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Abstract: Constraint-based metabolic modeling approaches have enhanced our knowledge and
understanding of the metabolism of prokaryotes and eukaryotes. This approach highly depends on
the reconstruction process of genome-scale metabolic models (M-models). M-models can guide
effective experimental design and yield new insights into the function and control of biological
systems. Despite the recent advances in the automated generation of draft metabolic network
reconstructions, the manual curation of these networks remains a labor-intensive and challenging
task. Thus, these ten quick tips for the manual curation process are essential for optimizing high-
quality metabolic model generation in less time. This collection of tips describes in great detail the
resources and methods to ensure successful reconstruction. Furthermore, it increases the scope of
other protocols of metabolic modeling by including resources to reconstruct eukaryotic organisms.
Thus, all tips are applicable to a wide range of eukaryotic organisms. We believe this manuscript
will interest a broad audience and researchers from different disciplines, spanning from
microbiology and systems biology to biotechnology.

Keywords: genome-scale metabolic model reconstruction; manual curation; quick tips; systems
biology

Introduction

Systems biology tools integrate experimental and computational data to study the cellular and
molecular biological interactions of organisms (1). The continuous development of sequencing
methodologies and computational tools has improved the elucidation of interactions between
different metabolic network components in complex biological systems (2-5). Constraint-based
modeling involves formulating algorithmic protocols to create and simulate genome-scale metabolic
models (M-models). M-models are comprehensive knowledge bases organized by gene-reaction,
metabolite-reaction, and gene-protein-reaction (GPR) associations (6). These associations enable the
in-silico simulation of growth phenotypes and metabolite production under a broad variety of
conditions (7,8). Therefore, metabolic modeling aims to analyze physiological and big data (multi-
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omics information) to generate testable hypotheses (9). In addition, M-models are accompanied by
the tools developed for metabolic engineering, which specialize in analyzing and modifying
metabolic pathways to maximize the production of compounds of interest (10). Nowadays, evolution
can be accelerated through the development of new metabolic engineering strategies aided by
identifying metabolic targets using M-models (11).

In 2010, a 96-step detailed protocol for generating metabolic models was developed (6). It
encompassed four stages: i) draft model generation, ii) model refinement/curation, iii) model
conversion, and iv) model validation. The draft model can be generated automatically using one or
more available pipelines (8,12-18), such as CarveMe, Model SEED, and Reconstruction, Analysis, and
Visualization of Metabolic Networks Toolbox (RAVEN) (19-21). During model refinement, draft
models are manually curated by verifying the metabolic pathways for the organism of interest (6).
Manual curation allows the researcher flexibility in verifying the reactions, metabolites, and GPR
associations. This step is critical to providing a high-quality model with specific metabolic details.

Despite advances in the automated generation of draft metabolic reconstructions, the manual
curation of these networks remains a labor-intensive and challenging task. Hence, this paper will
provide ten quick tips to guide and optimize the manual curation procedure for genome-scale
metabolic modeling, ensuring the generation of high-quality M-models. Later, those models can be
used to predict phenotypes accurately, contextualize big data, and be templates for expression and
transcription (22,23), multi-strain, and community modeling (24,25).

Tip 1. Retrieve the genomic and proteomic information of the target organism.

The goal of creating an M-model is to define a metabolic network that connects each gene with
its biochemical function. The process to obtain genomic and proteomic information depends on the
accessibility of the data and the category of the organism (e.g., eukaryotic, prokaryotic, virus). If the
genomic data is unavailable, it must be assembled using genome assembly tools (e.g., SPAdes (28),
Velvet (29), Canu (30)). However, several public databases are available that store genome sequence
information for various organisms (S1 Table).

The PATRIC Database (31), now the Bacterial and Viral Bioinformatics Resource Center (BV-
BCR), has been broadly used to retrieve comprehensive genomic, proteomic, and other omics
information of a wide range of bacterial species for M-models reconstruction (16,32). Moreover, BV-
BCR (35) also integrates data, tools, and infrastructure from the Influenza Research Database (IRD)
and Virus Pathogen Resource (ViPR) databases containing an extensive amount of metadata of
viruses.

The National Center for Biotechnology Information (NCBI) (36) is a prominent database that
possesses a vast collection of biomedical and molecular biology data on prokaryotic and eukaryotic
organisms. It hosts the Reference Sequence (RefSeq) (37) and GenBank (38) databases. The GenBank
resource is fed by the public effort of independent laboratories that submit their novel or updated
genome assemblies. RefSeq focused on curating the data in GenBank to provide well-annotated
genomic sequences.

BioCyc (39) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) (40) are bioinformatic
repositories containing an extensive microbial genome collection. The data contained in BioCyc has
been extensively curated from biological literature. KEGG analyzes the interaction of genes with their
biological functions in a metabolic pathway within an organism. KEGG also provides genomic and
proteomic information on prokaryotic and eukaryotic organisms.

Finally, single protein data can be retrieved instead of complete genome sequences. UniProt (41),
BRENDA (42), and the Protein Data Bank (PDB) (43) provide information on amino acid sequences,
three-dimensional structures, function, and enzymology of proteins.

Tip 2. Identify basic metabolic your microorganism of interest.

The genomic information of the target organism and a previously published model as a template
is needed to start the reconstruction of an M-model. This first version of the metabolic network (draft
model) must simulate as many metabolic capabilities of the target organism as possible. It is essential
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to select a template model that best matches the biological features of the target organism. Key
characteristics such as phylogenetic relationship, protein homology, cell wall composition (gram-
negative or gram-positive), growth mode (e.g., auto-, hetero-, mixotrophic, aerobic, anaerobic), and
prokaryotic or eukaryotic features are critical when selecting the template organism (Figure 1).

The growth mode of template organisms can affect the functionality of a newly reconstructed
draft model. Some important growth modes of prokaryotic and eukaryotic organisms include
aerobic, anaerobic, light-dependency, and nitrogen fixation conditions, among many others. Thus,
the model template must be selected based on protein homology and metabolic capabilities. Figure 1
highlights common growth modes of microbes and suggests template models that have been
extensively validated.

Escherichia coli Saccharomyces Clostridium ljungdahlii oT Clostridium ljungdahlii
(26) ~ cerevisiae ;
iML1515 \\\ Yeastg?® % HNB37¢" An ®) % HN637e" o
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Figure 1. Template organisms with their model IDs used for M-models reconstruction. Organisms
are organized depending on the carbon source they consume (organic carbon, CO; CO+Ho,
CO+H2+COg, and organic carbon+CO2), their metabolisms (A, aerobic; An, anaerobic, NF, nitrogen-
fixing; AO, ammonia-oxidizing; LU, light uptake) and their category (gram-positive rod, gram-
negative rod, mammal cell, yeast, green microalga, cyanobacterium). Organisms highlighted in blue
and green mean prokaryote or eukaryote, respectively. References in parentheses.

Tip 3. Semi-automatic reconstruction of a draft model

Semi-automatic reconstruction is an automated step that generates a draft model using a
template model. Generating an initial good-quality draft model using automatic reconstruction
methods and algorithms (19,20) reduces the time required during manual curation. For the semi-
automatic reconstruction, the following inputs must be provided: i) the FASTA formatted proteome
of the target organism, ii) the proteome and metabolic network of the template model, and ii) the
minimal culture media. The algorithm performs bidirectional BLASTp to find homologous proteins
between the target and template organisms. Subsequently, the reactions associated with the
homologous proteins in the template model are added to the metabolic network generated for the
target organism. The algorithm must ensure the connectivity and functionality of the model to
perform growth rate simulations. Therefore, essential reactions are expected to be added to the
network even if no homologous proteins are found. These reactions might be associated with no
genes (orphan reactions) or genes belonging to the template organism (exogenous genes). Reactions
associated with exogenous genes and orphan reactions are addressed through manual verification of
GPR associations, as explained in Tip 4.

The algorithms that generate draft models can be designed by the researcher who aims to create
anew M-model (13,14). Examples of those algorithms are currently available in The Constraint-Based
Reconstruction and Analysis (COBRA) (33) and RAVEN (21) Toolboxes. Additionally, some
automated reconstruction tools, such as CarveMe, PathwayTools, Agora, and ModelSEED, are
available online (19,20,34,35).
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Tip 4. Manual verification of GRP associations.

As mentioned in Tip 3, a draft model may contain issues related to exogenous genes and orphan
reactions. These issues are addressed by ensuring reactions only correspond with genes from the
target organism (verification of GPR associations).

The quickest and most reliable way to verify a GPR is by searching for the assigned Enzyme
Commission (EC) number or enzyme name of the reaction in the proteome FASTA file of the target
organism. The genes found in the FASTA file are recorded to confirm that particular GPR is present.
If multiple enzymes are found to catalyze the same reaction independently, then all gene identifiers
are added to the GPR association using the operator "or" to separate entries. If multiple subunits for
a particular enzyme are identified, then all gene identifiers are connected through the operator "and"

(Figure 2).
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Figure 2. Collecting information for manual curation. Workflow of GPR associations for a target
organism. Several resources are used during the manual curation phase, such as primary literature
and the databases BiGG (45), KEGG (46), IntEnz (37), PMN (47), ModelSEED (48), ENZYME@ExPASy
(49), and UniProt (50). Information regarding transport proteins are obtained from TCDB (38).
Subcellular protein localizations are predicted using TargetP (41), DeepLoc (43), HECTAR (42), and
PredAlgo (44).

GPRs that could not be located via EC number or enzyme name can be identified using BLASTp
(36). First, the reaction ID must be located in the database used to create the draft model. Each
database provides information about the target reaction and the protein that catalyzes it. For example,
BiGG entries show the reaction formula, models containing the reaction, and external links to other


https://doi.org/10.20944/preprints202311.0461.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2023 doi:10.20944/preprints202311.0461.v1

databases with additional information (e.g., IntEnz, KEGG) (37). The goal is to retrieve a protein
amino acid sequence from phylogenetically close organisms using the different enzyme names.
TCDB (38) and ExPASy (39) are good resources for finding protein sequences. The retrieved amino
acid sequence is compared against the proteome of the target organism using NCBI BLASTp. After
obtaining the BLASTp results, gene identifiers are assigned to the GPR based on our discretion as
researchers. A smaller E-value and higher query coverage and identity indicate a good match for the
GPR (e.g., the E-value, identity, and query coverage cut-offs of Raven Toolbox are 1e-30, 40%, and
50%, respectively). The lack of a homologous might be due to missing genetic information (an empty
GPR is added) or a falsely added reaction (the reaction is removed). Experimental or collected
literature data is used to confirm the presence of the gene in the organism. Ultimately, the model will
contribute to the update of the genome annotation. For example, the recent update of the B. subtilis
model with up to 1,168 new genetic functions (40).

For eukaryotic cells, protein compartmentalization needs to be considered when assigning gene
identifiers to GPR associations. It is recommended to complete the protein localization and
comparison of the whole proteome before manually curating the draft model (Figure 2). Tools such
as TargetP (41), HECTAR (42), DeepLoc (43) and PredAlgo (44) can determine signal peptides,
chloroplast and mitochondria localization of the proteins. It is best to run multiple localization tools
and compare outcomes. After a BLASTp search is run, the found gene identifiers can be compared to
the predicted localization and added as the GPR association if the given reaction location matches.
For example, this will prevent chloroplast-localized enzymes from being added to mitochondrion
reactions, resulting in a more accurate model.

Tip 5. Addition of constraints to simulate basic metabolic capabilities, generating the QC/QA
script

An M-model can estimate the growth rates of an organism for various environmental and
genetic conditions using Flux Balance Analysis (FBA) (51). FBA calculates metabolic fluxes while
constrained for an objective function and substrate uptake rates (51). These constraints are defined as
mathematical equations or inequalities that limit the range of possible solutions for the simulated
metabolic fluxes and can be identified through experimental data (6,51). For example, the constraints
associated with nutrient uptake or enzyme activities (e.g., gene expression) limit biomass formation
during computational simulations (52).

Changes in the architecture of the model while following Tip 4, can result in changes in
stoichiometric constraints and affect the functionality of the model (11). A Quality Control and
Quality Assurance (QC/QA) script is generated to assess the energetic feasibility and the mass and
charge balance of the model. The energetic feasibility test verifies that the metabolic fluxes adhere to
the principles of thermodynamics, ensuring that no matter or energy is generated without mass input
(53,54). The mass balance test verifies the total consumption of each metabolite produced within the
metabolic network (6). Finally, the charge balance test evaluates that the sum of the reagent and
product charges of each biochemical equation equals zero (6).

QC/QA scripts help identify and correct errors in the metabolic model to ensure the
reconstruction of a high-quality M-model. Open-source software, such as MEMOTE (55), offers a
QC/QA script that automatically evaluates the quality of M-models. However, organism-specific
growth simulations are out of the scope of M-models. Hence, it is recommended to build your own
QC/QA script. There are example protocols available for organisms like E. coli (51) and
Chlamydomonas reinhardtii (56), and other photosynthetic organisms (57) that use The COBRA
Toolbox.

Tip 6. Determination of the biomass objective function.

An M-model is a network of interconnected biochemical reactions that can predict growth rates
through the sum of individual fluxes of biomass metabolites. The biomass components (i.e.,
carbohydrates, lipids, proteins, nucleotide triphosphates, and RNA) are integrated into the metabolic
network through an artificial modeling reaction defined as the Biomass Objective Function (BOF)
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(58). The stoichiometric coefficients of each metabolite in the BOF reaction represent the molar
composition of the structural components of the cell in units of mmol per gram of cell dry weight.
Therefore, the stoichiometric coefficient values can be experimentally calculated as previously
described by Lanchance et al., 2019 (59). For the model functionality, at least one BOF is needed.
Nevertheless, several BOFs can be generated for unconventional organisms that dramatically change
their biomass composition depending on environmental conditions (e.g., phototrophs, yeast) (14,17)
or the BOF can be split for easier model manipulation (60).

Available computational tools, such as BOFdat (59), use experimental measurements of
structural macromolecule compositions to generate BOFs automatically. However, when the
experimental determination of the proportional contribution of biomass components is not feasible,
a BOF from a previously reconstructed M-model can be imported (13,19).

Tip 7. Addition of new metabolites and pathways based on untargeted metabolomics data

Untargeted metabolomics is an analytical approach to determine as many metabolites as
possible in the biomass of the target organism (61). In addition to biomass composition compounds,
organism-specific metabolites are usually identified through untargeted metabolomics data,
depending on the growth conditions (61-63). Therefore, the template model might not contain the
biosynthesis reactions of the whole metabolome of the target organism. In those cases, the metabolic
pathways are manually added to the draft model to allow simulation of the production of those
molecules (see Tip 8). This process is widespread during the reconstruction of lipid-producing
organism M-models. Since the lipid profile varies among organisms, researchers manually add new
pathways for lipid production to their M-models (14).

When adding a new pathway not in the database used to create your model, new reaction and
metabolite identifiers must be created. Additionally, compartmentalization, GPR association,
reversibility, directionality, and the mass and charge balance of each reaction must be defined (6).
Furthermore, it is essential to verify the stoichiometric coefficients and the charged formulas of the
metabolites in the growth condition in which the model is being reconstructed.

Tip 8. Gap-filling using high-throughput experimental data.

During an M-model reconstruction, high-throughput data is added (e.g., omics, phenotyping)
to increase the feasible simulations of growth phenotypes under known physiological states. To
achieve this goal, the concept of gap-filling was introduced (64). Gap-filling utilizes manual methods
and algorithms to detect missing reactions of a specific pathway likely to be present in the metabolism
of the target organism (64). These gaps exist in metabolic networks due to incomplete organism
knowledge and the lack of genomic and functional annotations. Therefore, the gap-filling process
will cover missing reactions, unknown pathways, unannotated genes, and promiscuous enzymes in
the M-model (65). Gap-filling can be performed manually (guided by literature and bioinformatic
databases) or automatically with the help of computer algorithms (65,66) such as Fastgapfill and
Globalfit (67,68).

The prediction capabilities of an M-model can be determined from the Matthews Correlation
Coefficient (MCC). This is a common metric used to evaluate the accuracy of M-models. MCC
calculation can be performed for gene essentiality and growth phenotypes by comparing in-vitro and
in-silico analysis (69). The MCC is computed from a confusion matrix of true positive (TP, positive
growth in-vitro and in-silico), true negative (TN, negative growth in-vitro and in-silico), false positive
(FP, negative growth in vitro and positive growth in-silico), and false negative (FN, positive growth
in-vitro and negative growth in-silico) simulations (59). With this approach, Equation 1 can be used to
estimate the MMC.

_ TNxTP — FNxFP
J(TP +FP)(TP + FN)(TN + FP)(TN + FN)

McCC

@™
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Tip 9. Addition of metadata to metabolites and reactions is critical to ensure compatibility.

While reconstructing an M-model, different databases and tools are used to find detailed
information about reactions, metabolites, genes, etc (S1 Table). In order to facilitate the exchange of
information between M-models reconstructed based on different databases, an additional mapping
of elements must be carried out. Standardization tools are also available to facilitate the mapping
process (e.g., MetaboAnnotator) (70-73). This process consists of connecting the specific identifiers
from one model to another as described in the following steps: a) Determine if the reaction/enzyme
has an associated Enzyme Commission (EC) number. EC numbers are usually common "threads"
between all databases. b) If no EC number exists or is outdated, search for the reaction/enzyme name
in the Integrated Relational Enzyme database (IntEnz) (37). A reaction could have more than one
name. ¢) Identify the different reaction IDs in the databases of interest. It is recommended to consider
information from Rhea (74), BiGG (45), KEGG (46), MetaNetX (75), BioCyc (76), ModelSEED (20) and
Reactome (77). d) Confirm the reaction is the same by verifying the stoichiometric coefficients and
metabolites involved. e) Add the identifiers and links to the model. f) If a reaction is not found in a
database, it can be skipped.

Tip 10. Sharable format JSON, MAT, SBML, XML, and visualization

M-models must be ready to simulate, user-friendly, shareable, open-access, and compatible with
different programming languages. Remarkable progress has been made in this front of constraint-
based modeling (72). Table S2 shows the most common formats in which M-models are publicly
available.

The Systems Biology Markup Language (SBML) format is a widely adopted standardized format
that facilitates the sharing of models (78). It is highly encouraged to follow the SBML XML Schema
format, such as XML format to ensure that SBML Models adhere to their specified structures and data
types (79). XML Schema format allows for compatibility and consistency in SBML models across
various software applications.

M-models can also be stored in JSON (JavaScript Object Notation) format (80). This format
includes the necessary components of an M-model, such as reactions, proteins, metabolites, genes,
compartments, and their respective properties (45). Moreover, The JSON format is compatible with
Constraint-Based Reconstruction and Analysis for Python (COBRApy) (81) and the M-models
visualization software Escher (82).

Another essential format is the MATLAB binary file format "mat”. The "mat" format is
compatible with the COBRA Toolbox (33) which has the same applications as COBRApy but runs in
the MATLAB environment.

Finally, the YAML format (YAML Ain't Markup Language) (83) is a human-readable data-
serialization format designed to provide simple readability that promotes sharing and collaboration.
Researchers can edit the format without reliance on specialized tools or software, facilitating the
communication and exchange of biological models.

Conclusion

The semi-automatic reconstruction of an M-model involves generating a draft model using
automatic tools followed by applying manual curation to improve the model prediction accuracy.
Despite several recent advances in the automated generation of draft metabolic reconstructions, the
manual curation of these networks remains a labor-intensive and challenging task. Rigorous manual
curation of genome-scale metabolic models is a high-work-high-reward process. An M-model with
high accuracy will enable building on top of it as a template for future reconstructions or advanced
modeling approaches such as multi-strain modeling (84), metabolism and gene expression models
(ME-models) (22,85), community models (CM-models) (24,25,86,87), and multi-scale models (7).

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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