

Review

Not peer-reviewed version

Exploring the Potential Links Between Gut Bacteria-Related Metabolites and the Risk of Cardiovascular Diseases

Larsa Alobaidi , Jessica L Ward , Karin Allenspach , Jonathan P Mochel *

Posted Date: 7 November 2023

doi: 10.20944/preprints202311.0440.v1

Keywords: gut microbiota; cardiovascular diseases; dog

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Review

Exploring the Potential Links between Gut Bacteria-Related Metabolites and the Risk of Cardiovascular Diseases

Larsa Albaidi ¹, Jessica Ward ², Karin Allenspach ^{1,2,3} and Jonathan P. Mochel ^{1,2,3}

¹ SMART Pharmacology, Iowa State University, 50011-1250 Ames, IA, USA

² Veterinary Clinical Sciences, Iowa State University, 50011-1250 Ames, IA, USA

³ Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 30602 Athens, GA, USA

* Correspondence: arsa.albayati@iastate.edu

Abstract: This mini-review examines the complex relationship between the gut microbiota and human health, with a special focus on its role in conditions such as inflammatory bowel disease (IBD) and cardiovascular disease (CVD). It explores how dietary patterns can affect the composition of the gut microbiota, thus contributing to the development of various diseases. The gut microbiota is crucial in the production of metabolites such as trimethylamine N-oxide (TMAO), which play a significant role in the development of both IBD and CVD. High levels of TMAO and other metabolites, such as phenylacetylglutamine, have been linked to an increased risk of CVD. The review highlights the potential of dietary interventions and therapies designed to modulate the gut microbiota in reducing these risks. Following a Mediterranean diet may offer cardiovascular protection, emphasizing the need for further research into the molecular mechanisms of diet-related changes in the microbiota.

Keywords: gut microbiota; cardiovascular diseases; dog

Introduction

The intestinal microbiota, often referred to as the gut microbiome, is composed of various microorganisms, including bacteria, viruses, fungi and other microbes, found in the gastrointestinal tract. These microorganisms interact with the host, playing a significant role in digestion, immune defense, nervous system regulation, and metabolism. It is essential to maintain a delicate balance between the microbiome and the human host for overall health (Jia et al., 2019). Approximately 10 trillion to 100 trillion microbial cells inhabit the human body, most of which are found in the gastrointestinal (GI) tract. The relationship between the gut microbiome and an individual's health is especially beneficial when the host is in good health and properly nourished (Jovanovich et al., 2018). Recent research has highlighted the critical role of gut microbiota in the development of various human diseases, with a particular focus on inflammatory bowel disease (IBD) and cardiovascular diseases (CVD). The etiology of IBD is multifaceted, involving complex interactions between genetic variation, host immune responses, and environmental factors (Tie et al., 2023; Faqerah et al., 2023; Lin et al., 2023). Current scientific consensus suggests that intestinal dysbiosis, defined as an abnormal mucosal immune response in genetically susceptible individuals, plays a key role in IBD pathogenesis and is further influenced by dietary factors. Extensive research has revealed that the consumption of a high-fat diet (HFD) is associated with alterations in the gut microbiome, indicative of dysbiosis, persistent intestinal inflammation, and increased intestinal permeability (Stiegeler et al., 2021). However, progress in understanding how dietary interventions can mitigate IBD has been hindered by the scarcity of appropriate animal models. Epidemiological data has established a link between the consumption of high-calorie, low-fiber, high-monosaccharide, and high-fat diets and the prevalence of several chronic diseases with high morbidity and mortality rates in modern Western

societies, including type II diabetes, IBD, and colorectal cancer. Notably, there is accumulating evidence suggesting that IBD in canines and humans share analogous clinical and molecular features (Xing et al., 2023). Consequently, preclinical studies involving dogs with naturally occurring IBD present a valuable opportunity to deepen our understanding of disease pathogenesis and pioneer new therapeutic strategies. Mechanistic studies conducted *in vitro* can incrementally explore the impact of dietary interventions on chronic intestinal inflammation and increased intestinal permeability, employing tools such as intestinal organoids (Ambrosini et al., 2020; Kopper et al., 2021; Dotti et al., 2022; Gabriel et al., 2022a, 2022b; Sahoo et al., 2023). The utility of organoids stems from their ability to recapitulate the inherent pathomechanisms of the disease process (Mochel et al., 2017; Chandra et al., 2019; Sahoo et al., 2022).

In addition to the impact of gut dysbiosis on IBD pathogenesis, numerous studies conducted in humans and animals have shown how changes in the composition and activity of intestinal flora can accelerate the onset of CVD (Ding et al., 2020; Wang et al., 2022). Additionally, the intestinal flora can break down dietary components into various metabolites, such as trimethylamine N-oxide, short-chain fatty acids, secondary bile acids, and indoxyl sulfate. These metabolites can affect the host's physiological functions by activating various signaling pathways. This short review aims to elucidate the important role of the gut microbiota in the pathogenesis of CVD.

Trimethylamine N-oxide

Microbial metabolism in the gut plays a pivotal role in the synthesis of trimethylamine (TMA) from dietary choline and l-carnitine, which is then converted into trimethylamine-N-oxide (TMAO) by the liver enzyme flavin monooxygenase 3 (FMO3). The concentration of TMAO in plasma is dependent on genetic factors, dietary habits, and gut microbiota composition. Numerous studies have established a link between elevated TMAO levels in plasma and the risk of atherothrombotic CVD (Canyelles et al., 2018).

TMAO may increase the production of foam cells in the liver by upregulating macrophage scavenger receptors, impairing enterohepatic cholesterol and bile acid metabolism, and hindering macrophage reverse cholesterol transfer (RCT). Additionally, FMO3 may contribute to dyslipidemia by modulating various genes that control hepatic lipogenesis and gluconeogenesis, ultimately affecting cholesterol levels (Canyelles et al., 2018).

Over the past two decades, there has been growing interest in understanding the gut microbiota composition, its intrinsic and extrinsic impact on intestinal health, and its implications as a risk factor for the development of CVDs, including metabolic syndrome. The gut microbiota is essential to human health and disease (Rahman et al., 2022), and current research highlights its potential to influence host's physiology. TMAO, among other metabolites such as short-chain fatty acids and primary and secondary bile acids, has gained attention for its association with several chronic diseases, including insulin resistance, atherosclerotic plaque formation, diabetes, cancer, heart failure, hypertension, chronic kidney disease, liver steatosis, cardiac fibrosis, endothelial injury, neural degeneration, and Alzheimer's disease (Papandreou et al., 2020).

The fermentation of dietary components, such as choline and carnitine, by gut microbiota leads to the generation of trimethylamine (TMA), which is then metabolized to TMAO in the liver by flavin-containing monooxygenases 1 and 3 (FMO1 and FMO3). Given the multifaceted role of TMAO in the development of numerous chronic diseases, therapeutic strategies for maintaining a healthy gut microbiota have been explored. Studies have suggested that dietary nutrients and bioactive compounds may modulate gut microbiota and potentially reduce TMAO production (Simo and Garcia-Canas, 2020; Coutinho-Wolino et al., 2021).

Phenylacetyl glutamine

Phenylacetylglutamine (PAG) is a well-known microbial metabolite that conjugates glutamine and phenylacetate, primarily arising from bacterial metabolism of phenylalanine. Extensive metabolomic investigations have consistently associated circulating PAG levels with specific gut microbial families, including Coriobacteriaceae, Mogibacteriaceae, Bifidobacteriaceae, as well as

genera within the Lachnospiraceae, Christensenellaceae, and Ruminococcaceae families, and overall gut microbial diversity. In large-scale clinical studies, increased blood concentrations of phenylacetylglutamine, a gut microbiota-dependent metabolite, have been linked to an increased risk of CVD. Numerous mechanistic studies using animal models have demonstrated significant associations between these gut microbial metabolites/pathways and CVD (Witkowski et al., 2020). Recent research has revealed that phenylacetylglutamine can induce adverse cardiovascular effects in the host by interacting with adrenergic receptors (ARs), a critical class of autonomic receptors for cardiovascular homeostasis.

Additionally, the plasma metabolite phenylacetylglutamine (PAGln) has been identified and independently associated with CVD and significant adverse cardiovascular events such as myocardial infarction, stroke, or death (Witkowski et al., 2020). PAGln, derived from the gut microbiota, has been found to enhance platelet activation-related characteristics and increase the risk of thrombosis in systemic circulation, isolated platelets, and animal models of arterial injury. Functional and genetic studies involving human commensals and microbial colonization of germ-free mice have elucidated the microbial-driven nature of this process. A specific *porA* gene found in some bacterial strains facilitates the conversion of dietary phenylalanine into phenylacetic acid, ultimately leading to the production of PAGln and phenylacetylglycine (PAGly) by the host, consequently increasing platelet activity (Nemet et al., 2020).

Clearance of uremic toxins

Disruptions in the equilibrium of the intestinal microbial community, as a consequence of chronic kidney disease (CKD), are emerging as key factors in the initiation and progression of various comorbidities. Notably, patients with renal insufficiency are at an increased risk for suffering from heart attacks or strokes, and recent research has shed light on the strong correlation between dysbiosis of the microbiome and the increased incidence of cardiovascular events in this patient population.

The relationship between microbial community imbalance and cardiac health has been confirmed through prior association studies and current causative investigations using experimental animal models. These studies emphasize the significant impact of microbiota dysregulation on cardiovascular health, with implications extending beyond individuals with renal impairment (Bryniarski et al., 2019).

In addition, changes in the composition of the gut microbiota, along with a range of host responses, have been closely associated with the progression of CKD. Dysregulation of the gut microbiota has been linked to an increased cardiovascular risk, the emergence of uremic toxicity, and a state of chronic inflammation (Nallu et al., 2016). Of particular importance are the uremic toxins produced by dysbiotic intestinal bacteria, which play a key role in the pathogenesis of CKD. Furthermore, the gut microbiome has garnered attention in the context of kidney transplantation (Nallu et al., 2016), highlighting the pivotal role that commensal microbes play in shaping immune responses to transplantation.

Additionally, elevated plasma levels of PAG have consistently been observed in patients with CKD (Velasquez et al., 2018). This elevation can largely be attributed to reduced tubular secretion (Velasquez et al., 2018). Additionally, a smaller-scale study involving individuals with CKD revealed a significant association between circulating PAG levels and the risk of future CVD. This association between PAG and coronary artery disease (CAD) also appears to be independent of inflammatory processes, emphasizing its potential use as a biomarker for assessing cardiovascular risk (Bryniarski et al., 2019).

Potential therapeutic strategies

Clinical data has established a link between plasma TMAO concentrations and the risk of CVD. However, the exact role of dietary components in influencing plasma TMAO levels and CVD biomarkers is still a subject of ongoing research. Contemporary strategies for reducing CVD risk by altering gut microbiota include dietary interventions, targeting host enzymes involved in the

production of meta-organismal metabolites, fecal microbial transplantation, pre/probiotics, bacterial enzyme inhibitors, and antimicrobials (Witkowski et al., 2020). Chronic low-grade inflammation is an underlying process that connects metabolic risk factors to an increased risk of CVD. Adopting a Mediterranean diet approach has been shown to reduce inflammatory biomarkers and prevent cardiovascular and cerebrovascular events (Meslier et al., 2020). A study has demonstrated that TMA levels were substantially reduced when exposed to sitosterol and resveratrol. This research provides supporting evidence that sitosterol and resveratrol possess inhibitory effects on the gut microbiota responsible for choline metabolism into TMA (Heng et al., 2021). Evidence suggests that berberine (BBR) could treat obesity, diabetes, and atherosclerosis. The mechanism underlying its effects, attributed to TMA/TMAO synthesis, reduction has been linked to BBR-modulated gut flora. *In vivo* experiments have demonstrated that a single dose of choline inhibits TMA/TMAO synthesis, with BBR acting on TMA-producing bacteria. These findings offer new insights into the mechanisms influencing CVD (Li et al., 2021). Furthermore, numerous Chinese herbal medications have been used to manage CVD. One study aimed to identify choline-degrading bacteria from healthy human feces and establish a platform for screening TMA-lyase inhibitors from Chinese herbal medicine *in silico* and *in vitro*. Flavonoids found in Lu'an GuaPian tea were shown to regulate gut microbiota by reducing TMA-lyase activity, thus preventing acute myocardial infarction (AMI) (Hua et al., 2022). These flavonoids are present in various plant foods, including fruits and vegetables, making them accessible through dietary choices. The following are among the top dietary sources of flavonoids (Tuttolomondo et al., 2019):

1. Berries - especially blackberries, blueberries, cherries, and raspberries.
2. Cabbage.
3. Onion.
4. Kale.
5. Parsley.
6. Green tea.
7. Oolong tea.
8. Black tea.
9. Red wine (in moderation).
10. Dark chocolate and cocoa.
11. Citrus fruits such as oranges, grapefruit, tangerines, lemons, and limes.
12. Soybeans and soy-based products like edamame, tofu, tempeh, and soy sauce.
13. Turmeric contains Curcumin, a potent anti-inflammatory compound. These foods also provide a rich source of flavonoids, which have been studied for potential health benefits, including protection for the cardiovascular system.

Conclusion

Heart failure has been associated with congestion in the splanchnic circulation for many years, leading to edema of the colon wall and compromised function of the intestinal barrier. Bacterial products entering the systemic circulation are believed to exacerbate the overall inflammatory state. Recent research has revealed several metabolites generated by gut microorganisms during nutritional digestion and metabolism, which have been linked to conditions such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. These findings suggest that the gut microbiota functions as an endocrine organ, producing bioactive compounds that can directly or indirectly influence host physiology (Witkowski et al., 2020).

One such gut microbiota-dependent metabolite is PAG, which has been linked to atherothrombotic heart disease in humans and has been mechanistically connected to the development of CVD in animal models through the activation of adrenergic receptors.

Studies have shown that individuals adhering to a Mediterranean diet enriched with either extra-virgin olive oil or nuts have a lower risk of major cardiovascular events compared to those on a reduced-fat diet. However, more research is needed to understand the molecular mechanisms through which the Mediterranean diet exerts its effects. Additionally, transitioning individuals to a

Mediterranean diet while controlling their energy intake has been shown to lower blood cholesterol levels and induce changes in their microbiota and metabolome. These changes are significant for future initiatives aiming to improve metabolic health (Tuttolomondo et al., 2019).

References

Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, Borcherding DC, Jang J, Allenspach K, Mochel JP, Kim HJ. Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions. *PLoS One*. 2020 Apr 17;15(4):e0231423. doi: 10.1371/journal.pone.0231423. PMID: 32302323; PMCID: PMC7164685.

Bryniarski MA, Hamarneh F, Yacoub R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. *Exp Biol Med (Maywood)*. 2019 Apr;244(6):514-525. doi: 10.1177/1535370219826526. Epub 2019 Jan 25. PMID: 30682892; PMCID: PMC6547008.

Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. *Int J Mol Sci*. 2018 Oct 19;19(10):3228. doi: 10.3390/ijms19103228. PMID: 30347638; PMCID: PMC6214130.

Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, Wannemuehler M, Ellinwood NM, Snella E, Martin M, Skala M, Meyerholz D, Estes M, Fernandez-Zapico ME, Jergens AE, Mochel JP, Allenspach K. Derivation of adult canine intestinal organoids for translational research in gastroenterology. *BMC Biol*. 2019 Apr 11;17(1):33. doi: 10.1186/s12915-019-0652-6. PMID: 30975131; PMCID: PMC6460554.

Coutinho-Wolino KS, de F Cardozo LFM, de Oliveira Leal V, Mafra D, Stockler-Pinto MB. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? *Eur J Nutr*. 2021 Oct;60(7):3567-3584. doi: 10.1007/s00394-021-02491-6. Epub 2021 Feb 3. PMID: 33533968.

Ding QY, Tian JX, Li M, Lian FM, Zhao LH, Wei XX, Han L, Zheng YJ, Gao ZZ, Yang HY, Fang XY, Tong XL. Interactions Between Therapeutics for Metabolic Disease, Cardiovascular Risk Factors, and Gut Microbiota. *Front Cell Infect Microbiol*. 2020 Oct 23;10:530160. doi: 10.3389/fcimb.2020.530160. PMID: 33194785; PMCID: PMC7644821.

Dotti I, Mayorgas A, Salas A. Generation of human colon organoids from healthy and inflammatory bowel disease mucosa. *PLoS One*. 2022 Oct 27;17(10):e0276195. doi: 10.1371/journal.pone.0276195. PMID: 36301950; PMCID: PMC9612551.

Faqerah N, Walker D, Gerasimidis K. Review article: The complex interplay between diet and Escherichia coli in inflammatory bowel disease. *Aliment Pharmacol Ther*. 2023 Nov;58(10):984-1004. doi: 10.1111/apt.17720. Epub 2023 Sep 28. PMID: 37771255.

Gabriel V, Zdyrski C, Sahoo DK, Dao K, Bourgois-Mochel A, Atherly T, Martinez MN, Volpe DA, Kopper J, Allenspach K, Mochel JP. Canine Intestinal Organoids in a Dual-Chamber Permeable Support System. *J Vis Exp*. 2022 Mar 2;(181). doi: 10.3791/63612. PMID: 35311824.

Gabriel V, Zdyrski C, Sahoo DK, Dao K, Bourgois-Mochel A, Kopper J, Zeng XL, Estes MK, Mochel JP, Allenspach K. Standardization and Maintenance of 3D Canine Hepatic and Intestinal Organoid Cultures for Use in Biomedical Research. *J Vis Exp*. 2022 Jan 31;(179). doi: 10.3791/63515. PMID: 35156656.

Heng X, Liu W, Chu W. Identification of choline-degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)-lyase inhibitors. *Microb Pathog*. 2021 Mar;152:104658. doi: 10.1016/j.micpath.2020.104658. Epub 2020 Nov 27. PMID: 33253857.

Hua F, Zhou P, Bao GH, Ling TJ. Flavonoids in Lu'an GuaPian tea as potential inhibitors of TMA-lyase in acute myocardial infarction. *J Food Biochem*. 2022 Jul;46(7):e14110. doi: 10.1111/fbc.14110. Epub 2022 Feb 14. PMID: 35156214.

Jia Q, Xie Y, Lu C, Zhang A, Lu Y, Lv S, Zhang J. Endocrine organs of cardiovascular diseases: Gut microbiota. *J Cell Mol Med*. 2019 Apr;23(4):2314-2323. doi: 10.1111/jcmm.14164. Epub 2019 Jan 27. PMID: 30688023; PMCID: PMC6433674.

Jovanovich A, Isakova T, Stubbs J. Microbiome and Cardiovascular Disease in CKD. *Clin J Am Soc Nephrol*. 2018 Oct 8;13(10):1598-1604. doi: 10.2215/CJN.12691117. Epub 2018 May 9. PMID: 29743160; PMCID: PMC6218820.

Kopper JJ, Iennarella-Servantez C, Jergens AE, Sahoo DK, Guillot E, Bourgois-Mochel A, Martinez MN, Allenspach K, Mochel JP. Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach. *Front Toxicol*. 2021 Nov 10;3:773953. doi: 10.3389/ftox.2021.773953. PMID: 35295115; PMCID: PMC8915821.

Li X, Su C, Jiang Z, Yang Y, Zhang Y, Yang M, Zhang X, Du Y, Zhang J, Wang L, Jiang J, Hong B. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. *NPJ Biofilms Microbiomes*. 2021 Apr 16;7(1):36. doi: 10.1038/s41522-021-00205-8. PMID: 33863898; PMCID: PMC8052457.

Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. *Gut Liver*. 2023 Oct 10. doi: 10.5009/gnl230179. Epub ahead of print. PMID: 37814898.

Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, Giacco R, Mennella I, Ferracane R, Pons N, Pasolli E, Rivelles A, Dragsted LO, Vitaglione P, Ehrlich SD, Ercolini D. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. *Gut*. 2020 Jul;69(7):1258-1268. doi: 10.1136/gutjnl-2019-320438. Epub 2020 Feb 19. PMID: 32075887; PMCID: PMC7306983.

Mochel JP, Jergens AE, Kingsbury D, Kim HJ, Martín MG, Allenspach K. Intestinal Stem Cells to Advance Drug Development, Precision, and Regenerative Medicine: A Paradigm Shift in Translational Research. *AAPS J*. 2017 Dec 12;20(1):17. doi: 10.1208/s12248-017-0178-1. PMID: 29234895; PMCID: PMC6044282.

Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. *Transl Res*. 2017 Jan;179:24-37. doi: 10.1016/j.trsl.2016.04.007. Epub 2016 Apr 30. PMID: 27187743; PMCID: PMC5086447.

Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, Funabashi M, Ramer-Tait AE, Naga Prasad SV, Fiehn O, Rey FE, Tang WHW, Fischbach MA, DiDonato JA, Hazen SL. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. *Cell*. 2020 Mar 5;180(5):862-877.e22. doi: 10.1016/j.cell.2020.02.016. PMID: 32142679; PMCID: PMC7402401.

Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? *Nutrients*. 2020 May 7;12(5):1330. doi: 10.3390/nu12051330. PMID: 32392758; PMCID: PMC7284902.

Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, Meem AFK, Sutradhar PR, Mitra S, Mimi AA, Emran TB, Fatimawali, Idroes R, Tallei TE, Ahmed M, Cavalu S. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. *Front Cell Infect Microbiol*. 2022 Jun 20;12:903570. doi: 10.3389/fcimb.2022.903570. PMID: 35795187; PMCID: PMC9251340.

Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. *Cancers (Basel)*. 2022 Jul 20;14(14):3525. doi: 10.3390/cancers14143525. PMID: 35884586; PMCID: PMC9322748.

Sahoo DK, Martinez MN, Dao K, Gabriel V, Zdyrski C, Jergens AE, Atherly T, Iennarella-Servantez CA, Burns LE, Schrunk D, Volpe DA, Allenspach K, Mochel JP. Canine Intestinal Organoids as a Novel In Vitro Model of Intestinal Drug Permeability: A Proof-of-Concept Study. *Cells*. 2023 Apr 27;12(9):1269. doi: 10.3390/cells12091269. PMID: 37174669; PMCID: PMC10177590.

Simó C, García-Cañas V. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. *Food Funct*. 2020 Aug 1;11(8):6745-6776. doi: 10.1039/d0fo01237h. Epub 2020 Jul 20. PMID: 32686802.

Stiegeler S, Mercurio K, Iancu MA, Corr SC. The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. *Cells*. 2021 Nov 30;10(12):3358. doi: 10.3390/cells10123358. PMID: 34943865; PMCID: PMC8699384.

Tie Y, Huang Y, Chen R, Li L, Chen M, Zhang S. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets. *Gut Microbes*. 2023 Dec;15(2):2265028. doi: 10.1080/19490976.2023.2265028. Epub 2023 Oct 11. PMID: 37822139; PMCID: PMC10572083.

Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and Vascular Effect of the Mediterranean Diet. *Int J Mol Sci*. 2019 Sep 23;20(19):4716. doi: 10.3390/ijms20194716. PMID: 31547615; PMCID: PMC6801699.

Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. *Toxins (Basel)*. 2018 Jul 11;10(7):287. doi: 10.3390/toxins10070287. PMID: 29997362; PMCID: PMC6071268.

Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. *Mol Biomed*. 2022 Oct 11;3(1):30. doi: 10.1186/s43556-022-00091-2. PMID: 36219347; PMCID: PMC9554112.

Witkowski M, Weeks TL, Hazen SL. Gut Microbiota and Cardiovascular Disease. *Circ Res*. 2020 Jul 31;127(4):553-570. doi: 10.1161/CIRCRESAHA.120.316242. Epub 2020 Jul 30. PMID: 32762536; PMCID: PMC7416843.

Xing C, Liang G, Yu X, Zhang A, Luo X, Liu Y, Tang Z, Wu B, Song Z, Lan D. Establishment of Epithelial Inflammatory Injury Model Using Intestinal Organoid Cultures. *Stem Cells Int*. 2023 Mar 7;2023:3328655. doi: 10.1155/2023/3328655. PMID: 36926182; PMCID: PMC10014157.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.