the radiomic analysis 

of FDG-PET brain images, facilitating the noninvasive extraction of quantitative data to assist in 

diagnosing and tailoring treatment for individual patients. We posit that our platform represents a 

new initiative, allowing for the generation of multiple outcomes using specialized hardware. To 

evaluate its efficacy, we initially apply the system to data from Alzheimer's disease (AD) patients 

obtained from an online database. Subsequent sections detail the methodologies employed, the 

findings obtained, their implications, and the resulting conclusions. 
This study builds upon our previous research15, aiming to both continue and broaden our 

investigation. In this updated study, by extending our focus to include individuals with mild 

cognitive impairment (MCI). Moreover, we perform a comprehensive analysis of various brain 

regions associated with both Alzheimer's and MCI.  

2. Literature review 

The development of an interpretable model for the prediction of Mild Cognitive Impairment 

(MCI) and Alzheimer's Disease (AD) represents a formidable challenge that has garnered substantial 

attention in the research community. In this study, we contribute to this ongoing endeavor by 

presenting a predictive model for MCI and AD, wherein we identify significant brain regions, 

drawing support from prior research16–18 and highlighting the importance of the amygdala19. Here we 

present a few significant and recent studies. A more comprehensive summary in the form of a table 

is given in the discussion section. 

A pivotal study20 leveraged two distinct imaging techniques, FDG PET and MRI, to predict the 

presence of MCI and AD, comparing them to normal controls (CN) through the application of 

radiomics. Their results were quite promising, achieving an impressive AUC of 0.98 for 

distinguishing AD from CN and an AUC of 0.85 for discerning MCI from CN. Notably, the study 

employed LASSO feature selection on characteristics extracted from the hippocampus and utilized a 

logistic regression model with cross-validation (CV=5). These findings suggest that information 

derived from the hippocampus could serve as a valuable biomarker for investigating Alzheimer's 
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disease within clinical contexts. This corroborates our own research, which underscores the 

significance of the hippocampus (rh) as one of the top three crucial regions closely associated with 

AD and MCI.  

In a separate meta-analysis study21, researchers investigated the potential of machine learning 

(ML) algorithms to aid in the automated detection and diagnosis of diseases, with a special focus on 

the detection of Alzheimer's disease using medical imaging as a non-invasive biomarker. Their 

analysis encompassed 24 distinct ML models from 19 research papers, covering various brain regions. 

The achieved AUC of 0.93 demonstrates the high accuracy of ML in distinguishing Alzheimer's 

disease from normal controls. The study also highlights the prevalence of internal validation as a 

limitation in the field, a concern raised in another study22 ,where only 6% of the 516 reviewed studies 

utilized external validation. This meta-analysis underscores the remarkable performance of ML in 

diagnosing AD, while also emphasizing the need for high-quality, large-scale prospective studies to 

enhance its reliability and applicability in clinical practice. 

Another noteworthy investigation23 ,proposed a model to predict the progression of MCI to AD 

using FDG PET images, based on a radiomics approach. This study focused on white matter and 

constructed an integrated model, applying it to features extracted from this region. The research 

revealed the association of white matter with MCI progression to AD and highlighted differences 

between two groups of patients with stable and progressing MCI. Notably, FDG PET was found to 

significantly improve the prediction of MCI to AD progression compared to MRI and cerebrospinal 

fluid analysis, as supported by24. This study opted for FDG PET due to its cost-effectiveness and ease 

of implementation in contrast to other radiotracers used to measure TAU and Amyloid proteins. 

Furthermore, the study introduced the psycho-radiomics model, which combines FDG PET features 

with clinical data to identify high-risk MCI patients. 

Recent research underscores the significant challenge within radiomics studies, which involves 

successfully integrating algorithms with suitable biomarkers. The selection of new and performing 

algorithms at various stages of radiomics is critical, and the identification of pertinent biomarkers has 

been a central focus in recent investigations. Furthermore, there is a persistent emphasis on 

elucidating characteristics that can be easily understood, as well as a keen interest in the 

interpretability of results, given the need to transform these findings into actionable insights. 

In comparison to recent studies, our platform not only yields very accurate results but also 

imparts valuable insights by identifying more efficient brain regions, all without any prior 

preconceived notions or existing knowledge about these areas. Furthermore, we introduce 

interpretable features specific to each stage of Alzheimer's disease. The developed hardware and 

software platform is designed to be flexible so that it can be used to address various issues related to 

neurological disorders of the brain. We incorporated recent methods for image segmentation, feature 

selection, and classification. The sole reliance on FDG PET as a biomarker in our research underscores 

our method's advantage as an economical and non-invasive approach. 

3. Method 

Our methodology involves systematic steps, beginning with pre-preprocessing and labeling the 

data. We then extract regions of interest (ROIs) using FastSurfer. Feature extraction follows, where 

we compute 120 features from 18FDG-PET images. These features underpin our radiomics analysis 

for early diagnosis and interpretation. Subsequent sections delve into each step's details. 

3.1. ADNI and Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 
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disease (AD). Detailed information about the participants' clinical characteristics can be found in 

Table 1. 

Table 1. Clinical characteristics of participants 

Clinical Diagnosis No. Cases Sex (M/F) Age (mean ± SD) 

AD 163 91/72 74.6 ± 8.12 

MCI 198 107/91 72.5 ± 8.07 

CN 188 91/97 73.6 ± 6.37 

Total 549 289/260 74.1 ± 7.02 

3.2. PET Acquisition. 

The 18-fluoro-deoxyglucose PET imaging data, obtained during the initial visit to the ADNI 

database, were furnished in two forms: raw and preprocessed, and then categorized into four distinct 

groups based on the applied preprocessing procedures, as detailed on adni.loni.usc.edu. These data 

consisted of dynamic 3D scans, with a radiotracer dosage of 185 MBq (5 mCi), comprising six 5-

minute frames captured between 30 to 60 minutes post-injection. For our analysis, we specifically 

utilized the third type of preprocessed 18FDG-PET image data, characterized by Co-Reg, AVG, 

Standardized Image, and Voxel Size adjustments. Within this dataset, the 18FDG-PET images were 

adjusted to adhere to a standardized 160×160×96 voxel imaging grid, with each voxel measuring 1.5 

mm on all sides, as referenced in25.  

3.3. ROI Extraction 

The pursuit of efficiency and speed in handling large datasets has driven the evolution of more 

robust tools and methods. In this endeavor, we harnessed the capabilities of FastSurfer, a tool that 

significantly expedites volumetric analysis. This tool emulates the anatomical segmentation method 

employed by FreeSurfer, allowing for the comprehensive division of the entire brain into 95 distinct 

classes. This segmentation process, guided by the DKT-atlas, is illustrated in Figure 1. By adopting 

FastSurfer, we've streamlined the process, enabling swift and precise analysis of brain structures, 

which is critical for our radiomics approach's success. 

 

Figure 1. Visualization of the brain segmentation into 95 regions of interest using DKT-Atlas. 

3.4. Feature Extraction 
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To extract the features from 18FDG-PET, we used an open-source python package: 

PyRadiomics26. We calculated 120 feature classes: first-order statistics (19), gray level dependence 

matrix (14), shape-based (2D) (10), gray level cooccurrence matrix (24), gray level run length matrix 

(16), neighboring gray tone difference matrix (5), gray level size zone matrix (16 features) and shape-

based (3D) (16). All features were computed from the extracted 95 ROIs in 18FDG-PET images. 

3.5. Feature Selection 

In the realm of radiomics research, feature selection is crucial for condensing the extensive array 

of features derived from available datasets27,28  and for improving performance. Our evaluation 

encompassed a comprehensive study of the effectiveness of various feature selection techniques, 

including filtered, embedded, wrapper, and hybrid methods, each holding their distinct 

advantages29. To ensure the robustness of our approach, we opted for widely used algorithms from 

each category30–32. These encompassed ANOVA, PCA, chi-square, LASSO, MI, RFA, FI, and RFE 

among others33, all lly considered to identify the most pertinent subset of features for our radiomics 

analysis. 

3.6. Classification and Tuning 

Researchers have developed a range of classification methods34 and identifying the most suitable 

machine-learning approach for radiomics applications is a pivotal phase, with high-performing 

classifiers contributing significantly to the enhancement of clinical applications based on radiomics. 

In our investigation, we assessed the performance of nine classification methods, spanning various 

classifier families, including GradientBoosting (GB), RandomForest (RF), DecisionTree (DT), 

GaussianNB (GNB), GaussianProcess (GP), MLP, QuadraticDiscriminantAnalysis (QDA), AdaBoost 

(AB), and KNeighbors (KNN), in conjunction with eight different feature selection techniques. This 

exhaustive analysis, resulting in 72 distinct combinations of classification methods and feature 

selection methods, led to the selection of classifiers that exhibited the most favorable area under the 

ROC curve for our proposed solution. This selection process was executed with default parameters 

as stipulated in the Scikit-learn library, and we also paid close attention to the critical task of 

hyperparameter optimization. To achieve this, we conducted randomized search cross-validation 

(CV=5) tuning using 70% of the data, reserving 30% for independent testing, and iterated this process 

100 times under completely random conditions35,36. 

3.7. Computational hardware and software 

The hardware that was used for the RAB-PET platform was the Corei7 Gen10th processor, 

RTX2060 VGA card (1920 CUDA cores with 240 tensors), and 16 GB DDR5 RAM. We used Python as 

a programming language and PyTorch to utilize the CUDA technology. We used FastSurfer 

components to segment the brain using a deep learning approach and PyRadiomics components to 

extract features under IBSI37,38. Phyton libraries were used to come up with a reduced set of features 

that can be used as input to our prediction model. The code for the prediction model can be found in 

Zendo data repository39. 

4. Results 

In this research, we conducted predictions in three distinct categories: AD and CN, MCI and 

CN, and MCI and AD. To perform these predictions, we independently evaluated each of these three 

predictions using a substantial number of features extracted during the initial stage, totaling 11,400 

features for each image (120 x 95). It's crucial to note that having an excessive number of features can 

lead to overfitting, which is a common challenge in supervised machine learning40. To mitigate this 

issue, we employed feature reduction techniques aimed at reducing the feature count. The selection 

of an appropriate algorithm for feature reduction is a critical decision in the field of machine learning, 

as highlighted in reference41. Before applying the feature reduction methods to our extracted features, 

we first preprocessed these features. This preprocessing involved eliminating constant, quasi-
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constant, and duplicated features. This step is essential for ensuring the quality of the feature set. 

With our preprocessed feature set, consisting of 5,351 features, we embarked on a comprehensive 

exploration of various dimension reduction methods to identify the most effective approach for our 

problem. Subsequently, we calculated the accuracy of each subset of the most significant features 

using a rank-based method. Throughout this comparison, we adhered to the default parameters as 

defined in the Scikit-learn library for all classifiers. We refrained from hyperparameter tuning, as our 

primary focus was on the feature reduction aspect of the machine learning process. 

4.1. AD vs CN 

The outcomes displayed in Table 2 reveal that among the various classifiers and feature selection 

methods evaluated, the Random Forest (RF) classifier with LASSO exhibited the most impressive 

performance, achieving a good accuracy with an Area Under the Curve (AUC) value of 0.976. This 

accuracy surpassed the performance of all other combinations of classifiers and feature selection 

techniques, underscoring the superiority of the RF classifier when applied to features selected via the 

LASSO method. This finding highlights the effectiveness of this specific combination in achieving 

high-quality results in our study.  

Table 2. (Heatmap) Results of performing nine classifiers GB, RF, DT, GNB, GP, MLP, QDA, AB, 

and KNN on the top 20 features selected by eight dimension-reduction methods ANOVA, PCA, 

Chi-Square, LASSO, MI, RFA, FI, and RFE. 

` GB RF DT GNB GP MLP QDA AB KNN 

ANOVA 0.957 0.962 0.85 0.961 0.91 0.935 0.958 0.951 0.912 

PCA 0.92 0.929 0.784 0.919 0.677 0.853 0.918 0.904 0.79 

Chi-

Square 
0.936 0.941 0.825 0.947 0.934 0.928 0.942 0.918 0.919 

LASSO 0.971 0.976 0.874 0.971 0.914 0.919 0.972 0.967 0.909 

MI 0.952 0.951 0.838 0.947 0.906 0.916 0.94 0.939 0.903 

RFA 0.968 0.968 0.872 0.97 0.942 0.897 0.966 0.955 0.919 

FI 0.949 0.955 0.838 0.955 0.92 0.941 0.952 0.933 0.921 

RFE 0.959 0.964 0.853 0.965 0.899 0.939 0.955 0.943 0.927 

Based on the data presented in Table 2, it's evident that the Random Forest (RF) classifier 

outperformed other classifiers and feature selection methods in terms of accuracy, achieving an 

impressive AUC of 0.976. This level of accuracy was notably higher than what was attained with 

alternative combinations of classifiers and feature selection techniques. To reach this result, we 

followed a specific process. 
Initially, we applied the LASSO method to the preprocessed feature set, consisting of 5,351 

features. Subsequently, we utilized a rank-based method, which leveraged the coefficients of the 

features, to calculate the average accuracy across all subsets of the top 20 features. This calculation 

was performed through 100 iterations, each using independent test data. 

The RF classifier, when applied to features obtained via the LASSO algorithm and subjected to 

100 iterations, demonstrated a high area under the curve (AUC) of 0.976, with a 95% confidence 

interval ranging from 0.95 to 0.98. This signifies the robustness and reliability of the RF classifier 

when working with these features of LASSO method. 

Figure 2 provides a graphical representation of our findings. It illustrates that after including 

four features, there is minimal improvement in performance. These four Regions of Interest (ROIs) 

are isthmus cingulate (left hemisphere), inferior parietal (left hemisphere), hippocampus (left 

hemisphere), and entorhinal (right hemisphere). The selected features consist of 
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firstorder_90Percentile, firstorder_Median, glrlm_LongRunEmphasis, and 

gldm_DependenceEntropy. 

 

Figure 2. Rank-based results for each subset of the top 20 most important features selected by the 

LASSO method. The blue point is the optimal point based on accuracy and feature count. The last 

numbers of feature names are 

Furthermore, leveraging the four most crucial features, we evaluated accuracy with a tuned 

classifier. Once the RF classification method was chosen and its hyperparameters fine-tuned using 

randomized-search cross-validation (with a 5-fold cross-validation), we achieved an AUC of 0.961 

with 100 iterations and a 95% confidence interval spanning from 0.938 to 0.982. This further 

underscores the efficacy of the RF classifier in producing consistent and high-quality results for our 

classification model. 

4.2. AD vs MCI 

In the context of distinguishing between Alzheimer's Disease (AD) and Mild Cognitive 

Impairment (MCI), our analysis revealed that the Random Forest (RF) classifier, when applied to 

features selected through the LASSO method, delivered the highest level of accuracy. This 

achievement has shown in Table 3, where the classifier yielded an AUC of 0.917. 

To carry out this prediction task for AD vs MCI, we initially applied LASSO to preprocessed 

feature set, containing 5,351 features. Subsequently, we employed a rank-based approach, focusing 

on the top 50 features and performing 100 iterations. Within this framework, the RF classifier 

consistently demonstrated acceptable performance, resulting in an average accuracy with an AUC of 

0.917. 

Further refinement of our analysis led us to identify the most critical features—six in total—

based on their impact on accuracy, as illustrated in Figure 3. Even with this more concise feature set, 

the model exhibited commendable accuracy, resulting in an AUC of 0.862. 

Table 3. (Heatmap) Results of performing nine classifiers GB, RF, DT, GNB, GP, MLP, QDA, AB 

and KNN on the top 50 features selected by the eight dimension-reduction methods ANOVA, PCA, 

Chi2, LASSO, MI, RFA, FI, and RFE to predict AD vs MCI. 

` GB RF DT GNB GP MLP QDA AB KNN 

ANOVA 0.815 0.815 0.683 0.843 0.772 0.806 0.818 0.787 0.781 

PCA 0.758 0.782 0.625 0.796 0.615 0.744 0.777 0.751 0.693 
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Chi-

Square 
0.781 0.813 0.668 0.83 0.836 0.812 0.804 0.768 0.796 

LASSO 0.862 0.917 0.72 0.889 0.787 0.825 0.857 0.825 0.748 

MI 0.843 0.837 0.698 0.828 0.793 0.798 0.815 0.826 0.793 

RFA 0.872 0.862 0.724 0.871 0.791 0.799 0.845 0.851 0.782 

FI 0.863 0.868 0.716 0.852 0.778 0.822 0.823 0.833 0.77 

RFE 0.834 0.829 0.693 0.835 0.798 0.797 0.804 0.805 0.763 

To improve the prediction accuracy, we pursued fine-tuning of the RF classifier's 

hyperparameters, which had a positive effect on the results. With these enhancements, the AUC 

increased to 0.874 with 100 iterations, and we can express our confidence in this outcome with a 95% 

confidence interval spanning from 0.822 to 0.912. This demonstrates the robustness and reliability of 

our predictive model in discerning between AD and MCI, providing valuable insights for clinical 

applications. 

 

Figure 3. Rank-based results for each subset of the top 50 most important features selected by the 

LASSO method. The blue point is the optimal point based on accuracy and feature count. The last 

numbers of feature names are segmentation labels based on FastSurfer. 

4.3. CN vs MCI 

As indicated by the findings presented in Table 4, the Random Forest (RF) classifier consistently 

demonstrated the highest level of accuracy when applied to features selected through the LASSO 

method. This achievement was particularly notable during 100 iterations, yielding an AUC of 0.879. 

Furthermore, we can express our confidence in this result with a 95% confidence interval ranging 

from 0.747 to 0.911. 

In our quest to assess the average accuracy in distinguishing between Cognitively Normal (CN) 

and Mild Cognitive Impairment (MCI), we adopted a rank-based approach focusing on the top 80 

features, executing 100 iterations for each subset of features. Within this framework, the RF classifier 

consistently exhibited robust performance, achieving an average accuracy with an AUC of 0.879. 

Our analysis further led us to identify the most influential features—eight in total—based on 

their impact on accuracy, as visually represented in Figure 4. Even with this more refined feature set, 

the model maintained a commendable level of accuracy, resulting in an AUC of 0.778, as depicted in 

Table 5. 
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Table 4. (Heatmap) Results of performing nine classifiers GB, RF, DT, GNB, GP, MLP, QDA, AB 

and KNN on the top 80 features selected by the eight dimension-reduction methods ANOVA, PCA, 

Chi2, LASSO, MI, RFA, FI, and RFE to predict CN vs MCI. 

` GB RF DT GNB GP MLP QDA AB KNN 

ANOVA 0.849 0.878 0.635 0.791 0.693 0.635 0.641 0.847 0.695 

PCA 0.862 0.875 0.651 0.771 0.596 0.57 0.625 0.854 0.582 

Chi-

Square 
0.798 0.809 0.643 0.779 0.658 0.603 0.583 0.785 0.622 

LASSO 0.861 0.879 0.631 0.754 0.692 0.684 0.645 0.858 0.695 

MI 0.787 0.793 0.635 0.785 0.649 0.659 0.648 0.767 0.646 

RFA 0.821 0.827 0.664 0.791 0.554 0.567 0.665 0.792 0.627 

FI 0.802 0.814 0.635 0.775 0.6 0.597 0.676 0.786 0.646 

RFE 0.787 0.799 0.638 0.791 0.547 0.631 0.681 0.746 0.68 

Table 5. Important Features and ROIs selected by the LASSO method 

 Feature Name 
ROI 

Id 
ROI Name Left/Right 

CN 

vs 
AD 

firstorder_90Percentile 1010 isthmuscingulate lh 

firstorder_Median 1008 inferiorparietal lh 

glrlm_LongRunEmphasis 17 Hippocampus lh 

gldm_DependenceEntropy 2006 entorhinal rh 

AD 

Vs 

MCI 

firstorder_90Percentile 1025 precuneus lh 

firstorder_RootMeanSquared 13 Pallidum lh 

glrlm_RunLengthNonUniformityNormalized 1009 inferiortemporal lh 

glrlm_RunVariance 17 Hippocampus lh 

firstorder_Median 2022 postcentral rh 

firstorder_90Percentile 2025 precuneus rh 

CN 

Vs 

MCI 

firstorder_Maximum 16 Brain Stem  

firstorder_90Percentile 2008 inferiorparietal rh 

gldm_DependenceVariance 2012 lateralorbitofrontal rh 

glszm_ZonePercentage 1022 postcentral lh 

firstorder_Minimum 2035 insula rh 

shape_Maximum2DDiameterColumn 2020 parstriangularis rh 

shape_Sphericity 28 Ventral DC lh 

glrlm_ShortRunEmphasis 10 Thalamus lh 

We then embarked on the fine-tuning of the RF classifier's hyperparameters, specifically for the 

top features (eight in total). This fine-tuning effort yielded an average value for the area under the 

ROC curve (0.79) after 100 iterations. Our confidence in this result is substantiated by a 95% 

confidence interval spanning from 0.753 to 0.861. These findings underscore the model's robustness 

and reliability in distinguishing between CN and MCI, carrying significant implications for clinical 

applications and research. 
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Figure 4. Rank-based results for each subset of the top 80 most important features selected by the 

LASSO method. The blue point is the optimal point based on accuracy and feature count. The last 

numbers of feature names are segmentation labels based on FastSurfer. 

5. Discussion 

In this study, our primary focus was on diagnosing Alzheimer's Disease (AD) and Mild 

Cognitive Impairment (MCI) by developing a radiomics-based platform known as RAB-PET. We also 

devised a method to analyze 18FDG-PET brain images in patients with AD and MCI. Early diagnosis 

of AD is a critical strategy in the context of preventing and treating this debilitating condition. This 

early diagnosis relies on the measurement of specific characteristics in distinct regions of the human 

brain, as noted in reference42. Our platform, RAB-PET, provides us with the capability to uncover 

effective radiomics solutions by exploring nine different classification methods in conjunction with 

eight diverse feature selection methods, all utilizing 18FDG-PET images. Significantly, in contrast to 

recent research endeavors as outlined in Table 3, our method demonstrated a notably elevated level 

of accuracy. Specifically, we achieved an AUC of 0.976 for the AD vs CN, an AUC of 0.917 for the AD 

vs MCI, and an AUC of 0.879 for MCI vs CN. It's important to acknowledge that direct comparisons 

with these studies are somewhat constrained due to variations in the datasets and biomarkers used.  

For the crucial task of volume analysis, we employed FastSurfer, a novel approach based on 

deep learning. FastSurfer facilitated the segmentation of the entire brain into 95 distinct classes, 

drawing upon the DKT atlas. This method offered an efficient alternative to time-consuming brain 

segmentation techniques like FreeSurfer, Statistical Parametric Mapping (SPM), or FSL, as elaborated 

in reference43. In addition, we harnessed PyRadiomics, which performed the computation of 2D and 

3D properties according to the IBSI standard44,45. 

To the best of our knowledge, the developed platform is the first capable of generating multiple 

outcomes while leveraging specialized hardware and 18FDG-PET studies. It's worth emphasizing 

that 18FDG-PET, recognized for its sensitivity, stands out as the foremost diagnostic imaging method 

for Alzheimer's Disease (AD), as established by reference46. This imaging technique proves to be of 

immense value, particularly in the early phases of the disease since metabolic change occur much 

earlier than the symptoms. 

In the existing literature, several studies have explored the potential of structural MRI (sMRI) 

scans for predicting Alzheimer's Disease (AD) or Mild Cognitive Impairment (MCI), as referenced 

in47,48. It's noteworthy that many recent investigations have adopted a multi-faceted approach, 

combining various biomarkers, including clinical tests and diverse imaging modalities, to enhance 

the accuracy of AD and MCI predictions, as indicated by49. In contrast, our approach was more 

streamlined, relying exclusively on 18FDG-PET. 
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After extracting features from 18FDG-PET scans, we took measures to optimize computation 

time. This involved preprocessing the features and selecting the top 'n' features for each prediction 

task, where 'n' was determined as follows: for CN vs. AD, we used 'n=20', for AD vs. MCI, 'n=50', and 

for CN vs. MCI, 'n=80'. This reduction in feature set size aimed to enhance efficiency while 

maintaining the predictive power of our approach. Furthermore, for the sake of result 

interpretability, we went a step further by selecting the most vital features based on their contribution 

to accuracy and feature count. For CN vs. AD, we retained 'n=4' critical features, for AD vs. MCI, 

'n=6', and for CN vs. MCI, 'n=6'. This step not only enhanced the practical utility of our predictions 

but also facilitated a better understanding of the underlying factors driving our diagnostic 

capabilities in different scenarios. 
It's important to highlight that particular regions of interest (ROIs) that show early tau 

deposition can be valuable in aiding the early detection of Alzheimer's disease (AD)50. Moreover, as 

per the National Institute on Aging (NIH) report, Alzheimer's disease initially damages neurons and 

their connections in brain regions associated with memory, later extending its impact to the cerebral 

cortex areas responsible for language, cognition, and social behavior51. Efforts are being made to link 

these regions with the areas identified through radiomic analysis.  

In our study, we discovered that various prediction models exhibit a preference for different 

brain regions and features. However, in our quest to identify shared elements among these distinct 

prediction scenarios, we conducted an extensive analysis. This analysis revealed a remarkable and 

consistent finding: the amygdala, entorhinal cortex, and hippocampus consistently emerged as 

pivotal regions across all stages of Alzheimer's disease. These three brain regions, known for their 

roles in memory and cognitive function, demonstrated their enduring significance in our predictive 

model. This finding suggests that, regardless of the specific predictive task or feature selection 

method, the amygdala, entorhinal cortex, and hippocampus remain robust markers that hold vital 

relevance throughout the progression of Alzheimer's disease. This insight has the potential to 

enhance the accuracy and consistency of diagnostic and predictive models, ultimately contributing 

to our understanding and management of this disease.  

Furthermore, an additional discovery from our study is the identification of four frequently 

employed features (namely, gldm_DependenceEntropy, shape_SurfaceVolumeRatio, 

glrlm_RunPercentage, glrlm_LongRunEmphasis) by eight distinct feature selection methods. These 

features were consistently recognized as the most critical in predicting Alzheimer's disease (AD) 

within three specific Regions of Interest (ROIs): the amygdala, entorhinal cortex, and hippocampus 

(as depicted in Figure 5). Given the relatively limited size of these identified areas, as depicted in 

Figure 6, visual assessment and the ability to discern changes with the naked eye are challenging. As 

a result, machine learning techniques prove invaluable in quantifying and analyzing features within 

these regions, offering medical experts valuable and practical insights into these highlighted areas. 

Considering recent clinical studies on patients with AD, it can be concluded that these three 

ROIs are the most affected parts of the brain related to AD. A recent study introduced the entorhinal, 

amygdala, and parahippocampal regions as early tau-deposited regions of temporal meta-ROI, 

which can assist in the early diagnosis of AD disease50. In addition, according to the report of the 

National Institute on Aging (NIH), Alzheimer's disease typically destroys neurons and their 

connections in parts of the brain involved in memory, including the entorhinal cortex and 

hippocampus. It later affects areas in the cerebral cortex responsible for language, reasoning, and 

social behavior51. 
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Figure 5. Common ROIs frequently selected by eight different feature selection methods. 
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Figure 6. 18FDGPET scans of participants with AD, MCI and CN. The marked regions of the three 

ROIs important in the diagnosis of AD introduced by our model. 

Another finding of this study is to show how the classification and the feature reduction 

methods affect the results. We investigated nine classification methods on the eight different feature 

selection methods to find the best combination of feature selection and classification methods. We 

found that LASSO is a well-performing feature selection method with the RF classifier in 18FDG-PET 

images. 

Despite the promising results of radiomics in various fields of medicine and its potential 

application in precision medicine52, deep exploration, refinement, standardization, and validation are 

still required for application in clinical practice53. Therefore, validating the proposed models by 

further studies is a necessary step that requires the provision of a comprehensive and standard 

solution to verify them for use in clinical practice. Moreover, many factors influence the outcomes of 

the radiomics approach, so this field relies on the performance of different methods, such as 

segmentation, feature extraction, and classification54. 

Our study confirms that 18FDG-PET can be an important biomarker for AD in comparison with 

recent studies as shown in Table 6. We believe that the predictive performance of the proposed 

solution can be improved by extending the dataset size or combining it with other existing datasets. 

Our model is a general method that does not consider specific prior information about regions of 

interest or disease symptoms. Therefore, in future work, it can be applied to predict other 

neurological diseases or to predict other quantitative characteristics of AD55. 

Table 6. Comparison of our results with related published studies on the classification of AD 
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6. Conclusion 

In summary, the developed RAB-PET platform offers an efficient solution for the radiomic 

analysis of brain FDG-PET images. Testing on AD and MCI patients has shown its potential for 

reliable AD diagnosis and identification of its stages, accomplished with minimal computational 

time. It also helps the identification of the few most important regions and features associated with 

the disease.  Furthermore, we're actively exploring its applications in personalized AD management, 

and its adaptable nature extends its usability to predict various other brain disorders.  
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