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Article 
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Abstract: Accurate weight measurement is pivotal for monitoring the growth and well-being of 

cattle. However, the conventional weighing process, which involves physically placing cattle on 

scales, is labor-intensive and distressing for the animals. Hence, the development of automated 

cattle weight prediction techniques assumes critical significance. This study proposes a weight 

prediction approach for Korean cattle using 3D segmentation-based feature extraction and 

regression machine learning techniques from incomplete 3D shapes acquired from real farm 

environments. In the initial phase, we generated mesh data of 3D Korean cattle shapes using a 

multiple-camera system. Subsequently, deep learning-based 3D segmentation with the PointNet 

network model was employed to segment two dominant parts of the cattle. From these segmented 

parts, three crucial dimensions of Korean cattle were extracted. Finally, we implemented five 

regression machine learning models (CatBoost regression, LightGBM, Polynomial regression, 

Random Forest regression, and XGBoost regression) for weight prediction. To validate our 

approach, we captured 270 Korean cattle in various poses, totaling 1190 poses of 270 cattle. The best 

result was achieved with mean absolute error (MAE) of 25.2 kg and mean absolute percent error 

(MAPE) of 5.81% using the random forest regression model. 

Keywords: 3D segmentation; feature extraction; regression machine learning; weight estimation 

 

1. Introduction 

The agricultural sector plays a pivotal role in meeting human food needs, with livestock farming 

serving as a vital source of meat, milk, and related products. To effectively manage and promote 

sustainable livestock production, accurate weight estimation of livestock holds a critical position. 

Traditional livestock weighing methods often involve labor-intensive processes that cause stress to 

the animals, consequently negatively impacting overall productivity. 

The development of an algorithm for livestock weight estimation without direct contact with the 

animals is essential. This approach addresses ethical concerns by minimizing stress and discomfort 

during the weighing process. 

In today's era of rapid technological advancements, the integration of computer vision-based 

techniques in livestock farming aligns perfectly with the movement towards smart and precision 
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agriculture. The application of computer vision in livestock weight estimation represents a significant 

leap forward for automation and data-driven decision-making in agriculture. 

Leveraging this technology, farmers can gain real-time insights into livestock weight and health, 

allowing for more efficient resource allocation, early disease detection, and improved breeding 

strategies. This has the potential to increase productivity, reduce costs, and contribute to sustainable 

agricultural practices. 

The development of algorithms to predict livestock weight through computer vision-based 

techniques has garnered significant attention, with various research studies in this area. There are 

two main approaches: 2D image analysis and 3D image analysis. 

First, we review 2D image analysis approaches. Tasdemir and Ozkan [1] conducted a study to 

predict the live weight of cows using an Artificial Neural Network (ANN) approach. They captured 

cows from various angles, applied photogrammetry to calculate body dimensions, and predicted live 

weight using ANN-based regression. Anifah and Haryanto [2] proposed a fuzzy rule-based system 

to estimate cattle weight, extracting body length and circumference as features to feed the fuzzy logic 

system for weight estimation. Ana et al. [3] conducted a study to predict live sheep weight using 

extracted features and machine learning. They captured sheep images from top view, created masks 

of the top view, and measured six distances in the mask as features to feed a random forest regression 

model. Weber et al. [4] proposed a cattle weight estimation approach using active contour and 

regression trees bagging. They first segmented the image, then created a hull from the segmented 

image, then extracted features, and predicted weight using a random forest model. 

Compared to 2D image processing approaches, 3D image processing approaches have gained 

more research attention in recent years. Jang et al. [5] estimated body weight for Korean cattle using 

3D images, capturing them from the top view. After extracting body length, body width, and chest 

width, they built a linear function to calculate cattle weight. Na et al. [6] proposed a solution to predict 

cattle weight using depth images, capturing images from the top view, segmenting them, and 

extracting characteristics of shape and size for cattle weight prediction using machine learning model. 

Kwon et al. [7] reconstructed a pig 3D model, created distances along pig’s body as features, and 

utilized neural networks to predict pig weight. Hou et al. [8] collected data using LIDAR (Light 

Detection and Ranging) sensor, segmented 3D beef object models using PointNet++ [9], measured 

body length and chest girth, and calculated weight using a pre-defined formula. Ruchay et al. [10] 

proposed a model for predicting live weight based on augmenting 3D clouds in the form of flat 

projections and images with regression deep learning. Na et al. [11] developed a pig weight 

prediction system using Raspberry Pi, capturing RGB-D images from the top view of pigs, extracting 

body characteristics and shape descriptors after segmenting the image, and applying various 

regression machine learning models to predict pig weight. Le et al. [12] calculated body sizes, surface 

area, length, and morphological traits from completed 3D shapes acquired using a laser scanning 

device to feed into a regression model for dairy cow weight estimation. Cominotte et al. [13] captured 

3D images of cattle from the top view, extracted features from segmented images, and used linear 

and non-linear regression models to predict beef cattle weight. Martins et al. [14] also captured 3D 

images from top view and side view, measuring several distances to feed into the Lasso regression 

model for body weight estimation. 

In all the studies mentioned above, whether employing 2D or 3D image processing approaches, 

a common formula is followed: the extraction of features for subsequent weight prediction. However, 

the feature extraction process often relies on 2D segmented images or projection masks of 3D images, 

which can make it challenging to accurately represent 3D spatial elements, such as chest girth (chest 

circumference). Research has shown that chest girth is a critical factor in weight calculation [15]. 

In this study, we propose an approach that extracts features based on 3D segmentation, enabling 

us to measure features with precision, incorporating 3D spatial elements accurately. Furthermore, 

while previous studies were primarily conducted in controlled laboratory or fenced environments, 

our research predicts weights using 3D shapes acquired from real farm environments. 

The main contributions of this proposal are as follows: 
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1. We introduce an effective approach for predicting Korean cattle weight using vision-based 

techniques. 

2. We present a straightforward method for extracting cattle dimensions through 3D segmentation. 

3. We explore multiple regression machine learning algorithms for Korean cattle weight 

prediction. 

4. Our approach not only predicts Korean cattle weight but also automatically measures three 

essential body dimensions, facilitating further analysis. 

2. Materials and Methods 

2.1. Data Acquisition 

To collect 3D Korean cattle data, we designed a specialized multiple-camera system, which is 

illustrated in Figure 1. In Figure 1a, you can see the system’s design, and in Figure 1b, you can observe 

the actual setup.  

The system comprises ten stereo cameras arranged in a half-ring configuration, maximizing the 

coverage of Korean cattle as they pass by. Ideally, an imaging system should form a symmetrical U-

shape to capture data from all angles. However, practical considerations, such as bulkiness, mobility 

issues, and animal fear, make such a design unfeasible. Our mechanical design, in contrast, is 

lightweight, flexible, and collapsible when not in use. This approach ensures efficient data acquisition 

without causing distress to the livestock. 

  
(a) (b) 

Figure 1. Multiple-camera system. (a) System design; (b) Real-world deployment 

The relative translation and rotation between all cameras remained constant throughout the data 

collection process. We employed stereo cameras, allowing each camera to capture two infrared 

images: a left infrared image and a right infrared image. Figure 2 provides an example featuring ten 

left infrared images from our proposed camera system. The ten right images captured by the system 

exhibit similar characteristics. 
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Figure 2. Left infrared images from our capturing system. 

We generated 3D data from the left and right images of each camera using stereo matching, as 

described in [16]. Subsequently, guided by the pre-defined relative distances and rotation angles of 

the cameras, we aligned the 3D images from each individual camera. The 3D mesh data was then 

reconstructed using the Poisson surface reconstruction algorithm [17] to construct a comprehensive 

3D representation of the entire scene featuring the Korean cattle. 

Once this was complete, we subtracted the fixed fence and background scene, resulting in the 

creation of the 3D mesh data specifically depicting the Korean cattle, as exemplified in Figure 3. In 

Figure 3, each row displays the left view, top view, and right view of a Korean cattle. Notably, the 

mesh data on the right side and the under area of the cattle appears incomplete due to our system's 

flexible design, which is designed to adapt to the unpredictable conditions of a real-world farm 

environment. 

 

Figure 3. Two random of 3D Korean cattle mesh data after reconstruction. 

We conducted data collection on two separate occasions, in August 2023 and September 2023, at 

two distinct farms located in Seosan province, South Korea. Our dataset consisted of a total of 270 

cattle, ranging in age from 9 months to 12 months. For each individual cattle, we captured between 3 

to 5 shots in various poses, resulting in a collection of 1190 3D data files. Concurrently, we recorded 

the weight of each cattle during the data capture process. The weight of the cattle in our dataset varies 

within the range of 300kg to 600kg. The weight distribution is visualized in Figure 4. 
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Figure 4. Weight distribution of Korean cattle used in this study. 

2.2. Proposed Pipeline Overview 

The overall diagram of the proposed pipeline is depicted in Figure 5. After reconstruction 

process, the 3D image of Korean cattle was saved as 3D mesh files. 3D mesh is sampled into multiple 

point cloud data for 3D segmentation process. Two segmentation models are designed for this 

project: torso segmentation and center body segmentation. 

 

Figure 5. Overview structure diagram of proposed pipeline. 

The output of the torso segmentation is used to measure the body length, while the output of 

the center body segmentation was used to extract the chest girth and chest width. After three 

important dimension characteristics are extracted, a regression machine learning model is developed 

to predict Korean cattle weight with these three dimensions as input. We applied five of the most 

advanced regression machine learning models: CatBoost, LightGBM, Polynomial, Random Forest, 

and XGBoost. 

2.3. 3D Segmentation-Based Feature Extraction 

2.3.1. Definition of Korean Cattle Body Dimensions 

Recent studies [15] have demonstrated the feasibility of determining cattle weight by measuring 

specific distance parameters. However, it's important to note that among the ten parameters used for 

determining these distances, each parameter possesses varying levels of significance. In this study, 

we propose a solution that automates the measurement of three body dimensions with the highest 

weight ratios, upon which we base our weight prediction model. These three critical dimensions are 

body length, chest girth, and chest width. Detailed measurement definitions for these body 

dimensions are provided in Table 1, and the corresponding measurement sites for each body 

dimension are visually represented in Figure 6. 
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Table 1. Definition of Korean cattle body dimension. 

Body dimensions Symbol Definition 

Body length BL Horizontal length of the body 

Chest girth CG Perimeter of the vertical body axis at the chest 

Chest width CW Maximum width of chest 

 

Figure 6. Three body dimensions of Korean cattle. 

2.3.2. 3D Segmentation-Based Feature Extraction 

Automatically extracting body dimensions from Korean cattle data acquired in 3D can be a 

challenging task. To overcome this, we employed a segmentation approach to isolate the specific 

parts of the cattle for measurement. We conducted two distinct segmentation processes: one for cattle 

torso segmentation to measure body length and another for center body segmentation, which allows 

us to measure chest girth and chest width, as illustrated in Figure 7. 

 

Figure 7. Torso segmentation (left), and center body segmentation (right). 

The advancement of artificial intelligence (AI), particularly in deep learning techniques, has 

introduced powerful tools for 3D data analysis. One such network, PointNet [18], specializes in 3D 

data analysis and offers the advantage of learning both global and local features. It can be effectively 

applied to various 3D tasks, including 3D classification, 3D segmentation, and 3D part segmentation. 

In this project, we adopt the PointNet network for 3D cattle part segmentation. To streamline the data 

labeling process while maintaining high accuracy, we exclusively use binary 3D segmentation, 

simplifying the model's complexity. Consequently, we implemented two models with identical 

architecture but distinct labeling data: one for cattle torso segmentation and the other for center body 

segmentation. 

The architectural overview of PointNet, designed for point cloud segmentation tasks, is 

presented in Figure 8. It incorporates an Input Transform network (T-Net) followed by a series of 

Multi-Layer Perceptrons (MLPs) for local feature extraction. The Input Transform network captures 

transformations to ensure the network's robustness to input point permutations, rotations, and 

translations. Subsequently, a Feature Transform network (T-Net) enhances the network's capacity to 

handle diverse point orderings. After local feature extraction, a global feature vector is derived 

through max pooling, enabling the network to aggregate information from the entire point cloud. 

This global feature vector is further processed by a set of MLPs to produce the final segmentation 
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mask, which assigns class labels to each point. The combination of Input and Feature Transform 

networks empowers PointNet to effectively segment complex 3D data. 

 

Figure 8. PointNet Architecture for 3D segmentation [18]. 

2.4. Regression Machine Learning 

With three numeric inputs (body length, chest girth, chest width) and the numeric output of 

cattle weight, as illustrated in Figure 9, regression models are the most appropriate choice. In this 

project, we have selected five prominent regression machine learning models for Korean cattle weight 

prediction, CatBoost regression, LightGBM, Polynomial regression, Random Forest regression, 

XGBoost regression.  

 

Figure 9. Simple schematic of regression machine learning for weight prediction. 

2.4.1. CatBoost Regression 

CatBoost [19] is a renowned ensemble machine learning algorithm, particularly effective in 

regression tasks. It employs category-based optimization to enhance predictive accuracy and utilizes 

gradient boosting to iteratively construct decision trees, effectively reducing errors. Notable features 

of CatBoost include its intrinsic handling of categorical data, adept feature selection, and strategies 

to prevent overfitting. The algorithm also demonstrates efficiency in real-world applications, offering 

support for parallel computation and fine-tuned hyper parameter optimization. 

2.4.2. Light Gradient Boosting Machine 

Grounded in gradient boosting techniques, LightGBM [20] meticulously constructs decision 

trees to iteratively correct errors. Its innovation lies in histogram-based algorithms and leaf-wise tree 

growth, ensuring computational efficiency. LightGBM further employs gradient-based one-side 
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sampling and exclusive data filtering to enhance robustness and mitigate overfitting. Its parallel 

processing capabilities make it an excellent choice for regression tasks. 

2.4.3. Polynomial Regression 

Polynomial regression [21] extends linear regression by incorporating basic mathematical 

functions. This algorithm is particularly useful for handling nonlinear data by employing linear 

factors. It demonstrates the capability to work effectively with a wide range of nonlinear data while 

maintaining efficiency comparable to linear functions. 

2.4.4. Random Forest Regression 

Random forest [22] is an ensemble learning technique based on decision tree models. During 

training, it builds a collection of decision trees, with each tree constructed independently and 

accessing a random subset of the training data. The use of random subsets of data and features helps 

prevent overfitting, contributing to the model's robustness. 

2.4.5. Extreme Gradient Boost Regression 

Extreme Gradient Boost Regression (XGBoost) [23] is another ensemble learning technique 

rooted in the gradient boosting framework, primarily applied to regression tasks. XGBoost iteratively 

refines predictive models by constructing a series of decision trees, each correcting the errors of the 

previous iteration. It is distinguished by its incorporation of sophisticated L1 and L2 regularization 

techniques to mitigate overfitting and maintain model parsimony. XGBoost is also known for its 

robust handling of missing data. 

2.5. K-Fold Cross-Validation 

To assess the performance of the chosen machine learning models, we employed K-fold cross-

validation. The data were randomly divided into ten partitions of equal size (k=10). For each partition 

(p), we trained the selected machine learning models on the remaining nine partitions and 

subsequently tested the models on partition (p). The final score was computed as the average of all 

ten scores obtained. The schematic of K-fold validation with k=10 is depicted in Figure 10. 

 

Figure 10. Schematic of K-fold cross-validation with k = 10. 
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3. Experiments 

3.1. Segmentation 

3.1.1. Cross-Sampling Augmentation 

Building deep learning models always necessitates a substantial number of labeled samples for 

train process. In the case of 3D PointNet networks, achieving high model accuracy demands training 

on thousands of samples. However, manual labeling of thousands of samples is an exceedingly labor-

intensive task. To address this challenge, we have introduced an augmentation method named as 

cross-sampling. 

The cross-sampling process is illustrated in Figure 11. Starting with each 3D Korean cattle data 

sample, we conducted down-sampling with a resolution of 0.1 mm. Following down-sampling, each 

the 3D cattle data typically contains between 11 thousand to 12 thousand points. We partitioned it 

into ten segments, each consisting of 1024 points (PointNet with 1024 input was selected for this 

project). This process yielded ten sparse point clouds for each original sample. Subsequently, we 

further divided each sparse point cloud into ten segments and recombined them to create an 

additional ten samples, distinct from the previous set. Through this approach, with each original 3D 

mesh data, we generated twenty sparse point cloud samples, each consisting of 1024 points. 

 

Figure 11. Cross-sampling. 

The segmentation process unfolded in the following manner. We manually labeled 100 cattle 

models. By employing cross-sampling augmentation, we expanded our dataset to include 2000 

samples. 

3.1.2. Feature Extraction 

To verify the accuracy of segmentation process, we employed global accuracy metric [24], which 

is defined as below: 

Global accuracy: 𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  (1) 

The experiments were conducted on a computational workstation equipped with a CPU Core-

i9 3.5GHz and an NVIDIA 3060Ti GPU with 8GB of memory. For deep learning, we chose the 

TensorFlow 2.1.0 framework [25] and CUDA 11.0. The network parameters included the use of the 

adaptive moment estimation optimizer (Adam), a batch size of 64, 1000 training epochs, and a 

learning rate of 0.001. Only the best weights were saved during training. The records of the training 

history are displayed in Figures 12 and 13, and the accuracy results are summarized in Table 2. 
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Figure 12. Torso segmentation training history plot. 

 

Figure 13. Center body segmentation training history plot. 

Table 2. 3D segmentation accuracy. 

Case Training Accuracy Validation Accuracy 

Torso segmentation 99.04% 97.55% 

Center body segmentation 99.01% 97.21% 

In Figures 12 and 13, the blue line represents the training process, while the orange line 

represents the testing process. The training process stabilized after approximately 400 epochs, 

resulting in a training accuracy of 99% and a testing accuracy of 97% for both segmentation cases. We 

applied the trained segmentation models to perform 3D cattle segmentation, and the results are 

visualized in Figures 14 and 15. 
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Figure 14. Segmentation results with the case of torso segmentation. 

 

Figure 15. Segmentation results with the case of center body segmentation. 

In Figures 14 and 15, the red area represents “True positive”, the green area represents “True 

negative”, and the yellow region indicates False (“False positive” or “False negative”). It's noteworthy 

that the yellow area occupies a very small proportion at the border between the red and green areas, 

which has a negligible impact on the subsequent size measurement. 

To achieve accurate measurements of Korean cattle's body dimensions, it's essential for the cattle 

to be in an upright position from head to tail. However, in reality, cattle often stand in a tilted position. 

To address this, we corrected the cattle's posture both horizontally and vertically using rendered 

silhouettes derived from the 3D segmented torso. 

We employed the Principal Component Analysis (PCA) method [26] for posture correction. The 

process involved extracting contour points from an image, calculating the centroid of these points to 

center the data, creating a covariance matrix to understand the relationship between x and y 

coordinates, and computing the eigenvalues and eigenvectors of the covariance matrix. The 

eigenvector with the largest eigenvalue signified the principal axis, aligning with the contour's 

orientation in both the vertical and horizontal views. The results of orientation correction are 

illustrated in Figure 16. 
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(a) (b) 

Figure 16. Posture correction using PCA: (a) Top view; (b) Side view. 

Posture correction allowed us to measure body length by capturing the horizontal length of the 

segmented torso as in Figure 17. 

 

Figure 17. Extracting body length from 3D segmented torso. 

To extract chest girth and chest width, we followed these steps. First, we corrected the cattle's 

posture both horizontally and vertically. Then, we cut planes perpendicular to the cattle's body axis 

to delineate the boundary surrounding the cattle's chest. Despite not obtaining a closed contour due 

to the limitations of the 3D data collection system, the achieved contour encompassed over 60% of 

the cattle's chest, facilitating interpolation of a circle. We fitted an ellipse to the achieved contour, 

with the perimeter of the fitted ellipse measuring chest girth and the minor axis of the ellipse 

measuring chest width. Figure 18 on the left displays a 3D image of cattle after center body 

segmentation, and Figure 18 on the right depicts the extraction process. 

 

Figure 18. Extracting chest girth and chest width from segmented center body. 

3.2. Weight Prediction 

Having extracted the three dimensions from 1190 3D Korean cattle samples in the previous step, 

we delved into examining the relationship between body sizes and cattle weight within the dataset. 

Figure 19 presents a scatter plot showcasing the relationship between the cattle weight and each 
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dimension. As depicted in the graph, a cattle's weight demonstrates a close correlation with these 

dimensions. 

  

(a) (b) 

 

 

(c)  

Figure 19. Scatter plot of the relationship between three body dimensions and Korean cattle weight: 

(a) Body length and weight; (b) Chest girth and weight. (c) Chest width and weight. 

To evaluate the performance of the proposed approach, two standard evaluation metrics are 

used. We used the mean absolute error (MAE) and mean absolute percentage error (MAPE). 

MAE: 

𝑀𝐴𝐸 ൌ 1𝑛 ෍|𝑦𝑖 െ 𝑝𝑖|௡
௜ୀଵ  (2)

Where: 𝑛 is a number of tested samples. 𝑦𝑖, 𝑖 ൌ 1, … , 𝑛 is a known value of cattle weight. 𝑝𝑖 , 𝑖 ൌ 1, … , 𝑛 is a predicted value of the cattle weight. 

MAPE: 

𝑀𝐴𝐸 ൌ 1𝑛 ෍ ฬ𝑦𝑖 െ 𝑝𝑖𝑦𝑖 ฬ௡
௜ୀଵ  (3)

Where: 𝑛 is a number of tested samples. 𝑦𝑖, 𝑖 ൌ 1, … , 𝑛 is a known value of cattle weight. 𝑝𝑖 , 𝑖 ൌ 1, … , 𝑛 is a predicted value of the cattle weight. 

The experiments aimed to estimate Korean cattle weight using the five proposed machine 

learning models: CatBoost regression, LightGBM, Polynomial regression, Random Forest regression, 

and XGB regression. These experiments were conducted across ten folds. The results are displayed 
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in Table 3 through Table 7, respectively, and the average performance across the ten folds is 

summarized in Table 8. 

Table 3. CatBoot Regression result. 

Fold 
Evaluation metrics 

MAE (kg) MAPE (%) 

Fold 1 27.800 6.529 

Fold 2 27.116 6.320 

Fold 3 27.767 6.380 

Fold 4 25.776 6.014 

Fold 5 26.432 6.371 

Fold 6 26.164 6.031 

Fold 7 25.775 5.980 

Fold 8 26.572 6.175 

Fold 9 29.491 6.924 

Fold 10 25.296 5.880 

Average 26.819 6.260 

Table 4. LightGBM Regression result. 

Fold 
Evaluation metrics 

MAE (kg) MAPE (%) 

Fold 1 26.268 6.124 

Fold 2 24.656 5.712 

Fold 3 26.193 6.094 

Fold 4 24.284 5.731 

Fold 5 25.383 6.033 

Fold 6 26.272 6.045 

Fold 7 24.096 5.537 

Fold 8 25.042 5.844 

Fold 9 26.560 6.191 

Fold 10 26.760 6.173 

Average 25.551 5.948 

Table 5. Polynomial Regression result. 

Fold 
Evaluation metrics 

MAE (kg) MAPE (%) 

Fold 1 25.302 5.903 

Fold 2 26.085 6.078 

Fold 3 26.187 6.066 

Fold 4 24.871 5.805 

Fold 5 25.594 6.116 

Fold 6 23.714 5.433 

Fold 7 25.017 5.790 

Fold 8 25.301 5.858 

Fold 9 27.933 6.527 

Fold 10 26.233 6.080 

Average 25.624 5.966 
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Table 6. Random Forest Regression result. 

Fold 
Evaluation metrics 

MAE (kg) MAPE (%) 

Fold 1 25.256 5.903 

Fold 2 24.293 5.649 

Fold 3 26.749 6.181 

Fold 4 25.786 5.994 

Fold 5 24.264 5.755 

Fold 6 24.318 5.559 

Fold 7 24.955 5.682 

Fold 8 25.294 5.890 

Fold 9 26.856 6.282 

Fold 10 24.269 5.622 

Average 25.204 5.852 

Table 7. XGBoost Regression result. 

Fold 
Evaluation metrics 

MAE (kg) MAPE (%) 

Fold 1 27.257 6.393 

Fold 2 27.150 6.285 

Fold 3 27.359 6.277 

Fold 4 27.252 6.370 

Fold 5 26.066 6.188 

Fold 6 27.299 6.296 

Fold 7 25.569 5.830 

Fold 8 27.052 6.274 

Fold 9 28.070 6.538 

Fold 10 26.401 6.108 

Average 26.948 6.256 

Table 8. Average result. 

Model 
Evaluation metrics 

Average of MAE (kg) Average of MAPE (%) 

CatBoost Regression 26.819 6.260 

Light GBM Regression 25.551 5.948 

Polynomial Regression 25.624 5.966 

Random Forest Regression 25.204 5.852 

XGBoost Regression 26.948 6.256 

The average MAE and MAPE for these algorithms are visualized in Figure 20 and Figure 21. As 

depicted in the bar graphs, the Random Forest model exhibited the highest performance, achieving 

an MAE error of 25.2 kg and a MAPE of 5.852%. It was followed by Polynomial and LightGBM. 

XGBoost and CatBoost also performed well among the models. 
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Figure 20. Average MAE results of 10 folds. 

 

Figure 21. Average MAPE results of 10 folds. 

To assess the effectiveness of estimating Korean cattle weight using the proposed dimensions, 

we analyzed the estimation results in comparison to the actual cattle weight for each machine 

learning model. Figure 22 illustrates the correlation between predicted weight and actual weight. The 

results indicate that, with the exception of the CatBoost model, which exhibited slightly lower 

performance than the other models, all the remaining models provided quite accurate weight 

prediction. 
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 22. Scatter plot of predicted weight values and measured weight values on different regression 

machine learning models: (a) CatBoost regression; (b) LightGBM regression; (c) Polynomial 

regression; (d) Random Forest regression; (e) XGBoost regression. 
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4. Conclusions 

In this paper, we have presented a vision-based solution for predicting the weight of Korean 

cattle using 3D segmentation and regression machine learning. After acquiring data from the multi-

camera system, we used PointNet for 3D segmentation, we employed PointNet for 3D segmentation, 

conducting two distinct cases: one to segment the torso for extracting body length and another to 

segment the center body for extracting chest girth and chest width. Finally, we applied five machine 

learning algorithms to estimate cattle weight based on the three extracted dimensions. We conducted 

experiments on 1190 3D Korean cattle samples, captured from various poses of 270 Korean cattle. The 

results of these experiments demonstrated an accuracy of 25.2 kg in terms of MAE and 5.81% in terms 

of MAPE. Our approach not only showcases the effectiveness of weight prediction for Korean cattle 

but also holds the potential for broader applicability to other tetrapod species. 
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Abbreviations 

The following abbreviations are used in this paper. 
3D Three Dimension 

AI Artificial Intelligent 

ANN Artificial Neural Network 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MLP Multiple Layer Perceptron 

LIDAR Light Detection and Ranging 

PCA Principal Component Analysis 

RGB-D Red Green Blue Depth 

LightGBM Light Gradient Boosting Machine 

XGBoost Extreme Gradient Boost 
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