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Article 

MDSPACE and MDTOMO Software for Extracting 
Continuous Conformational Landscapes from 
Datasets of Single Particle Images and 
Subtomograms Based on Molecular Dynamics 
Simulations: Latest Developments in ContinuousFlex 
Software Package 

Rémi Vuillemot, Mohamad Harastani, Ilyes Hamitouche and Slavica Jonic * 

IMPMC-UMR 7590 CNRS, Sorbonne Université, MNHN, Paris, France 
* Correspondence: slavica.jonic@upmc.fr; Tel.: +33-1-44-27-72-05; Fax: +33-1-44-27-37-85 

Abstract: Cryo electron microscopy (cryo-EM) instrumentation allows obtaining 3D reconstruction 
of the structure of biomolecular complexes in vitro (purified complexes studied by single particle 
analysis) and in situ (complexes studied in cells by cryo electron tomography). Standard cryo-EM 
approaches allow high-resolution reconstruction of only a few conformational states of a molecular 
complex, as they rely on data classification into a given number of classes to increase the resolution 
of the reconstruction from a few, most populated classes and discard all other classes. Such discrete-
classification approaches result in a partial picture of the full conformational variability of the 
complex, due to continuous conformational transitions with many, uncountable intermediate states. 
In this article, we present the software with user-friendly graphical interface for running two 
recently introduced methods, namely MDSPACE and MDTOMO, to obtain continuous 
conformational landscapes of biomolecules by analyzing in vitro and in situ cryo-EM data (single 
particle images and subtomograms) based on molecular dynamics simulations of an available 
atomic model of one of the conformations. The MDSPACE and MDTOMO software is part of the 
open-source ContinuousFlex package, which can be run as a plugin of the Scipion software package, 
broadly used in the cryo-EM field. 

Keywords: software; user-friendly graphical interface; cryo electron microscopy; biomolecular 
complexes; conformational heterogeneity; continuous conformational landscape; MDSPACE; 
MDTOMO; ContinuousFlex; Scipion 

 

1. Introduction 

Single particle analysis (SPA) and cryo electron tomography (cryo-ET) are two techniques of 
cryo electron microscopy (cryo-EM) that allow obtaining high-resolution 3D reconstruction of the 
structure of biomolecular complexes in vitro (purified complexes) [1–8] and in situ (complexes in cells) 
[9–12], respectively. The collected in vitro and in situ data contain multiple snapshots of the same 
biomolecular complex captured in different orientations, positions, and conformations in 3D space. 
Standard SPA and cryo-ET data analysis methods allow high-resolution reconstruction of only a few 
conformational states of the complex, as they rely on data classification into a given number of classes 
(usually maximum likelihood based classification [13–20]) to increase the resolution of the 
reconstruction from a few, most populated classes and discard all other classes. Such discrete-
classification approaches result in a partial picture of the full conformational variability of the 
complex, which is due to continuous (gradual) conformational transitions with many, uncountable 
intermediate states. The data analysis problem caused by such conformational transitions is known 
as continuous conformational heterogeneity.  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Two pioneering works on the development of alternative cryo-EM data analysis methods, able 
to provide the full picture of the conformational variability (conformational landscape), were 
published in 2014 (SPA methods HEMNMA [21] and Manifold Embedding [22]). These two methods 
map each particle image onto a low-dimensional conformational space (also called conformational 
landscape or manifold), which is then analyzed in terms of animated trajectories of motion along 
different directions and 3D reconstructions from images in different regions of this space [21,22]. The 
same idea of mapping each particle data onto a low-dimensional space and analyzing motions along 
different directions in this space was used in many new methods published in the last few years for 
SPA [23–33] and for cryo-ET [34–37]. 

Many methods for the analysis of continuous conformational heterogeneity are based on the 
assumption that each conformation (or each volume) can be represented with a sum of a reference 
conformation (or a reference volume) and a linear combination of principal conformations (or 
principal volumes), as those that can be obtained by principal component analysis of the covariance 
matrix [26,38–41]. Many recent methods use deep learning and are based on a 3D density map 
representation of the conformations in the conformational landscape [25,27–29,31,37]. Alternative 
methods combine the experimental data analysis with molecular mechanics simulations. Such 
methods, referred to as hybrid methods, use a prior structural information (atomic structure, coarse-
grained atomic structure, or coarse-grained EM map) to simulate the conformational dynamics 
within the experimental data analysis [21,30,33–35,42–46]. Over the last 10 years, we have developed 
several hybrid methods for continuous conformational heterogeneity analysis of SPA images 
[21,30,33] and cryo-ET subtomograms [34,35]. If prior atomic structural information is available, these 
methods allow obtaining the conformational landscape at atomic scale (an atomic model is obtained 
for each particle image or subtomogram, beside 3D density map reconstructions from different 
regions of the landscape). These methods are available as part of the open-source software package 
ContinuousFlex [47], which is also available as a plugin for Scipion software package [48,49] and part 
of ScipionTomo and Scipion Flexibility Hub frameworks [50,51].  

ContinuousFlex was introduced in 2020, as hosting the first hybrid method for obtaining 
conformational landscapes from large sets of single particle images, HEMNMA, based on combining 
image analysis with dynamics simulation by Normal Mode Analysis (NMA) [21,52]. Assuming that 
the given structure is at the energy minimum, NMA allows simulating different degrees of flexibility 
of the structure by decomposing its motion into a set of vectors of harmonic-oscillator motions called 
“normal modes” that simulate principal motion directions, which results in faster simulations 
compared to the classical, force-field-based molecular dynamics (MD) simulations that simulate the 
displacement of each atomic coordinate. ContinuousFlex rapidly grew and, in 2022, we published a 
review article on the different methods that were available in ContinuousFlex at that moment [47], 
namely DeepHEMNMA (a deep-learning-based accelerated version of HEMNMA) [30], HEMNMA-
3D (an extension of HEMNMA to in situ subtomogram analysis) [34], TomoFlow (an approach for 
subtomogram analysis based on the Optical Flow computer vision approach) [36], and NMMD (a 
normal-mode-based accelerated MD simulation approach for flexible fitting of EM maps with atomic 
structures) [46]. 

Recently, ContinuousFlex expanded to include two new hybrid methods, namely MDSPACE 
[33] and MDTOMO [35]. These methods use normal-mode-based accelerated MD (NMMD) 
simulations to analyze large sets of single particle images [33] and in situ subtomograms [35] to extract 
the full conformational landscape from the data, and allow obtaining this landscape at atomic scale, 
starting from an initial atomic conformation. In NMMD, MD simulation includes the most collective 
normal modes (the modes that move the majority of atoms, which corresponds to global 
conformational changes), which boosts the motions along the most global conformational changes 
and, thus, accelerates MD simulation. 

MDSPACE and MDTOMO methods have been described and their performance shown with 
synthetic and experimental data in our previous work [33,35]. In this article, we present the software 
with user-friendly graphical interface that is available in ContinuousFlex to run these two methods. 
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We believe that these most recent software developments are timely and that this article will be 
valuable to many cryo-EM practitioners. 

2. Materials and Methods 

MDSPACE is a method for extracting continuous conformational landscapes from single particle 
cryo-EM images, which was fully described in  [33]. It is based on analyzing images using an 
algorithm that combines normal mode simulations and molecular dynamics simulations (NMMD) 
starting from an initial atomic conformation, which was fully described in [46]. As shown in [33], the 
conformational space obtained after one iteration of MDSPACE can be refined iteratively, by 
replacing normal mode vectors at the next iteration by the principal component vectors of the 
conformational space obtained at the previous iteration. 

MDTOMO is an MDSPACE extension to continuous conformational landscape extraction from 
3D subtomogram data, which was fully described in [35]. The NMMD, MDSPACE, and MDTOMO 
methods were implemented in ContinuousFlex [47], which can be run as a plugin of Scipion [48,49]. 
ContinuousFlex allows the user to run MDSPACE and MDTOMO by following a predefined basic 
workflow template (Figure 1).  

Globally, the MDSPACE and MDTOMO workflows are the same (Figure 1B,C), but they analyze 
different types of data (2D single particle images and 3D subtomograms, respectively). The basic 
workflow of MDSPACE and MDTOMO consists of the following four main steps: “Import input 
data” (Step 1),  “Prepare simulation” (Step 2), “Run MDSPACE/MDTOMO” (Step 3), and “Analyze 
conformational space” (Step 4).  

In Step 1 of the workflow, the data (particle images or subtomograms) are imported into a 
created Scipion project, together with an atomic model that will be used to initiate simulations. It is 
assumed that the imported particle images and subtomograms were pre-processed, prior to running 
the workflow, by standard approaches (available in Scipion, Relion [14,17], etc.) to obtain the initial 
rigid-body alignment parameters, which must be imported into the project. Also, the data should be 
CTF-corrected prior to running the workflow. 

In Step 2, the atomic model is prepared for the next step (data analysis using NMMD 
simulations). The model is first rigid-body pre-aligned to the data to optimize the flexible fitting of 
the model to the data in the next step. This is performed by rigid-body fitting of the model to an 
average 3D density map that is calculated from the data. Then, the rigid-body aligned atomic model 
is used to construct the topology model, which is required for MD simulations in the next step. 
Energy minimization of this model is then preformed to avoid the instability of the MD simulations 
that will be initiated by the model in the next step. Finally, NMA of the energy minimized model is 
performed to calculate normal modes for the next step. 

In Step 3, data are analyzed using NMMD simulations, meaning that an atomic model is 
obtained for each particle image or subtomogram (possibly containing different particle 
conformations) by flexible fitting of this image or subtomogram with the atomic models simulated 
by NMMD, starting from the conformation given by the input atomic model.  

In Step 4, the atomic models obtained in Step 3 are analyzed in terms of the conformational 
landscape constructed by mapping these models onto a low-dimensional space using dimension 
reduction methods, such as Principal Component Analysis (PCA) [53] or Uniform Manifold 
Approximation and Projection (UMAP) [54]. Prior to the dimension reduction, the atomic models are 
rigid-body aligned to discard the rigid-body motions introduced during MD simulation in Step 3. 
PCA is a well-established method for dimension reduction, which performs a linear decomposition 
of the variability. UMAP is a more recent technique that allows extracting non-linear features of the 
variability and sometimes allows a better separation of the conformational populations.  

The graphical interface at Step 4 allows exploring the obtained conformational landscape in 
terms of atomic models and density maps (3D reconstructions from particle images or 3D 
subtomogram averages). It allows displacing the initial atomic model in different directions in this 
space, by interpolating this space in the directions traced automatically or manually, which results in 
obtaining animations of the motion (animated trajectories of atomic models). Also, it allows 
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calculating the average atomic models (average of the models obtained in Step 3 and rigid-body 
aligned in Step 4) and the average density maps (3D reconstructions from particle images or 3D 
subtomogram averages) from the clusters identified in this space automatically or manually. Finally, 
it allows obtaining animations of the motion in the directions across the clusters in this space 
(animated trajectories of average atomic models and density maps from clusters). 

All the results produced by the workflow are stored on the disk in the “ScipionUserData” 
directory (the standard Scipion user directory), in the “extra” folders of the corresponding runs of 
the protocols run at different steps of the workflow. 

For MD simulations, the workflow uses a powerful, parallelized MD software GENESIS 1.4 [55], 
which allows running different types of simulation. The simulation relies on a force field that defines 
the forces and interactions that will be used. The available force fields are CHARMM (all-atom) [56] 
and two Gō models (all-atom and Cα-atom-based) [57]. The Cα-atom-based coarse-grain Gō model 
[57] simulates the backbone dynamics and largely reduces the computational time of the simulations 
when compared to all-atom simulations. The Gō models are produced using SMOG 2 software [58]. 
For NMA, the workflow uses elNémo software [59]. For the visualization of results at different steps, 
the workflow uses ChimeraX [60], VMD [61], and custom viewers.  

 

Figure 1. MDSPACE and MDTOMO workflow templates provided by ContinuousFlex. (A) 
MDSPACE and MDTOMO workflow templates are accessible via the Scipion menu “Others” -> 
“Import workflow template”. (B) MDSPACE workflow template. (C) MDTOMO workflow template. 
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The MDSPACE and MDTOMO workflows are globally the same, but they analyze different types of 
data (2D single particle images and 3D subtomograms, respectively). 

It should be noted that SMOG, GENESIS, and elNémo standalone software packages are 
incorporated in the ContinuousFlex software package distribution. They are installed automatically 
at the time of installing ContinuousFlex. Also, it is worth noting that ChimeraX and VMD should be 
installed before running the ContinuousFlex software (ChimeraX installation through Scipion plugin 
manager, VMD installation by following the instructions available on the VMD website).  

3. Results 

In this section, we present the software and user-friendly graphical interface for performing each 
of the four different steps of the basic MDSPACE and MDTOMO workflow and discuss the places at 
which MDSPACE and MDTOMO differ. 

3.1. Import input data 

This step allows importing an atomic structure of one conformation of the molecular complex 
(“Import PDB” box in the tree in Figure 1B,C) and a set of single particle images (“Import Particles” 
box in Figure 1B) or a set of subtomograms ( “Input subtomograms” box in Figure 1C). The initial 
rigid-body alignment parameters must also be imported into the project, through the metadata file 
produced by the software that was used for this initial alignment. The workflow templates allow 
importing the initial-alignment metadata file, together with importing the data (“Import Particles” 
box in the tree in Figure 1B, for a simultaneous import of the particle images and the rigid-body 
alignment parameters) or separately (“Input subtomograms” and “Aligned subtomograms” boxes in 
the tree in Figure 1C, for a separate import of the subtomograms and the rigid-body alignment 
parameters, respectively).  

3.2. Prepare simulation 

This step allows preparing the input atomic model for MD simulations and calculating its 
normal modes, both used in the next step. The imported atomic model is first rigid-body aligned with 
the imported data to optimize the flexible fitting of this model to the data in the next step. To this 
goal, a 3D reconstruction is first calculated from the imported particle images (“3D reconstruction” 
box in the tree in Figure 1B) or a subtomogram average is calculated from the imported 
subtomograms (“Average subtomogram” box in the tree in Figure 1C). Then, the atomic model is 
rigid-body aligned with this 3D density map using ChimeraX (“Chimerax - Rigid Fit” box in Figure 
1B,C).  

The topology model is then constructed, which should be suitable to the force field that will be 
chosen in the next step (all-atom CHARMM, all-atom Gō, or Cα-atom-based Gō). In our experience, 
Cα-atom-based Gō models produce satisfactory results at low computational costs. Therefore, the 
workflow proposes to construct a Cα-atom-based Gō topology model. Alternatively, the workflow 
may include constructing a CHARMM topology model before constructing a Gō model (“All-atom 
model” box before “C-Alpha Go model” box in Figures 1C and 2A), which can be useful with the 
structures for which SMOG has a difficulty to construct the Gō model directly and it works well when 
starting from a CHARMM model. 

Then, this model is energy minimized, which is specified by selecting “Minimization” as the 
simulation type (Figure 2B). All the parameters related to the simulation at this step (energy 
minimization) can be kept at their default values (the full documentation on the different simulation 
parameters can be found at the GENESIS website, https://www.r-ccs.riken.jp/labs/cbrt). The results 
of the energy minimization (e.g., energy and structural variations during the energy minimization) 
can be checked by opening the corresponding viewer, by first selecting the corresponding box in the 
workflow (“Energy Min” box in Figure 1B,C) and then pressing the red “Analyze Results” button (in 
the Scipion project window). 
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Figure 2. Topology model (force field type) and energy minimization graphical interface. (A) 
Topology model generation using all-atom CHARMM or Cα-atom-based Gō models (the interface 
also allows using all-atom Gō model). (B) Energy minimization of the model generated in (A) before 
calculating normal modes and data analysis with NMMD simulations (“Simulation type” in the 
“Simulation” tab is set to “Minimization”). The default values of the parameters and options in the 
tabs of the “Energy Minimization” interface can be kept unchanged (the full documentation on the 
simulation parameters can be found at the GENESIS website, https://www.r-
ccs.riken.jp/labs/cbrt). . 

This step also includes NMA of the energy minimized structure to calculate normal modes, 
which will be used within NMMD simulations to analyze data in the next step. The NMA results 
viewer allows using VMD to observe the motions simulated along each normal mode and displaying 
the collectivities and frequencies of the normal modes. The NMA viewer can be open by selecting the 
corresponding box in the workflow (“Normal Mode Analysis” box in Figure 1B,C) and pressing the 
red “Analyze Results” button. 

3.3. Run MDSPACE/MDTOMO 

This step allows data analysis using NMMD simulations started from the energy minimized 
model obtained in the previous step. The graphical interface for this step (Figure 3A) is very similar 
to the graphical interface used for energy minimization in the previous step (Figure 2B). The three 
main differences are as follows: (1) dataset to analyze should be specified in the “EM data” tab at this 
step (Figure 3C), whereas “None” should be specified in this tab for energy minimization; (2) 
“Simulation type” in “Simulation” tab at this step should be set to “Normal Mode Molecular 
Dynamics (NMMD)” (Figure 3A), whereas “Minimization” should be specified in this tab for energy 
minimization; and (3) availability of an additional tab (“MDSPACE Refinement” tab in Figure 3D) at 
this step allows specifying the number of iterations of the conformational space refinement and the 
number of principal components of the conformational space that are kept at the end of each iteration 
and used in place of normal modes in the next iteration for this refinement. This step is the most 
important and time consuming step in the workflow. Therefore, we describe its parameters in more 
detail, in the order in which the corresponding tabs appear in the graphical interface that is shown in 
Figure 3A. 

Refinement: The set of parameters in this section allows specifying the number of iterations and 
the number of the PCA components for the iterative conformation-space refinement (the number of 
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the principal components to keep after each iteration and use them to replace the normal mode 
vectors in the next iteration). In most cases, a few iterations (less than 4) and a few principal 
component vectors (3-5) are enough (Figure 3D).  

Inputs: This section allows selecting the initial model for the NMMD simulation. To select the 
energy minimized model obtained at Step 2, one can select “restart previous GENESIS simulation” 
and specify the available energy minimization results (Figure 3D). 

 

Figure 3. Data analysis using NMMD simulations (corresponding to the “MDSPACE”/”MDTOMO” 
box in Figure 1B,C). (A) “Simulation” tab, which allows choosing the simulation type, the integrator, 
and its parameters. Here, NMMD is selected, which additionally allows selecting normal modes and 
their parameters that will be used within NMMD (note that NMMD integrates over time atomic 
coordinates and normal-mode amplitudes and it performs this numerical integration using “Velocity 
Verlet” integrator available in GENESIS). (B) “MD parameters” tab, which allows specifying 
additional MD simulation parameters (see the main text). (C) “EM data” tab, which allows specifying 
the type of the data to analyze (“Cryo-EM flexible fitting” allows choosing “Image(s)” or “Volume(s)”, 
for analyzing single particle images or cryo electron subtomograms, respectively), the dataset (“Image 
Parameters” section, which allows choosing the set of single particle images or subtomograms that 
will be analyzed, its initial rigid-body alignment parameters, and pixel/voxel size), and the biasing 
force parameters (“Fitting Parameters” section). (D) “Refinement”, “Inputs”, and “MPI 
parallelization” tabs, which allow specifying other parameters, like the number of iterations and the 
number of PCA components for the iterative conformation-space refinement, the model to initiate the 
simulation, and the parallelization resources. For more details on the available integrators and MD-
related simulation parameters, see the GENESIS documentation, https://www.r-
ccs.riken.jp/labs/cbrt. 

Simulation: This section allows choosing the type of simulation (among Minimization, MD 
simulation, NMMD, Replica Exchange MD, etc.) and its parameters. For this step of the workflow, 
we recommend choosing NMMD. If NMMD is chosen, this section allows defining the parameters 
related to MD simulation (“Simulation parameters“ section) and those related to the use of normal 
modes in the simulation (“NMMD parameters” section) (Figure 3A). NMMD integrates over time 
atomic coordinates and normal-mode amplitudes, whereas classical MD simulations integrate atomic 
coordinates only. The numerical integration in NMMD is performed using the Velocity Verlet 
integrator, which has good numerical stability and is commonly used in classical MD-based 
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approaches. Thus, if NMMD is chosen as the simulation type, the integrator in the “Simulation 
parameters“ section should be set to “Velocity Verlet” (Figure 3A). The MD simulation parameters 
that may require adjustments for different datasets are the number of simulation steps and the time 
step (Figure 3A). The “Time step” parameter value of 0.002 ps is suitable in many cases, but may need 
to be decreased (e.g., to 0.001 ps or 0.5 fs) for larger complexes to ensure the stability of the simulation. 
The number of steps of 20000 (“Number of steps” parameter in Figure 3A) allows the simulation 
length of 40 ps, when using the time step of 0.002 ps. With some complexes, longer simulations may 
be required to reach the conformations that are present in the data (target conformations). To adjust 
these parameters, one may run Step 3 on a few images (or subtomograms) and check how the cross-
correlation (CC), root mean square deviation (RMSD), and energy are changing during the 
simulation.  

In the “NMMD parameters” section, the user needs to specify the normal modes that will be 
used. Note that the first 6 normal modes (6 lowest-frequency modes) are related to rigid-body 
motions and are not used. The use of the next 10 lowest-frequency normal modes (modes 7-16) will 
be enough in many cases, in particular with asymmetric structures. With symmetric structures, it 
might be necessary to use more than 10 modes to include all the modes that describe the same motion 
along different symmetry axes. In some cases, it may be useful to also include some of potentially 
relevant, higher-frequency motions. As mentioned above, these motions can be visualized and 
preselected at Step 2 using VMD.  The computational cost of including a larger number of normal 
modes in NMMD simulations is negligible with respect to the computational cost of MD simulations. 
Thus, a larger number of normal modes can be included without a significant increase in the 
computational cost. The “NM time step” and “NM mass” parameters (Figure 3A) define the speed of 
integrating the displacement along normal modes in NMMD. In general, the normal-mode time step 
parameter (“NM time step”) is the same as the MD simulation time step (“Time step”). The value of 
the “NM time step” parameter may be increased to accelerate the integration, but this can make the 
simulation unstable. The value of the “NM mass” parameter is usually between 5 and 10. Lower “NM 
mass” values accelerate the simulation, but can make it unstable. Usually, slower simulations are 
used for the analysis of subtomograms than for the analysis of single particle images, to avoid 
instability of the simulation during the data fitting due to the higher noise in the subtomogram data. 
The default values of “NM mass” and “Number of steps” in the proposed MDTOMO workflow 
template (“MDTOMO” box in Figure 1C) are 10 and 50000, respectively, whereas they are 
respectively 5 and 20000 in the proposed MDSPACE workflow template (“MDSPACE” box in Figure 
1B). In both workflow templates, the default value of the “Time step” parameter is 0.002 ps. As 
already mentioned, these values may need to be modified in some cases of complexes, which can be 
done in preliminary experiments using a few images (or subtomograms). 

MD parameters: This section defines other MD simulation parameters (Figure 3B). The majority 
of the parameters in this section can be kept at their default values (the full documentation on the 
different simulation parameters can be found at the GENESIS website, https://www.r-
ccs.riken.jp/labs/cbrt). The value of the “Temperature” parameter is usually between 100 K and 300 
K. To avoid instability of the simulation, the temperature can be decreased (e.g., to 50 K). The 
adjustment of the temperature should be done in preliminary experiments with a few images (or 
subtomograms). 

EM data: This section allows specifying the data that will be analysed (by flexible fitting using 
NMMD simulations of the initial model) and the fitting parameters. The “Cryo-EM flexible fitting” 
field allows choosing the data type, which can be “Image(s)” or “Volume(s)” for analyzing single 
particle images or cryo electron subtomograms, respectively. Note that the selected data type in 
Figure 3C is “Image(s)”, which is specific to the MDSPACE workflow template. In the case of 
MDTOMO workflow template, the “Cryo-EM flexible fitting” field is set to “Volume(s)”. The section 
allows defining two sets of parameters: “Image Parameters” and “Fitting parameters”. The “Image 
Parameters” section allows specifying the dataset to analyze (a set of single particle images or 
subtomograms, their initial rigid-body alignment parameters, and pixel/voxel size) (Figure 3C). The 
“Fitting parameters” section allows setting the parameters related to the flexible fitting (biasing 
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potential). The “Force constant” parameter (Figure 3C) defines the weight that will be given to the 
biasing potential to guide the fitting towards the data, which should be chosen carefully. Too high 
values of the force constant will bias the fitting too fast and too much towards the data, which may 
lead to structural distortions due to noise in the data and potential overfitting. Too low values will 
not bias the fitting enough and the simulation may not reach the target conformation. Thus, due to 
the higher noise and the risk of the simulation instability and data overfitting when analysing 
subtomograms than when analysing single particle images, the default value of the force constant in 
the proposed MDTOMO workflow template (“MDTOMO” box in Figure 1C) is 1000, whereas it is 
3000 in the proposed MDSPACE workflow template (“MDSPACE” box in Figure 1B). As for the 
parameters in the “Simulation” section (“Number of steps”, “Time step”, “NM time step”, and “NM 
mass”, Figure 3A), the value of the force constant should be adjusted in preliminary experiments 
using a few images (or subtomograms), by checking the CC, RMSD, and energy over the simulation 
and the potential distortions of the fitted model (e.g., a too fast increase in the CC may be a sign that 
the force constant is too high). The other parameters in the “Fitting parameters” section can be kept 
at their default values. For instance, the “EM fit gaussian variance” parameter (Figure 3C) defines the 
standard deviation of the 3D Gaussian functions that are placed at atomic positions to simulate the 
data for their comparison with the experimental data during the fitting (the comparison of images in 
the case of analysing single particle images or the comparison of density maps in the case of analysing 
subtomograms), and its default value (2 Å) will produce good results in the majority of cases.  

MPI parallelization: This section defines how the simulations are distributed over the available 
resources. For most local machines, there is no need to change the default values of the parameters 
in this section (Figure 3D) and one should only set the number of CPU cores and the number of 
threads (“Parallel” section in the top left corner, where the “MPI” parameter is the number of CPU 
cores and the “Threads” parameter is the number of threads per core, Figure 3A). When running on 
clusters with multiple nodes, it is recommended to use “Running on cluster ?” (Figure 3D) to 
efficiently distribute the simulations over different nodes.  

Analysis of the results of Step 3: The results of this step can be analysed by opening the viewer 
related to this step, by clicking first on the corresponding box in the workflow (“MDSPACE” or 
“MDTOMO” box in Figure 1B,C), and then, on the red “Analyze Results” button. This viewer allows 
displaying statistical analysis of the energy, CC, normal mode amplitudes, and RMSD trajectories 
over a selected set of simulations (selected particle images or subtomograms in the “Simulation 
selection” field in Figure 4). Also, for one selected particle image or subtomogram, it allows 
displaying the initial and final 3D structures with ChimeraX and animating the trajectory of atomic 
coordinates over the simulation with VMD (“Display results in Chimerax” and “Display trajectory 
in VMD” in Figure 4).   
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Figure 4. Analysis of results of data analysis using NMMD simulations (corresponding to the 
“MDSPACE”/”MDTOMO” box in Figure 1B,C). The viewer allows displaying statistical analysis of 
the energy, cross-correlation (CC), normal mode amplitudes, and root mean square deviation (RMSD) 
trajectories over a selected set of particle images or subtomograms (“Simulation selection”). Also, for 
one selected particle image or subtomogram, it allows displaying the initial and final 3D structures 
with ChimeraX (“Display results in Chimerax”) and animating the trajectory of atomic coordinates 
over the simulation with VMD (“Display trajectory in VMD”). 

3.4. Analyze conformational space 

To analyze the conformational space populated by the models obtained in Step 3  (the models 
fitted to the data), these models can be projected onto a low-dimensional space using PCA or UMAP 
dimension reduction methods. Before PCA (“PCA” box in Figure 1B,C) or UMAP (“UMAP” box in 
Figure 1B,C), the models should be rigid-body aligned (e.g., with respect to the initial conformation) 
to discard the rigid-body motions introduced during the MD simulation (‘Rigid body align” box in 
Figure 1B,C). 

The “PCA / UMAP” results can be visualized and analyzed by opening the corresponding 
viewer, by first clicking on the “PCA” or “UMAP” box (Figure 1B,C) and, then, on the red “Analyse 
Results” button. This viewer allows displaying the variance explained by the different PCA axes 
(Figure 5), the conformational and free energy landscapes (in up to 3 dimensions) by specifying the 
PCA/UMAP axes to display (Figures 5 and 6), atomic motion trajectories along different directions in 
this space (principal axes or a free-hand trajectories) by using “Open Animation Tool” (Figure 6), and 
clustering the points in this space (Figure 6) along the different directions automatically (clusters 
linearly distributed along a specified direction or obtained by K-means clustering) or by manual 
selection of points. The clusters can be exported into the Scipion project (Figure 6) to calculate 3D 
average density maps from the clusters (3D reconstructions when analyzing images and 
subtomogram averages when analyzing subtomograms). The average density maps and the average 
atomic models obtained from the clusters can be visualized using the corresponding viewer (by first 
clicking on the box related to the exported clusters and, then, on the red “Analyse Results” button). 
This clusters-related viewer allows displaying ChimeraX animations of the trajectory of the average 
atomic models superposed with the trajectory of the average density maps. This animation can be 
saved in MP4 video file format  via the ChimeraX command-line section.  
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Figure 5. PCA/UMAP results viewer. It allows displaying the variance explained by the different PCA 
axes, the conformational and free energy landscapes (in up to 3 dimensions) by specifying the 
PCA/UMAP axes to display, and access to “Open Animation Tool” for animating the atomic motion 
trajectories along different directions and clustering the points in this space (see also Figure 6). 

 

Figure 6. Results of using “Open Animation Tool” in the PCA/UMAP results viewer (see also Figure 
5). It allows displaying the atomic motion trajectories along different directions in this space (principal 
axes or a free-hand trajectories) and clustering the points in the PCA/UMAP space along the different 
directions automatically (clusters linearly distributed along a specified direction or obtained by K-
means clustering) or by manual selection of points. The clusters can be exported into the Scipion 
project to calculate 3D average density maps from the clusters (3D reconstructions in the case of 
analyzing images and subtomogram averages in the case of analyzing subtomograms). The interface 
also allows automatic ChimeraX animations of the superposed average atomic models and density 
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maps from the clusters. These animations can be saved in MP4 video file format (ChimeraX command 
line). 

4. Discussion 

In this article, we described the software with graphical interface and the basic workflow 
templates for running MDSPACE and MDTOMO hybrid methods, which are available in 
ContinuousFlex software package. The MDSPACE and MDTOMO methods combine NMMD 
(normal mode molecular dynamics) simulations with data analysis to extract the continuous 
conformational variability information and the full conformational landscapes of biomolecules from 
their cryo-EM single particle images and cryo-ET subtomograms. The performance of MDSPACE and 
MDTOMO were shown in our previous work using synthetic and experimental data. This article 
presents the tools that should facilitate a broader usage of these two recently developed methods. We 
hope that this article will be valuable to many cryo-EM practitioners. 
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