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Abstract: This study presents a methodological framework for AD and MCI diagnosis using radiomic analysis
of 18FDG-PET imaging and conducts non-invasive predictions and-in-depth-analysis of AD and MCI and the
associated small number of regions and features. Our methodology follows a structured process commencing
with data preprocessing and labeling, facilitating segmentation through FastSurfer, a tool that efficiently
segments the brain into 95 ROIs using the DKT-atlas. Subsequently, Feature extraction was carried out using
PyRadiomics, calculating 120 features for each of the 95 ROIs (11,400 per image). These extracted features form
the foundation of our radiomics analysis, primarily for early diagnostic purposes. In the feature selection phase,
we explored a set of eight commonly employed techniques, including ANOVA, PCA, and LASSO, originating
from the four main categories, namely filtered, embedded, wrapper, and hybrid methods, to identify a
pertinent subset of features. Our evaluation assessed the performance of nine classification methods, such as
GradientBoosting, RandomForest, and GaussianNB, in conjunction with eight feature selection techniques. The
choice of feature selection method and classifiers was predicated on their ability to achieve the best area under
the ROC curve with independent data. For all three predictions AD vs. CN, AD vs. MCI, and CN vs. MCI the
Random Forest (RF) classifier with LASSO feature selection demonstrated the highest accuracy with an AUC
of 0.976 for AD vs CN, AUC=0.917 for AD vs MCI, and AUC=0.877 for MCI vs CN. In conclusion, our RAB-
PET platform enables efficient AD and MCI diagnosis from FDG-PET images using a radiomics pipeline. It
also offers a general hardware and software tool for the investigation of other brain disorders.

Keywords: Alzheimer’s disease (AD); mild cognitive impairment (MCI); FDG PET; radiomics

1. Introduction

Alzheimer’s disease (AD), the most common progressive neurological disease among elderly
individuals, is a neuropsychiatric disorder that causes many economic and psychological difficulties
for the patient’s community and family!. According to the estimation of WHO the number of people
with age over the 60 years old will reach to 2.1 billion people by 20502 In a study researchers show
that Alzheimer's disease starts building up in the brain long before symptoms appear?, so it is possible
to detect this pathology in vivo using biomarkers such as molecular imaging techniques in the early
stage of formation*. Conversely, the challenge of identifying Alzheimer's disease (AD) in its initial
stages remains a prominent concern in its treatment. Given the intricate nature of AD as a gradual,
multifaceted ailment, healthcare professionals employ an array of clinical assessments and
neuroimaging methods in their endeavors to detect dementia during its early phases. This is a crucial
aspect of managing the disease effectively>¢. Advanced imaging techniques play a pivotal role in the
timely identification of medical conditions and contribute significantly to the development of tailored
treatment approaches within the realm of precision medicine. These techniques not only enhance the
ability to detect diseases at their early stages but also facilitate the delineation of novel therapeutic
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strategies that are customized to individual patients, leading to more effective and personalized
healthcare”. In the present work, we hypothesize that we can predict different stages of AD
noninvasively from 18FDG-PET images using a radiomic analysis platform. There have been studies
to predict AD from various biomarkers that can provide early information on the pathology of the
disease before even symptoms occurs. Over the past few years, there have been notable advancements
in the utilization of radiomics in conjunction with machine learning (ML) and deep learning (DL)
techniques for the analysis of medical images as data. In the realm of machine learning, a substantial
quantity of manually crafted features that describe various aspects of medical images are extracted.
These features are then scrutinized to discern their associations with patient prognosis and other
relevant attributes®. Radiomic methods try to extract visible and invisible information from medical
imaging using various computations on different regions. It has been introduced as an effective
solution to deduce a number of disease characteristics using a high number of low-level imaging
features as an extension of computer-assisted medical decision support (CMD) systems 1011,

The radiomics approach encompasses a sequence of distinct stages, including image acquisition,
image processing, delineation of regions of interest or volumes of interest (ROI/VOI), extraction of
relevant features, feature selection, and the development of classification or regression models. These
methods can employ manual, semi-automated, or fully automated delineation algorithms. However,
manual and semi-automated segmentation methods are influenced by individual users, potentially
making the extracted features within the ROI/VOI susceptible to variations caused by both intra- and
interobserver discrepancies. Consequently, the adoption of artificial intelligence and deep learning
techniques for automated segmentation, aimed at mitigating the impact of subjective biases, stands
out as a critical and indispensable domain of radiomics research 2. In order to streamline and
mechanize the procedure, we have integrated FastSurfer’ into our workflow for volumetric analysis.
FastSurfer is a tool that emulates the anatomical segmentation method employed by FreeSurfer',
enabling us to divide the entire brain into 95 distinct categories by utilizing the DKT-atlas.

The primary objective of this research is to develop a tailored platform for the radiomic analysis
of FDG-PET brain images, facilitating the noninvasive extraction of quantitative data to assist in
diagnosing and tailoring treatment for individual patients. We posit that our platform represents a
new initiative, allowing for the generation of multiple outcomes using specialized hardware. To
evaluate its efficacy, we initially apply the system to data from Alzheimer's disease (AD) patients
obtained from an online database. Subsequent sections detail the methodologies employed, the
findings obtained, their implications, and the resulting conclusions.

This study builds upon our previous research's, aiming to both continue and broaden our
investigation. In this updated study, by extending our focus to include individuals with mild
cognitive impairment (MCI). Moreover, we perform a comprehensive analysis of various brain
regions associated with both Alzheimer's and MCL

2. Literature review

The development of an interpretable model for the prediction of Mild Cognitive Impairment
(MCI) and Alzheimer's Disease (AD) represents a formidable challenge that has garnered substantial
attention in the research community. In this study, we contribute to this ongoing endeavor by
presenting a predictive model for MCI and AD, wherein we identify significant brain regions,
drawing support from prior research'¢-'8 and highlighting the importance of the amygdala’. Here we
present a few significant and recent studies. A more comprehensive summary in the form of a table
is given in the discussion section.

A pivotal study? leveraged two distinct imaging techniques, FDG PET and MR, to predict the
presence of MCI and AD, comparing them to normal controls (CN) through the application of
radiomics. Their results were quite promising, achieving an impressive AUC of 0.98 for
distinguishing AD from CN and an AUC of 0.85 for discerning MCI from CN. Notably, the study
employed LASSO feature selection on characteristics extracted from the hippocampus and utilized a
logistic regression model with cross-validation (CV=5). These findings suggest that information
derived from the hippocampus could serve as a valuable biomarker for investigating Alzheimer's
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disease within clinical contexts. This corroborates our own research, which underscores the
significance of the hippocampus (rh) as one of the top three crucial regions closely associated with
AD and MCL

In a separate meta-analysis study?, researchers investigated the potential of machine learning
(ML) algorithms to aid in the automated detection and diagnosis of diseases, with a special focus on
the detection of Alzheimer's disease using medical imaging as a non-invasive biomarker. Their
analysis encompassed 24 distinct ML models from 19 research papers, covering various brain regions.
The achieved AUC of 0.93 demonstrates the high accuracy of ML in distinguishing Alzheimer's
disease from normal controls. The study also highlights the prevalence of internal validation as a
limitation in the field, a concern raised in another study?? ,where only 6% of the 516 reviewed studies
utilized external validation. This meta-analysis underscores the remarkable performance of ML in
diagnosing AD, while also emphasizing the need for high-quality, large-scale prospective studies to
enhance its reliability and applicability in clinical practice.

Another noteworthy investigation® ,proposed a model to predict the progression of MCI to AD
using FDG PET images, based on a radiomics approach. This study focused on white matter and
constructed an integrated model, applying it to features extracted from this region. The research
revealed the association of white matter with MCI progression to AD and highlighted differences
between two groups of patients with stable and progressing MCI. Notably, FDG PET was found to
significantly improve the prediction of MCI to AD progression compared to MRI and cerebrospinal
fluid analysis, as supported by?*. This study opted for FDG PET due to its cost-effectiveness and ease
of implementation in contrast to other radiotracers used to measure TAU and Amyloid proteins.
Furthermore, the study introduced the psycho-radiomics model, which combines FDG PET features
with clinical data to identify high-risk MCI patients.

Recent research underscores the significant challenge within radiomics studies, which involves
successfully integrating algorithms with suitable biomarkers. The selection of new and performing
algorithms at various stages of radiomics is critical, and the identification of pertinent biomarkers has
been a central focus in recent investigations. Furthermore, there is a persistent emphasis on
elucidating characteristics that can be easily understood, as well as a keen interest in the
interpretability of results, given the need to transform these findings into actionable insights.

In comparison to recent studies, our platform not only yields very accurate results but also
imparts valuable insights by identifying more efficient brain regions, all without any prior
preconceived notions or existing knowledge about these areas. Furthermore, we introduce
interpretable features specific to each stage of Alzheimer's disease. The developed hardware and
software platform is designed to be flexible so that it can be used to address various issues related to
neurological disorders of the brain. We incorporated recent methods for image segmentation, feature
selection, and classification. The sole reliance on FDG PET as a biomarker in our research underscores
our method's advantage as an economical and non-invasive approach.

3. Method

Our methodology involves systematic steps, beginning with pre-preprocessing and labeling the
data. We then extract regions of interest (ROIs) using FastSurfer. Feature extraction follows, where
we compute 120 features from 18FDG-PET images. These features underpin our radiomics analysis
for early diagnosis and interpretation. Subsequent sections delve into each step's details.

3.1. ADNI and Participants

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
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disease (AD). Detailed information about the participants' clinical characteristics can be found in
Table 1.

Table 1. Clinical characteristics of participants

Clinical Diagnosis No. Cases Sex (M/F) Age (mean + SD)

AD 163 91/72 74.6 +8.12
MCI 198 107/91 72.5+8.07
CN 188 91/97 73.6 +6.37
Total 549 289/260 74.1+7.02

3.2. PET Acquisition.

The 18-fluoro-deoxyglucose PET imaging data, obtained during the initial visit to the ADNI
database, were furnished in two forms: raw and preprocessed, and then categorized into four distinct
groups based on the applied preprocessing procedures, as detailed on adni.loni.usc.edu. These data
consisted of dynamic 3D scans, with a radiotracer dosage of 185 MBq (5 mCi), comprising six 5-
minute frames captured between 30 to 60 minutes post-injection. For our analysis, we specifically
utilized the third type of preprocessed 18FDG-PET image data, characterized by Co-Reg, AVG,
Standardized Image, and Voxel Size adjustments. Within this dataset, the 18FDG-PET images were
adjusted to adhere to a standardized 160x160x96 voxel imaging grid, with each voxel measuring 1.5
mm on all sides, as referenced in23.

3.3. ROI Extraction

The pursuit of efficiency and speed in handling large datasets has driven the evolution of more
robust tools and methods. In this endeavor, we harnessed the capabilities of FastSurfer, a tool that
significantly expedites volumetric analysis. This tool emulates the anatomical segmentation method
employed by FreeSurfer, allowing for the comprehensive division of the entire brain into 95 distinct
classes. This segmentation process, guided by the DKT-atlas, is illustrated in Figure 1. By adopting
FastSurfer, we've streamlined the process, enabling swift and precise analysis of brain structures,
which is critical for our radiomics approach's success.

Figure 1. Visualization of the brain segmentation into 95 regions of interest using DKT-Atlas.

3.4. Feature Extraction


https://doi.org/10.20944/preprints202311.0513.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2023 doi:10.20944/preprints202311.0513.v1

To extract the features from 18FDG-PET, we used an open-source python package:
PyRadiomics®*. We calculated 120 feature classes: first-order statistics (19), gray level dependence
matrix (14), shape-based (2D) (10), gray level cooccurrence matrix (24), gray level run length matrix
(16), neighboring gray tone difference matrix (5), gray level size zone matrix (16 features) and shape-
based (3D) (16). All features were computed from the extracted 95 ROIs in 18FDG-PET images.

3.5. Feature Selection

In the realm of radiomics research, feature selection is crucial for condensing the extensive array
of features derived from available datasets?’?® and for improving performance. Our evaluation
encompassed a comprehensive study of the effectiveness of various feature selection techniques,
including filtered, embedded, wrapper, and hybrid methods, each holding their distinct
advantages®. To ensure the robustness of our approach, we opted for widely used algorithms from
each category®-%2. These encompassed ANOVA, PCA, chi-square, LASSO, MI, RFA, FI, and RFE
among others®, all lly considered to identify the most pertinent subset of features for our radiomics
analysis.

3.6. Classification and Tuning

Researchers have developed a range of classification methods* and identifying the most suitable
machine-learning approach for radiomics applications is a pivotal phase, with high-performing
classifiers contributing significantly to the enhancement of clinical applications based on radiomics.
In our investigation, we assessed the performance of nine classification methods, spanning various
classifier families, including GradientBoosting (GB), RandomForest (RF), DecisionTree (DT),
GaussianNB (GNB), GaussianProcess (GP), MLP, QuadraticDiscriminantAnalysis (QDA), AdaBoost
(AB), and KNeighbors (KNN), in conjunction with eight different feature selection techniques. This
exhaustive analysis, resulting in 72 distinct combinations of classification methods and feature
selection methods, led to the selection of classifiers that exhibited the most favorable area under the
ROC curve for our proposed solution. This selection process was executed with default parameters
as stipulated in the Scikit-learn library, and we also paid close attention to the critical task of
hyperparameter optimization. To achieve this, we conducted randomized search cross-validation
(CV=5) tuning using 70% of the data, reserving 30% for independent testing, and iterated this process
100 times under completely random conditions?®33%.

3.7. Computational hardware and software

The hardware that was used for the RAB-PET platform was the Corei7 Genl0th processor,
RTX2060 VGA card (1920 CUDA cores with 240 tensors), and 16 GB DDR5 RAM. We used Python as
a programming language and PyTorch to utilize the CUDA technology. We used FastSurfer
components to segment the brain using a deep learning approach and PyRadiomics components to
extract features under IBSI¥”3. Phyton libraries were used to come up with a reduced set of features
that can be used as input to our prediction model. The code for the prediction model can be found in
Zendo data repository®.

4. Results

In this research, we conducted predictions in three distinct categories: AD and CN, MCI and
CN, and MCI and AD. To perform these predictions, we independently evaluated each of these three
predictions using a substantial number of features extracted during the initial stage, totaling 11,400
features for each image (120 x 95). It's crucial to note that having an excessive number of features can
lead to overfitting, which is a common challenge in supervised machine learning®. To mitigate this
issue, we employed feature reduction techniques aimed at reducing the feature count. The selection
of an appropriate algorithm for feature reduction is a critical decision in the field of machine learning,
as highlighted in reference*'. Before applying the feature reduction methods to our extracted features,
we first preprocessed these features. This preprocessing involved eliminating constant, quasi-
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constant, and duplicated features. This step is essential for ensuring the quality of the feature set.
With our preprocessed feature set, consisting of 5,351 features, we embarked on a comprehensive
exploration of various dimension reduction methods to identify the most effective approach for our
problem. Subsequently, we calculated the accuracy of each subset of the most significant features
using a rank-based method. Throughout this comparison, we adhered to the default parameters as
defined in the Scikit-learn library for all classifiers. We refrained from hyperparameter tuning, as our
primary focus was on the feature reduction aspect of the machine learning process.

4.1. AD vs CN

The outcomes displayed in Table 2 reveal that among the various classifiers and feature selection
methods evaluated, the Random Forest (RF) classifier with LASSO exhibited the most impressive
performance, achieving a good accuracy with an Area Under the Curve (AUC) value of 0.976. This
accuracy surpassed the performance of all other combinations of classifiers and feature selection
techniques, underscoring the superiority of the RF classifier when applied to features selected via the
LASSO method. This finding highlights the effectiveness of this specific combination in achieving
high-quality results in our study.

Table 2. (Heatmap) Results of performing nine classifiers GB, RF, DT, GNB, GP, MLP, QDA, AB,
and KNN on the top 20 features selected by eight dimension-reduction methods ANOVA, PCA,
Chi-Square, LASSO, MI, RFA, FI, and RFE.

GB RF DT GNB GP MLP QDA AB KNN

ANOVA 0.85 0.91 0.935 0.912
PCA 0.92 0.929 - 0.919 0.853 0.918 0.904 -

Chi-
0.936 0.941 0.825 0.947 0.934 0.928 0.942 0.918 0.919
Square

0.874 - 0.914 0.919 0.909

0.838 0.947 0.906 0.916 0.94 0.939 0.903

0.872 - 0.942 0.897 0.919

0.838 0.92 0.941 0.921

0.853 0.899 0.939 0.927

Based on the data presented in Table 2, it's evident that the Random Forest (RF) classifier
outperformed other classifiers and feature selection methods in terms of accuracy, achieving an
impressive AUC of 0.976. This level of accuracy was notably higher than what was attained with
alternative combinations of classifiers and feature selection techniques. To reach this result, we
followed a specific process.

Initially, we applied the LASSO method to the preprocessed feature set, consisting of 5,351
features. Subsequently, we utilized a rank-based method, which leveraged the coefficients of the
features, to calculate the average accuracy across all subsets of the top 20 features. This calculation
was performed through 100 iterations, each using independent test data.

The RF classifier, when applied to features obtained via the LASSO algorithm and subjected to
100 iterations, demonstrated a high area under the curve (AUC) of 0.976, with a 95% confidence
interval ranging from 0.95 to 0.98. This signifies the robustness and reliability of the RF classifier
when working with these features of LASSO method.

Figure 2 provides a graphical representation of our findings. It illustrates that after including
four features, there is minimal improvement in performance. These four Regions of Interest (ROIs)
are isthmus cingulate (left hemisphere), inferior parietal (left hemisphere), hippocampus (left
hemisphere), and entorhinal (right hemisphere). The selected features consist of
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firstorder_90Percentile, firstorder_Median, glrlm_LongRunEmphasis, and
gldm_DependenceEntropy.

0.95 ~
0.90 /LT T~
0.85 /
/
0.80- /

0.75

—— ROC AUC
Accuracy

Features

Figure 2. Rank-based results for each subset of the top 20 most important features selected by the
LASSO method. The blue point is the optimal point based on accuracy and feature count. The last
numbers of feature names are

Furthermore, leveraging the four most crucial features, we evaluated accuracy with a tuned
classifier. Once the RF classification method was chosen and its hyperparameters fine-tuned using
randomized-search cross-validation (with a 5-fold cross-validation), we achieved an AUC of 0.961
with 100 iterations and a 95% confidence interval spanning from 0.938 to 0.982. This further
underscores the efficacy of the RF classifier in producing consistent and high-quality results for our
classification model.

4.2. AD vs MCI

In the context of distinguishing between Alzheimer's Disease (AD) and Mild Cognitive
Impairment (MCI), our analysis revealed that the Random Forest (RF) classifier, when applied to
features selected through the LASSO method, delivered the highest level of accuracy. This
achievement has shown in Table 3, where the classifier yielded an AUC of 0.917.

To carry out this prediction task for AD vs MCI, we initially applied LASSO to preprocessed
feature set, containing 5,351 features. Subsequently, we employed a rank-based approach, focusing
on the top 50 features and performing 100 iterations. Within this framework, the RF classifier
consistently demonstrated acceptable performance, resulting in an average accuracy with an AUC of
0.917.

Further refinement of our analysis led us to identify the most critical features—six in total —
based on their impact on accuracy, as illustrated in Figure 3. Even with this more concise feature set,
the model exhibited commendable accuracy, resulting in an AUC of 0.862.

Table 3. (Heatmap) Results of performing nine classifiers GB, RF, DT, GNB, GP, MLP, QDA, AB
and KNN on the top 50 features selected by the eight dimension-reduction methods ANOVA, PCA,
Chi2, LASSO, M1, RFA, FI, and RFE to predict AD vs MCL

) GB RF DT GNB GP MLP QDA AB KNN
ANOVA | 0.815 0.815 0.843 0.772 0.806 0.818 0.787 0.781

PCA 0.758 0.782 0.796 - 0.744 0.777 0.751 -
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Chi-
0.781 0.813 0.83 0.836 0.812 0.804 0.768 0.796
Square

LASSO 0.72 - 0.787 0.825 - 0.825 0.748

MI 0.837 0.828 0.793 0.798 0.815 0.826 0.793

REA v s

FI 0.778 0.822 0.823 0.833 0.77
RFE 0.834 0.829 - 0.835 0.798 0.797 0.804 0.805 0.763

To improve the prediction accuracy, we pursued fine-tuning of the RF classifier's
hyperparameters, which had a positive effect on the results. With these enhancements, the AUC
increased to 0.874 with 100 iterations, and we can express our confidence in this outcome with a 95%
confidence interval spanning from 0.822 to 0.912. This demonstrates the robustness and reliability of
our predictive model in discerning between AD and MCI, providing valuable insights for clinical

applications.
0.95

— ROC AUC
——— Accuracy

Features

Figure 3. Rank-based results for each subset of the top 50 most important features selected by the
LASSO method. The blue point is the optimal point based on accuracy and feature count. The last
numbers of feature names are segmentation labels based on FastSurfer.

4.3. CN vs MCI

As indicated by the findings presented in Table 4, the Random Forest (RF) classifier consistently
demonstrated the highest level of accuracy when applied to features selected through the LASSO
method. This achievement was particularly notable during 100 iterations, yielding an AUC of 0.879.
Furthermore, we can express our confidence in this result with a 95% confidence interval ranging
from 0.747 to 0.911.

In our quest to assess the average accuracy in distinguishing between Cognitively Normal (CN)
and Mild Cognitive Impairment (MCI), we adopted a rank-based approach focusing on the top 80
features, executing 100 iterations for each subset of features. Within this framework, the RF classifier
consistently exhibited robust performance, achieving an average accuracy with an AUC of 0.879.

Our analysis further led us to identify the most influential features—eight in total —based on
their impact on accuracy, as visually represented in Figure 4. Even with this more refined feature set,
the model maintained a commendable level of accuracy, resulting in an AUC of 0.778, as depicted in
Table 5.
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Table 4. (Heatmap) Results of performing nine classifiers GB, RF, DT, GNB, GP, MLP, QDA, AB
and KNN on the top 80 features selected by the eight dimension-reduction methods ANOVA, PCA,
Chi2, LASSO, M1, RFA, FI, and RFE to predict CN vs MCL
GB RF DT GNB GP MLP QDA AB KNN
ANOVA | 0.849 0.878 0.791 0.693 0.635 0.641 0.847 0.695
PCA 0.862 0.875 0.771 - 0.57 0.625 0.854 -
Chi-
0.798 0.809 0.779 0.658 0.603 0.583 0.785 0.622
Square
LASSO 0.631 - 0.692 0.684 - 0.858 0.695
ML | 0787 0793 0635 0785 0649 0659 0648 0767  0.646

RFA 0.664 - 0.554 0.567 _ 0.627
FI 0.635 - 0.6 0.597 0.676 0.786 0.646

RFE 0.787 0.799 ! 0.791 0.547 0.631 0.681 0.746 0.68

Table 5. Important Features and ROIs selected by the LASSO method

Feature Name ngl ROI Name Left/Right
firstorder_90Percentile 1010  isthmuscingulate lh
N firstorder_Median 1008 inferiorparietal lh
1::]; glrlm_LongRunEmphasis 17 Hippocampus lh
gldm_DependenceEntropy 2006 entorhinal rh
tirstorder_90Percentile 1025 precuneus lh
firstorder_RootMeanSquared 13 Pallidum lh
?7]:5) glrlm_RunLengthNonUniformityNormalized = 1009 inferiortemporal lh
MCI glrlm_RunVariance 17 Hippocampus lh
firstorder_Median 2022 postcentral rh
firstorder_90Percentile 2025 precuneus rh
firstorder Maximum 16 Brain Stem
firstorder_90Percentile 2008 inferiorparietal rh
gldm_DependenceVariance 2012  lateralorbitofrontal rh
(\j}: glszm_ZonePercentage 1022 postcentral lh
MCI firstorder_Minimum 2035 insula rh
shape_Maximum2DDiameterColumn 2020 parstriangularis rh
shape_Sphericity 28 Ventral DC lh
glrlm_ShortRunEmphasis 10 Thalamus lh

We then embarked on the fine-tuning of the RF classifier's hyperparameters, specifically for the
top features (eight in total). This fine-tuning effort yielded an average value for the area under the
ROC curve (0.79) after 100 iterations. Our confidence in this result is substantiated by a 95%
confidence interval spanning from 0.753 to 0.861. These findings underscore the model's robustness
and reliability in distinguishing between CN and MCI, carrying significant implications for clinical
applications and research.
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Figure 4. Rank-based results for each subset of the top 80 most important features selected by the
LASSO method. The blue point is the optimal point based on accuracy and feature count. The last
numbers of feature names are segmentation labels based on FastSurfer.

5. Discussion

In this study, our primary focus was on diagnosing Alzheimer's Disease (AD) and Mild
Cognitive Impairment (MCI) by developing a radiomics-based platform known as RAB-PET. We also
devised a method to analyze 18FDG-PET brain images in patients with AD and MCI. Early diagnosis
of AD is a critical strategy in the context of preventing and treating this debilitating condition. This
early diagnosis relies on the measurement of specific characteristics in distinct regions of the human
brain, as noted in reference*>. Our platform, RAB-PET, provides us with the capability to uncover
effective radiomics solutions by exploring nine different classification methods in conjunction with
eight diverse feature selection methods, all utilizing 18FDG-PET images. Significantly, in contrast to
recent research endeavors as outlined in Table 3, our method demonstrated a notably elevated level
of accuracy. Specifically, we achieved an AUC of 0.976 for the AD vs CN, an AUC of 0.917 for the AD
vs MCI, and an AUC of 0.879 for MCI vs CN. It's important to acknowledge that direct comparisons
with these studies are somewhat constrained due to variations in the datasets and biomarkers used.

For the crucial task of volume analysis, we employed FastSurfer, a novel approach based on
deep learning. FastSurfer facilitated the segmentation of the entire brain into 95 distinct classes,
drawing upon the DKT atlas. This method offered an efficient alternative to time-consuming brain
segmentation techniques like FreeSurfer, Statistical Parametric Mapping (SPM), or FSL, as elaborated
in reference®. In addition, we harnessed PyRadiomics, which performed the computation of 2D and
3D properties according to the IBSI standard*+4.

To the best of our knowledge, the developed platform is the first capable of generating multiple
outcomes while leveraging specialized hardware and 18FDG-PET studies. It's worth emphasizing
that 18FDG-PET, recognized for its sensitivity, stands out as the foremost diagnostic imaging method
for Alzheimer's Disease (AD), as established by reference®. This imaging technique proves to be of
immense value, particularly in the early phases of the disease since metabolic change occur much
earlier than the symptoms.

In the existing literature, several studies have explored the potential of structural MRI (sMRI)
scans for predicting Alzheimer's Disease (AD) or Mild Cognitive Impairment (MCI), as referenced
in¥4. It's noteworthy that many recent investigations have adopted a multi-faceted approach,
combining various biomarkers, including clinical tests and diverse imaging modalities, to enhance
the accuracy of AD and MCI predictions, as indicated by*. In contrast, our approach was more
streamlined, relying exclusively on 18FDG-PET.
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After extracting features from 18FDG-PET scans, we took measures to optimize computation
time. This involved preprocessing the features and selecting the top 'n' features for each prediction
task, where 'n' was determined as follows: for CN vs. AD, we used 'n=20", for AD vs. MCI, 'n=50', and
for CN vs. MCI, 'n=80". This reduction in feature set size aimed to enhance efficiency while
maintaining the predictive power of our approach. Furthermore, for the sake of result
interpretability, we went a step further by selecting the most vital features based on their contribution
to accuracy and feature count. For CN vs. AD, we retained 'n=4' critical features, for AD vs. MC],
n=6', and for CN vs. MCI, 'n=6'". This step not only enhanced the practical utility of our predictions
but also facilitated a better understanding of the underlying factors driving our diagnostic
capabilities in different scenarios.

It's important to highlight that particular regions of interest (ROIls) that show early tau
deposition can be valuable in aiding the early detection of Alzheimer's disease (AD). Moreover, as
per the National Institute on Aging (NIH) report, Alzheimer's disease initially damages neurons and
their connections in brain regions associated with memory, later extending its impact to the cerebral
cortex areas responsible for language, cognition, and social behavior5'. Efforts are being made to link
these regions with the areas identified through radiomic analysis.

In our study, we discovered that various prediction models exhibit a preference for different
brain regions and features. However, in our quest to identify shared elements among these distinct
prediction scenarios, we conducted an extensive analysis. This analysis revealed a remarkable and
consistent finding: the amygdala, entorhinal cortex, and hippocampus consistently emerged as
pivotal regions across all stages of Alzheimer's disease. These three brain regions, known for their
roles in memory and cognitive function, demonstrated their enduring significance in our predictive
model. This finding suggests that, regardless of the specific predictive task or feature selection
method, the amygdala, entorhinal cortex, and hippocampus remain robust markers that hold vital
relevance throughout the progression of Alzheimer's disease. This insight has the potential to
enhance the accuracy and consistency of diagnostic and predictive models, ultimately contributing
to our understanding and management of this disease.

Furthermore, an additional discovery from our study is the identification of four frequently
employed  features  (namely,  gldm_DependenceEntropy, = shape_SurfaceVolumeRatio,
glrlm_RunPercentage, glrlm_LongRunEmphasis) by eight distinct feature selection methods. These
features were consistently recognized as the most critical in predicting Alzheimer's disease (AD)
within three specific Regions of Interest (ROIs): the amygdala, entorhinal cortex, and hippocampus
(as depicted in Figure 5). Given the relatively limited size of these identified areas, as depicted in
Figure 6, visual assessment and the ability to discern changes with the naked eye are challenging. As
a result, machine learning techniques prove invaluable in quantifying and analyzing features within
these regions, offering medical experts valuable and practical insights into these highlighted areas.

Considering recent clinical studies on patients with AD, it can be concluded that these three
ROIs are the most affected parts of the brain related to AD. A recent study introduced the entorhinal,
amygdala, and parahippocampal regions as early tau-deposited regions of temporal meta-ROI,
which can assist in the early diagnosis of AD disease®. In addition, according to the report of the
National Institute on Aging (NIH), Alzheimer's disease typically destroys neurons and their
connections in parts of the brain involved in memory, including the entorhinal cortex and
hippocampus. It later affects areas in the cerebral cortex responsible for language, reasoning, and
social behavior®'.
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Figure 5. Common ROIs frequently selected by eight different feature selection methods.
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Figure 6. 18FDGPET scans of participants with AD, MCI and CN. The marked regions of the three
ROIs important in the diagnosis of AD introduced by our model.

Another finding of this study is to show how the classification and the feature reduction
methods affect the results. We investigated nine classification methods on the eight different feature
selection methods to find the best combination of feature selection and classification methods. We
found that LASSO is a well-performing feature selection method with the RF classifier in 18FDG-PET
images.

Despite the promising results of radiomics in various fields of medicine and its potential
application in precision medicine®, deep exploration, refinement, standardization, and validation are
still required for application in clinical practice®. Therefore, validating the proposed models by
further studies is a necessary step that requires the provision of a comprehensive and standard
solution to verify them for use in clinical practice. Moreover, many factors influence the outcomes of
the radiomics approach, so this field relies on the performance of different methods, such as
segmentation, feature extraction, and classification>.

Our study confirms that 18FDG-PET can be an important biomarker for AD in comparison with
recent studies as shown in Table 6. We believe that the predictive performance of the proposed
solution can be improved by extending the dataset size or combining it with other existing datasets.
Our model is a general method that does not consider specific prior information about regions of
interest or disease symptoms. Therefore, in future work, it can be applied to predict other
neurological diseases or to predict other quantitative characteristics of AD%.

Table 6. Comparison of our results with related published studies on the classification of AD
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6. Conclusion

In summary, the developed RAB-PET platform offers an efficient solution for the radiomic
analysis of brain FDG-PET images. Testing on AD and MCI patients has shown its potential for
reliable AD diagnosis and identification of its stages, accomplished with minimal computational
time. It also helps the identification of the few most important regions and features associated with
the disease. Furthermore, we're actively exploring its applications in personalized AD management,
and its adaptable nature extends its usability to predict various other brain disorders.
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