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Abstract: Applications of gradient method for nonlinear optimization in development of Gradient
Neural Network (GNN) and Zhang Neural Network (ZNN) are investigated. Particularly, the solution
of the matrix equation AXB = D which changes over time is studied using the novel GNN model,
termed as GGNN(A, B, D). The GGNN model is developed applying GNN dynamics on the gradient
of the error matrix used in the development of the GNN model. The convergence analysis shows that
the neural state matrix of the GGNN(A, B, D) design converges asymptotically to the solution of the
matrix equation AXB = D, for any initial state matrix. It is also shown that the convergence result is
the least square solution which is defined depending on the selected initial matrix. A hybridization
of GGNN with analogous modification GZNN of the ZNN dynamics is considered. The Simulink
implementation of presented GGNN models is carried out on the set of real matrices.

Keywords: gradient neural network; generalized inverses; Moore-Penrose inverse; linear matrix
equations

MSC: 68T05; 15A09; 65F20

1. Introduction and background

Recurrent neural networks (RNNs) are important class of algorithms for computing matrix
(generalized) inverses. These algorithms are used to find the solutions of the matrix equations or
to minimize certain nonlinear matrix functions. RNNs are divided into 2 subgroups: Gradient
Neural Networks (GNN) and Zhang Neural Networks (ZNN). The GNN design is explicit and mostly
applicable to time-invariant problems, which means that coefficients of the equations which are
addressed are constant matrices. ZNN models can be implicit and capable to solve time-varying
problems where coefficients of the equations depend on the variable t € R,t > 0, representing the
time [31].

GNN neural design models for computing the inverse or the Moore-Penrose inverse and
linear matrix equations were proposed in [6,25-27]. Further, various dynamical systems aimed
to approximating the pseudo-inverse of rank-deficient matrices were originated in [6]. Wei in [28]
proposed three RNN models for approximation of the weighted Moore-Penrose inverse. Cichocki
in [29] proposed a feed-forward neural network for approximating the Drazin inverse. Online matrix
inversion in complex matrix case was considered in [30].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Applications of this type of inverses can be found in important areas such as modeling of electrical
circuits [10], estimation of DNA sequences [22,23], balancing chemical equations [11,12] and in other
important research domains related to robotics [13] and statistics [14].

In the following sections we will focus on GNN and ZNN dynamic systems based on gradient
of the objective function and their implementation. The main goal of this research is the analysis of
convergence and the study of analytic solutions. In this study we are concerned with solving the
matrix equation AXB = D [20,21] in real time using the GNN model, denoted by GNN(A, B, D) [3-9],
and the novel gradient-based GGNN model, termed as GGNN(A4, B, D). The proposed GGNN model
is defined evolving the standard GNN dynamics along the gradient of the standard error matrix.
The convergence analysis reveals the global asymptotic convergence of GGNN(A, B, D) without
restrictions, while the output belongs to the set of general solutions to the matrix equation AXB = D.
The implementation is performed in MATLAB Simulink and numerical experiments are developed
with simulations of GNN and GGNN models.

The GNN used to solve the general linear matrix equation AXB = D is defined over the error
matrix E(t) = D — AV(t)B, where t € [0, +o0) is the time and V (¢) is an unknown state-variable matrix
that approximates the unknown matrix X in AXB = D. The goal function is ¢(t) = ||D — AV (¢)B||3/2
and its gradient is equal to

de(t) _ Ve — 10||D — AV(1)B|[} _

N7 AT _ T
av 5 — AT(D — AV(1)B)BT.

The GNN evolutionary design is defined by the dynamic system

_dv() _ae()

V() = S5 =% v =, 0

where v > 0 is real parameter used to speed up the convergence. Thus, the linear GNN aimed at
solving AXB = D is given by the following dynamics:

V(t) = yAT(D — AV (t)B)BT. 2)

The dynamical flow (2) is denoted as as GNN(A, B, D). The nonlinear GNN(A, B, D) for solving
AXB = D is defined by
V(t) =yATF(D — AV(t)B)BT. ®3)

The function array F(C) is based on appropriate odd and monotonically increasing activation function,
which is applicable to elements of a real matrix C = (c;;) € R™*",ie. F(C) = (f(c;j)),i=1,...,m,j =
1,...,n,.

Proposition 1 restates restrictions about the solvability of AXB = D and its general solution.

Proposition 1. [1,18] If A € R"™*", B € RP*Tand D € R™*1 then fulfillment of the condition
AATDB'B=D (4)

is necessary and sufficient for solvability of the linear matrix equation AXB = D. In this case, the set of all
solutions is given by
X = {A*DB*+Y—A*AYBB*| YeR“XP}. )

The following results from [15] describe the conditions of convergence and the limit of the
unknown matrix V(t) from (3) as t — +o0.
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Proposition 2. [15] Suppose the matrices A € R™*",B € RP*7 and D € R™*1 satisfy (4). Then the
unknown matrix V (t) from (3) converges as t — +oo with the equilibrium state

V(t) -V =A"DB" + Vv (0) — AYAV(0)BB" (6)
for any initial state variable matrix V(0) € R™"*P.

The research in [24] investigated various ZNN models based on optimization methods. The goal
of current research is to develop the GNN model based on the gradient E¢ (t) of | E(t)||% instead of the
original goal function E(t).

Obtained results are summarized as follows.

e Anovel error function E(t) is proposed for development of the GNN dynamical evolution.

*  GNN design evolved upon the error function E;(f) is developed and analyzed theoretically and
numerically.

® A hybridization of GNN and ZNN dynamical systems based on the error matrix Eg is proposed

and investigated.

Global organization of section is as follows. Motivation and derivation of GGNN and GZNN
models are presented in Section 2. Section 3 is aimed to convergence analysis of the GGNN dynamics.
Numerical comparison on GNN and GGNN dynamics are given in Section 4, in which Subsection
4.1 investigates a practical application of GGNN to electrical networks. Neural dynamics based on
the hybridization of GGNN and GZNN model for solving matrix equations are considered in Section
6. Numerical examples on hybrid models model are analysed in Section 6. Finally, the last section
presents some concluding remarks and vision of further research.

2. Motivation and derivation of the GGNN and GZNN models

The standard GNN design (2) solves the GLME AXB = D under the constraint (4). Our goal is to
resolve this restriction and propose dynamic evolutions based on the error functions that tend to zero
without restrictions.

Our goal is to define the GNN design for solving the GLME AXB = D based on the error function

Ec(t) := Ve(t) = AT (D — AV(t)B) BT = ATE(t)BT. ?)

The equilibria points of (7) satisfy
Eg(t) := Ve(t) =0.

We continue investigation from [24]. More precisely, we will develop the GNN model based on
the error function Eg(t) instead of the error function E(t). In this way, new neural dynamics is aimed
to force the gradient Eg to zero instead of the standard goal function E(t). It is reasonable to call such
RNN model as gradient-based GNN (GGNN shortly).

Proposition 3 gives conditions for solvability of the matrix equations E(t) = 0 and E(f) = 0 and
general solutions to these systems.

Proposition 3. [24] Consider arbitrary matrices A € R™*", B € R¥*M gud D € R™*". The next statements
are true.

(a) The equation E(t) = 0 is solvable if and only if (4) is satisfied and the general solution to E(t) = 0 is given
by (5).

(b) The equation Eg(t) = 0 is always solvable and its general solution coincides with (5).

In this way, the matrix equation E(t) = 0 is solvable under the condition (4), while the equation
Ec(t) = 0is always consistent. In addition, the general solutions to equations E(t) = 0 and Eg(t) =0
are identical [24].
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The next step is to define the GGNN dynamics using the error matrix Eg(t). Let us define the
objective function eg = ||Eg||%/2, whose gradient is equal to

3865“;(f)) _0||AT(D - Ez;t&/(t)B)BTII%: AT ( AT(D — AV($)B) BT) BBT.

The dynamical system for the GGNN formula is obtained applying the GNN evolution along the
gradient of e (V(t)) based on Eg(t), as follows

a&G
v ®)
=vATA (AT (D — AV(t)B) BT) BBT.

V(t) =

The nonlinear GGNN dynamics is defined as
V(t) = yATAF(AT (D — AV(t)B) BT)BBT, ©9)

in which F(C) denotes an odd and monotonically increasing function array, as mentioned in previous
section for the GNN model (3). An arbitrary monotonically increasing odd activation function f(-)
is used for the construction of the GNN neural design. The model (9) is termed as GGNN(A4, B, D).
Figure 1 represents the Simulink implementation of GGNN(A, B, D) dynamics (9).

~L_J
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Figure 1. Simulink implementation of GGNN(A, B, D) evolution (9). cope

On the other hand, the GZNN model defined upon the Zhangian matrix Eg(t) is defined in [24]
by the general evolution design

_ dEg(t)

= =71 F(Ec(t))- (10)

3. Convergence analysis of GGNN dynamics

In this section, we will analyze convergence properties of GGNN model given by dynamics (9).
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Theorem 1. Consider matrices A € R™*", B € RP*9 and D € R™*1. If an odd and monotonically increasing
array activation function F(-) based on an elementwise function f(-) is used, then the neural state matrix
V(t) € R"*P of the GGNN(A, B, D) model (9) asymptotically converges to the solution of the matrix equation
AXB =D, ie, ATAV(t)BBT — ATDBT ast — +oco, for an arbitrary initial state matrix V (0).

Proof. From the statement b) of Proposition 3, the solvability of ATAVBBT = ATDBT is ensured. The
substitution V(t) = V(t) + ATDB' transforms the dynamics (9) into

dv(y) _ dv(y
dt  dt
= yATAF (AT (D — AV(t)B— AA*DB*B) BT) BBT

= yATAF (AT (D — AV(t)B) BT) BBT

(11)
Q JATAF (4T (D - AV(t)B ~ D) BT) BB
= —yATAF (ATAV(t)BBT) BBT.
Lyapunov function candidate which measures the convergence performance is defined by
- 1 5 1 _ _
LV, 0 = 5V} = 5T (V7 (). (12)

The conclusion is L(V (t),t) > 0. According to (12), assuming (11) and using d Tr(X” X) = 2Tr(XTdX)
in conjunction with basic properties of the matrix trace function, one can express the time derivative of
L(V(t),t) as in the following

dL(V(t),t)  1dTe (V()TV (1))
a2 dt

=22 Tr(V() dzt))
=Tr [ ( ~YATAF (ATAV( )BBT) BBT)}
= —Tr [ t)

= —qTr [ (HTATAF (ATAV( )BBT)]

(13)
TATAF (ATAV( )BBT) BBT]

- —'yTr[ ATAV(1) BBT)T;E(ATAV(t)BBT)].

Since the scalar-valued function f(-) is an odd and monotonically increasing, it follow for W(t) =

ATAV (t)BBT
% = —qTr [(WTI(W))]
R <0 if W(t):=ATAV(t)BBT £0 (14)
a _7;;12% wigf (i) { it W(t):= ATAV(t)BBT =0,

which implies

dL(V(t),t) | <0 if W(t) #0
at {:0 it W(t) =0 (15)
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Observing the identity
W(t) = ATAV(t)BBT
= ATA (V(t) A*DB*) BBT
= ATAV(t)BBT — ATDBT
= AT (AV(t)B - D) BT,

and using the Lyapunov stability theory, W(t) := AT (AV(t)B — D) BT globally converges to the zero
matrix, from arbitrary initial value V(0). O

Theorem 2. The activation state variables matrix V(t) of the model GGNN(A, B, D), defined by (9), is
convergent as t — +oo and its equilibrium state is

V(t) — V(t) = A'DB' + Vv (0) — ATAV(0)BB" (16)
for every initial state matrix V(0) € R"*P.
Proof. From (9), the matrix Vi (t) = (ATA)*AT AV (t)BBT (BBT)* satisfies

dva(t)
dt

dv(t)
dt

= y(ATA) ATA [ATA (AT(D - AV(t)B)BT> BBT] BBT (BBT)*.

= (ATAY ATA—BBT(BBT)'

According to the basic properties of the Moore-Penrose inverse [18,19], it follows
(BBT)TBBT(BBT)" = (BBT)T = BBT,  (ATA)TATA(ATA)T = (ATA)T = ATA

which further implies

d‘gt(t) =4ATA (AT(D - AV(t)B)BT) BBT
_ dv(y)
Coodr
Consequently, V,(t) = V(t) — V;(t) satisfies d‘gt( ) = d‘gg ) d‘gt(t) = 0, which implies

Va(t) = V2(0)
= V(0) = V1(0)
=V(0)— (ATA)*ATAV(0)BBT (BBT)"
=V (0)— ATAV(0)BB', t > 0.

(17)

Furthermore, from Theorem 1, AT AV (t)BBT — ATDBT and Vj (t) converges to

Vi(t) = (ATAYPATAV(1)BBT (BBT)" — (ATA)'ATDBT (BBT)*
= A'DB?

as t — +o0. Therefore, V(t) = Vi (t) + V,(t) converges to the equilibrium state
V(t) = ATDB" 4+ V»(t) = ATDB" + V(0) — ATAV(0)BB".

The proof is finished. O
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4. Numerical experiments on GNN and GGNN dynamics

Numerical examples in this section are represented based on the Simulink implementation of
GGNN formula in Figure 1. Three activation functions f(-) are used in numerical experiments:
1. linear function

fiin(x) = x; (18)
2. power-sigmoid activation function
xfif x| >1
il = - —ox . - 19
fps(x,0,0) { et L [y < (19)

where ¢ > 2 and p > 3 is odd integer.
3. smooth power-sigmoid function

1 T+e@ 1+e @
fops(x,0,0) = 520 + o T (20)

where ¢ > 2 and p > 3 is odd integer.

The parameter v, initial state V(0) and parameters p and ¢ of the nonlinear activation functions
(19) and (20), are entered directly in the model, while matrices A, B and D are defined from the
workspace. It is assumed p = ¢ = 3 in all examples. The odel5s differential equation solver is used in
configuration parameters.

The blocks powersig, smoothpowersig and transpmult include the codes described in [15].

Example 4.1. Let us consider the idempotent matrix A from [32,33]

1 01 1
011 2
A p—
0 0 00O
0 0 00O
with the theoretical Moore-Penrose inverse

2 -1 0 0

1(-1 1 0 O

Vvi=A"=_

311 0 00

0 1 0 0

under the input parameters y = 108, B = D = I, V(0) = Oy, where I, and O4 denote the identity
and zero 4 x 4 matrix, respectively. The Simulink implementation from Figure 1 exports the graphical
results in Figures 2 and 3 which display the behavior of ||AT(D — AV (t)B)BT||r and ||V (t) — V*||F
respectively. It is observable that the norms generated by the application of GGNN formula vanish
faster to zero against corresponding norms in the GNN model. Graphs in presented figures strengthen
the fast convergence of the GGNN dynamical system and the important role which can include the
application of this specific model (9) to problems that require the computation of the Moore-Penrose
inverse.

doi:10.20944/preprints202311.0308.v1
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(a)Linear activation. (b)Power-sigmoid activation. (c)Smooth power-sigmoid activation.

Figure 2. Frobenius norm of error matrix AT (D — AV (¢)B)BT of GGNN(A, B, D) against GNN(A, B, D)
in Example 4.1.

1 1 1
—GNN —GNN 002 —GNN
0.8 —GGNN 0.8 0.8 -
. “10? . 0.02 —GGNN . oo —GGNN
= 2 = = i
= 06 = 06 001. > 06 \\
S 1 S 0 S 0
S 04 0 S 04 2 3 4 S 04 2 3 4
= 6 8 10 = «10°® = %10
02 x10® 0.2 0.2
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Time (sec) ©10° Time (sec) «10® Time (sec) «10°®
(a)Linear activation. (b)Power-sigmoid activation. (c)Smooth power-sigmoid activation.

Figure 3. Frobenius norm of error matrix V(t) — V* of GGNN(A4, B, D) against GNN(A, B, D) in
Example 4.1.

Example 4.2. Let us consider the matrices

-8 8 —4 10 0 -84 2524 304
1 4 =7 01 0 —2252 —623 2897
A=|1 -4 3|, B= 00 1l D= | 484 88 -701
0 12 -10 00 0 —1894 2278 2652
6 12 -—-12 —2778 1524 3750

Ranks of input matrices are equal to r = rank(A) = 2, rank(D) = 2 and rank(B) = 3. The linear
GGNN formula GGNN(A, B, D) (9) is applied to solve the matrix equation AXB = D, which gives in
the case V(0) =0

—113.9846 —147.1385 137.7385 0
X=A'"DBt = | —74.4615 136.1538  107.8462 0
100.0462  —64.4154 —135.7846 0

The gain parameter of the model is ¥ = 10?, V(0) = 0 and the final time is ¢ = 0.00001.

Elementwise trajectories of the variable state matrix V(t) with red lines are shown in Figures 4a—c,
for linear, power-sigmoid and smooth power-sigmoid activation functions, respectively. It is observable
the convergence of elementwise trajectories to the black dashed lines of the theoretical solution X. The
trajectories in figures indicate a usual convergence behaviour, so the system is globally asymptotically
stable. The norm of the error matrix Eg of both model for linear and non-linear activation function
are shown on Figure 5a—c. The nonlinear activation function shows superiority in the convergence
speed, comparing with the linear activation function. On each graph, Frobenius norm of the error from
GGNN formula vanish faster to zero than GNN model which strengthens the fact that the proposed
dynamical system (9) includes accelerated convergence property against (3).
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2 2 2
> > >
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-60 . -60
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(a)Linear activation. (b)Power-sigmoid activation. (c)Smooth power-sigmoid activation.
Figure 4. Elementwise convergence trajectories of the GGNN(A, B, D) network in Example 4.2.
,x10° ,x10° ,x10°
o x10° —GNN 15 10t —GNN x10* —GNN
- L —GGNN - o —GGNN . 10 —GGNN
& 15 1 £ 15 £ 15
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(a)Linear activation. (b)Power—sigmoid activation. (c)Smooth power-sigmoid activation.

Figure 5. Frobenius norm of error matrix Eg of GGNN(A, B, D) against GNN(A, B, D) in Example 4.2.

Example 4.3. Let us explore behavior of GGNN(AAT, AT A, A) for computing the Moore-Penrose
inverse. We consider matrix:

S
Il
i~
Gl = I — W
N

13

The error matrix E(t) = AT(I — AV) initiates the GNN(ATA, I, AT) dynamics for computing A'.
Corresponding error matrix for GGNN((ATA)?, 1, ATAAT) is

Ec(t) = ATA (AT - ATAV> = ATAAT (I - AV).

Rank of the input matrix is equal to r = rank(A) = 3. The gain parameter of the model is ¥ = 100,
initial state is V(0) = 0 with stop time t = 0.00001. The Moore-Penrose inverse of A is given by

0.0775 —0.0235 —0.0538 —0.0069 0.0390
AT~ |-00445 00376 01310 0.0655 —0.0167
—0.0826 0.0077  0.0252 —0.0577 0.0589

The error matrix E(t) = D — AV(t)B of GNN and GGNN model for both linear and non-linear
activation functions are shown on Figure 6a—c, and Eg of both model for linear and non-linear
activation function are shown on Figure 7a—c. Like in previously example, we can conclude that
GGNN converges faster compared to the GNN model.
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Figure 6. Frobenius norm of D — AV (t)B in GGNN((ATA)?,1, ATAAT) against GNN(ATA, I, AT) in
Example 4.3.
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Figure 7. Frobenius norm of Eg in GGNN((ATA)?, 1, ATAAT) against GNN(ATA, I, AT) in
Example 4.3.

Example 4.4. Consider the matrices

-4 4 16

15 352 —45 -—-238 42 3 1 -9
A=|-5 14 8 132 —-65|, D=|1 -7 2|, Aj=DA,

235 —-65 44 350 73 2 2 -4

4 1 -5

that dissatisfy rank(A;) = rank(D) = 3. Now, we apply GGNN formula to solve the matrix equation
A1X = D. Notice, if we look at GGNN(A, B, D) in this example, we actually operate with A = A; and
B = I. So, we consider GNN(A1, I3, D). The error matrix for the corresponding GGNN model is

Ec(t) = A{ (D— A1VEL) 1§ = AT (D— AyV).

The gain parameter of the model is v = 10° and the final time is t = 0.00001. The zero initial state
V(0) = 0 generates the best approximate solution X = ATD = (DA)'D of the matrix equation
A1X = D, given by

—0.000742151758732906  —0.00913940509710217  0.00337604725603635
—0.00281859443979587  —0.00383668701022646 —0.000268348265455338
X = AID = | —0.000377755170367094 —0.00134463893719598  0.000458599151069315
—0.000177073414005706  0.00403153859974667  0.000743238210989296
—0.000956081467310272 —0.00748631706136413  0.00124829423173208

The Frobenius norm of the error matrix D — AV (t) B in GNN and GGNN models for both linear and
non-linear activation functions are shown on Figure 8a—c, and error matrix Eg in both models for linear
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and non-linear activation function are shown on Figure 9a—c. It is observable that GGNN converges
faster than GNN.
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Figure 8. Frobenius norm of error matrix D — AV(#)B of GGNN(ATA;,I;, ATD) against
GNN(A1, I3, D) in Example 4.4.
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Figure 9. Frobenius norm of error matrix Eg of GGNN(AlTAl, I, AlTD) against GNN(A1, I3, D) in
Example 4.4.

Example 4.5. Table 2 shows the results obtained during experiments we conducted with nonsquared
matrices, where m x n is dimension of matrix. Table 1 is the input data in the Simulink model which
are used to perform experiments that generate results in Table 2. Best cases in Table 2 are marked in

bold text.
Table 1. Input data.
Matrix A Matrix B Matrix D Input and residual norm
m n  rank(A) p q rank(B) m q rank(D) 7y tf tDB*B—D_F
10 8 8 9 7 7 100 7 7 108 05 1.051
10 8 6 9 7 7 10 7 7 10 05 1.318
10 8 6 9 7 5 100 7 7 10* 05 1.81
10 8 6 9 7 5 10 7 5 104 5 2.048
10 8 1 9 7 2 100 7 1 10* 5 2.372
20 10 10 8 5 5 20 5 5 106 5 1.984
20 10 5 8 5 5 20 5 5 106 5 2.455
20 10 5 8 5 2 20 5 5 100 1 3.769
20 10 2 8 5 2 20 5 2 100 1 2.71
20 15 15 5 2 2 20 2 2 108 1 1.1
20 15 10 5 2 2 20 2 2 108 1 1.158
20 15 10 5 2 1 20 2 2 108 1 2.211
20 15 5 5 2 1 20 2 2 108 1 1.726
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Table 2. Experimental results based on data presented in Table 1

E(t){GNN) E(t){GGNN) Ec(t){GNN) Eg(t){GGNN) CPU(GNN) CPU(GGNN)

1.051 1.094 2.52e—09 0.02524 5.017148  13.470995
1.318 1.393 3.122e—07  0.03661 22.753954  10.734163
1.811 1.899 0.0008711  0.03947 15.754537  15.547785
2.048 2.082 1.96e-10 0.00964 9.435709  17.137916
2.372 2.3722 1.7422e-15 2.003e-15 21.645386  13.255210
1.984 1.984 2.288e-14  9.978e-15 21.645386  13.255210
2.455 2.455 1.657e-11 1.693e-14 50.846893  19.059385
3.769 3.769 6.991e-11 4.071e-14 42184748  13.722390
2.71 2.71 1.429e-14  1.176e-14 148.484258 13.527065
1.1 1.1 1.766e-13  5.949e-15 218.169376  17.5666568
1.158 1.158 2.747e-10  2.981e-13 45.505618  12.441782
2.211 2.211 7.942e-12  8.963e-14 194.605133 14.117241
1.726 1.726 8.042e-15 3.207e-15 22.340501 11.650829

Numerical results arranged in Table 2 are divided into two parts by a horizontal line. The
upper part corresponds to test matrices of dimensions < 10 while the lower part corresponds to the
dimensions m, n > 10. Considering first two columns, it is observable from the upper part that GGNN
generates smaller values ||E(t)||r compared to GGNN. Values ||E(t)||r in the lower part generated by
GNN and GGNN are equal. Considering the third and fourth columns, it is observable from the upper
part that GGNN generates smaller values ||Eg(t)||r compared to GGNN. On the other hand, values
[|E(t)||F in the lower part, generated by GGNN, are smaller than corresponding values generated
by GNN. Last two columns show that the GGNN requires smaller CPU time compared to GNN.
General conclusion is that GGNN model is more efficient on rank deficient test matrices of larger order
m,n > 10.

4.1. Application of GGNN to electrical networks

It is really interesting to apply the novel GGNN formula (9) for the calculation and study of
different parameters related to electrical networks. For this reason the following circuit in Figure 10
from [34] is considered.

8Q & Outer
AW oop
‘ T I
i X 4Q
e \/@ ' @ e
1
] | |
B )T
16V

Figure 10. Electrical Network.

Our goal is to estimate the currents I, I, I3 in amperes (A) while electrical potential E is measured
in volts (V) and resistors with resistance R is measured in ohms (Q)). Applying the current law in the
points A, B, relationships I; = I + I3 and 8I; 4 4I, = 20 obtained respectively and from the voltage
law the relationship 20I3 — 4, = 16 which lead to the following system Al = D in matrix form
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with theoretical solution I} = 2,1 = I3 = 1. For the parameters v = 10° and the zero initial condition
simulink implementation from Figure 1 extracts Figures 11 and 12.

2.5

25 25
z = =
—GGNN —GGNN —GGNN
=15 =15 =15
z = z
05 05 05
0 t (sec) o t (sec) o t (sec)
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
x107 x10°® x10°®
(a)Linear activation. (b)Power-sigmoid activation. (c)Smooth power-sigmoid activation.
Figure 11. Frobenius norm of error ||V (t) — I||p of GGNN(A4, 1, D) against GNN(A, 1, D) for the
electrical network application.
2.5 2.5 2.5
2 - 21 _ 2r
Z s =4 1.5[ > s
15} s 15}
g 2 1 £ 01
7 £ |
g 0.5( £ 0.5r 5 0s
o o o
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0 02 04 06 08 1 0 1 2 3 4 0 02 04 06 08 1
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(a)Linear activation.

(b)Power-sigmoid activation.

(c)Smooth power-sigmoid activation.

Figure 12. Elementwise convergence trajectories of the GGNN(A, 1, D) network in electrical network
application.

It is observable from Figure 11 that GGNN(A,1,D) initiates a faster convergence than
GNN(A, 1, D) formula for the same parameter vy as error ||V () — I||f vanishes faster to zero. Figure 12
presents state trajectories of Iy, I, I3 obtained by the exact solution with the trajectories resulting from
the GGNN formula for ¢ = 10° and V(0) = 0. These observations indicate that the proposed GGNN
formula for solving general linear matrix equations is usable in solving electrical networks, which is
an interesting engineering problem.

5. Mixed GGNN-GZNN model for solving matrix equations

Let us define gradient error matrix of the matrix equation AX = B by
Eanp(t) = AT (AV(t) — B).

The GZNN design (10) corresponding to the error matrix E 4 ; , marked with GZNN(A, I, B), is of the
form:

Eaip(t) = —F (AT (AV(t) - B)). @)

Now, the scalar-valued norm-based error function corresponding to E4 ; g(t) is given by

14T (AV(1) ~ B) |Ir

e(t) 5

e(V(1) = 3lIEars(®)llr =


https://doi.org/10.20944/preprints202311.0308.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2023 doi:10.20944/preprints202311.0308.v1

14 of 25

The following dynamic state equation can be derived using the GGNN(A, I, B) design formula derived
from (9):
V(t) = —12ATAF (AT (AV(t) — B)) . (22)

Further, it follows
Earp(t) = ATAV(t) = —, ATAATAF (AT (AV(t) — B)) . (23)

Next step is to define new hybrid model based on the summation of (21) and (23) in the case y; =
Yo = %’y, as follows:

Earp(t) = ATAV(t)
=~y ((aTa) +1) 7 (a7 (avr) - ) (24)
—y ((ATA)Z + 1) F (Eap(t)).

The model (24) is derived as a combination of the model GGNN(A, I, B) and the model
GZNN(A, I,B). Hence, it is equally justified to use the term Hybrid GGNN (HGGNN shortly)
or Hybrid GZNN (HGZNN shortly) model. But, the model (24) is implicit, so that it is not a kind
of GGNN dynamics. On the other hand, it is designed for time-invariant matrices, which is not
in accordance with the common nature of GZNN models, because usually GZNN is used for the
time-varying case. A formal comparison of (24) and GZNN(A, I, B) reveals that both these methods
possess identical left hand sides and the right hand side of (24) can be derived multiplying the right
hand side of GZNN(A, I, B) by the term (ATA) + 1.

Formally, (24) is closer to the GZNN dynamics, so, we will denote the model (2.4) by
HGZNN(A, I, B), considering that this model is not the exact GZNN neural dynamics and it is
applicable in time-invariant case. This is the case of constant coefficient matrices A, I, B. Figure 13
represents the Simulink implementation of HGZNN(A, I, B) dynamics (24).

I (-AYTA)
Matrix | FACTAX©) ( A )

X(t)y,| Multiply
AATAT

Product! 1 [

I (AYTAY2

y

> MM?lm;lc A'TA Mt Matrix > K(HATAY2)F(ANT(AX(t)-B))]
L] 5 ]
id Ly Multiply —»| Multiply
Products K L]

Product10

Product9

A T | AT norm(u,'fro')
| Y Matrix bl ou A TAXOB

Multiply
AT Nonlinear AFs F(.)1

A jonlinear s (.
Matrix AX(t 0B Product7
X(t)y,| Multiply

|AT(AX()-B)|_F

Al

Product6

B
Xt

B X

|AT(AX()-B)|_F

X(t)
X(0)
1 (FANTAX(OK(HANT AV 2)F(ANT(AX(0)-B)]

s

Figure 13. Simulink implementation of (24).
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Now, we will take into account solving the matrix equation XC = D. The error matrix for this
equation is defined by
Eicp(t) = (V(t)C—D)C".

The GZNN design (10) corresponding to the error matrix E; ¢ p, marked with GZNN(I, C, D), is of the
form:
Ercp(t) =VveCT = -y F ((V(t)C ~ D) CT) : (25)

On the other hand, the GGNN design formula (9) produces the following dynamic state equation:
V() = —F ((V(t)c - D)CT) ccT, v(0) = V. (26)

The GGNN model (26) is denoted by GGNN(I, C, D). It implies
Eicp(t) = V(HCCT = - F ((V(t)C - D)CT) ccrecT. (27)

A new hybrid model based on the summation of (25) and (27) in the case v = 27v; = 277 can be
proposed as follows

Ercp(t) = V(r)cch
= —F ((V(t)C —~ D)CT) (1 + (CCT)2> (28)
—7F (Ercp(t)) (1 + (CCT)Z) :

The model (28) will be denoted by HGZNN(I, C, D). This is the case of constant coefficient matrices I,
C,D.

For the purposes of the proof of the following results, we will denote by ECR(.M) the exponential
convergence rate of the model M. With A,,;,(K) and Ay (K), we denote the smallest and largest
eigenvalue of a matrix K, respectively. In the continuation of the work we use three types of activation
functions F: linear, power-sigmoid and smooth power-sigmoid.

Next theorem determines the equilibrium state of HGZNN(A, I, B) and defines its global
exponential convergence.

Theorem 3. Let A € R*", B € RK*™ pe given and satisfy AAYB = B and V(t) € R"*™ be the state matrix
of (24), where F is defined by fiin, fps 07 fsps-

a) Then V (t) achieves global convergence and satisfies AV (t) — B when t — oo, starting from any initial
state X(0) € R"*™. The state matrix V(t) € R"*™ of HGZNN(A, I, B) is stable in the sense of Lyapunov.
b) The exponential convergence rate of the HGZNN(A, I, B) model (24) in the linear case is equal to

2
ECR(HGZNN(A, I, B)) = (1 + Apin ((ATA> )) . (29)
c) The activation state variables matrix V (t) of the model HGZNN (A, I, B) is convergent when t — o0 with
the equilibrium state matrix

V(t) = Vy) = ATB+ (I - ATA)V(0). (30)

Proof. a) With the assumption AATB = B we have solvability of the matrix equation AX = B.
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We can define the Lyapunov function as

L) = 5 IEars(®)I}
= %Tr ((EA,I,B(t))T EA,I,B(t)) :

Hence, from (24) and d Tr(VTV) = 2Tr(VTdV), it holds that

205 = 2dTr ((Ears()) Eass(t))
= %ZTY ((EA,I,B(t)) Eal B(t))

= Tr ((Eass(t) Eass(t))
— 1o ((Eana®)" (=7 ((474)"+1) F (Earple))
=t (((A7A) 1) F (Bars(e)) Bans)T).
In the linear case it follows
£() = 1o (((A7A) +1) Easalt) (Ears()').

We also consider next inequality [35], which is valid for a real symmetric matrix K and a real
symmetric positive-semidefinite matrix L of the same size:

Amin (K)Tr(L) < Tr(KL) < Amax(K)Tr(L).
Now, it can be chosen: K = (ATA)2 +Iand L = E4p(t (EA,I,B(t))T. Let Amin ((ATA)Z) > 0 be the

minimal eigenvalue of (ATA)z. Then 1 + Amin ((ATA)2> > 1 is the minimal nonzero eigenvalue of

(ATA)2 + I, which implies

£06) < =7 (1 Amin ((474)7) ) T (Easa®) (Easa()T) @1

From (31), it can be concluded

5 <0 ifEAIB(t)#O
L(t) = ” 32
(*) { =0 ifEyq;p(t) =0. (32)
According to (32), the Lyapunov stability theory confirms that E4 ; () = AV(t) — B = 0 is a globally
asymptotically stable equilibrium point of the HGZNN(A, I, B) model (24). So, E4 | (t) converges to
the zero matrix, i.e. AV(t) — B from any initial state X(0).
b) From a) it follows that

2
7<1+Amin( ATA )HEAIB )|[7

=2y (14 i ((a74)7) ) 200

L< —y (1 + Amin ( ATA 2)) (EarB( ))TEA,I,B(t)>
2
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This implies

L< E(O)e_h(l“‘m‘“((ATA)2)>t —

29 (14 A min ((AT A)?
Eass (D] < [|Eass(0)] 3 2Y(1Amn((474)7))

— . T 4\2
Ears()llr < ||Easp(0)][pe " Amn((474))

—

which confirms the convergence rate (29) of HGZNN(A, I, B).
¢) This part of the proof can be verified by following an analogous result from [17]. O

Theorem 4. Let C € R"™*!, D € R"*! be given and satisfy DCYC = D and V (t) € R"*™ be the state matrix
of (28), where F is defined by fiiy, fps 0 fsps.

a) Then V(t) achieves global convergence V(t)C — D when t — oo, starting from any initial state
V(0) € R"™ ™. The state matrix V(t) € R"™™ of HGZNN(I, C, D) is stable in the sense of Lyapunov.

b) The exponential convergence rate of the HGZNN(I, C, D) model (28) in the linear case is equal to

2
ECR(HGZNN(I,C, D)) = o (1 T Ain ((CCT) )) . (33)
c) The activation state variables matrix V (t) of the model HGZNN(I, C, D) is convergent when t — o0 with
the equilibrium state matrix

V(t) = Vi) = DCT 4+ V(0)(I — CC). (34)

Proof. a) With the assumption DCTC = D we have solvability of the matrix equation XC = D.
Lets define the Lyapunov function with

1
L(t) = S|IErcn ()17
1
= 5T ((Een() Ercn(t))
Hence, from (28) and d Tr(X” X) = 2Tr(XTdX), it holds that
; 1
£(t) = 5dTr ((Eren(®)" Ercn(®)

=Tr ((EI,C,D(t))T EI,C,D(t)>
=Tr ((ELC,D(t))T (—7 ((CCT>2 + I) f(EI,c,D(t))>)
= (((cc") +1) F(Breo) (Fico)”).

According to similar results from [36], one can verify the following inequality

L(t) = —Tr (((CCT)2 + I) Ercp(t) (EI,C,D(f))T> :

We also consider next inequality [35], which is valid for a real symmetric matrix K and a real
symmetric positive-semidefinite matrix L of the same size:

Amin (K)TE(L) < Tr(KL) < Amax (K)Tr(L).

Now, it can be chosen: K = (CCT)2 +Iand L = E;cp(t) (Erep(t)’.
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Let Amin ((CCT)Z) > 0 be the minimal eigenvalue of (CCT)Z. Then 1 + Amin ((CCT)Z) >1is

the minimal nonzero eigenvalue of (C C T)z + I. This implies

200 = = (14 Amin (7)) ) 7 (Ercinl0) (o). (35)
From (35), it can be concluded

5 _ <0 if EI,C,D(t> 7& 0
L) = { =0 ifEcp(t) =0. (36)

According to (36), the Lyapunov stability theory confirms that E; c p(f) = V(¢)C — D = 0 is a globally
asymptotically stable equilibrium point of the HGZNN(A, I, B) model (28). So, E| ¢ p(t) converges to
the zero matrix, i.e. V(#)C — D from any initial state V(0).

b) From a) it follows

. T 2 T
L< =y (14 Amin CC EICD t)) EI,C,D(t))
T 2
=Y {1+ Amin CC ||[E1c,p(t)]|?

— 2y (1 + Amin ((CCT)2>) L(t).

This implies

L < ,C( ) <1+Amm((CCT)2>>t —
|Ej,cp(t)]|E < ||E1,C,D(0)||%e_27<1+)‘min((CCT) )) —
ELco®lle < [Ercn(0)]pe " (HAma (7)),

which confirms that the convergence rate of HGZNN(I, C, D) is

2
ECR(HGZNN(I,C, D)) = o <1 + Amin ((CCT) )) .
c) This part of the proof can be verified by following an analogous result from [17]. [

Corollary 5.1. a) Let the matrices A € R¥*", B € RF*™ be given and satisfy AA*B = B and V (t) € R
be the state matrix of (24), with an arbitrary nonlinear activation F. Then ECR(GZNN(A, I, B)) =

b) Let the matrices C € R"™*!, D € R"*! be given and satisfy DCTC = D and V(t) € R"*™ be the state
matrix of (28) with an arbitrary nonlinear activation F. Then ECR(GZNN(I,C,D)) = 7.

5.1. Regularized HGZNN model for solving matrix equations

From Theorem 3 and Corollary 5.1 (a), it follows

ECR(HGZNN(A,I,B)) (2
ECR(GZNN(A,1,B)) 1 Amin ((A 4) ) 1. (37)

Similarly, according to Theorem 4 and Corollary 5.1 (b), it can be concluded that

ECR(HGZNN(I,C,D)) _ | 2
ECR(GZNN(L,C, D)) LT Amin <(CCT> ) > 1 (38)
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Convergence of HGZNN(A,I,B) (resp. HGZNN(I,C, D)) can be improved in the case
Amin ((ATA)Z) > 0 (resp. Amin ((CCT)2) > 0). There exist two possible situations when the

acceleration terms AT A and CCT improve the convergence. The first case assumes invertibility of A
(resp. C), and the second case assumes left invertibility of A (resp. right invertibility of C). Still, in
some situations the matrices A and C could be rank deficient. Hence, in the case when A and C are
square and singular, it is useful to use the invertible matrices A + Al and C + AI, A > 0 instead of
A and C, and consider the models HGZNN(A + Al I, B) and HGZNN(I,C + AI, D). In below are
presented the convergence results considering nonsingularity of A+ AI and C 4 Al

Corollary 5.2. Let A € R"™*", B € R"*™ be given and V (t) € R"*™ be the state matrix of (24), where F is
defined by fiin, fps o7 fsps. Let A > 0 be a selected real number. Then the following statements are valid:
a) The state matrix V (t) € RI'*™ of the model HGZNN(A + Al, I, B) converges globally to

Vv(o) = (A + )LI)ilB,

when t — oo, starting from any initial state X(0) € R™ ™ and the solution is stable in the sense of Lyapunov.
b) The minimal exponential convergence rate of HGZNN(A + AI, I, B) in the case F = I is equal to

ECR (HGZNN(A + AL 1, B)) = v (1 + Amin <((A +ADT (A + AI))2)> .

c) Let VV(O) be the limiting value of V (t) when t — +oco. Then

lim Vg, = lim (A + AI) "' B. 39
lim Vv (o) = lim, (A+AD) 9

Proof. Since A + Al is invertible, it follows V = (A + AI) "' B.
From (30) and invertibility of A + Al we can get validity of a). In this case, it follows

Vyo) = (A+AD) !B+ (I—(A+ AL (A+AI)V(0)
= (A+AD)7IB4 (I-1)V(0)
= (A+AD)71B.

Part b) is proved analogously as in Theorem 3. Last part c) follows from a). [J

Corollary 5.3. Let C € R™*™ D € R"™ ™ pe given and V(t) € R"™™ be the state matrix of (28), where
F =1,F = Fpsor F = Feps. Let A > 0 be a selected real number. Then the following statements are valid:
a) The state matrix V (t) € RI"*™ of HGZNN(I, C + Al, D) converges globally to

Vv(o) = D(C"’ /\1)71,

when t — oo, starting from any initial state X(0) € R™ ™ and the solution is stable in the sense of Lyapunov.
b) The minimal exponential convergence rate of HGZNN(I, C + A, D) in the case F = I is equal to

ECR (HGZNN(I,C + AL, D)) = v (1 + Amin (((c + Al (C+ /\I)T)2>) .

c) Let VV(O) be the limiting value of V (t) when t — +oco. Then

lim Viy(qy = lim D (C+ AI) L. 40
lim Vv (o) = lim D(C+ A1) )

Proof. It can be proved analogously to Corollary 5.2. [
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Remark 1. The notation Ay = A+ Al and C; = C + Al will be used. Main observations about the
convergence properties of HGZNN(A, I, B) and HGZNN(I, C, D) are highlighted as follows.

1. Hybrid neural dynamics HGZNN(A, I, B) (resp. HGZNN(I, C, D)) converge faster than GZNN(A, I, B)
(resp. GZNN(I,C, D)). The accelerated convergence rate is equal to 1+ Amin ((ATA)2> > 1 (resp. 1+

Amin ((CCT)?) > 1)

2. Regularized hybrid dynamics HGZNN(A1, I, B) and HGZNN(I, Cy, D) are applicable even in the case if A
and C are singular matrices.

3. HGZNN(A4, I, B) (resp. HGZNN(I, Cy, D)) always faster converge than GZNN(A1, 1, B) (resp.

GZNN(I,Cy1,D)).  The accelerated convergence rate is 1 + Amin ((AlTAl)z) > 1 (resp. 1+
2
Amin ((€1CT)?) > 1.

6. Numerical examples on hybrid models model

In this section the numerical examples are represented based on the Simulink implementation of
HGZNN formula. The previously mentioned three types of activation functions f(-) in (18), (19) and
(20) will be used in the following examples. The parameters 4, initial state V(0) and parameters p and
o of the nonlinear activation functions (19) and (20), are entered directly in the model, while matrices
A, B, C and D are defined from the workspace. We assume that p = ¢ = 3 in all examples. The
ordinary differential equation solver in configuration paremeters is the ode15s. The blocks powersig,
smoothpowersig and transpmult include the codes described in [16].

We present numerical examples in which we compare Frobenius norms ||Eg||r and ||A™1B —
V(t)||r which are generated by HGZNN, GZNN and GGNN.

Example 6.1. Consider the matrix

049 0276 0498 0.751 0.959
0446 068 096 0.255 0.547
A= 1]0646 0655 0.34 0506 0.139
071 0.163 0.585 0.699 0.149
0.755 0119 0.224 0.891 0.258

In this example we compare HGZNN(A,I,I) model with GZNN(A,I,I) and GGNN(A,I,1)
considering all three types of activation functions. The gain parameter of the model is v = 10°,
initial state V(0) = 0 and the final time is ¢+ = 0.00001.

Elementwise trajectories of the state variable with red lines are shown in Figure 14a—c, for
linear, power-sigmoid and smooth power-sigmoid activation functions, respectively, and is observable
the converge to the black dashed lines of the theoretical solution X. Trajectories indicate a usual
convergence behaviour, so the system is globally asymptotically stable. Error matrix Eg of HGZNN,
GZNN and GGNN model for both linear and non-linear activation functions are shown on Figure 15a—c,
and error matrix A~!B — V() of both model for linear and non-linear activation function are shown
on Figure 16a—c. On each graph, Frobenius norm of error from HGZNN formula vanish faster to zero
than GZNN and GGNN model.
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Figure 14. Elementwise convergence trajectories of the HGZNN(A, I, I) network in Example 6.1.
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(c)Smooth power-sigmoid activation

Figure 15. Frobenius norm of error matrix E4 ;p of HGZNN(A, I, I) against GGNN(A, I, I) and

GZNN(A, I, 1) in Example 6.1.
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(a)Linear activation.

Figure 16.
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(b)Power-sigmoid activation.

GGNN(A, I,I) and GZNN(A, I, I) in Example 6.1.

Example 6.2. Consider the matrices

70.0818
0.0818
0.0722
0.0150
0.0660
0.0519

[0.1649
0.1965
0.1460
0.0688
0.1168

0.0216

0.0973
0.0649
0.0800
0.0454
0.0432
0.0825

0.1813
0.1759
0.1636
0.0521
0.1189
0.0045

0.0083
0.0133
0.0173
0.0391
0.0831
0.0803

0.0851
0.0625
0.0323
0.0358
0.0846
0.0188

0.0060
0.0399
0.0527
0.0417
0.0657
0.0628

0.1197
0.0942
0.1392
0.1400
0.1277
0.0067

0.0292
0.0432
0.0015
0.0984
0.0167
0.0106

0.0138
0.0639
0.1062
0.1309
0.0815
0.1640

150

)
S

-1
A B—X(t)IIF
wn
(=)

0

—HGZNN|
—GZNN H
—GGNN ||
200
100
0
9 9.5 1D
x10°°
0 0.2 0.4 0.6 0.8 1
Time (sec) %107

(c)Smooth power-sigmoid activation.

0.0372]
0.0198
0.0490
0.0339
0.0952

0.0920 |

0.1437
0.1937
0.1063
0.0650
0.0211
0.1222

0.1558]
0.0847
0.0182
0.0533
0.0307
0.0562

Frobenius norm of the residual matrix A~'B — V(t) of HGZNN(A,I,I) against
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In this example, we compare HGZNN(A, I, B) model with GZNN(A, I, B) and GGNN(A, I, B)
considering all three types of activation functions. The gain parameter of the model is 7 = 1000, initial
state V(0) = 0 and the final time is t = 0.01.

Elementwise trajectories of the state variable with red lines are shown in Figure 17a—c, for linear,
power-sigmoid and smooth power-sigmoid activation functions, respectively, and is observable the
converge to the black dashed lines of the theoretical solution X. We can see that trajectories indicate a
usual convergence behaviour, so the system is globally asymptotically stable. The error matrix Eg of
HGZNN, GZNN and GGNN model for both linear and non-linear activation functions are shown on
Figure 18a—c, and the residual matrix A~!B — X(t) of both models for linear and non-linear activation
function are shown on Figure 19a—c. On each graph, for both error cases, the Frobenius norm of error
HGZNN formula is similar to the Frobenius norm of error of GZNN model, and they both converges
faster to zero than GGNN model.

State variable

State variable

State variable

o 0002  0.004  0.006 0.008 0.01
Time (sec)

(a)Linear activation.

0 0002  0.004  0.006 0.008 0.01
Time (sec)

(b)Power-sigmoid activation.

0 0002  0.004  0.006 0.008 0.01
Time (sec)

(c)Smooth power-sigmoid activation.

Figure 17. Elementwise convergence trajectories of the HGZNN(A, I, B) network in Example 6.2.
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Figure 18. Frobenius norm of error matrix E4 ;3 of HGZNN(A, I, B) against GGNN(A, I, B) and

GZNN(A, I, B) in Example 6.2.

20 20 20
—HGZNN —HGZNN —HGZNN
—GZNN [ —GZNN [ —GZNN [
218 —GGNN 218 —GGNN 210 —GGNN
% 20 % 20 % 20
=3 =3 =3
__Cb 10 10 _Cb 10 10 _Cb 10 10
= 0 = 0 = 0
- 0 1 2 - 0 1 2 - 0 1 2
5 5 5
x107 x107 x107
0 0 0
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01

Time (sec)

(a)Linear activation.

Time (sec)

(b)Power-sigmoid activation.

Time (sec)

(c)Smooth power-sigmoid activation.

Figure 19. Frobenius norm of error matrix A~'B — X(t) of HGZNN(A, I, B) against GGNN(4, I, B)
and GZNN(A, I, B) in Example 6.2.
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7. Conclusions

We show that the error function lying in the basement of GNN and ZNN dynamical evolutions
can be defined using the gradient of the Frobenius norm of the traditional error function E(t). The
result of this intention is usage of an original error function Eg (t) for the basis of GNN dynamics which
results in the proposed GGNN model. The results related to the GNN model (called GNN(A, B, D)) for
solving the general matrix equation AXB = D are extended on GGNN model (called GGNN(A, B, D))
in both theoretical and computational directions. In theoretical sense, the convergence of defined
GGNN model is considered. It is shown that the neural state matrix V(t) of the GGNN(A, B, D)
model asymptotically converges to the solution of the matrix equation AXB = D, for an arbitrary
initial state matrix V(0), and coincides with the general solution of the linear matrix equation. A
number of applications of GNN(A, B, D) are considered. All applications are globally convergent.
Several particular appearances of the general matrix equation are observed and applied in computing
various classes of generalized inverses. Illustrative numerical examples and simulation results are
obtained using Matlab Simulink implementation and presented to demonstrate validity of the derived
theoretical results. The influence of various nonlinear activations on the GNN models is considered in
both the theoretical and the computational direction. In the presented examples it can be concluded
that GGNN model is faster and has smaller error compared to the GNN model.

Further research can be oriented to definition of finite-time convergent GGNN or GZNN models
as well as definition of noise-tolerant GGNN or GZNN design.
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