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Abstract: Constraint-based metabolic modeling approaches have enhanced our knowledge and 

understanding of the metabolism of prokaryotes and eukaryotes. This approach highly depends on 

the reconstruction process of genome-scale metabolic models (M-models). M-models can guide 

effective experimental design and yield new insights into the function and control of biological 

systems. Despite the recent advances in the automated generation of draft metabolic network 

reconstructions, the manual curation of these networks remains a labor-intensive and challenging 

task. Thus, these ten quick tips for the manual curation process are essential for optimizing high-

quality metabolic model generation in less time. This collection of tips describes in great detail the 

resources and methods to ensure successful reconstruction. Furthermore, it increases the scope of 

other protocols of metabolic modeling by including resources to reconstruct eukaryotic organisms. 

Thus, all tips are applicable to a wide range of eukaryotic organisms. We believe this manuscript 

will interest a broad audience and researchers from different disciplines, spanning from 

microbiology and systems biology to biotechnology. 

Keywords: genome-scale metabolic model reconstruction; manual curation; quick tips; systems 

biology 

 

Introduction 

Systems biology tools integrate experimental and computational data to study the cellular and 

molecular biological interactions of organisms (1). The continuous development of sequencing 

methodologies and computational tools has improved the elucidation of interactions between 

different metabolic network components in complex biological systems (2–5). Constraint-based 

modeling involves formulating algorithmic protocols to create and simulate genome-scale metabolic 

models (M-models). M-models are comprehensive knowledge bases organized by gene-reaction, 

metabolite-reaction, and gene-protein-reaction (GPR) associations (6). These associations enable the 

in-silico simulation of growth phenotypes and metabolite production under a broad variety of 

conditions (7,8). Therefore, metabolic modeling aims to analyze physiological and big data (multi-

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2023                   doi:10.20944/preprints202311.0461.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.0461.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

omics information) to generate testable hypotheses (9). In addition, M-models are accompanied by 

the tools developed for metabolic engineering, which specialize in analyzing and modifying 

metabolic pathways to maximize the production of compounds of interest (10). Nowadays, evolution 

can be accelerated through the development of new metabolic engineering strategies aided by 

identifying metabolic targets using M-models (11).  

In 2010, a 96-step detailed protocol for generating metabolic models was developed (6). It 

encompassed four stages: i) draft model generation, ii) model refinement/curation, iii) model 

conversion, and iv) model validation. The draft model can be generated automatically using one or 

more available pipelines (8,12–18), such as CarveMe, Model SEED, and Reconstruction, Analysis, and 

Visualization of Metabolic Networks Toolbox (RAVEN) (19–21). During model refinement, draft 

models are manually curated by verifying the metabolic pathways for the organism of interest (6). 

Manual curation allows the researcher flexibility in verifying the reactions, metabolites, and GPR 

associations. This step is critical to providing a high-quality model with specific metabolic details.  

Despite advances in the automated generation of draft metabolic reconstructions, the manual 

curation of these networks remains a labor-intensive and challenging task. Hence, this paper will 

provide ten quick tips to guide and optimize the manual curation procedure for genome-scale 

metabolic modeling, ensuring the generation of high-quality M-models. Later, those models can be 

used to predict phenotypes accurately, contextualize big data, and be templates for expression and 

transcription (22,23), multi-strain, and community modeling (24,25).  

Tip 1. Retrieve the genomic and proteomic information of the target organism. 

The goal of creating an M-model is to define a metabolic network that connects each gene with 

its biochemical function. The process to obtain genomic and proteomic information depends on the 

accessibility of the data and the category of the organism (e.g., eukaryotic, prokaryotic, virus). If the 

genomic data is unavailable, it must be assembled using genome assembly tools (e.g., SPAdes (28), 

Velvet (29), Canu (30)). However, several public databases are available that store genome sequence 

information for various organisms (S1 Table). 

The PATRIC Database (31), now the Bacterial and Viral Bioinformatics Resource Center (BV-

BCR), has been broadly used to retrieve comprehensive genomic, proteomic, and other omics 

information of a wide range of bacterial species for M-models reconstruction (16,32). Moreover, BV-

BCR (35) also integrates data, tools, and infrastructure from the Influenza Research Database (IRD) 

and Virus Pathogen Resource (ViPR) databases containing an extensive amount of metadata of 

viruses. 

The National Center for Biotechnology Information (NCBI) (36) is a prominent database that 

possesses a vast collection of biomedical and molecular biology data on prokaryotic and eukaryotic 

organisms. It hosts the Reference Sequence (RefSeq) (37) and GenBank (38) databases. The GenBank 

resource is fed by the public effort of independent laboratories that submit their novel or updated 

genome assemblies. RefSeq focused on curating the data in GenBank to provide well-annotated 

genomic sequences. 

BioCyc (39) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) (40) are bioinformatic 

repositories containing an extensive microbial genome collection. The data contained in BioCyc has 

been extensively curated from biological literature. KEGG analyzes the interaction of genes with their 

biological functions in a metabolic pathway within an organism. KEGG also provides genomic and 

proteomic information on prokaryotic and eukaryotic organisms. 

Finally, single protein data can be retrieved instead of complete genome sequences. UniProt (41), 

BRENDA (42), and the Protein Data Bank (PDB) (43) provide information on amino acid sequences, 

three-dimensional structures, function, and enzymology of proteins. 

Tip 2. Identify basic metabolic your microorganism of interest. 

The genomic information of the target organism and a previously published model as a template 

is needed to start the reconstruction of an M-model. This first version of the metabolic network (draft 

model) must simulate as many metabolic capabilities of the target organism as possible. It is essential 
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to select a template model that best matches the biological features of the target organism. Key 

characteristics such as phylogenetic relationship, protein homology, cell wall composition (gram-

negative or gram-positive), growth mode (e.g., auto-, hetero-, mixotrophic, aerobic, anaerobic), and 

prokaryotic or eukaryotic features are critical when selecting the template organism (Figure 1).  

The growth mode of template organisms can affect the functionality of a newly reconstructed 

draft model. Some important growth modes of prokaryotic and eukaryotic organisms include 

aerobic, anaerobic, light-dependency, and nitrogen fixation conditions, among many others. Thus, 

the model template must be selected based on protein homology and metabolic capabilities. Figure 1 

highlights common growth modes of microbes and suggests template models that have been 

extensively validated. 

 

Figure 1. Template organisms with their model IDs used for M-models reconstruction. Organisms 

are organized depending on the carbon source they consume (organic carbon, CO2, CO+H2, 

CO+H2+CO2, and organic carbon+CO2), their metabolisms (A, aerobic; An, anaerobic, NF, nitrogen-

fixing; AO, ammonia-oxidizing; LU, light uptake) and their category (gram-positive rod, gram-

negative rod, mammal cell, yeast, green microalga, cyanobacterium). Organisms highlighted in blue 

and green mean prokaryote or eukaryote, respectively. References in parentheses. (8,13,14,26–32.). 

Tip 3. Semi-automatic reconstruction of a draft model 

Semi-automatic reconstruction is an automated step that generates a draft model using a 

template model. Generating an initial good-quality draft model using automatic reconstruction 

methods and algorithms (19,20) reduces the time required during manual curation. For the semi-

automatic reconstruction, the following inputs must be provided: i) the FASTA formatted proteome 

of the target organism, ii) the proteome and metabolic network of the template model, and ii) the 

minimal culture media. The algorithm performs bidirectional BLASTp to find homologous proteins 

between the target and template organisms. Subsequently, the reactions associated with the 

homologous proteins in the template model are added to the metabolic network generated for the 

target organism. The algorithm must ensure the connectivity and functionality of the model to 

perform growth rate simulations. Therefore, essential reactions are expected to be added to the 

network even if no homologous proteins are found. These reactions might be associated with no 

genes (orphan reactions) or genes belonging to the template organism (exogenous genes). Reactions 

associated with exogenous genes and orphan reactions are addressed through manual verification of 

GPR associations, as explained in Tip 4.  

The algorithms that generate draft models can be designed by the researcher who aims to create 

a new M-model (13,14). Examples of those algorithms are currently available in The Constraint-Based 

Reconstruction and Analysis (COBRA) (33) and RAVEN (21) Toolboxes. Additionally, some 

automated reconstruction tools, such as CarveMe, PathwayTools, Agora, and ModelSEED, are 

available online (19,20,34,35). 
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Tip 4. Manual verification of GRP associations.  

As mentioned in Tip 3, a draft model may contain issues related to exogenous genes and orphan 

reactions. These issues are addressed by ensuring reactions only correspond with genes from the 

target organism (verification of GPR associations). 

The quickest and most reliable way to verify a GPR is by searching for the assigned Enzyme 

Commission (EC) number or enzyme name of the reaction in the proteome FASTA file of the target 

organism. The genes found in the FASTA file are recorded to confirm that particular GPR is present. 

If multiple enzymes are found to catalyze the same reaction independently, then all gene identifiers 

are added to the GPR association using the operator "or" to separate entries. If multiple subunits for 

a particular enzyme are identified, then all gene identifiers are connected through the operator "and" 

(Figure 2). 

 

Figure 2. Collecting information for manual curation. Workflow of GPR associations for a target 

organism. Several resources are used during the manual curation phase, such as primary literature 

and the databases BiGG (45), KEGG (46), IntEnz (37), PMN (47), ModelSEED (48), ENZYME@ExPASy 

(49), and UniProt (50). Information regarding transport proteins are obtained from TCDB (38). 

Subcellular protein localizations are predicted using TargetP (41), DeepLoc (43), HECTAR (42), and 

PredAlgo (44). 

GPRs that could not be located via EC number or enzyme name can be identified using BLASTp 

(36). First, the reaction ID must be located in the database used to create the draft model. Each 

database provides information about the target reaction and the protein that catalyzes it. For example, 

BiGG entries show the reaction formula, models containing the reaction, and external links to other 
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databases with additional information (e.g., IntEnz, KEGG) (37). The goal is to retrieve a protein 

amino acid sequence from phylogenetically close organisms using the different enzyme names. 

TCDB (38) and ExPASy (39) are good resources for finding protein sequences. The retrieved amino 

acid sequence is compared against the proteome of the target organism using NCBI BLASTp. After 

obtaining the BLASTp results, gene identifiers are assigned to the GPR based on our discretion as 

researchers. A smaller E-value and higher query coverage and identity indicate a good match for the 

GPR (e.g., the E-value, identity, and query coverage cut-offs of Raven Toolbox are 1e-30, 40%, and 

50%, respectively). The lack of a homologous might be due to missing genetic information (an empty 

GPR is added) or a falsely added reaction (the reaction is removed). Experimental or collected 

literature data is used to confirm the presence of the gene in the organism. Ultimately, the model will 

contribute to the update of the genome annotation. For example, the recent update of the B. subtilis 

model with up to 1,168 new genetic functions (40). 

For eukaryotic cells, protein compartmentalization needs to be considered when assigning gene 

identifiers to GPR associations. It is recommended to complete the protein localization and 

comparison of the whole proteome before manually curating the draft model (Figure 2). Tools such 

as TargetP (41), HECTAR (42), DeepLoc (43) and PredAlgo (44) can determine signal peptides, 

chloroplast and mitochondria localization of the proteins. It is best to run multiple localization tools 

and compare outcomes. After a BLASTp search is run, the found gene identifiers can be compared to 

the predicted localization and added as the GPR association if the given reaction location matches. 

For example, this will prevent chloroplast-localized enzymes from being added to mitochondrion 

reactions, resulting in a more accurate model. 

Tip 5. Addition of constraints to simulate basic metabolic capabilities, generating the QC/QA 

script 

An M-model can estimate the growth rates of an organism for various environmental and 

genetic conditions using Flux Balance Analysis (FBA) (51). FBA calculates metabolic fluxes while 

constrained for an objective function and substrate uptake rates (51). These constraints are defined as 

mathematical equations or inequalities that limit the range of possible solutions for the simulated 

metabolic fluxes and can be identified through experimental data (6,51). For example, the constraints 

associated with nutrient uptake or enzyme activities (e.g., gene expression) limit biomass formation 

during computational simulations (52). 

Changes in the architecture of the model while following Tip 4, can result in changes in 

stoichiometric constraints and affect the functionality of the model (11). A Quality Control and 

Quality Assurance (QC/QA) script is generated to assess the energetic feasibility and the mass and 

charge balance of the model. The energetic feasibility test verifies that the metabolic fluxes adhere to 

the principles of thermodynamics, ensuring that no matter or energy is generated without mass input 

(53,54). The mass balance test verifies the total consumption of each metabolite produced within the 

metabolic network (6). Finally, the charge balance test evaluates that the sum of the reagent and 

product charges of each biochemical equation equals zero (6).  

QC/QA scripts help identify and correct errors in the metabolic model to ensure the 

reconstruction of a high-quality M-model. Open-source software, such as MEMOTE (55), offers a 

QC/QA script that automatically evaluates the quality of M-models. However, organism-specific 

growth simulations are out of the scope of M-models. Hence, it is recommended to build your own 

QC/QA script. There are example protocols available for organisms like E. coli (51) and 

Chlamydomonas reinhardtii (56), and other photosynthetic organisms (57) that use The COBRA 

Toolbox. 

Tip 6. Determination of the biomass objective function. 

An M-model is a network of interconnected biochemical reactions that can predict growth rates 

through the sum of individual fluxes of biomass metabolites. The biomass components (i.e., 

carbohydrates, lipids, proteins, nucleotide triphosphates, and RNA) are integrated into the metabolic 

network through an artificial modeling reaction defined as the Biomass Objective Function (BOF) 
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(58). The stoichiometric coefficients of each metabolite in the BOF reaction represent the molar 

composition of the structural components of the cell in units of mmol per gram of cell dry weight. 

Therefore, the stoichiometric coefficient values can be experimentally calculated as previously 

described by Lanchance et al., 2019 (59). For the model functionality, at least one BOF is needed. 

Nevertheless, several BOFs can be generated for unconventional organisms that dramatically change 

their biomass composition depending on environmental conditions (e.g., phototrophs, yeast) (14,17) 

or the BOF can be split for easier model manipulation (60). 

Available computational tools, such as BOFdat (59), use experimental measurements of 

structural macromolecule compositions to generate BOFs automatically. However, when the 

experimental determination of the proportional contribution of biomass components is not feasible, 

a BOF from a previously reconstructed M-model can be imported (13,19).  

Tip 7. Addition of new metabolites and pathways based on untargeted metabolomics data 

Untargeted metabolomics is an analytical approach to determine as many metabolites as 

possible in the biomass of the target organism (61). In addition to biomass composition compounds, 

organism-specific metabolites are usually identified through untargeted metabolomics data, 

depending on the growth conditions (61–63). Therefore, the template model might not contain the 

biosynthesis reactions of the whole metabolome of the target organism. In those cases, the metabolic 

pathways are manually added to the draft model to allow simulation of the production of those 

molecules (see Tip 8). This process is widespread during the reconstruction of lipid-producing 

organism M-models. Since the lipid profile varies among organisms, researchers manually add new 

pathways for lipid production to their M-models (14). 

When adding a new pathway not in the database used to create your model, new reaction and 

metabolite identifiers must be created. Additionally, compartmentalization, GPR association, 

reversibility, directionality, and the mass and charge balance of each reaction must be defined (6). 

Furthermore, it is essential to verify the stoichiometric coefficients and the charged formulas of the 

metabolites in the growth condition in which the model is being reconstructed.  

Tip 8. Gap-filling using high-throughput experimental data.  

During an M-model reconstruction, high-throughput data is added (e.g., omics, phenotyping) 

to increase the feasible simulations of growth phenotypes under known physiological states. To 

achieve this goal, the concept of gap-filling was introduced (64). Gap-filling utilizes manual methods 

and algorithms to detect missing reactions of a specific pathway likely to be present in the metabolism 

of the target organism (64). These gaps exist in metabolic networks due to incomplete organism 

knowledge and the lack of genomic and functional annotations. Therefore, the gap-filling process 

will cover missing reactions, unknown pathways, unannotated genes, and promiscuous enzymes in 

the M-model (65). Gap-filling can be performed manually (guided by literature and bioinformatic 

databases) or automatically with the help of computer algorithms (65,66) such as Fastgapfill and 

Globalfit (67,68). 

The prediction capabilities of an M-model can be determined from the Matthews Correlation 

Coefficient (MCC). This is a common metric used to evaluate the accuracy of M-models. MCC 

calculation can be performed for gene essentiality and growth phenotypes by comparing in-vitro and 

in-silico analysis (69). The MCC is computed from a confusion matrix of true positive (TP, positive 

growth in-vitro and in-silico), true negative (TN, negative growth in-vitro and in-silico), false positive 

(FP, negative growth in vitro and positive growth in-silico), and false negative (FN, positive growth 

in-vitro and negative growth in-silico) simulations (59). With this approach, Equation 1 can be used to 

estimate the MMC.  𝑀𝐶𝐶 = 𝑇𝑁𝑥𝑇𝑃 − 𝐹𝑁𝑥𝐹𝑃ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) (1)
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Tip 9. Addition of metadata to metabolites and reactions is critical to ensure compatibility. 

While reconstructing an M-model, different databases and tools are used to find detailed 

information about reactions, metabolites, genes, etc (S1 Table). In order to facilitate the exchange of 

information between M-models reconstructed based on different databases, an additional mapping 

of elements must be carried out. Standardization tools are also available to facilitate the mapping 

process (e.g., MetaboAnnotator) (70–73). This process consists of connecting the specific identifiers 

from one model to another as described in the following steps: a) Determine if the reaction/enzyme 

has an associated Enzyme Commission (EC) number. EC numbers are usually common "threads" 

between all databases. b) If no EC number exists or is outdated, search for the reaction/enzyme name 

in the Integrated Relational Enzyme database (IntEnz) (37). A reaction could have more than one 

name. c) Identify the different reaction IDs in the databases of interest. It is recommended to consider 

information from Rhea (74), BiGG (45), KEGG (46), MetaNetX (75), BioCyc (76), ModelSEED (20) and 

Reactome (77). d) Confirm the reaction is the same by verifying the stoichiometric coefficients and 

metabolites involved. e) Add the identifiers and links to the model. f) If a reaction is not found in a 

database, it can be skipped. 

Tip 10. Sharable format JSON, MAT, SBML, XML, and visualization  

M-models must be ready to simulate, user-friendly, shareable, open-access, and compatible with 

different programming languages. Remarkable progress has been made in this front of constraint-

based modeling (72). Table S2 shows the most common formats in which M-models are publicly 

available. 

The Systems Biology Markup Language (SBML) format is a widely adopted standardized format 

that facilitates the sharing of models (78). It is highly encouraged to follow the SBML XML Schema 

format, such as XML format to ensure that SBML Models adhere to their specified structures and data 

types (79). XML Schema format allows for compatibility and consistency in SBML models across 

various software applications.  

M-models can also be stored in JSON (JavaScript Object Notation) format (80). This format 

includes the necessary components of an M-model, such as reactions, proteins, metabolites, genes, 

compartments, and their respective properties (45). Moreover, The JSON format is compatible with 

Constraint-Based Reconstruction and Analysis for Python (COBRApy) (81) and the M-models 

visualization software Escher (82).  

Another essential format is the MATLAB binary file format "mat”. The "mat" format is 

compatible with the COBRA Toolbox (33) which has the same applications as COBRApy but runs in 

the MATLAB environment.  

Finally, the YAML format (YAML Ain't Markup Language) (83) is a human-readable data-

serialization format designed to provide simple readability that promotes sharing and collaboration. 

Researchers can edit the format without reliance on specialized tools or software, facilitating the 

communication and exchange of biological models. 

Conclusion 

The semi-automatic reconstruction of an M-model involves generating a draft model using 

automatic tools followed by applying manual curation to improve the model prediction accuracy. 

Despite several recent advances in the automated generation of draft metabolic reconstructions, the 

manual curation of these networks remains a labor-intensive and challenging task. Rigorous manual 

curation of genome-scale metabolic models is a high-work-high-reward process. An M-model with 

high accuracy will enable building on top of it as a template for future reconstructions or advanced 

modeling approaches such as multi-strain modeling (84), metabolism and gene expression models 

(ME-models) (22,85), community models (CM-models) (24,25,86,87), and multi-scale models (7). 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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