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Abstract: Deep learning is based on matrix computing with a large amount of hidden parameters that is not
visible outside the computing module. Deep learning is a non-linear system and a linear approach is not possible.
It is natural for people to visualize the algorithm and to follow some hidden parameters. In this paper, we
propose a simple graphical programming of a nonlinear system based on drawing the simplest unit, such as a
single neuron model. A more complex scheme of a classical neural network is obtained by commands copy-
move-place of one neuron. The number of neurons and layers can be chosen arbitrarily. Once the scheme is
complete, the implementation code is evaluated with symbolic parameters and nonlinear activation functions.
This cannot be done manually. With the symbolic expression of outputs in terms of inputs and symbolic
parameters, including symbolic activation pure functions, some other properties can be derived in closed form.
This unique original approach can help scientists and developers and design numerical algorithms for machine
learning and to understand how deep learning algorithms work.

Keywords: machine learning; visual programming language; closed-form expression; theoretical justification;
feature extraction; complexity; optimization and validation

1. Introduction

Machine learning, as subfield of Artificial Intelligence (Al), refers to computers learning to do
things on their own [1]. Machine learning (ML) is the core of Al which solves the problems of
classification, clustering, and forecasting complex algorithms and methods, in order to overcome the
limitations and achieve expansion of Al and ML applications [2]. There are many applications in
several fields of basic science and engineering focused on some important and challenging topics,
such as nonlinear problems, numerical methods, analytical methods, error analysis and mathematical
models [3]. A review of a variety of experiments on extracting structure from machine-learning data
is presented in [4]. Some algorithms do not need a huge set of training data and can be implemented
only by applying standard templates and thus provide the high response speed [5]. Some
applications with nonlinear process demonstrate the different neural network-based models [6].
Some heuristic procedures can reduce computational complexity with respect to optimal multiple
sequence alignment and thus outperform humans in the post-processing of recognition hypotheses
[7]. Adaptive network enhancement method for the best least squares approximation using two-layer
Rectified-Linear-Unit (ReLU) neural networks is introduce in [8]. Trends for mathematical
explanations of the theoretical aspects of Artificial Neural Networks (ANN), with a special attention
to activation functions, can be used to absorb the defining features of each design scenario [9]. Some
other researchers have developed cost estimation techniques, which are based on statistical and
computational techniques [10]. Learning representations of graphs have become a popular learning
model for prediction tasks for a practice [11]. Graph Neural Networks (GNNs), neural network
architectures targeted to. Symbolic regression, as the task of predicting the mathematical expression
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of a function from the observation of its values, is a difficult task. Neural networks have recently been
tasked to predict the correct skeleton in a single try, but still remain much less powerful [12].

The biggest disadvantage of machine learning is that most of them cannot be explained. Up to
now, Al solved problems that are intellectually difficult for humans but relatively straightforward for
computers problems. As explained in the previous paragraph, success is possible if we are using a
list of formal mathematical rules. The challenge to Al is to solve the tasks that are easy for humans to
perform, but formally hard to describe in spite that we can solve intuitively. The hierarchy enables
the computer to learn complicated concepts by building them out of simpler ones. The graph is deep
when it has many layers. For this reason, we call this approach to Al deep learning [13]. The
difficulties facts by systems relying on hard-coded know knowledge suggest that Al systems need
the ability to acquire their own knowledge, by extracting patterns from raw data [13]. This capability
is known as machine learning. We can use mathematical function mapping some set of input values
to output values. The function is formed by composing many simpler functions. The powerful root
mean square error accuracy comparison of gradient boosting machines (a popular machine learning
regression tree algorithm) we can use to avoid the multicollinearity of multivariate input variables
with the simulated normal distribution data [14]. For solving decision-making problems in both
computer science and engineering, we can use Optimization Machine Learning Toolkit as an open-
source software package incorporating neural network [15]. Software tools can simplify training
neural networks, using machine learning, from simpler into larger optimization problems.

Recent advances in machine learning have led to increased interest in solving visual computing
problems using methods that employ coordinate-based neural networks. These methods we call
neural fields. [16]. Machine learning tools are part of Wolfram Language that performs classification,
regression, dimensionality reduction and neural network processing. The book [1] takes a "show,
don't tell" approach and we use the same examples to show how to use the Wolfram Language [17].
Using a visual programming language (the SchematicSolver application package [18], requires
software Mathematica 9 [17]) we can develop own algorithms and understand the architecture of
complex networks. Mathematical education at the end of high school should be sufficient to
understand mathematical content [1]. A visual programming or GUI (Graphical User Interface) can
provide fast interactive design, symbolic analysis, accurate simulation, exact verification, and reports
[19]. It helps to skip the gap between theory and practice in continuous-time systems. The
mathematical representation of the system can be obtained automatically from the schematic
description, and automated symbolic manipulations are possible.

Although accurate, Al models often are “black boxes” which we are not able to understand [20].
Transfer learning is a powerful approach that leverages knowledge from one domain to enhance
learning in another domain; it provides practical insights for researchers and practitioners interested
in applying transfer learning techniques [21]. The pervasive success in predictive performance comes
alongside a severe weakness, the lack of explainability of their decisions, especially relevant in
human-centric [22]. From black-box to explainable Al in healthcare: existing tools and case studies
[23].

Convolutional Neural Networks (CNNs) constitute a widely used deep learning approach that
has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face some
critical challenges in moving towards clinic application [24]. The smart visualization of medical
images (SVMI) model is based on multi-detector computed tomography (MDCT) data sets that can
provide a clearer view of changes in the brain, such as tumors (expansive changes), bleeding, and
ischemia on native imaging. The new method provides a more precise representation of the brain
image by hiding pixels that are not carrying information and rescaling and coloring the range of
pixels essential for detecting and visualizing the disease [25].

The main trends with which machine learning techniques have been applied to robotic
manipulation are presented in [26]. Resources in the robotics field are limited for a common user to
access and demand deep knowledge of robot programming paradigm. It is presented how to
program control algorithms and to control complex robotic systems by using widespread and
inexpensive devices such as smartphones and tablets, Android operating system, for simulation and
remote control of robotic manipulators [27]. The review paper on deep learning-assisted smart
process planning, robotic wireless sensor networks and geospatial big data management algorithms
in the internet of manufacturing things configures on deep learning-assisted smart process [28]. The
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paper [29] presents a system for programming and simulation of the human centrifuge motion with
integrated 3D motion simulator. The simulator can be used for verification of newly defined motion
commands and testing the new algorithms for the human centrifuge motion.

Analog designs that implement various machine learning algorithms can be useful in low-power
deep network accelerators suitable for edge or tiny machine learning applications [30]. Analog circuit
design requires large amounts of human knowledge; a special case of circuit design is the synthesis
of robust and failure-resilient electronics [31]. An example of dissipation minimization of two-stage
amplifier using deep learning is presented in [32] (deep learning is a subset of machine learning). The
deep learning module controls the operating mode of the amplifier which is a function of the average
input signal. The application of VLSI (Very Large Scale Integrated) circuit in Al is described in [33].
VLSl is the inter-disciplinary science of utilizing advance semiconductor technology to create various
functions of computer system such as the close link of microelectronics and Al By combining VLSI
technology, a very powerful computer architecture confinement is possible.

The purpose of this paper is an attempt to explain machine learning models using algorithm
visualization. The main goal of the work is the final results as expressions in a closed form where the
developer can change and monitor hidden parameters.

2. Materials

Deep learning can involve learning using an artificial neural network. Humans have about one
hundred billion biological neurons in their brain and about ten thousand times more connections. A
neuron has its inputs x;, x,, ..., x;, via input branches. The neuron then calculates an electrical
output y;, that is sent to other neurons through tiny intercellular connections.

Artificial neural networks use the same basic principles that are much simpler than their
biological neurons. For given input values x;, x,, ..., x;, the artificial neuron has only one output y;,
whose value is calculated by the formula:

Vi = f(w1x1+wzx2 + -+ wix; + bj). 1)

The parameters, w;, w,, ..., w;, change during neuron operation and are interpreted as
strengths of the connection between neurons. They are called weights or weight parameters. The
parameter b; is called the bias and is interpreted as the threshold at which the neuron is activated.
The nonlinear function f is called the activation function or the transfer function.

An illustration of the calculation of an artificial neuron (which gives the same output expression
as it should theoretically be) is given in the Figure 1 (drawn with SchematicSolver ver2.3 [18] that is
written using Wolfram language, Mathematica ver. 13 [17]):

Figure 1. Illustration of the computation made by an artificial neuron.

The first part is a linear combination of the inputs, and then the nonlinearity f is applied.
Nonlinearity allows neuron to model nonlinear system. Biological neurons are either activated or not.
Therefore, it is tempting to use some kind of activation function. Artificial neurons used logistic
sigmoid function, hyperbolic tangent function or Ramp function (rectified linear unit, ReLU) that
works pretty well in deep neural networks [1], see Figure 2:


https://doi.org/10.20944/preprints202311.0446.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2023 doi:10.20944/preprints202311.0446.v1

{1 x21

x O<x<1
jp EeREs a(x)
4
) tanh(x)
,o05
v 1.0

Figure 2. Classic activation functions as rectified linear unit ReLU, logistic sigmoid o(x), or hyperbolic tangent
function tanh(x).

3. Methods

In Figure 3 on the left, the architecture of the artificial neuron is drawn, where the input
signals x;, X, ..., X;, are separated from the parameters that are modified during the operation of the
neuron. The same figure on the right shows a block diagram of a neuron that depends exclusively on
input signals, and the parameters w;, w;, ..., w;, that are listed as inputs through which the output
is calculated. It is important to note that multipliers with constant values are not used as in linear
systems, because the parameters wy, w,, ..., w; and b;, are not constants. They are modified during
the operation of the neuron.
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Figure 3. Classic artificial neuron (a) with memory elements, (b) simplified.

By connecting a large number of artificial neurons, networks can be made. Circles represent
numerical values called activations. It is understood to be a linear combination of its inputs, plus
some bias term, and the result is passed through the nonlinearity. The simplest network has two
input values and one output value. The graph is directed and acyclic, so the output can be calculated
simply by following the arrows.

This network is a parametric model. There is one weight parameter per input and one bias
parameter per neuron. We could train this network in the same way as any other parametric model:
by minimizing a cost function calculated from some training data. The architecture does not change;
only the numerical values of the parameters (weights and biases) are changed. Familiar architecture
is used; neurons are grouped in layers and each neuron in one layer sends its output to each neuron
in the next layer. These fully connected layers are also called linear layers.

Let the network consist of several layers, and let there be four neurons in each layer. Four input
signals come to the first layer. The output of each neuron generates only one output, and since there
are 4 neurons, 4 output signals are generated. The output signals of the first layer become the input
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signals for the second layer, which also has 4 neurons and generates 4 output signals. The output
signals of the second layer are the input signals of the third layer, which also has 4 neurons with 4
output signals. The output signals of the third layer are the outputs of the neural network. The first
and second layers are called hidden layers because the outputs of the neurons are not seen outside
the network.

The number of input signals to the first layer must not be greater than 4, and to ensure that some
of the 4 network inputs do not affect the network outputs, the weight parameters are set to 0 from
the network inputs in the first layer to the adders.

Assume that there are only two numeric values as inputs and that the first layer generates four
numeric values as the output of the first hidden layer. Now the input of the second hidden layer has
4 numerical values as inputs, and it generates 4 output values which are the values of the third layer
neurons. These four inputs generate 4 output numerical values that become the outputs of the neural
network, and therefore the third layer is not a hidden layer because the results are visible. The
activation function generates one of the 4 classes to which the processing result belongs, and the
activation function is unambiguously mapped to the output, that is, the one that has all positive
results (all probabilities must be positive) and the sum of all probabilities (outputs) is used as a
nonlinear function of the last layer) must be 1 (sum of probabilities of all classes must be 1). Such a
network is used to train a classifier that has four possible classes, and the output values would then
be the class probabilities. For a regression task, you would have only one output (predicted value)
and that is the class that is most likely.

In this example, two hidden layers are included, but there could be many more. A network with
two or more hidden layers is called a deep network, hence the name "deep learning". This name
emphasizes the importance of using models that can perform several computational steps.

3.1. Matrix representation

As an illustration of how a neural network works, we will analyze a network that has 4 neurons
in three layers as a minimal deep learning network. Usually, a mathematical approach is used
through matrices, which are easily implemented in numerical programs. The first input layer contains
4 weight coefficients for each neuron, so a total of 2x4=8 parameters for the weights of the first layer
to calculate the output values of the first hidden layer. One bias parameter per output is added.
Visually, the weight parameters are represented as a 4x4=16 matrix (for four neurons, each with 4
weights), and a 1x4=4 matrix (for four neurons, each with one 1 bias parameter). For input values, we
will use a 1x4=4 matrix with numerous values that can be input signals to the network or output
signals of the previous layer. The matrix representation is as follows according [x1]:

Y=f(W~X+B) (2)
where:
Y1 Wy Ws W9 Wiz Xq b,
Nz (w2 ws w1 wyy % _|b2 _
Y_}’3’ w= Wz W7 Wi Wis|’ X_x3’ B_b3’ f) = (3)
Va Wy Wg Wiy Wig X4 by
tanh (A)

3.2. Matrix computation

The activation function is chosen to be the hyperbolic tangent. For only two inputs, numerous
values were arbitrarily chosen, while the remaining two inputs were set to 0. All parameters were
obtained by a random number generator (RandomReal) in the Wolfram language. In order to obtain
always the same numerical value, the function SeedRandom[123] is used. Now the number values
for the first layer are rounded to 3 decimal places, according to [x1]:
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1.2 —-0.089 0956 0 O —0.140 0.999398

4.5 0.887 0924 0 O 0.557 0.999981
ol -0.395 -0.067 0 Of —-0.903/’ —0.932446 @)
0 -0.877 -0.229 0 O 0.257 —0.949308

To make sure that the third and fourth inputs do not affect the result, some weight parameters
are set to 0. This is therefore a network with only two inputs.

The output values of the first hidden layer are represented as a matrix Y. These values become
the inputs for the next layer, so the following values are obtained for the second hidden layer:

-0.444 -0820 0.753 —0.782

0.999398 —0.515
x| 0999981 | o _ —-0468 0837 —0.660 —0.801 g - |-0.016] y _
—0.932446| —-0.059 —0.194 0943 —0.370|’ 0.126 |
—0.949308 —0.748 —0.455 0.211 0.344 0.098 (5)
—0.940069
0.938869
—0.575210
—0.925832

The output values of the second hidden layer are shown as the matrix Y. These values become
the inputs to the output layer, so the following values are obtained for the third layer:

~0.9400769 —0.037 0289 —0.165 0.409 ~0.008 0.600

_| 0938869 _|0923 0808 0741 0263 | p_|-0975| y_|0184] o
~0.575210 |’ —0215 —0.127 0.137 —0.034) —0.023[’ 0.031
~0.925832 —0.679 0927 —0.908 —0.007 —0.843 0.184

The output values of the last layer do not use the hyperbolic tangent for the activation function,
but the so-called softmax function that calculates the probability of the occurrence of an output:

eYi

eYi+eY2+eY3+eV4’ l:{l’ 2’ 3’4} (7)

The fourth outcome has a probability of 0.600, i.e. 60.0%, the first and third outcomes have a
probability of 0.184 (18.4%) and the first outcome has a probability of 0.031 (3.1%). All probabilities
must be positive, and the sum of probabilities must be 1 (the first decimal place may have a difference
due to rounding).

A classifier that has parameters, as in this example, shows that the most likely result is class 4.
The weight parameters w;, w;, ..., w; and the bias parameter b; change during the operation of the
neuron. In total, in the analyzed network with two hidden layers and one output layer of 4 neurons,
there are 3x4x4=48 weight parameters and 3x1x4=12 bias parameters, i.e. in total the analyzed
network has 48+12=60 parameters which are changed during neural network processing.

4. Results

In computing it is natural to use a matrix data structure. It is more natural for people to see an
architectural sketch.

4.1. Symbolic computation

Firstly we will draw the architecture of one layer consisting of 4 neurons using SchematicSolver
[18] as shown in Figure 4.
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Figure 4. Classic artificial neural network with single layer: (a) 4 inputs, (b) layer with 4 neurons, (c) 4 outputs,
(d) overall schematic.

Inputs and outputs are drawn separately for a neural network with one or more layers, Figure
4(a) and Figure 4(c). Using one layer, Figure 4(b), the neural network is obtained by joining the input,
output and one layer shown in Figure 4(d).

To draw a neural network with three layers, an already drawn layer, image in Figure 4(b) is
used, which is copied the necessary three times to the right with a raster of 13 (how wide the base
layer is) and the output layer is shifted to the right by 3x13=39. Symbolic parameter names and
activation functions are changed with each copy. The complete scheme is obtained by connecting the
inputs, outputs and all layers and is shown in Figure 5.

N — — — 1

—_—

Figure 5. Classic artificial neural network with 3 layers.

It is important to notice that the activation function of the final layer is different, g such that the
output values are equal to the class probabilities.

4.2. Symbolic solving

By clicking on the button to implement the schematic from the image drawn in SchematicSolver,
the implementation code is obtained, a small part of which is in Figure 6(a).
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Figure 6. Classic artificial neural network with 3 layers: (a) smaller part of symbolic response, (b) size of
response, and (c) tree graph with different levels at different depths.

Symbolically derived expressions for 4 classes use almost 316KB. Such a performance in closed
form is not possible to derive manually. Visually, it can be seen that the graph with all levels is very
complex. The symbolically derived expression can be used for further analysis, which is not possible
for a purely numerical approach. By changing the symbolic values with the numerical parameters
from the matrix approach, the same probabilities are obtained, a 60.0% probability that the
classification number is 4 as with matrix computing.

4.3. Symbolic analysis

In the same way, a neural network with 4 layers is obtained, of which 3 are hidden layers. With
the same values for the parameters as with 2 hidden layers, but with the addition of randomly
generated values for the newly added layer, a probability of 63.8% is obtained for class 2. The
complexity of the closed-form final expressions in the symbolic notation is shown in Figure 7. This
derivation exceeds manual execution.

0.14015 A ,ﬁ{:_.*?
0.638097 %4 &% "5‘&

0.118381 o7y | )
¢ \d 11 1“!%
0.103371 W ‘x‘
(a) (b)

Figure 7. Classic artificial neural network with 4 layers: (a) probabilities of four classes and (b) tree graph with
different levels at different depths.

The symbolically obtained response of the neural network enables further analysis without the
use of schematics. With 100,000 randomly generated parameters, probabilities for all outputs were
determined as shown in Figure 8. .
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n = 100000
# n = 100000

——y
o
(a) (b)
Figure 8. (a) Class probabilities of all outputs and (b) mean value of probabilities.
For the mean value, an expression was derived in closed form:
y(x) = 96.267 4+ 86.935 cos (16.728 x) — 344.78 log (x) ®)

+ 592.72 log (x) sin (9.2 x)

The most likely probability was calculated when the maximum number of classes was detected,
which is for a probability of 43.3%, when 800 cases were detected. For 0.7071 in relation to the
maximum, the range in which there is the largest number of certain classes was calculated, which is
for the range between 34.7% to 54.4% probability. Half of all classes were detected for this range. It is
important to note that there cannot be a probability of less than 25% when a class is detected, because
at least one other class would have a probability of more than 25%. Each class was detected
approximately 25,000 times, and no case was detected where all classes were equally likely. In all
cases, the same input signal values were used:

X1 1.2
X3 4.5
X = =
X3 0 ©)
X4 0

For all classes and all probabilities, all parameter values are equally likely, that is, there is no
parameter value where the probability of detecting one of the 4 classes would be more pronounced.

5. Discussion

The disadvantage of using machine learning as black box is overcome by designing non-linear
system using visual programming. During test or validation process, system parameters can be
viewed for verification purposes. The final results as expressions in a closed form can be derived and
optimized according the required task. The future development is looking for fully automated design
based on required number of neurons in a layer as well as the number of layers. There is no similar
approach as the best knowledge of the authors.
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Appendix A

We use the Wolfram language for programming. The code is in the form of readable text with
the extension .nb. The first step is to set the working directory and import the knowledge as a package
or text file with the extension .m:

mainDir = SetDirectory[NotebookDirectory[]];
Get["SchematicSolver "]
<< SSknowledgeImp00"

The next few lines of the program tell how the scheme is visible in the images:

SetOptions[DrawElement, {BaseStyle -> {FontFamily -> "Times", FontSize -> 16}}];
plotStyleDD = {{Dashing[.0l1], GrayLevel[.5]}, {Dashing[.0l1], GrayLevel[.5]}};
SetOptions[DrawElement, {ElementSize -> {1, 1},
PlotStyle -> {{RGBColor[0, O, 0.7], Thickness[0.004],
PointSize[0.01]}, {RGBColor[0O, 0, 1], Thickness[0.0025°],
PointSize[0.01]}}, ShowArrowTail -> True, ShowNodes -> True,
TextOffset-> Automatic,BaseStyle->{FontFamily->"Times" ,FontSize-
>16}1}1;

Input, output, and single-layer schemes are defined as separate lists:

artNeuronInp04 = {

{"Input", {0, 0}, XX1, " ", TextOffset -> {1, 0}},

{"Input", {0, 2}, XX2, " ", TextOffset -> {1, 0}},

{"Input", {0, 4}, XX3, " ", TextOffset -> {1, 0}},

{"Input", {0, 6}, XX4, " ", TextOffset -> {1, 0}}};
artNeuronOut04 = {

{"Output", {13, 3}, YYl, " ", TextOffset -> {-1, 0}}};
artNeuronBody04 = {

{"Adder", {{7, 3}, {5, 2}, {8, 3}, {5, 4}}, {1, 1, 2, 1}, " "},

{"Adder", {{8, 3}, {5, 1}, {11, 3}, {5, 5}}, {1, 1, 2, 1}, "j"},

{"Function", {{11, 3}, {13, 3}}, £, " "},

{"Input", {6, 3}, 1, " ", TextOffset -> {1, 0}},

{"Line", {{0, 0}, {3, 0}}}, {"Line", {{O0, 2}, {3, 2}}},
{"Line", {{O0, 4}, {3, 4}}}, {"Line", {{O0, 6}, {3, 6}}},

{"Multiplier", {{3, 0}, {5, 1}}, W11, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 2}, {5, 2}}, w21, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 4}, {5, 4}}, W31, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 6}, {5, 5}}, W41, " ", ElementSize -> {1, 1}},
{"Multiplier", {{6, 3}, {7, 3}}, bOo1, " "}

{"P°1Y1ine", {{OI _1}1 {131 _1}1 {131 7}, iol 7}, {ol _1}}}};

Replacement rules are used for drawings (represented in bitmap format):
subsSymbW = {W11 - wy, W21 > wy, W31 > W », WAL > w;};

subsSymbB = {b@l - by} ;
In[~]:= subsSymbX = {XX1 = X3, XX2 = x5, XX3 = "...", XX& > x3, YY1 > y5};
mySchematic = artNeuronInp@4~3Join~artNeuronBody@4~3Join~artNeuronOute4;
figure@@l = Show[ {DrawElement /@ (mySchematic /. subsSymbX /. subsSymbB /. subsSymbW) }, Frame -» False]

Figure 1 was created with the previous code.
Appendix B

Figure 3(a) was created with the next code:
artNeuronInp04 = ({

{"Input", {0, 0}, XX1, " ", TextOffset -> {1, 0}},
{"Input", {0, 2}, XX2, " ", TextOffset -> {1, 0}},
{"Input", {0, 4}, XX3, " ", TextOffset -> {1, 0}},
{"Input", {0, 6}, XX4, " ", TextOffset -> {1, 0}}};
artNeuronOut04 = {{"Output", {13, 3}, YYl, " ", TextOffset -> {-1, 0}}};

artNeuronBody04 = {
{"Adder", {{7, 3}, {5, 2}, {8, 3}, {7, 5}}, {1, 1, 2, 1}, " "},
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{ledderh, {{8, 3}, {5, 0}, {11, 3}, {12, 5}}, {1, 1, 2, 1}, "j"},
{"Function", {{11, 3}, {13, 3}}, £, " "},

{"Line", {{0, 0}, {3, 0}}}, {"Line", {{O0, 2}, {3, 2}}},
{"Line", {{0, 4}, {3, 4}}}, {"Line", {{0, 6}, {3, 6}}},
{"Line", {{5, 6}, {7, 5}}}, {"Line", {{5, 5}, {6, 8}}},
{"Line", {{5, 4}, {7, 3}}}, {"Line", {{5, 3}, {8, 8}}},

{"Line", {{5, 1}, {10, 8}}},
{"Modulator", {{3, O},{4,-1},{5, 0},{5, 1}},{1, 0, 2, 1}, W1l TextOffset ->
{1,;%&léu1ator", {{3, 2},{4,-1},{5, 2},{5, 3}},{1, 0, 2, 1}, W21l,TextOffset ->
{1,I%D}dc}>c,iulator", ({3, 4},(4,-1},(5, 4},{5, 5}},{1, 0, 2, 1}, W31, TextOffset ->
{l'ﬁn}aic'iulator", ({3, 6},{4, 5},{5, 6},{4, 8}},{1, 0, 2, 1}, WAl TextOffset ->
{1'1%1}><}>iyline", ({0, -2},{13, -2}, {13, 10}, {0,10}, {0, -2}}}};

Notice that we are using Modulator instead of Multiplier. The Delay elements are presented

in bitmap format:
artNeuronDelay@4 = {

{"Text", {6, -1}, "yj=F (Wi,naXa +Wa,naX2 #+ W, ,,n1 X +oe + Wi naXs +bg,n1)",
BaseStyle » {FontFamily - "Times", FontSize - 12}},
{"Text", {12, 4.5}, by .1},
In[+]:= {"Delay”, {{4, 10}, {4, 8}}, 1, " "},
{"Delay", {{6, 18}, {6, 8}}, 1, " "},
{"Delay”, {{8, 10}, {8, 8}}, 1, " "},
{"Delay”, {{1le, 1o}, {1e, 8}}, 1, " "},
{"Delay”, {{12, 1@}, {12, 5}}, 1, " "}};

Figure 3(b) was created with the similar code.
Appendix C

Figure 4(b) was created with the next code:
artNeuronBody04 = {

{"Adder", {{7, 3}, {5, 2}, {8, 3}, {5, 4}}, {1, 1, 2, 1}, " "},
{"Adder", {{8, 3}, {5, 1}, {11, 3}, {5, 5}},{1, 1, 2, 1}, "1"},
{"Adder", {{7, 10},{5, 9}, {8, 10},{5, 11}},{1, 1, 2, 1}, " "},
{"Adder", {{8, 10},{5, 8},{11, 10},{5, 12}},{1, 1, 2, 1}, "2"},
{"Adder", {{7, 17},{5, 16},{8, 17},{5, 18}},{1, 1, 2, 1}, " "},
{"Adder", {{8, 17},{5, 15},{11,17},{5, 19}},{1, 1, 2, 1}, "3"},
{"Adder", {{7, 24},{5, 23},{8, 24},{5, 25}},{1, 1, 2, 1}, " "},
{"Adder", ({8, 24},{5, 22},{11,24},(5, 26}},{1, 1, 2, 1}, "4"},

{"Function", {{11, 24}, {13, 24}}, £, " "},
{"Function", {{11, 17}, {13, 17}}, £, ™ "},
{"Function", {{11, 10}, {13, 10}}, £, ™ "},
{"Function", {{11, 3}, {13, 3}}, £, " "},

{"Input", {6, 24}, 1, " ", TextOffset -> {1, 0}},
{"Input", {6, 17}, 1, " ", TextOffset -> {1, 0}},
{"Input", {6, 10}, 1, " ", TextOffset -> {1, 0}},
{"Input", {6, 3}, 1, " ", TextOffset -> {1, 0}},
{"Line", {{0, 3}, {3, O0}}}, {"Line", {{O0, 10}, {3, 2}
{"Line", {{0, 3}, {3, 7}}}, {"Line", {{0, 3}, {3, 14}
{"Line", {{0, 3}, {3, 21}}}, {"Line", {{0, 17}, {3, 4}
{"Line", {{0, 10}, {3, 9}}}, {"Line", {{0, 10}, {3, 16}
{"Line", {{0, 10}, {3, 23}}},{"Line", {{0, 17}, {3, 11}
{"Line", {{O0, 17}, {3, 18}}},{"Line", {{0, 17}, {3, 25}
{"Line", {{0, 24}, {3, 27}}},{"Line", {{0, 24}, {3, 20}}
{"Line", {{0, 24}, {3, 13}}},{"Line", {{0, 24}, {3, 6}}},

{"Multiplier", {{3, 0}, {5, 1}}, W11, , ElementSize -> {1, 1}},
{"Multiplier", {{3, 2}, {5, 2}}, W21, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 4}, {5, 4}}, W31, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 6}, {5, 5}}, W41, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 7}, {5, 8}}, W12, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 14},{5,15}}, W13, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 21},{5,22}}, W14, " ", ElementSize -> {1, 1}},
{"Multiplier", {{3, 9}, {5, 9}}, w22," "}, {"Multiplier", {{3, 11},{5,11}},

W32,'| 'l},
{"Multiplier", {{3, 16},{5,16}}, W23," "}, {"Multiplier", {{3, 18},{5,18}},
W33,'| 'l},
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{"Multiplier", {{3, 13},{5,12}}, W42," "}, {"Multiplier", {{3, 20},{5,19}},

w43,'| 'l},

{"Multiplier", {{3,23}, {5,23}}, w24," "}, {"Multiplier", {{3, 25},{5,25}},
w34,'| 'l},

{"Multiplier", {{3, 27},{5,26}}, W44," "}, {"Multiplier", {{6, 3}, {7, 3}},
bol,ll ll},

{"Multiplier", {{6, 10},{7,10}}, b02," "}, {"Multiplier", {{6,17}, {7,17}},
b03," ll},

{"Multiplier", {{6, 24},{7,24}}, bo4," "},
{"Polyline", {{4.7, 0}, {10, O}, {10, 6}, {4.7, 6}, {4.7, 0}}}
{"Polyline", {{4.7, 7}, {10, 7}, {10,13}, {4.7,13}, {4.7, T7}}}
{"Polyline", {{4.7,14}, {10,114}, {10,20}, {4.7,20}, {4.7,14}}}
{"Polyline", {{4.7,21}, {10,21}, {10,27}, {4.7,27}, {4.7,21}}}

The initial layer can be translated and copied 3 times using Do command:

numberOfStages = 3;

widthOfStages = 13;

systemBody = artNeuronBody04;

blTObl = Thread[Flatten[{b0l, b02, b03, b04}] -> Flatten[{b0l, b02, b03, b04}]];

14
14
14
};

wlTOwl = Thread[{W1l,Wl2,Wl3,Wld,W21,6W22,W23,W24,W31,W32,W33,W34,W4l, W42, W43, Wid}

->
{w01l1l,w012,wW013,wW014,w021,W022,W023,W024,W031,W032,W033,W034,W041,W042,W043,W044}
1;

B1TODbK

= {blTOb2, blTOb3, blTOb4};
WITOWK = {wlTOw2, wlTOw3, wlTOw4};
f1TOfK = {f -> £, £ -> £, £ -> g};
f1TOfK = {f -> £, £ -> g, £ -> G};
Do[systemBody =

Join[systemBody, (TranslateSchematic[artNeuronBody04, {k*widthOfStages,0}] /.
B1TObK[[k]] /. W1TOWK[[k]] /. £1TOfK[[k]])];, {k, numberOfStages - 1}];

Each symbol can be presented in different mathematical notation.

subsSymb2 = {W11 - Wyq, W12 - Wiy, W13 - Wiz, W14 o Wys, W21 = Wog, W22 - Wy, W23 - wys,

W24 - Wogy W31 —» Wag, W32 > Wiy, W33 o Wiz, W34 5 wyy, WAL o Wyq, WA2 5 Wap, WA3 = Wyz, WAE o Way)s
subsSymb3 = {b@1 - bp;, bO2 - by, bO3 - bz, b84 - bgy, bll - byy, bl2 - by, bl3 » bys,

bl4 - by,, b21 - byy, b22 » byy, b23 - byz, b24 5 by} ;

For the previous code we are using bitmap presentation.

Appendix D
The closed-form outputs are derived using the next code:

DiscreteSystemImplementation2 [mySchematic, ToString[implementationProcedure]];
eqns = DiscreteSystemImplementationEquations2[mySchematic,Verbose -> False];
inputSequence = {{XX1, XX2, Xx3, xx4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}}
initialConditions = O*eqns[[2]];
systemParameters = eqns[[3]];
{outputSequence, finalConditions} =

DiscreteSystemImplementationProcessing2[inputSequence,

initialConditions, systemParameters, procedureName];

ylst = outputSequence[[1l]];
ylstIND = ylst /. subsSymbl /. wlTOwl /. subsALLl;
% // StandardForm

Figure 7(b) is obtained using ExpressionGraph command.
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