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Abstract: Accurate weight measurement is pivotal for monitoring the growth and well-being of
cattle. However, the conventional weighing process, which involves physically placing cattle on
scales, is labor-intensive and distressing for the animals. Hence, the development of automated
cattle weight prediction techniques assumes critical significance. This study proposes a weight
prediction approach for Korean cattle using 3D segmentation-based feature extraction and
regression machine learning techniques from incomplete 3D shapes acquired from real farm
environments. In the initial phase, we generated mesh data of 3D Korean cattle shapes using a
multiple-camera system. Subsequently, deep learning-based 3D segmentation with the PointNet
network model was employed to segment two dominant parts of the cattle. From these segmented
parts, three crucial dimensions of Korean cattle were extracted. Finally, we implemented five
regression machine learning models (CatBoost regression, LightGBM, Polynomial regression,
Random Forest regression, and XGBoost regression) for weight prediction. To validate our
approach, we captured 270 Korean cattle in various poses, totaling 1190 poses of 270 cattle. The best
result was achieved with mean absolute error (MAE) of 25.2 kg and mean absolute percent error
(MAPE) of 5.81% using the random forest regression model.

Keywords: 3D segmentation; feature extraction; regression machine learning; weight estimation

1. Introduction

The agricultural sector plays a pivotal role in meeting human food needs, with livestock farming
serving as a vital source of meat, milk, and related products. To effectively manage and promote
sustainable livestock production, accurate weight estimation of livestock holds a critical position.
Traditional livestock weighing methods often involve labor-intensive processes that cause stress to
the animals, consequently negatively impacting overall productivity.

The development of an algorithm for livestock weight estimation without direct contact with the
animals is essential. This approach addresses ethical concerns by minimizing stress and discomfort
during the weighing process.

In today's era of rapid technological advancements, the integration of computer vision-based
techniques in livestock farming aligns perfectly with the movement towards smart and precision
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agriculture. The application of computer vision in livestock weight estimation represents a significant
leap forward for automation and data-driven decision-making in agriculture.

Leveraging this technology, farmers can gain real-time insights into livestock weight and health,
allowing for more efficient resource allocation, early disease detection, and improved breeding
strategies. This has the potential to increase productivity, reduce costs, and contribute to sustainable
agricultural practices.

The development of algorithms to predict livestock weight through computer vision-based
techniques has garnered significant attention, with various research studies in this area. There are
two main approaches: 2D image analysis and 3D image analysis.

First, we review 2D image analysis approaches. Tasdemir and Ozkan [1] conducted a study to
predict the live weight of cows using an Artificial Neural Network (ANN) approach. They captured
cows from various angles, applied photogrammetry to calculate body dimensions, and predicted live
weight using ANN-based regression. Anifah and Haryanto [2] proposed a fuzzy rule-based system
to estimate cattle weight, extracting body length and circumference as features to feed the fuzzy logic
system for weight estimation. Ana et al. [3] conducted a study to predict live sheep weight using
extracted features and machine learning. They captured sheep images from top view, created masks
of the top view, and measured six distances in the mask as features to feed a random forest regression
model. Weber et al. [4] proposed a cattle weight estimation approach using active contour and
regression trees bagging. They first segmented the image, then created a hull from the segmented
image, then extracted features, and predicted weight using a random forest model.

Compared to 2D image processing approaches, 3D image processing approaches have gained
more research attention in recent years. Jang et al. [5] estimated body weight for Korean cattle using
3D images, capturing them from the top view. After extracting body length, body width, and chest
width, they built a linear function to calculate cattle weight. Na et al. [6] proposed a solution to predict
cattle weight using depth images, capturing images from the top view, segmenting them, and
extracting characteristics of shape and size for cattle weight prediction using machine learning model.
Kwon et al. [7] reconstructed a pig 3D model, created distances along pig’s body as features, and
utilized neural networks to predict pig weight. Hou et al. [8] collected data using LIDAR (Light
Detection and Ranging) sensor, segmented 3D beef object models using PointNet++ [9], measured
body length and chest girth, and calculated weight using a pre-defined formula. Ruchay et al. [10]
proposed a model for predicting live weight based on augmenting 3D clouds in the form of flat
projections and images with regression deep learning. Na et al. [11] developed a pig weight
prediction system using Raspberry Pi, capturing RGB-D images from the top view of pigs, extracting
body characteristics and shape descriptors after segmenting the image, and applying various
regression machine learning models to predict pig weight. Le et al. [12] calculated body sizes, surface
area, length, and morphological traits from completed 3D shapes acquired using a laser scanning
device to feed into a regression model for dairy cow weight estimation. Cominotte et al. [13] captured
3D images of cattle from the top view, extracted features from segmented images, and used linear
and non-linear regression models to predict beef cattle weight. Martins et al. [14] also captured 3D
images from top view and side view, measuring several distances to feed into the Lasso regression
model for body weight estimation.

In all the studies mentioned above, whether employing 2D or 3D image processing approaches,
a common formula is followed: the extraction of features for subsequent weight prediction. However,
the feature extraction process often relies on 2D segmented images or projection masks of 3D images,
which can make it challenging to accurately represent 3D spatial elements, such as chest girth (chest
circumference). Research has shown that chest girth is a critical factor in weight calculation [15].

In this study, we propose an approach that extracts features based on 3D segmentation, enabling
us to measure features with precision, incorporating 3D spatial elements accurately. Furthermore,
while previous studies were primarily conducted in controlled laboratory or fenced environments,
our research predicts weights using 3D shapes acquired from real farm environments.

The main contributions of this proposal are as follows:
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1. We introduce an effective approach for predicting Korean cattle weight using vision-based
techniques.

2. We present a straightforward method for extracting cattle dimensions through 3D segmentation.

3. We explore multiple regression machine learning algorithms for Korean cattle weight
prediction.

4. Our approach not only predicts Korean cattle weight but also automatically measures three
essential body dimensions, facilitating further analysis.

2. Materials and Methods

2.1. Data Acquisition

To collect 3D Korean cattle data, we designed a specialized multiple-camera system, which is
illustrated in Figure 1. In Figure 1a, you can see the system’s design, and in Figure 1b, you can observe
the actual setup.

The system comprises ten stereo cameras arranged in a half-ring configuration, maximizing the
coverage of Korean cattle as they pass by. Ideally, an imaging system should form a symmetrical U-
shape to capture data from all angles. However, practical considerations, such as bulkiness, mobility
issues, and animal fear, make such a design unfeasible. Our mechanical design, in contrast, is
lightweight, flexible, and collapsible when not in use. This approach ensures efficient data acquisition
without causing distress to the livestock.

Figure 1. Multiple-camera system. (a) System design; (b) Real-world deployment

The relative translation and rotation between all cameras remained constant throughout the data
collection process. We employed stereo cameras, allowing each camera to capture two infrared
images: a left infrared image and a right infrared image. Figure 2 provides an example featuring ten
left infrared images from our proposed camera system. The ten right images captured by the system
exhibit similar characteristics.
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Figure 2. Left infrared images from our capturing system.

We generated 3D data from the left and right images of each camera using stereo matching, as
described in [16]. Subsequently, guided by the pre-defined relative distances and rotation angles of
the cameras, we aligned the 3D images from each individual camera. The 3D mesh data was then
reconstructed using the Poisson surface reconstruction algorithm [17] to construct a comprehensive
3D representation of the entire scene featuring the Korean cattle.

Once this was complete, we subtracted the fixed fence and background scene, resulting in the
creation of the 3D mesh data specifically depicting the Korean cattle, as exemplified in Figure 3. In
Figure 3, each row displays the left view, top view, and right view of a Korean cattle. Notably, the
mesh data on the right side and the under area of the cattle appears incomplete due to our system's
flexible design, which is designed to adapt to the unpredictable conditions of a real-world farm
environment.

Hanwoo 1 Hanwoo 2

Figure 3. Two random of 3D Korean cattle mesh data after reconstruction.

We conducted data collection on two separate occasions, in August 2023 and September 2023, at
two distinct farms located in Seosan province, South Korea. Our dataset consisted of a total of 270
cattle, ranging in age from 9 months to 12 months. For each individual cattle, we captured between 3
to 5 shots in various poses, resulting in a collection of 1190 3D data files. Concurrently, we recorded
the weight of each cattle during the data capture process. The weight of the cattle in our dataset varies
within the range of 300kg to 600kg. The weight distribution is visualized in Figure 4.
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Figure 4. Weight distribution of Korean cattle used in this study.

2.2. Proposed Pipeline Overview

The overall diagram of the proposed pipeline is depicted in Figure 5. After reconstruction
process, the 3D image of Korean cattle was saved as 3D mesh files. 3D mesh is sampled into multiple
point cloud data for 3D segmentation process. Two segmentation models are designed for this
project: torso segmentation and center body segmentation.

Input data 3D Segmentation-based Feature Extraction Weight Prediction

3D Korean Cattle mesh Toree

N ‘ Segmentation
)
|

Body length Regression Model
CatBoost

¢ LightGBM |- Prediction
¢ Polynomial value

i (<‘:\ \ € Center Body Chest girth Random Forest

XGBoost

Segmentation Chest width

Figure 5. Overview structure diagram of proposed pipeline.

The output of the torso segmentation is used to measure the body length, while the output of
the center body segmentation was used to extract the chest girth and chest width. After three
important dimension characteristics are extracted, a regression machine learning model is developed
to predict Korean cattle weight with these three dimensions as input. We applied five of the most
advanced regression machine learning models: CatBoost, LightGBM, Polynomial, Random Forest,
and XGBoost.

2.3. 3D Segmentation-Based Feature Extraction

2.3.1. Definition of Korean Cattle Body Dimensions

Recent studies [15] have demonstrated the feasibility of determining cattle weight by measuring
specific distance parameters. However, it's important to note that among the ten parameters used for
determining these distances, each parameter possesses varying levels of significance. In this study,
we propose a solution that automates the measurement of three body dimensions with the highest
weight ratios, upon which we base our weight prediction model. These three critical dimensions are
body length, chest girth, and chest width. Detailed measurement definitions for these body
dimensions are provided in Table 1, and the corresponding measurement sites for each body
dimension are visually represented in Figure 6.
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Table 1. Definition of Korean cattle body dimension.

Body dimensions Symbol Definition
Body length BL Horizontal length of the body
Chest girth CG Perimeter of the vertical body axis at the chest
Chest width CW Maximum width of chest

Figure 6. Three body dimensions of Korean cattle.

2.3.2. 3D Segmentation-Based Feature Extraction

Automatically extracting body dimensions from Korean cattle data acquired in 3D can be a
challenging task. To overcome this, we employed a segmentation approach to isolate the specific
parts of the cattle for measurement. We conducted two distinct segmentation processes: one for cattle
torso segmentation to measure body length and another for center body segmentation, which allows
us to measure chest girth and chest width, as illustrated in Figure 7.

Figure 7. Torso segmentation (left), and center body segmentation (right).

The advancement of artificial intelligence (Al), particularly in deep learning techniques, has
introduced powerful tools for 3D data analysis. One such network, PointNet [18], specializes in 3D
data analysis and offers the advantage of learning both global and local features. It can be effectively
applied to various 3D tasks, including 3D classification, 3D segmentation, and 3D part segmentation.
In this project, we adopt the PointNet network for 3D cattle part segmentation. To streamline the data
labeling process while maintaining high accuracy, we exclusively use binary 3D segmentation,
simplifying the model's complexity. Consequently, we implemented two models with identical
architecture but distinct labeling data: one for cattle torso segmentation and the other for center body
segmentation.

The architectural overview of PointNet, designed for point cloud segmentation tasks, is
presented in Figure 8. It incorporates an Input Transform network (T-Net) followed by a series of
Multi-Layer Perceptrons (MLPs) for local feature extraction. The Input Transform network captures
transformations to ensure the network's robustness to input point permutations, rotations, and
translations. Subsequently, a Feature Transform network (T-Net) enhances the network's capacity to
handle diverse point orderings. After local feature extraction, a global feature vector is derived
through max pooling, enabling the network to aggregate information from the entire point cloud.
This global feature vector is further processed by a set of MLPs to produce the final segmentation
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mask, which assigns class labels to each point. The combination of Input and Feature Transform
networks empowers PointNet to effectively segment complex 3D data.

Input transform Input transform

Multi-Layer
Perceptron

Matrix
multiply

Matrix
multiply

Multi-Layer

<« Max pooling Perceptron

Multi-Layer

Perceptron Global feature

Figure 8. PointNet Architecture for 3D segmentation [18].

2.4. Regression Machine Learning

With three numeric inputs (body length, chest girth, chest width) and the numeric output of
cattle weight, as illustrated in Figure 9, regression models are the most appropriate choice. In this
project, we have selected five prominent regression machine learning models for Korean cattle weight
prediction, CatBoost regression, LightGBM, Polynomial regression, Random Forest regression,
XGBoost regression.

Body length

Chest grith

VERINEREEININES predicted weight
Algorithm

Chest width

—

Figure 9. Simple schematic of regression machine learning for weight prediction.

2.4.1. CatBoost Regression

CatBoost [19] is a renowned ensemble machine learning algorithm, particularly effective in
regression tasks. It employs category-based optimization to enhance predictive accuracy and utilizes
gradient boosting to iteratively construct decision trees, effectively reducing errors. Notable features
of CatBoost include its intrinsic handling of categorical data, adept feature selection, and strategies
to prevent overfitting. The algorithm also demonstrates efficiency in real-world applications, offering
support for parallel computation and fine-tuned hyper parameter optimization.

2.4.2. Light Gradient Boosting Machine

Grounded in gradient boosting techniques, LightGBM [20] meticulously constructs decision
trees to iteratively correct errors. Its innovation lies in histogram-based algorithms and leaf-wise tree
growth, ensuring computational efficiency. LightGBM further employs gradient-based one-side
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sampling and exclusive data filtering to enhance robustness and mitigate overfitting. Its parallel
processing capabilities make it an excellent choice for regression tasks.

2.4.3. Polynomial Regression

Polynomial regression [21] extends linear regression by incorporating basic mathematical
functions. This algorithm is particularly useful for handling nonlinear data by employing linear
factors. It demonstrates the capability to work effectively with a wide range of nonlinear data while
maintaining efficiency comparable to linear functions.

2.4.4. Random Forest Regression

Random forest [22] is an ensemble learning technique based on decision tree models. During
training, it builds a collection of decision trees, with each tree constructed independently and
accessing a random subset of the training data. The use of random subsets of data and features helps
prevent overfitting, contributing to the model's robustness.

2.4.5. Extreme Gradient Boost Regression

Extreme Gradient Boost Regression (XGBoost) [23] is another ensemble learning technique
rooted in the gradient boosting framework, primarily applied to regression tasks. XGBoost iteratively
refines predictive models by constructing a series of decision trees, each correcting the errors of the
previous iteration. It is distinguished by its incorporation of sophisticated L1 and L2 regularization
techniques to mitigate overfitting and maintain model parsimony. XGBoost is also known for its
robust handling of missing data.

2.5. K-Fold Cross-Validation

To assess the performance of the chosen machine learning models, we employed K-fold cross-
validation. The data were randomly divided into ten partitions of equal size (k=10). For each partition
(p), we trained the selected machine learning models on the remaining nine partitions and
subsequently tested the models on partition (p). The final score was computed as the average of all
ten scores obtained. The schematic of K-fold validation with k=10 is depicted in Figure 10.

Data split into1 10 partitions

|

Fold 1 { Test L1114 — Test score #1

o L. — Final score:
o> [ NN D QORI — st score 13 v

Fold 10 et ] — Test score #10)

Figure 10. Schematic of K-fold cross-validation with k = 10.
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3. Experiments
3.1. Segmentation

3.1.1. Cross-Sampling Augmentation

Building deep learning models always necessitates a substantial number of labeled samples for
train process. In the case of 3D PointNet networks, achieving high model accuracy demands training
on thousands of samples. However, manual labeling of thousands of samples is an exceedingly labor-
intensive task. To address this challenge, we have introduced an augmentation method named as
cross-sampling.

The cross-sampling process is illustrated in Figure 11. Starting with each 3D Korean cattle data
sample, we conducted down-sampling with a resolution of 0.1 mm. Following down-sampling, each
the 3D cattle data typically contains between 11 thousand to 12 thousand points. We partitioned it
into ten segments, each consisting of 1024 points (PointNet with 1024 input was selected for this
project). This process yielded ten sparse point clouds for each original sample. Subsequently, we
further divided each sparse point cloud into ten segments and recombined them to create an
additional ten samples, distinct from the previous set. Through this approach, with each original 3D
mesh data, we generated twenty sparse point cloud samples, each consisting of 1024 points.

Cross - sampling

Sampling —

Figure 11. Cross-sampling.

The segmentation process unfolded in the following manner. We manually labeled 100 cattle
models. By employing cross-sampling augmentation, we expanded our dataset to include 2000
samples.

3.1.2. Feature Extraction

To verify the accuracy of segmentation process, we employed global accuracy metric [24], which
is defined as below:

Global accuracy:
Number of correct prediciton

Total number of prediction (1)
The experiments were conducted on a computational workstation equipped with a CPU Core-
i9 3.5GHz and an NVIDIA 3060Ti GPU with 8GB of memory. For deep learning, we chose the
TensorFlow 2.1.0 framework [25] and CUDA 11.0. The network parameters included the use of the
adaptive moment estimation optimizer (Adam), a batch size of 64, 1000 training epochs, and a
learning rate of 0.001. Only the best weights were saved during training. The records of the training
history are displayed in Figures 12 and 13, and the accuracy results are summarized in Table 2.

Global Accuracy =
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Figure 12. Torso segmentation training history plot.
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Figure 13. Center body segmentation training history plot.

Table 2. 3D segmentation accuracy.

Case Training Accuracy Validation Accuracy
Torso segmentation 99.04% 97.55%
Center body segmentation 99.01% 97.21%

In Figures 12 and 13, the blue line represents the training process, while the orange line
represents the testing process. The training process stabilized after approximately 400 epochs,
resulting in a training accuracy of 99% and a testing accuracy of 97% for both segmentation cases. We
applied the trained segmentation models to perform 3D cattle segmentation, and the results are
visualized in Figures 14 and 15.
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Figure 14. Segmentation results with the case of torso segmentation.
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Figure 15. Segmentation results with the case of center body segmentation.

In Figures 14 and 15, the red area represents “True positive”, the green area represents “True
negative”, and the yellow region indicates False (“False positive” or “False negative”). It's noteworthy
that the yellow area occupies a very small proportion at the border between the red and green areas,
which has a negligible impact on the subsequent size measurement.

To achieve accurate measurements of Korean cattle's body dimensions, it's essential for the cattle
to be in an upright position from head to tail. However, in reality, cattle often stand in a tilted position.
To address this, we corrected the cattle's posture both horizontally and vertically using rendered
silhouettes derived from the 3D segmented torso.

We employed the Principal Component Analysis (PCA) method [26] for posture correction. The
process involved extracting contour points from an image, calculating the centroid of these points to
center the data, creating a covariance matrix to understand the relationship between x and y
coordinates, and computing the eigenvalues and eigenvectors of the covariance matrix. The
eigenvector with the largest eigenvalue signified the principal axis, aligning with the contour's
orientation in both the vertical and horizontal views. The results of orientation correction are
illustrated in Figure 16.
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(a) (b)

Figure 16. Posture correction using PCA: (a) Top view; (b) Side view.

Posture correction allowed us to measure body length by capturing the horizontal length of the
segmented torso as in Figure 17.

Figure 17. Extracting body length from 3D segmented torso.

To extract chest girth and chest width, we followed these steps. First, we corrected the cattle's
posture both horizontally and vertically. Then, we cut planes perpendicular to the cattle's body axis
to delineate the boundary surrounding the cattle's chest. Despite not obtaining a closed contour due
to the limitations of the 3D data collection system, the achieved contour encompassed over 60% of
the cattle's chest, facilitating interpolation of a circle. We fitted an ellipse to the achieved contour,
with the perimeter of the fitted ellipse measuring chest girth and the minor axis of the ellipse
measuring chest width. Figure 18 on the left displays a 3D image of cattle after center body
segmentation, and Figure 18 on the right depicts the extraction process.

Chest girth

! Chest width

=

Figure 18. Extracting chest girth and chest width from segmented center body.

3.2. Weight Prediction

Having extracted the three dimensions from 1190 3D Korean cattle samples in the previous step,
we delved into examining the relationship between body sizes and cattle weight within the dataset.
Figure 19 presents a scatter plot showcasing the relationship between the cattle weight and each
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dimension. As depicted in the graph, a cattle's weight demonstrates a close correlation with these
dimensions.
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Figure 19. Scatter plot of the relationship between three body dimensions and Korean cattle weight:
(a) Body length and weight; (b) Chest girth and weight. (c) Chest width and weight.

To evaluate the performance of the proposed approach, two standard evaluation metrics are
used. We used the mean absolute error (MAE) and mean absolute percentage error (MAPE).
MAE:

n
1
MAE =ZZ|yi—pi| )
i=1

Where:

n is a number of tested samples.

yi,i =1,...,nis a known value of cattle weight.

pi,i =1,..,n is a predicted value of the cattle weight.
MAPE:

n

TR
MAE=—Z non
n yi

i=1

| ©)

Where:

n is a number of tested samples.

yi,i = 1,...,nis a known value of cattle weight.

pi,i =1,..,n is a predicted value of the cattle weight.

The experiments aimed to estimate Korean cattle weight using the five proposed machine
learning models: CatBoost regression, Light GBM, Polynomial regression, Random Forest regression,
and XGB regression. These experiments were conducted across ten folds. The results are displayed
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in Table 3 through Table 7, respectively, and the average performance across the ten folds is
summarized in Table 8.

Table 3. CatBoot Regression result.

Evaluation metrics

Fold MAE (kg) MAPE (%)
Fold 1 27.800 6.529
Fold 2 27.116 6.320
Fold 3 27.767 6.380
Fold 4 25.776 6.014
Fold 5 26.432 6.371
Fold 6 26.164 6.031
Fold 7 25.775 5.980
Fold 8 26.572 6.175
Fold 9 29.491 6.924
Fold 10 25.296 5.880

Average 26.819 6.260

Table 4. LightGBM Regression result.

Evaluation metrics

Fold MAE (kg) MAPE (%)
Fold 1 26.268 6.124
Fold 2 24.656 5.712
Fold 3 26.193 6.094
Fold 4 24.284 5.731
Fold 5 25383 6.033
Fold 6 26.272 6.045
Fold 7 24.096 5.537
Fold 8 25.042 5.844
Fold 9 26.560 6.191

Fold 10 26.760 6.173
Average 25,551 5.948

Table 5. Polynomial Regression result.

Evaluation metrics

Fold MAE (kg) MAPE (%)
Fold 1 25.302 5.903
Fold 2 26.085 6.078
Fold 3 26.187 6.066
Fold 4 24.871 5.805
Fold 5 25.594 6.116
Fold 6 23.714 5.433
Fold 7 25.017 5.790
Fold 8 25.301 5.858
Fold 9 27.933 6.527
Fold 10 26.233 6.080

Average 25.624 5.966



https://doi.org/10.20944/preprints202311.0350.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2023 doi:10.20944/preprints202311.0350.v1

15

Table 6. Random Forest Regression result.

Evaluation metrics

Fold MAE (kg) MAPE (%)
Fold 1 25.256 5.903
Fold 2 24.293 5.649
Fold 3 26.749 6.181
Fold 4 25.786 5.994
Fold 5 24.264 5.755
Fold 6 24.318 5.559
Fold 7 24.955 5.682
Fold 8 25.294 5.890
Fold 9 26.856 6.282
Fold 10 24.269 5.622

Average 25.204 5.852

Table 7. XGBoost Regression result.

Evaluation metrics

Fold MAE (kg) MAPE (%)
Fold 1 27.257 6.393
Fold 2 27.150 6.285
Fold 3 27.359 6.277
Fold 4 27.252 6.370
Fold 5 26.066 6.188
Fold 6 27.299 6.296
Fold 7 25.569 5.830
Fold 8 27.052 6.274
Fold 9 28.070 6.538
Fold 10 26.401 6.108

Average 26.948 6.256

Table 8. Average result.

Evaluation metrics

Model Average of MAE (kg) Average of MAPE (%)
CatBoost Regression 26.819 6.260
Light GBM Regression 25.551 5.948
Polynomial Regression 25.624 5.966
Random Forest Regression 25.204 5.852
XGBoost Regression 26.948 6.256

The average MAE and MAPE for these algorithms are visualized in Figure 20 and Figure 21. As
depicted in the bar graphs, the Random Forest model exhibited the highest performance, achieving
an MAE error of 25.2 kg and a MAPE of 5.852%. It was followed by Polynomial and LightGBM.
XGBoost and CatBoost also performed well among the models.
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Figure 20. Average MAE results of 10 folds.
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Figure 21. Average MAPE results of 10 folds.

To assess the effectiveness of estimating Korean cattle weight using the proposed dimensions,
we analyzed the estimation results in comparison to the actual cattle weight for each machine
learning model. Figure 22 illustrates the correlation between predicted weight and actual weight. The
results indicate that, with the exception of the CatBoost model, which exhibited slightly lower
performance than the other models, all the remaining models provided quite accurate weight
prediction.
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Figure 22. Scatter plot of predicted weight values and measured weight values on different regression
machine learning models: (a) CatBoost regression; (b) LightGBM regression; (c¢) Polynomial
regression; (d) Random Forest regression; (e) XGBoost regression.
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4. Conclusions

In this paper, we have presented a vision-based solution for predicting the weight of Korean
cattle using 3D segmentation and regression machine learning. After acquiring data from the multi-
camera system, we used PointNet for 3D segmentation, we employed PointNet for 3D segmentation,
conducting two distinct cases: one to segment the torso for extracting body length and another to
segment the center body for extracting chest girth and chest width. Finally, we applied five machine
learning algorithms to estimate cattle weight based on the three extracted dimensions. We conducted
experiments on 1190 3D Korean cattle samples, captured from various poses of 270 Korean cattle. The
results of these experiments demonstrated an accuracy of 25.2 kg in terms of MAE and 5.81% in terms
of MAPE. Our approach not only showcases the effectiveness of weight prediction for Korean cattle
but also holds the potential for broader applicability to other tetrapod species.
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Abbreviations

The following abbreviations are used in this paper.

3D Three Dimension

Al Artificial Intelligent

ANN Artificial Neural Network

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MLP Multiple Layer Perceptron
LIDAR Light Detection and Ranging
PCA Principal Component Analysis
RGB-D Red Green Blue Depth
LightGBM Light Gradient Boosting Machine
XGBoost Extreme Gradient Boost
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