

Article

Not peer-reviewed version

Certain Results on Subclasses of Analytic and Bi-Univalent Functions Associated with Coefficients Estimates and Quasi-Subordination

Elaf Ibrahim Badiwi , [Waggas Galib Atshan](#) * , Ameera N. Alkiffai , [Alina Alb Lupas](#)

Posted Date: 7 November 2023

doi: 10.20944/preprints202311.0481.v1

Keywords: analytic functions, univalent function; fractional derivatives; convolution (qderivatives); quasi-subordination; coefficient estimate

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article

Certain Results on Subclasses of Analytic and Bi-Univalent Functions Associated with Coefficients Estimates and Quasi-Subordination

Elaf Ibrahim Badiwi ¹, Waggas Galib Atshan ^{2,*}, Ameera N. Alkiffai ¹ and Alina Alb Lupaș ³

¹ Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf- Iraq; elafi.alhayyawi@student.uokufa.edu.iq (E.I.B.); ameeran.alkiffai@uokufa.edu.iq (A.N.A.)

² Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah -Iraq

³ Department of Mathematics and Computer Science, University of Oradea, 410087 Oradea, Romania; alblupas@gmail.com

* Correspondence: waggas.galib@qu.edu.iq

Abstract: The purpose of the present paper is to introduce and investigate new subclasses of analytic function class of bi univalent function defined in open unit disk connected with a linear q -convolution operator, which are associated with the quasi-subordination. We find coefficients estimate $|h_2|, |h_3|$ for functions in these subclasses. Several known and new consequences of these results are also pointed out.

Keywords: analytic functions, univalent function; fractional derivatives; convolution (q -derivatives); quasi-subordination; coefficient estimate

Mathematics Subject Classification: 30C45; 30C50

1. Introduction

The theory of q -calculus plays an important rôle in many areas of mathematical physical and engineering sciences. Jackson (see [11] and [10]) was the first to have some applications of the q -calculus and introduced the q -analogue of the classical derivative and integral operators (see also [30]).

Let \mathcal{A} be the class of analytic functions \mathcal{T} in an open unit disk $\mathfrak{U} = \{\varepsilon \in \mathbb{C} : |\varepsilon| < 1\}$ of the form:

$$\mathcal{T}(\varepsilon) = \varepsilon + \sum_{j=2}^{\infty} a_j \varepsilon^j, \quad (\varepsilon \in \mathfrak{U}). \quad (1.1)$$

and satisfying the normalization conditions (see [1]): $\mathcal{T}(0) = \mathcal{T}'(0) - 1 = 0$

Assume that $\Sigma_{\mathfrak{U}}$ denotes the class of all functions in \mathcal{A} defined by (1.1), which are univalent in \mathfrak{U} .

The well-known Koebe-One Quarter Theorem [5] states that the image of the open unit disk \mathfrak{U} under each univalent function in a disk with the radius $\frac{1}{4}$. Thus, every univalent function \mathcal{T} has an inverse \mathcal{T}^{-1} , such that

$$\mathcal{T}^{-1}(\mathcal{T}(\varepsilon)) = \varepsilon \quad (z \in \mathfrak{U}),$$

and

$$\mathcal{T}(\mathcal{T}^{-1}(\zeta)) = \zeta \quad (|\zeta| < r_0(\mathcal{T}); r_0(\mathcal{T}) \geq \frac{1}{4}).$$

In fact, the inverse function $\xi = \mathcal{T}^{-1}$ is given by

$$\begin{aligned} \xi(\zeta) &= \zeta - a_2 \zeta^2 + (2a_2^2 - a_3) \zeta^3 - (5a_2^2 - 5a_2 a_3 + a_4) \zeta^4 + \dots \\ &= \zeta + \sum_{n=2}^{\infty} A_n \zeta^n \end{aligned} \quad (1.3)$$

The function $\mathcal{T} \in \mathcal{A}$ is said to be bi-univalent in \mathfrak{U} if both \mathcal{T} and its inverse \mathcal{T}^{-1} are univalent functions in \mathfrak{U} given by (1.1).

The class of bi-univalent functions was introduced by Lewin [14] and proved that $|a_2| \leq 1.51$ for the function of the form (1.1). Subsequently, Brannan and Clunie [3] conjectured that $|a_2| \leq \sqrt{2}$. Later Netanyahu in [17] proved that $\max_{T \in \Sigma} |a_2| = \frac{4}{3}$. Also several authors studied classes of bi-univalent analytic functions and found estimates of the coefficients $|a_2|$ and $|a_3|$ for functions in these classes [For two analytic functions T and ξ , T is quasi-subordinate to ξ , written as follows:

$$T(\varepsilon) \prec_q \xi(\varepsilon) \quad (\varepsilon \in \mathfrak{U}) \quad (1.3)$$

if there exist analytic functions $h(\varepsilon)$ and $\kappa(\varepsilon)$, with $|h(z)| \leq 1$, $\kappa(0) = 0$ and $|\kappa(\varepsilon)| < 1$, $(\varepsilon \in \mathfrak{U})$, such that

$$T(\varepsilon) = h(\varepsilon)\xi(\kappa(\varepsilon)), \quad (\varepsilon \in \mathfrak{U}).$$

Note that if ($h(\varepsilon) = 1$), then $T(\varepsilon) = \xi(\kappa(\varepsilon))$, hence $T(\varepsilon) \prec \xi(\varepsilon)$ ($\varepsilon \in \mathfrak{U}$). If ξ be univalent in \mathfrak{U} , then $T \prec \xi$ if and only if $T(0) = \xi(0)$ and $T(\mathfrak{U}) \subset \xi(\mathfrak{U})$.

For the functions $T, \rho \in \Sigma_{\mathfrak{U}}$ defined by

$$T(\varepsilon) = \sum_{j=1}^{\infty} a_j \varepsilon^j \quad \text{and} \quad \rho(\varepsilon) = \sum_{j=1}^{\infty} h_j \varepsilon^j \quad (\varepsilon \in \mathfrak{U}),$$

the convolution of T and ρ denoted by $T * \rho$ is

$$(T * \rho)(\varepsilon) = \sum_{j=1}^{\infty} a_j h_j \varepsilon^j = (\rho * T)(\varepsilon) \quad (\varepsilon \in \mathfrak{U}).$$

To start with, we recall the following differential and integral operators. For $0 < q < 1$, El-Deeb et al. [8,24] defined the q-convolution operator (see also [10]) for $T * \rho$ by

$$\begin{aligned} \mathfrak{Q}_q(T * \rho)(\varepsilon) &= \mathfrak{Q}_q \left(\varepsilon + \sum_{j=2}^{\infty} a_j h_j \varepsilon^j \right) \\ \frac{(T * \rho)(\varepsilon) - (T * \rho)(q\varepsilon)}{\varepsilon(1-q)} &= 1 + \sum_{j=2}^{\infty} [j]_q a_j h_j \varepsilon^{j-1}, \quad \varepsilon \in \mathfrak{U}, \end{aligned}$$

where

$$[j]_q = \frac{1 - q^j}{1 - q} = 1 + \sum_{j=1}^{j-1} q^j, \quad [0]_q = 0. \quad (1.4)$$

We used the linear operator $\mathcal{Y}_\rho^{\zeta,q}: \mathcal{A} \rightarrow \mathcal{A}$ according to El-Deeb et al. [8] (see also [25]) for and $\zeta > -1, 0 < q < 1$. If

$$\mathcal{Y}_\rho^{\zeta,q} T(\varepsilon) * \mathbb{I}_q^{\zeta+1}(\varepsilon) = \varepsilon \mathfrak{Q}_q(T * \rho)(\varepsilon), \quad \varepsilon \in \mathfrak{U},$$

where $\mathbb{I}_q^{\zeta+1}$ is given by

$$\mathbb{I}_q^{\zeta+1}(\varepsilon) = \varepsilon + \sum_{j=2}^{\infty} \frac{[\zeta+1]_{q,\varepsilon-1}}{[\varepsilon-1]_q!} \varepsilon^j, \quad \varepsilon \in \mathfrak{U},$$

then

$$\mathcal{Y}_\rho^{\zeta,q} T(\varepsilon) = \varepsilon + \sum_{j=2}^{\infty} \frac{[j]_q!}{[\zeta]_{q,\varepsilon-1}} a_j h_j \varepsilon^j \quad (\zeta > -1, 0 < q < 1, \varepsilon \in \mathfrak{U}). \quad (1.5)$$

Using the operator $\mathcal{Y}_\rho^{\zeta,q}$, we define a new operator as follows:

$$\begin{aligned} \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,0} T(\varepsilon) &= \mathcal{Y}_\rho^{\zeta,q} T(\varepsilon) \\ \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,1} T(\varepsilon) &= (\sigma - \vartheta) \varepsilon^3 \left(\mathcal{Y}_\rho^{\zeta,q} T(\varepsilon) \right)^{'''} + (1 + 2(\sigma - \vartheta)) \varepsilon^2 \left(\mathcal{Y}_\rho^{\zeta,q} T(\varepsilon) \right)^{''} + \varepsilon \left(\mathcal{Y}_\rho^{\zeta,q} T(\varepsilon) \right)' \quad (1.6) \\ \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) &= \end{aligned}$$

$$\begin{aligned} (\sigma - \vartheta) \varepsilon^3 \left(\mathcal{Y}_\rho^{\zeta,q,n-1} T(\varepsilon) \right)^{'''} &+ (1 + 2(\sigma - \vartheta)) \varepsilon^2 \left(\mathcal{Y}_\rho^{\zeta,q,n-1} T(\varepsilon) \right)^{''} + \varepsilon \left(\mathcal{Y}_\rho^{\zeta,q,n-1} T(\varepsilon) \right)' \\ &= \varepsilon + \sum_{j=2}^{\infty} j^{2n} ((\sigma - \vartheta)(j-1) + 1)^n \frac{[j]_q!}{[\zeta]_{q,\varepsilon-1}} a_j h_j \varepsilon^j \\ \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) &= \varepsilon + \sum_{j=2}^{\infty} \psi_j h_j \varepsilon^j \left(\begin{array}{l} \zeta > -1, 0 < q < 1, \vartheta \geq 0, \sigma > 0, \sigma \neq \vartheta, \\ n \in \mathbb{N}_0 \cup \{0\} \text{ and } \varepsilon \in \mathfrak{U} \end{array} \right), \quad (1.7) \end{aligned}$$

where

$$\psi_j = j^{2n}((\sigma - \vartheta)(j-1) + 1)^n \frac{[j]_q!}{[\zeta]_{q,\varepsilon-1}} a_j,$$

and by [10], let $0 < q < 1$ and $[j]_q$ is defined by $[j]_q = \frac{1-q^j}{1-q} = 1 + \sum_{j=1}^{j-1} q^j$, $[0]_q = 0$.

The q - number shift factorial is given by

$$[j]_q! = \begin{cases} [j]_q [j-1]_q \dots [2]_q [1]_q, & \text{if } j = 1, 2, 3, \dots, \\ 1, & \text{if } j = 0, \end{cases}$$

From the definition relation (1.5), we get

$$(i) [\zeta + 1]_q \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon) = [\zeta]_q \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta+1,q,n} \mathcal{T}(\varepsilon) + q^\zeta \varepsilon \mathcal{Q}_q \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta+1,q,n} \mathcal{T}(\varepsilon) \right), \varepsilon \in \mathfrak{U}; \quad (1.8)$$

$$(ii) \mathcal{R}_{\rho,\sigma,\vartheta}^{\zeta,n} \mathcal{T}(\varepsilon) = \lim_{q \rightarrow 1^-} \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon) = \varepsilon + \sum_{j=2}^{\infty} j^{2n} ((\sigma - \vartheta)(j-1) + 1)^n \frac{[j]_q!}{[\zeta]_{q,\varepsilon-1}} a_j h_j \varepsilon^j \quad (1.9)$$

The q - generalized Pochhammersymbol is defined by $[\zeta]_{q,\varepsilon-1} = \frac{\Gamma_q(\zeta + \varepsilon - 1)}{\Gamma_q(\zeta)}$, $\varepsilon - 1 \in \mathbb{N}$, $\zeta \in \mathbb{N}$.

For, $q \rightarrow 1^-$, then $[\zeta]_{q,\varepsilon-1}$ reduces to $(\zeta)_{\varepsilon-1} = \frac{\Gamma(\zeta + \varepsilon - 1)}{\Gamma(\zeta)}$.

Remark(1.1): We find the following special cases for the operator $\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n}$ by considering several particular cases for the coefficients a_j and n :

(i) Putting $a_j = 1, \vartheta = 0$ and $n = 0$ into this operator, we obtain the operator $QTRcalB_q^\alpha$ defined by Srivastava et al. [23];

(ii) Putting $a_j = \frac{(-1)^j \Gamma(\rho + 1)}{4^{j-1} (j-1)! \Gamma(r + \rho)}$ ($\rho > 0$), $\vartheta = 0$ and $n = 0$ in this operator, we obtain the operator $\mathcal{N}_{p,q}^\sigma$ defined by El-Deeb and Bulboacă [9] and El-Deeb [8];

(iii) Putting $a_j = \left(\frac{\tau+1}{\tau+j}\right)^r$ ($r > 0, \tau \geq 0$), $\vartheta = 0$ and $n = 0$ in this operator, we obtain the operator $\mathcal{M}_{\tau,q}^{\sigma,r}$ defined by El-Deeb and Bulboacă [24] and Srivastava and El-Deeb [25];

(iv) Putting $a_j = \frac{\varsigma^{j-1}}{(j-1)!} \varrho^{-\varsigma}$ ($\varsigma > 0$) and $n = 0$ in this operator, we obtain the q -analoguue of Poisson operator $I_q^{\vartheta,\varsigma}$ defined by El-Deeb et al. [8];

(v) Putting $a_j = 1, \vartheta = 0$ in this operator, we obtain the operator $QTRcalB_{\vartheta,\sigma}^{\delta,q,n}$ defined as follows:

$$B_{\vartheta,\sigma}^{\delta,q,n} F(\varepsilon) = \varepsilon + \sum_{j=2}^{\infty} j^{2n} ((\sigma - \vartheta)(j-1) + 1)^n \frac{[j]_q!}{[\zeta]_{q,\varepsilon-1}} h_j \varepsilon^j; \quad (1.10)$$

(vi) Putting $a_j = \frac{(-1)^j \Gamma(\rho + 1)}{4^{j-1} (j-1)! \Gamma(r + \rho)}$ ($\rho > 0$) in this operator, we obtain the operator $\mathcal{N}_{\varsigma,p,q}^{\sigma,n}$ defined as follows:

$$\begin{aligned} \mathcal{N}_{\varsigma,p,q}^{\sigma,n} F(\varepsilon) &= \varepsilon + \sum_{j=2}^{\infty} j^{2n} ((\sigma - \vartheta)(j-1) + 1)^n \frac{[j]_q!}{[\zeta + 1]_{q,\varepsilon-1}} \frac{(-1)^j \Gamma(\varsigma + 1)}{4^{j-1} (j-1)! \Gamma(r + \varsigma)} h_j \varepsilon^j \\ &= \varepsilon + \sum_{j=2}^{\infty} \varphi_j h_j \varepsilon^j, \end{aligned} \quad (1.11)$$

where

$$\varphi_j = j^{2n} ((\sigma - \vartheta)(j-1) + 1)^n \frac{[j]_q!}{[\zeta]_{q,\varepsilon-1}} \frac{(-1)^j \Gamma(\rho + 1)}{4^{j-1} (j-1)! \Gamma(r + \rho)}, \quad (1.12)$$

(vii) Putting $a_j = \left(\frac{\tau+1}{\tau+j}\right)^r$ ($r > 0, \tau \geq 0$) in this operator, we obtain the operator $\mathcal{M}_{\tau,\theta,q}^{\sigma,n,r}$ defined as follows:

$$M_{\tau,\theta,q}^{\sigma,n,r} F(\varepsilon) = \varepsilon + \sum_{j=2}^{\infty} j^{2n} ((\sigma - \vartheta)(j-1) + 1)^n \left(\frac{\tau+1}{\tau+j}\right)^r \frac{[j]_q!}{[\zeta + 1]_{q,\varepsilon-1}} h_j \varepsilon^j.$$

Ma and Minda have given a unified treatment of various subclass consisting of starlike and convex functions for either one of the quantities $\frac{\varepsilon \mathcal{T}'(\varepsilon)}{\mathcal{T}(\varepsilon)}$ or $1 + \frac{\varepsilon \mathcal{T}''(\varepsilon)}{\mathcal{T}(\varepsilon)}$ is subordinate to a more general superordinate function. The $S^*(\phi)$ introduced by Ma and Minda [15] consists of function $\mathcal{T} \in \mathcal{A}$ satisfying $\frac{\varepsilon \mathcal{T}'(\varepsilon)}{\mathcal{T}(\varepsilon)} < \phi(z), z \in \mathfrak{U}$ and corresponding class $k(\phi)$ of convex functions $\mathcal{T} \in \mathcal{A}$ satisfying $1 + \frac{\varepsilon \mathcal{T}''(\varepsilon)}{\mathcal{T}(\varepsilon)} < \phi(z), z \in \mathfrak{U}$, Ma and Minda [15], where ϕ is analytic and univalent

function with positive real part in the unit disc U , satisfying $\phi(0) = 1$, $\phi'(0) > 0$ and $\phi(U)$ is a starlike region with the respect to 1 and symmetric with the respect to the real axis. The functions in the classes $S^*(\phi)$ and $K(\phi)$, are called starlike of Ma-Minda type or convex of Ma-Minda type respectively. By $S_{\Sigma_U}^*(\phi)$ and $K_{\Sigma_U}(\phi)$, we denote to bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type respectively. [15]. In this investigation, we assume that

$$\phi(\varepsilon) = 1 + B_1\varepsilon + B_2\varepsilon^2 + B_3\varepsilon^3 + \dots, \quad B_1 > 0. \quad (1.13)$$

and

$$h(\varepsilon) = h_0 + h\varepsilon + h_2\varepsilon^2 + h_3\varepsilon^3 + \dots \quad (1.14)$$

The aim of this paper is to introduce new subclasses of the class Σ_U and determine estimates of bounds on the coefficient $|h_2|$ and $|h_3|$ and for the functions in above subclasses.

In [3] (see also [35,3–38]), certain subclasses of the bi-univalent analytic functions class B were introduced and non-sharp estimates on the first two coefficients $|h_2|$ and $|h_3|$ were found. The object of the present paper is to introduce two new subclasses as in Definitions 2.1 and 3.1 of the function class B using the linear q -convolution operator and determine estimates of the coefficients $|h_2|$ and $|h_3|$ for the functions in these new subclasses of the function class.

Lemma (1.1) [8]: Let $p(\varepsilon) \in \mathcal{P}$, then $|p_i| \leq 2$ for each i where \mathcal{P} is the family of all functions p , analytic in U , for which $\operatorname{Re}(p(\varepsilon)) > 0$, ($\varepsilon \in U$), where

$$p(z) = 1 + p_1\varepsilon + p_2\varepsilon^2 + p_3\varepsilon^3 + \dots$$

2. Coefficients Estimates for the Class $\mathfrak{f}_{q,\Sigma}^\mu(\zeta, n, \rho, \sigma, \vartheta, \gamma, \delta, \varphi)$.

Definition (2.1): For a function $T \in \Sigma_U$ defined by (1.1) is said to be in the class $\mathfrak{f}_{q,\Sigma}^\mu(\zeta, n, \rho, \sigma, \vartheta, \gamma, \delta, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$\left[\frac{\varepsilon \left[\left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)' + \gamma \varepsilon \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)'' \right]^\mu}{\gamma \varepsilon \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)' + \delta \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)'' + (1-\gamma)((1-\delta) \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) + \delta \varepsilon \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)')} \right] - 1 \prec_q (\varphi(\varepsilon) - 1), \quad (2.1)$$

and

$$\left[\frac{\varsigma \left[\left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)' + \gamma \varsigma \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)'' \right]^\mu}{\gamma \varsigma \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)' + \delta \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)'' + (1-\gamma)((1-\delta) \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) + \delta \varsigma \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)')} \right] - 1 \prec_q (\varphi(\varsigma) - 1), \quad (2.2)$$

where $\gamma, \delta, \mu \in [0, 1]$ and $\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon)$ is defined in (1.7) and $(\varepsilon, \varsigma \in U)$.

For special values to parameters $\mu, \delta, \gamma, \zeta, n, \rho, \sigma, \vartheta$ and $\varphi(\varepsilon)$, leads to get Known and new classes.

Remark (3.1): For $\delta = 0$, a function $T \in \Sigma_U$ define by (1.7) is said to be in the class $\mathfrak{f}_{q,\Sigma}^\mu(\zeta, n, \rho, \sigma, \vartheta, \gamma, \delta, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$\left[\frac{\varepsilon \left[\left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)' + \gamma \varepsilon \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)'' \right]^\mu}{\gamma \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon) \right)' + (1-\gamma) \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} T(\varepsilon)} \right] - 1 \prec_q (\varphi(\varepsilon) - 1),$$

and

$$\left[\frac{\varsigma \left[\left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)' + \gamma \varsigma \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)'' \right]^\mu}{\gamma \varsigma \left(\mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma) \right)' + (1-\gamma) \mathcal{Q}_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\varsigma)} \right] - 1 \prec_q (\varphi(\varsigma) - 1),$$

where ξ is the inverse function of T and $(\varepsilon, \varsigma \in U)$.

Remark (3.3): For $\delta = 1$, a function $T \in \Sigma_U$ define by (1.7) is said to be in the class $\mathfrak{f}_{q,\Sigma}^\mu(\zeta, n, \rho, \sigma, \vartheta, \gamma, \delta, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$\left[\frac{\varepsilon \left[\left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)' + \gamma \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'' \right]''}{\gamma \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'' + (1 - \gamma) \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'} \right] - 1 \prec_q (\varphi(\varepsilon) - 1),$$

and

$$\left[\frac{\varsigma \left[\left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)' + \gamma \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'' \right]''}{\gamma \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'' + (1 - \gamma) \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'} \right] - 1 \prec_q (\varphi(\varsigma) - 1),$$

where ξ is the inverse function of \mathcal{T} and $(\varepsilon, \varsigma \in \mathfrak{U})$.

Theorem (2.1): If the function \mathcal{T} belongs to the class $\mathfrak{f}_{q, \Sigma}^{\mu} (\zeta, n, \rho, \sigma, \vartheta, \gamma, \delta, \varphi)$, then, we have

$$|h_2| \leq \frac{|A_0| B_1 \sqrt{B_1}}{\sqrt{(1+2\gamma)(3\mu-2\delta-1)A_0 B_1^2 \psi_3 - (1+\gamma)^2 [(2\mu-\delta-1)^2 (B_2-B_1) - 2\mu(\mu-1) - (2\mu-\delta-1)(1+\delta)] \psi_2^2 A_0 B_1^2}}, \quad (3.3)$$

and

$$|h_3| \leq \frac{B_1 (|A_0| + |A_1|)}{(1+2\gamma)(3\mu-2\delta-1)\psi_3} + \frac{A_0^2 B_1^2}{4(1+\gamma)^2 (2\mu-\delta-1)^2 \psi_2^2}, \quad B_1 > 1, \quad (2.4)$$

Proof : Let $\mathcal{T} \in \mathfrak{f}_{q, \Sigma}^{\mu} (\zeta, n, \rho, \sigma, \vartheta, \gamma, \delta, \varphi)$, there exist two analytic functions u, v and $u, v : \mathfrak{U} \rightarrow \mathfrak{U}$ with $u(0) = v(0) = 0$, $|u(\varepsilon)| < 1$ and $|v(\varsigma)| \leq 1$, for all $\varepsilon, \varsigma \in \mathfrak{U}$ satisfying the following conditions.

$$\left[\frac{\varepsilon \left[\left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)' + \gamma \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'' \right]''}{\gamma \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)' + \delta \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'' + (1-\gamma)((1-\delta) \mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) + \delta \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right))} \right] - 1 \prec_q h(\varepsilon) (\varphi(u(\varepsilon) - 1)), \quad \varepsilon \in \mathfrak{U} \quad (2.5)$$

and

$$\left[\frac{\varsigma \left[\left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)' + \gamma \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'' \right]''}{\gamma \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)' + \delta \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'' + (1-\gamma)((1-\delta) \mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) + \delta \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right))} \right] - 1 \prec_q h(\varsigma) (\varphi(v(\varsigma) - 1)), \quad \varsigma \in \mathfrak{U}, \quad (2.6)$$

where ξ is the inverse function of \mathcal{T} and $(\varepsilon, \varsigma \in \mathfrak{U})$.

Determine the definition of the functions $p(\varepsilon)$ and $q(\varsigma)$ by

$$p(\varepsilon) = \frac{1 + u(\varepsilon)}{1 - u(\varepsilon)} = 1 + c_1 \varepsilon^2 + c_2 \varepsilon^2 + \dots \quad (2.7)$$

and

$$q(\varsigma) = \frac{1 + v(\varsigma)}{1 - v(\varsigma)} = 1 + d_1 \varsigma^2 + d_2 \varsigma^2 + \dots \quad (2.8)$$

Equivalently,

$$u(\varepsilon) = \frac{p(\varepsilon) - 1}{p(\varepsilon) + 1} = \frac{1}{2} \left\{ c_1 \varepsilon + \left(c_2 - \frac{c_1^2}{2} \right) \varepsilon^2 + \dots \right\}, \quad (2.9)$$

and

$$v(\varsigma) = \frac{q(\varsigma) - 1}{q(\varsigma) + 1} = \frac{1}{2} \left\{ b_1 \varsigma + \left(b_2 - \frac{b_1^2}{2} \right) \varsigma^2 + \dots \right\}. \quad (2.10)$$

Applying (3.9), (3.10) in (3.5) and (3.6), respectively, we have

$$\left[\frac{\varepsilon \left[\left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)' + \gamma \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'' \right]''}{\gamma \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)' + \delta \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right)'' + (1-\gamma)((1-\delta) \mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) + \delta \varepsilon \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon) \right))} \right] - 1 = h(\varepsilon) \left(\varphi \left(\frac{p(\varepsilon)-1}{p(\varepsilon)+1} \right) - 1 \right), \quad (2.11)$$

and

$$\left[\frac{\varsigma \left[\left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)' + \gamma \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'' \right]''}{\gamma \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)' + \delta \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right)'' + (1-\gamma)((1-\delta) \mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) + \delta \varsigma \left(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma) \right))} \right] - 1 = h(\varsigma) \left(\varphi \left(\frac{q(\varsigma)-1}{q(\varsigma)+1} \right) - 1 \right).$$

(2.12)

Utilize (2.8) and (2.9) in the right hands RH of the relations (3.1) and (3.13), we obtain

$$\hbar(\varepsilon) \left(\varphi \left(\frac{p(\varepsilon) - 1}{p(\varepsilon) + 1} \right) - 1 \right) = \frac{1}{2} A_0 B_1 c_1 \varepsilon + \left\{ \frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2}{4} c_1^2 \right\} \varepsilon^2 + \dots \quad (2.13)$$

and

$$h(\zeta) \left(\varphi \left(\frac{q(\zeta) - 1}{q(\zeta) + 1} \right) - 1 \right) = \frac{1}{2} A_0 B_1 d_1 \zeta + \left\{ \frac{1}{2} A_1 B_1 d_1 + \frac{1}{2} A_0 B_1 \left(d_2 - \frac{d_1^2}{2} \right) + \frac{A_0 B_2}{4} d_1^2 \right\} \zeta^2 + \dots \quad (2.14)$$

By equalizing (2.11), (2.12), (3.13) and (3.14), respectively, we get

$$(1 + \gamma)(2\mu - \delta - 1) \hbar_2 \psi_2 = \frac{1}{2} A_0 B_1 c_1, \quad (2.15)$$

$$\begin{aligned} & [(1 + 2\gamma)(3\mu - 2\delta - 1) h_3 \psi_3 + (1 + \gamma)^2 [2\mu(\mu - 1) - (1 + \delta)(2\mu - \delta - 1)] h_2^2 \psi_2^2] \\ & = \frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2}{4} c_1^2. \end{aligned} \quad (2.16)$$

and

$$-(1 + \gamma)(2\mu - \delta - 1) h_2 \psi_2 = \frac{1}{2} A_0 B_1 b_1 \quad (2.17)$$

$$\begin{aligned} & \left[[(1 + \gamma)^2 [2\mu(\mu - 1) - (2\mu - \delta - 1)(1 + \delta)] + 2(1 + 2\gamma)(3\mu - 2\delta - 1)] h_2^2 \psi_2^2 \right. \\ & \quad \left. - (1 + 2\gamma)(3\mu - 2\delta - 1) h_3 \psi_3 \right] \\ & = \frac{1}{2} A_1 B_1 d_1 + \frac{1}{2} A_0 B_1 + \left(d_2 - \frac{d_1^2}{2} \right) + \frac{A_0 B_2}{4} d_1^2. \end{aligned} \quad (2.18)$$

From (2.15) and (2.17), we have

$$\hbar_2 = \frac{A_0 B_1 c_1}{2(1 + \gamma)(2\mu - \delta - 1) \psi_2} = - \frac{A_0 B_1 d_1}{2(1 + \gamma)(2\mu - \delta - 1) \psi_2} \quad (2.19)$$

It follows that

$$c_1 = -d_1, \quad (2.20)$$

and

$$8(1 + \gamma)^2 (2\mu - \delta - 1)^2 h_2^2 \psi_2^2 = A_0^2 B_1^2 (d_1^2 + c_1^2). \quad (2.21)$$

Now, by summing (3.19) and (3.31), in light of (2.19) and (2.20), we obtain

$$\begin{aligned} & 8[(1 + \gamma)^2 [2\mu(\mu - 1) - (2\mu - \delta - 1)(1 + \delta)] A_0 B_1^2 \psi_2^2 + (1 + 2\gamma)(3\mu - 2\delta - 1) \psi_3 A_0 B_1^2] \hbar_2^2 \\ & = 2A_0^2 B_1^3 (c_2 + d_2) + (8(1 + \gamma)^2 (2\mu - \delta - 1)^2 (B_2 - B_1) \hbar_2^2 \psi_2^2), \end{aligned} \quad (2.22)$$

which implies

$$\hbar_2^2 = \frac{2A_0^2 B_1^3 (c_2 + d_2)}{8\{(1 + 2\gamma)(3\mu - 2\delta - 1) A_0 B_1^2 \psi_3 - (1 + \gamma)^2 [(2\mu - \delta - 1)^2 (B_2 - B_1) - [2\mu(\mu - 1) - (2\mu - \delta - 1)(1 + \delta)] A_0 B_1^2]\}}. \quad (2.23)$$

Applying lemma (1.1) $|c_i| \leq 2, |d_i| \leq 2$, in (3.33), we get the desired result (3.3).

Next, for the bound on $|a_3|$, by subtracting (3.18) from (3.16), we obtain

$$4 \left\{ (1 + 2\gamma)(3\mu - 2\delta - 1) \psi_3 \hbar_3 - (1 + 2\gamma)(3\mu - 2\delta - 1) \psi_3 \hbar_2^2 \right\} = 2A_1 B_1 c_1 + A_0 B_1 (c_2 - d_2) \quad (2.24)$$

By substituting (3.18) from (3.16), further computation using (3.30) and (3.31), we obtain

$$h_3 = \frac{2A_1 B_1 c_1}{4(1 + 2\gamma)(3\mu - 2\delta - 1) \psi_3} + \frac{A_0 B_1 (c_2 - d_2)}{4(1 + 2\gamma)(3\mu - 2\delta - 1) \psi_3} + \frac{A_0^2 B_1^2 (c_1^2 + d_1^2)}{8(1 + \gamma)^2 (2\mu - \delta - 1)^2 \psi_2^2}. \quad (3.35)$$

Applying Lemma (1.1) $|c_i| \leq 2, |d_i| \leq 2$, in (3.34), we get (3.4). This completes the proof of the Theorem (2.1).

By putting $\delta = 0$ in Theorem (3.1), we obtain the following Corollary:

Corollary (3.1): If the function $\mathcal{T}(\varepsilon)$ given by (1.1) belongs to the class $\mathfrak{f}_{q,\Sigma}^{\mu}(\zeta, n, \rho, \sigma, \vartheta, \gamma, 0, \varphi)$, then

$$|h_2| \leq \frac{|A_0| B_1 \sqrt{B_1}}{\sqrt{(1+2\gamma)(3\mu-1)A_0 B_1^2 \psi_3 - (1+\gamma)^2 [(2\mu-1)^2 (B_2-B_1) - [2\mu(\mu-1) - (2\mu-1)] \psi_2^2 A_0 B_1^2]}},$$

and

$$|\mathfrak{h}_3| \leq \frac{B_1(|A_0| + |A_1|)}{(1+2\gamma)(3\mu-1)\psi_3} + \frac{A_0^2 B_1^2}{4(1+\gamma)^2 (2\mu-1)^2 \psi_2^2}.$$

By putting $\delta = 1$ in Theorem (3.1), we obtain the following Corollary:

Corollary (3.3): Let $\mathcal{T}(\varepsilon)$ given by (1.1) belongs to the class $\mathfrak{f}_{q,\Sigma}^{\mu}(\zeta, n, \rho, \sigma, \vartheta, \gamma, 1, \varphi)$. Then

$$|\mathfrak{h}_2| \leq \frac{|A_0| B_1 \sqrt{B_1}}{\sqrt{3(1+2\gamma)(\mu-1)A_0 B_1^2 \psi_3 - (1+\gamma)^2 [(2\mu-2)^2 (B_2-B_1) - 2[\mu(\mu-1) - (2\mu-2)] \psi_2^2 A_0 B_1^2]}},$$

and

$$|\mathfrak{h}_3| \leq \frac{B_1(|A_0| + |A_1|)}{3(1+2\gamma)(\mu-1)\psi_3} + \frac{A_0^2 B_1^2}{8(1+\gamma)^2 (\mu-1)^2 \psi_2^2}.$$

By putting $\gamma = 1$ in Theorem (3.1), we have the following Corollary:

Corollary (3.3): Let $\mathcal{T}(\varepsilon)$ given by (1.1) belongs to the class $\mathfrak{f}_{q,\Sigma}^{\mu}(\zeta, n, \rho, \sigma, \vartheta, 1, \delta, \varphi)$. Then

$$|\mathfrak{h}_2| \leq \frac{|A_0| B_1 \sqrt{B_1}}{\sqrt{3(3\mu-2\delta-1)A_0 B_1^2 \psi_3 - 4[(2\mu-\delta-1)^2 (B_2-B_1) - [2\mu(\mu-1) - (2\mu-\delta-1)(1+\delta)] \psi_2^2 A_0 B_1^2]}},$$

and

$$|\mathfrak{h}_3| \leq \frac{B_1(|A_0| + |A_1|)}{3(3\mu-2\delta-1)\psi_3} + \frac{A_0^2 B_1^2}{16(2\mu-\delta-1)^2 \psi_2^2}, \quad B_1 > 1.$$

By putting $\gamma = 0$ in Theorem (3.1), we have the following Corollary:

Corollary(3.4): Let $\mathcal{T}(\varepsilon)$ given by (1.1) belongs to the class $\mathfrak{f}_{q,\Sigma}^{\mu}(\zeta, n, \rho, \sigma, \vartheta, 0, \delta, \varphi)$.

$$\text{Then } |\mathfrak{h}_2| \leq \frac{|A_0| B_1 \sqrt{B_1}}{\sqrt{(3\mu-2\delta-1)A_0 B_1^2 \psi_3 - [(2\mu-\delta-1)^2 (B_2-B_1) - 2[\mu(\mu-1) - (2\mu-\delta-1)(1+\delta)] \psi_2^2 A_0 B_1^2]}},$$

and

$$|\mathfrak{h}_3| \leq \frac{B_1(|A_0| + |A_1|)}{(3\mu-2\delta-1)\psi_3} + \frac{A_0^2 B_1^2}{4(2\mu-\delta-1)^2 \psi_2^2}, \quad B_1 > 1.$$

3. Coefficients Estimates for the Subclass $\mathfrak{N}_{\Sigma}^{q,\delta}(\lambda, \zeta, n, \rho, \sigma, \vartheta, \varphi)$.

Definition (3.1): A function $\mathcal{T} \in \Sigma_{\mathfrak{U}}$ defined by (1.1) is said to be in the class $\mathfrak{N}_{\Sigma}^{q,\delta}(\lambda, \zeta, n, \rho, \sigma, \vartheta, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$1 + \frac{1}{\gamma} \left[(1-\delta) \frac{\varepsilon(Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon))'}{(1-\lambda)\varepsilon + \lambda Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon)} + \delta \left(\frac{\varepsilon(Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon))'' + (Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon))'}{\lambda \varepsilon(Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon))'' + (Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \mathcal{T}(\varepsilon))'} \right) - 1 \right] \prec_q (\varphi(\varepsilon) - 1) \quad (3.1)$$

and

$$1 + \frac{1}{\gamma} \left[(1-\delta) \frac{\varsigma(Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\zeta))'}{(1-\lambda)\varsigma + \lambda Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\zeta)} + \delta \left(\frac{\varsigma(Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\zeta))'' + (Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\zeta))'}{\lambda \varsigma(Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\zeta))'' + (Q_{\rho,\sigma,\vartheta}^{\zeta,q,n} \xi(\zeta))'} \right) - 1 \right] \prec_q (\varphi(\zeta) - 1), \quad (3.2)$$

where $(0 \leq \lambda < 1, 0 \leq \delta \leq 1, \gamma \in \mathbb{C} \setminus \{0\}, \varepsilon, \zeta \in \mathfrak{U})$.

For special values to parameters λ and δ , we get new and well-known classes.

Remark (3.1): For $\lambda = 0$, a function $\mathcal{T} \in \Sigma_{\mathfrak{U}}$ define by (1.1) is said to be in the class $\mathfrak{N}_{\Sigma}^{q,\delta}(\lambda, \zeta, n, \rho, \sigma, \vartheta, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$1 + \frac{1}{\gamma} \left[(1 - \delta) \frac{\varepsilon (\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon))'}{\varepsilon} + \delta \left(\frac{\varepsilon (\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon))'' + (\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon))'}{(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \mathcal{T}(\varepsilon))'} \right) - 1 \right] \prec_q (\varphi(z) - 1)$$

and

$$1 + \frac{1}{\gamma} \left[(1 - \delta) \frac{\varsigma (\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma))'}{\varsigma} + \delta \left(\frac{\varsigma (\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma))'' + (\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma))'}{(\mathcal{Q}_{\rho, \sigma, \vartheta}^{\zeta, q, n} \xi(\varsigma))'} \right) - 1 \right] \prec_q (\varphi(w) - 1)$$

Theorem (3.1.): If the function \mathcal{T} belongs to the class $\mathfrak{N}_{\Sigma}^{q,\delta}(\lambda, \zeta, n, \rho, \sigma, \vartheta, \varphi)$, then we have

$$|\mathcal{h}_2| \leq \frac{\gamma |A_0| B_1 \sqrt{B_1}}{\sqrt{2(1 - \lambda)(1 + 2\delta)A_0 B_1^2 \psi_3 - (1 - \lambda)^2[(1 + 3\delta)A_0 B_1^2 - (1 + \delta)^2(B_2 - B_1)]\psi_2^2}} \quad (3.3)$$

and

$$|\mathcal{h}_3| \leq \frac{\gamma B_1 (|A_0| + |A_1|)}{(1 - \lambda)(1 + 2\delta)\psi_3} + \frac{A_0^2 B_1^2 \gamma^2}{(1 + \delta)^2 (1 - \lambda)^2 \psi_2^2}, \quad B_1 > 1, \quad (3.4)$$

where $0 \leq \delta \leq 1, 0 \leq \lambda \leq 1, \gamma \in \mathfrak{U} - \{0\}$.

Proof: Proceeding as in the proof of Theorem (2.1), we can get the relations as follows:

$$\frac{1}{\gamma} (1 + \delta)(1 - \lambda) \mathcal{h}_2 \psi_2 = \frac{1}{2} A_0 B_1 c_1, \quad (3.5)$$

$$\begin{aligned} \frac{1}{\gamma} [2(1 - \lambda)(1 + 2\delta)h_3 \psi_3 - (1 - \lambda)(1 + \lambda)((1 + 3\delta))h_2^2 \psi_2^2] \\ = \frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2}{4} c_1^2 \end{aligned} \quad (3.6)$$

and

$$-\frac{1}{\gamma} (1 + \delta)(1 - \lambda) \mathcal{h}_2 \psi_2 = \frac{1}{2} A_0 B_1 b_1, \quad (3.7)$$

$$\begin{aligned} \frac{1}{\gamma} [4(1 - \lambda)(1 + 2\delta)\psi_3 - (1 - \lambda)(1 + \lambda)(1 + 3\delta)] \mathcal{h}_2^2 \psi_2^2 - 2(1 - \lambda)(1 + 2\delta)\psi_3 \mathcal{h}_3 \\ = \frac{1}{2} A_1 B_1 b_1 + \frac{1}{2} A_0 B_1 \left(b_2 - \frac{b_1^2}{2} \right) + \frac{A_0 B_2}{4} b_1^2 \}. \end{aligned} \quad (3.8)$$

From (3.5) and (3.7), we obtain

$$c_1 = -d_1 \quad (3.9)$$

and

$$\mathcal{h}_2 = \frac{\gamma A_0 B_1 c_1}{2(1 + \delta)(1 - \lambda)\psi_2} = -\frac{\gamma A_0 B_1 b_1}{2(1 + \delta)(1 - \lambda)\psi_2} \quad (3.10)$$

and

$$8(1 + \delta)^2(1 - \lambda)^2 \mathcal{h}_2^2 \psi_2^2 = A_0^2 B_1^2 \gamma^2 (d_1^2 + c_1^2). \quad (3.11)$$

Now, by summing (3.6) and (3.8) and using (3.11) we obtain

$$\begin{aligned} \frac{8}{\gamma} \{ (2(1 - \lambda)(1 + 2\delta)\psi_3 - (1 - \lambda)(1 + \lambda)(1 + 3\delta)\psi_2^2) \} \mathcal{h}_2^2 \\ = 2A_0 B_1 (c_2 + d_2) + A_0 (B_2 - B_1) (c_1^2 + d_1^2), \end{aligned} \quad (3.12)$$

which implies

$$\mathcal{h}_2^2 = \frac{2A_0^2 B_1^3 (c_2 + d_2)}{8 \{ 2(1 - \lambda)(1 + 2\delta)A_0 B_1^2 \psi_3 - (1 - \lambda)^2 [(1 + 3\delta)A_0 B_1^2 - (1 + \delta)^2 (B_2 - B_1)] \psi_2^2 \}}. \quad (3.13)$$

Applying lemma(1.1) in (3.13) ,we get the desired result (3.3).

Next ,for the bound on $|h_3|$,by subtracting (3.6) from (3.8), we obtain

$$\frac{8}{\gamma}\{(1-\lambda)(1+2\delta)\psi_3h_3 - (1-\lambda)(1+2\delta)\psi_3 h_2^2\} = 2A_1B_1c_1 + A_0B_1(c_2 - d_2)$$

By substituting (3.18) from (3.16), further computation using (3.9) and (3.10), we obtain

$$h_3 = \frac{2\gamma A_1 B_1 c_1}{4(1-\lambda)(1+2\delta)\psi_3} + \frac{\gamma A_0 B_1 (c_2 - d_2)}{4(1-\lambda)(1+2\delta)} + \frac{A_0^2 B_1^2 \gamma^2 (c_1^2 + d_1^2)}{8(1+\delta)^2 (1-\lambda)^2 \psi_2^2} \quad (3.14)$$

From (3.14) and (3.13), we get the desired result (3.4). The proof is complete.

Corollary (3.1): If $\mathcal{T}(\varepsilon) \in \mathfrak{N}_\Sigma^{q,\delta}(1, \zeta, n, \rho, \sigma, \vartheta, \varphi)$ defined in (1.1), then we have

$$|h_2| \leq \frac{\gamma |A_0| B_1 \sqrt{B_1}}{\sqrt{2(1+2\delta)A_0 B_1^2 \psi_3 - [(1+3\delta)A_0 B_1^2 - (1+\delta)^2(B_2 - B_1)]\psi_2^2}}$$

and

$$|h_3| \leq \frac{\gamma B_1 (|A_0| + |A_1|)}{(1+2\delta)\psi_3} + \frac{A_0^2 B_1^2 \gamma^2}{(1+\delta)^2 \psi_2^2}, B_1 > 1.$$

Corollary (3.3): If $\mathcal{T}(\varepsilon) \in \mathfrak{N}_\Sigma^{q,1}(\lambda, \zeta, n, \rho, \sigma, \vartheta, \varphi)$ defined in (1.1), then we have

$$|h_2| \leq \frac{\gamma |A_0| B_1 \sqrt{B_1}}{\sqrt{6(1-\lambda)A_0 B_1^2 \psi_3 - (1-\lambda)^2 [4A_0 B_1^2 - 4(B_2 - B_1)]\psi_2^2}}$$

and

$$|h_3| \leq \frac{\gamma B_1 (|A_0| + |A_1|)}{3(1-\lambda)\psi_3} + \frac{A_0^2 B_1^2 \gamma^2}{4(1-\lambda)^2 \psi_2^2}, B_1 > 1.$$

References

1. R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, *Appl. Math. Lett.*, 35(3), (3013), 344-351.
2. A. Akgül and F.M. Sakar, A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials. *Turk. J. Math.* 3019, 43, 3375–3386.
3. D. A. Brannan, J. Clunie and W.E. Kirwan, Coefficient estimates for a class of star-like functions. *Canad. J. Math.* 1970, 33, 476–485.
4. D.A. Brannan and J.G. Clunie (Eds), Aspects of contemporary complex Analysis, (proceedings of the NA to advanced study institute held at the university of Durham, Durham: July 1-30,(1979),Academic press, New York and London, (1980).
5. P. L. Duren, *Univalent Functions*, Springer-Verlag, New York, (1983).
6. S.M. El-Deeb, T. Bulboacă and B.M. El-Matary, Maclaurin Coefficient estimates of bi-univalent functions connected with the q-derivative. *Mathematics* 3030, 8, 418.
7. S. M. El-Deeb and T. Bulboacă, Fekete-Szegő, inequalities for certain class of analytic functions connected with q-anlogue of Bessel function. *J. Egypt. Math. Soc.* 3019, 37, 43.
8. S.M. El-Deeb, Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. *Abstr. Appl. Anal.* 3030, 3030, 8368951
9. S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. *Mathematics* 3019, 7, 1185.
10. F. H. Jackson, On q-difference equations, *Amer. J. Math.*, 33 (1910), 305–314. 1, 1.1
11. F.H. Jackson, On q-functions and a certain difference operator. *Trans. R. Soc. Edinb.* 1909, 46, 353–381.
12. S. P. Goyal, and R. Kumar, Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, *Mathematica Slovaca*, 65(3), (3015), 533–544.
13. S. Kant, Coefficients estimate for certain subclasses of bi-univalent functions associated with quasi-Subordination, *Journal of Fractional and Applications*, vol. 9(1),(3018),195-303.
14. M. Lewin, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.* 18, (1967), 63-68.
15. W.C. Ma, and D. Minda, A unified treatment of some special classes of univalent functions, in *Proceedings of the Conference on Complex Analysis*, Tianjin, 1993, vol. I of *Lecture Notes for Analysis*, International Press, Cambridge, Mass, USA, (1994), 157–169.
16. N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bistarlike and biconvex functions based on quasi - subordination, *Abstract and analysis*, 3016 Art. ID3103960, 6 pages ,3016.
17. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$, *Arch. Rational Mech. Anal.* 33, (1969), 100 – 113.

18. C. Pommerenke, *Univalent Functions*, Vandenhoeck & Ruprecht, Gottingen, Germany.(1975).
19. B. Patil, and U. H. Naik, Estimates on initial coefficients of certain subclasses of biunivalent functions associated with quasi-subordination, *Global Journal of mathematical Analysis*, 5(1), 6-10, 3017.
20. M.H.A. Risha, M.H. Annaby, M.E.H Ismail, Mansour, Z.S. Linear q-difference equations. *Z. Anal. Anwend.* 3007, 36, 481–494.
21. F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subodrdinate functions, *Bull. Austral. Math. Soc.* 43(3), 317-334,991.
22. M. S. Robertson, Quasi-subordination and coefficient conjecture, *Bull. Amer. Math. Soc.* 76, 1-9, 1970.
23. H.M. Srivastava, S. Khan, Q.Z Ahmad, N. Khan and S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. *Stud. Univ. Babe,s -Bolyai Math.* 3018, 63, 419–436.
24. S. El-Deeb and M. T. Bulboaca , Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. *Mathematics* 3019, 7, 1185.
25. H. M. Srivastava and S.M. El-Deeb, A certain class of analytic functions of complex order connected with a q-analogue of integral operators. *Miskolc Math. Notes* 3030, 31, 417–433.
26. H. Tang, G. Deng and S. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, *J. Ineq. Appl.* 3013 Art. 317, 10 pages, 3013 .
27. P. P. Vyas and S. Kant, Certain Subclasses of bi-univalent functions associated with quasisubordination, *Journal of Rajasthan Academy of Physical Sciences*, 15(4), 315 - 335, Dec. 3016.
28. Q.-H Xu, Y.-C Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. *Appl. Math. Lett.* 3013, 35, 990–994.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.