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Abstract: Applications of gradient method for nonlinear optimization in development of Gradient

Neural Network (GNN) and Zhang Neural Network (ZNN) are investigated. Particularly, the solution

of the matrix equation AXB = D which changes over time is studied using the novel GNN model,

termed as GGNN(A, B, D). The GGNN model is developed applying GNN dynamics on the gradient

of the error matrix used in the development of the GNN model. The convergence analysis shows that

the neural state matrix of the GGNN(A, B, D) design converges asymptotically to the solution of the

matrix equation AXB = D, for any initial state matrix. It is also shown that the convergence result is

the least square solution which is defined depending on the selected initial matrix. A hybridization

of GGNN with analogous modification GZNN of the ZNN dynamics is considered. The Simulink

implementation of presented GGNN models is carried out on the set of real matrices.

Keywords: gradient neural network; generalized inverses; Moore-Penrose inverse; linear matrix

equations

MSC: 68T05; 15A09; 65F20

1. Introduction and background

Recurrent neural networks (RNNs) are important class of algorithms for computing matrix

(generalized) inverses. These algorithms are used to find the solutions of the matrix equations or

to minimize certain nonlinear matrix functions. RNNs are divided into 2 subgroups: Gradient

Neural Networks (GNN) and Zhang Neural Networks (ZNN). The GNN design is explicit and mostly

applicable to time-invariant problems, which means that coefficients of the equations which are

addressed are constant matrices. ZNN models can be implicit and capable to solve time-varying

problems where coefficients of the equations depend on the variable t ∈ R, t > 0, representing the

time [31].

GNN neural design models for computing the inverse or the Moore-Penrose inverse and

linear matrix equations were proposed in [6,25–27]. Further, various dynamical systems aimed

to approximating the pseudo-inverse of rank-deficient matrices were originated in [6]. Wei in [28]

proposed three RNN models for approximation of the weighted Moore-Penrose inverse. Cichocki

in [29] proposed a feed-forward neural network for approximating the Drazin inverse. Online matrix

inversion in complex matrix case was considered in [30].
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Applications of this type of inverses can be found in important areas such as modeling of electrical

circuits [10], estimation of DNA sequences [22,23], balancing chemical equations [11,12] and in other

important research domains related to robotics [13] and statistics [14].

In the following sections we will focus on GNN and ZNN dynamic systems based on gradient

of the objective function and their implementation. The main goal of this research is the analysis of

convergence and the study of analytic solutions. In this study we are concerned with solving the

matrix equation AXB = D [20,21] in real time using the GNN model, denoted by GNN(A, B, D) [3–9],

and the novel gradient-based GGNN model, termed as GGNN(A, B, D). The proposed GGNN model

is defined evolving the standard GNN dynamics along the gradient of the standard error matrix.

The convergence analysis reveals the global asymptotic convergence of GGNN(A, B, D) without

restrictions, while the output belongs to the set of general solutions to the matrix equation AXB = D.

The implementation is performed in MATLAB Simulink and numerical experiments are developed

with simulations of GNN and GGNN models.

The GNN used to solve the general linear matrix equation AXB = D is defined over the error

matrix E(t) = D− AV(t)B, where t ∈ [0,+∞) is the time and V(t) is an unknown state-variable matrix

that approximates the unknown matrix X in AXB = D. The goal function is ε(t) = ||D − AV(t)B||2F/2

and its gradient is equal to

∂ε(t)

∂V
= ∇ε =

1

2

∂||D − AV(t)B||2F
∂V

= −AT(D − AV(t)B)BT .

The GNN evolutionary design is defined by the dynamic system

V̇(t) =
dV(t)

dt
= −γ

∂ε(t)

∂V
, V(0) = V0, (1)

where γ > 0 is real parameter used to speed up the convergence. Thus, the linear GNN aimed at

solving AXB = D is given by the following dynamics:

V̇(t) = γAT(D − AV(t)B)BT . (2)

The dynamical flow (2) is denoted as as GNN(A, B, D). The nonlinear GNN(A, B, D) for solving

AXB = D is defined by

V̇(t) = γATF (D − AV(t)B)BT . (3)

The function array F (C) is based on appropriate odd and monotonically increasing activation function,

which is applicable to elements of a real matrix C = (cij) ∈ R
m×n, i.e. F (C) = ( f (cij)), i = 1, . . . , m, j =

1, . . . , n,.

Proposition 1 restates restrictions about the solvability of AXB = D and its general solution.

Proposition 1. [1,18] If A ∈ R
m×n, B ∈ R

p×q and D ∈ R
m×q then fulfillment of the condition

AA†DB†B = D (4)

is necessary and sufficient for solvability of the linear matrix equation AXB = D. In this case, the set of all

solutions is given by

X =
{

A†DB† + Y − A† AYBB†| Y ∈ R
n×p

}

. (5)

The following results from [15] describe the conditions of convergence and the limit of the

unknown matrix V(t) from (3) as t → +∞.
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Proposition 2. [15] Suppose the matrices A ∈ R
m×n, B ∈ R

p×q and D ∈ R
m×q satisfy (4). Then the

unknown matrix V(t) from (3) converges as t → +∞ with the equilibrium state

V(t) → Ṽ = A†DB† + V(0)− A† AV(0)BB† (6)

for any initial state variable matrix V(0) ∈ R
n×p.

The research in [24] investigated various ZNN models based on optimization methods. The goal

of current research is to develop the GNN model based on the gradient EG(t) of ‖E(t)‖2
F instead of the

original goal function E(t).

Obtained results are summarized as follows.

• A novel error function EG(t) is proposed for development of the GNN dynamical evolution.
• GNN design evolved upon the error function EG(t) is developed and analyzed theoretically and

numerically.
• A hybridization of GNN and ZNN dynamical systems based on the error matrix EG is proposed

and investigated.

Global organization of section is as follows. Motivation and derivation of GGNN and GZNN

models are presented in Section 2. Section 3 is aimed to convergence analysis of the GGNN dynamics.

Numerical comparison on GNN and GGNN dynamics are given in Section 4, in which Subsection

4.1 investigates a practical application of GGNN to electrical networks. Neural dynamics based on

the hybridization of GGNN and GZNN model for solving matrix equations are considered in Section

6. Numerical examples on hybrid models model are analysed in Section 6. Finally, the last section

presents some concluding remarks and vision of further research.

2. Motivation and derivation of the GGNN and GZNN models

The standard GNN design (2) solves the GLME AXB = D under the constraint (4). Our goal is to

resolve this restriction and propose dynamic evolutions based on the error functions that tend to zero

without restrictions.

Our goal is to define the GNN design for solving the GLME AXB = D based on the error function

EG(t) := ∇ε(t) = AT (D − AV(t)B) BT = ATE(t)BT . (7)

The equilibria points of (7) satisfy

EG(t) := ∇ε(t) = 0.

We continue investigation from [24]. More precisely, we will develop the GNN model based on

the error function EG(t) instead of the error function E(t). In this way, new neural dynamics is aimed

to force the gradient EG to zero instead of the standard goal function E(t). It is reasonable to call such

RNN model as gradient-based GNN (GGNN shortly).

Proposition 3 gives conditions for solvability of the matrix equations E(t) = 0 and EG(t) = 0 and

general solutions to these systems.

Proposition 3. [24] Consider arbitrary matrices A ∈ R
m×n, B ∈ R

k×h and D ∈ R
m×h. The next statements

are true.

(a) The equation E(t) = 0 is solvable if and only if (4) is satisfied and the general solution to E(t) = 0 is given

by (5).

(b) The equation EG(t) = 0 is always solvable and its general solution coincides with (5).

In this way, the matrix equation E(t) = 0 is solvable under the condition (4), while the equation

EG(t) = 0 is always consistent. In addition, the general solutions to equations E(t) = 0 and EG(t) = 0

are identical [24].
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The next step is to define the GGNN dynamics using the error matrix EG(t). Let us define the

objective function εG = ||EG||
2
F/2, whose gradient is equal to

∂εG(V(t))

∂V
=

∂||AT(D − AV(t)B)BT ||2F
∂V

= −AT A
(

AT(D − AV(t)B)BT
)

BBT .

The dynamical system for the GGNN formula is obtained applying the GNN evolution along the

gradient of εG(V(t)) based on EG(t), as follows

V̇(t) = −γ
∂εG

∂V

= γAT A
(

AT (D − AV(t)B) BT
)

BBT .
(8)

The nonlinear GGNN dynamics is defined as

V̇(t) = γAT AF (AT (D − AV(t)B) BT)BBT , (9)

in which F (C) denotes an odd and monotonically increasing function array, as mentioned in previous

section for the GNN model (3). An arbitrary monotonically increasing odd activation function f (·)

is used for the construction of the GNN neural design. The model (9) is termed as GGNN(A, B, D).

Figure 1 represents the Simulink implementation of GGNN(A, B, D) dynamics (9).
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Figure 1. Simulink implementation of GGNN(A, B, D) evolution (9).

On the other hand, the GZNN model defined upon the Zhangian matrix EG(t) is defined in [24]

by the general evolution design

ĖG(t) =
dEG(t)

dt
= −γF (EG(t)). (10)

3. Convergence analysis of GGNN dynamics

In this section, we will analyze convergence properties of GGNN model given by dynamics (9).
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Theorem 1. Consider matrices A ∈ R
m×n, B ∈ R

p×q and D ∈ R
m×q. If an odd and monotonically increasing

array activation function F (·) based on an elementwise function f (·) is used, then the neural state matrix

V(t) ∈ R
n×p of the GGNN(A, B, D) model (9) asymptotically converges to the solution of the matrix equation

AXB = D, i.e., AT AV(t)BBT → AT DBT as t → +∞, for an arbitrary initial state matrix V(0).

Proof. From the statement b) of Proposition 3, the solvability of AT AVBBT = AT DBT is ensured. The

substitution V(t) = V̄(t) + A†DB† transforms the dynamics (9) into

dV̄(t)

dt
=

dV(t)

dt
= γAT AF

(

AT (D − AV(t)B) BT
)

BBT

= γAT AF
(

AT
(

D − AV̄(t)B − AA†DB†B
)

BT
)

BBT

(4)
= γAT AF

(

AT (D − AV̄(t)B − D) BT
)

BBT

= −γAT AF
(

AT AV̄(t)BBT
)

BBT .

(11)

Lyapunov function candidate which measures the convergence performance is defined by

L (V̄(t), t) =
1

2
||V̄(t)||2F =

1

2
Tr

(

V̄(t)TV̄(t)
)

. (12)

The conclusion is L(V̄(t), t) ≥ 0. According to (12), assuming (11) and using d Tr(XTX) = 2Tr(XTdX)

in conjunction with basic properties of the matrix trace function, one can express the time derivative of

L(V̄(t), t) as in the following

dL(V̄(t), t)

dt
=

1

2

dTr
(

V̄(t)TV̄(t)
)

dt

=
1

2
· 2 · Tr

(

V̄(t)T dV̄(t)

dt

)

= Tr
[

V̄(t)T
(

−γAT AF
(

AT AV̄(t)BBT
)

BBT
)]

= −γTr
[

V̄(t)T AT AF
(

AT AV̄(t)BBT
)

BBT
]

= −γTr
[

BBTV̄(t)T AT AF
(

AT AV̄(t)BBT
)]

= −γTr

[

(

AT AV̄(t)BBT
)T

F
(

AT AV̄(t)BBT
)

]

.

(13)

Since the scalar-valued function f (·) is an odd and monotonically increasing, it follow for W(t) =

AT AV̄(t)BBT

dL(V̄(t), t)

dt
= −γTr

[

(WTF (W))
]

= −γ
m

∑
i=1

n

∑
j=1

wij f (wij)

{

< 0 if W(t) := AT AV̄(t)BBT 6= 0

= 0 if W(t) := AT AV̄(t)BBT = 0,

(14)

which implies

dL(V̄(t), t)

dt

{

< 0 if W(t) 6= 0

= 0 if W(t) = 0.
(15)
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Observing the identity

W(t) = AT AV̄(t)BBT

= AT A
(

V(t)− A†DB†
)

BBT

= AT AV(t)BBT − AT DBT

= AT (AV(t)B − D) BT ,

and using the Lyapunov stability theory, W(t) := AT (AV(t)B − D) BT globally converges to the zero

matrix, from arbitrary initial value V(0).

Theorem 2. The activation state variables matrix V(t) of the model GGNN(A, B, D), defined by (9), is

convergent as t → +∞ and its equilibrium state is

V(t) → Ṽ(t) = A†DB† + V(0)− A† AV(0)BB† (16)

for every initial state matrix V(0) ∈ R
n×p.

Proof. From (9), the matrix V1(t) = (AT A)† AT AV(t)BBT(BBT)† satisfies

dV1(t)

dt
= (AT A)† AT A

dV(t)

dt
BBT(BBT)†

= γ(AT A)† AT A
[

AT A
(

AT(D − AV(t)B)BT
)

BBT
]

BBT(BBT)†.

According to the basic properties of the Moore–Penrose inverse [18,19], it follows

(BBT)T BBT(BBT)† = (BBT)T = BBT , (AT A)† AT A(AT A)T = (AT A)T = AT A

which further implies

dV1(t)

dt
= γAT A

(

AT(D − AV(t)B)BT
)

BBT

=
dV(t)

dt
.

Consequently, V2(t) = V(t)− V1(t) satisfies
dV2(t)

dt = dV(t)
dt − dV1(t)

dt = 0, which implies

V2(t) = V2(0)

= V(0)− V1(0)

= V(0)− (AT A)† AT AV(0)BBT(BBT)†

= V(0)− A† AV(0)BB†, t ≥ 0.

(17)

Furthermore, from Theorem 1, AT AV(t)BBT → AT DBT and V1(t) converges to

V1(t) = (AT A)† AT AV(t)BBT(BBT)† → (AT A)† AT DBT(BBT)†

= A†DB†

as t → +∞. Therefore, V(t) = V1(t) + V2(t) converges to the equilibrium state

Ṽ(t) = A†DB† + V2(t) = A†DB† + V(0)− A† AV(0)BB†.

The proof is finished.
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4. Numerical experiments on GNN and GGNN dynamics

Numerical examples in this section are represented based on the Simulink implementation of

GGNN formula in Figure 1. Three activation functions f (·) are used in numerical experiments:

1. linear function

flin(x) = x; (18)

2. power-sigmoid activation function

fps(x, ρ, ̺) =

{

xρ if |x| ≥ 1
1+e−̺

1−e−̺ ·
1+e−̺x

1−e−̺x if |x| < 1
(19)

where ̺ > 2 and ρ ≥ 3 is odd integer.

3. smooth power-sigmoid function

fsps(x, ρ, ̺) =
1

2
xρ +

1 + e−̺

1 − e−̺ ·
1 + e−̺x

1 − e−̺x , (20)

where ̺ > 2 and ρ ≥ 3 is odd integer.

The parameter γ, initial state V(0) and parameters ρ and ̺ of the nonlinear activation functions

(19) and (20), are entered directly in the model, while matrices A, B and D are defined from the

workspace. It is assumed ρ = ̺ = 3 in all examples. The ode15s differential equation solver is used in

configuration parameters.

The blocks powersig, smoothpowersig and transpmult include the codes described in [15].

Example 4.1. Let us consider the idempotent matrix A from [32,33]

A =











1 0 1 1

0 1 1 2

0 0 0 0

0 0 0 0











with the theoretical Moore-Penrose inverse

V∗ = A† =
1

3











2 −1 0 0

−1 1 0 0

1 0 0 0

0 1 0 0











under the input parameters γ = 108, B = D = I4, V(0) = O4, where I4 and O4 denote the identity

and zero 4 × 4 matrix, respectively. The Simulink implementation from Figure 1 exports the graphical

results in Figures 2 and 3 which display the behavior of ||AT(D − AV(t)B)BT ||F and ||V(t)− V∗||F
respectively. It is observable that the norms generated by the application of GGNN formula vanish

faster to zero against corresponding norms in the GNN model. Graphs in presented figures strengthen

the fast convergence of the GGNN dynamical system and the important role which can include the

application of this specific model (9) to problems that require the computation of the Moore-Penrose

inverse.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 2. Frobenius norm of error matrix AT(D− AV(t)B)BT of GGNN(A, B, D) against GNN(A, B, D)

in Example 4.1.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 3. Frobenius norm of error matrix V(t) − V∗ of GGNN(A, B, D) against GNN(A, B, D) in

Example 4.1.

Example 4.2. Let us consider the matrices

A =















−8 8 −4

11 4 −7

1 −4 3

0 12 −10

6 12 −12















, B =











1 0 0

0 1 0

0 0 1

0 0 0











, D =















−84 2524 304

−2252 −623 2897

484 −885 −701

−1894 2278 2652

−2778 1524 3750















.

Ranks of input matrices are equal to r = rank(A) = 2, rank(D) = 2 and rank(B) = 3. The linear

GGNN formula GGNN(A, B, D) (9) is applied to solve the matrix equation AXB = D, which gives in

the case V(0) = 0

X = A†DB† =







−113.9846 −147.1385 137.7385 0

−74.4615 136.1538 107.8462 0

100.0462 −64.4154 −135.7846 0






.

The gain parameter of the model is γ = 109, V(0) = 0 and the final time is t = 0.00001.

Elementwise trajectories of the variable state matrix V(t) with red lines are shown in Figures 4a–c,

for linear, power-sigmoid and smooth power-sigmoid activation functions, respectively. It is observable

the convergence of elementwise trajectories to the black dashed lines of the theoretical solution X. The

trajectories in figures indicate a usual convergence behaviour, so the system is globally asymptotically

stable. The norm of the error matrix EG of both model for linear and non-linear activation function

are shown on Figure 5a–c. The nonlinear activation function shows superiority in the convergence

speed, comparing with the linear activation function. On each graph, Frobenius norm of the error from

GGNN formula vanish faster to zero than GNN model which strengthens the fact that the proposed

dynamical system (9) includes accelerated convergence property against (3).
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 4. Elementwise convergence trajectories of the GGNN(A, B, D) network in Example 4.2.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 5. Frobenius norm of error matrix EG of GGNN(A, B, D) against GNN(A, B, D) in Example 4.2.

Example 4.3. Let us explore behavior of GGNN(AAT , AT A, A) for computing the Moore-Penrose

inverse. We consider matrix:

A =















9 3 −3

−1 1 0

4 7 2

2 4 −4

13 5 8















.

The error matrix E(t) = AT(I − AV) initiates the GNN(AT A, I, AT) dynamics for computing A†.

Corresponding error matrix for GGNN((AT A)2, I, AT AAT) is

EG(t) = AT A
(

AT − AT AV
)

= AT AAT (I − AV) .

Rank of the input matrix is equal to r = rank(A) = 3. The gain parameter of the model is γ = 100,

initial state is V(0) = 0 with stop time t = 0.00001. The Moore–Penrose inverse of A is given by

A† ≈







0.0775 −0.0235 −0.0538 −0.0069 0.0390

−0.0445 0.0376 0.1310 0.0655 −0.0167

−0.0826 0.0077 0.0252 −0.0577 0.0589







The error matrix E(t) = D − AV(t)B of GNN and GGNN model for both linear and non-linear

activation functions are shown on Figure 6a–c, and EG of both model for linear and non-linear

activation function are shown on Figure 7a–c. Like in previously example, we can conclude that

GGNN converges faster compared to the GNN model.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 6. Frobenius norm of D − AV(t)B in GGNN((AT A)2, I, AT AAT) against GNN(AT A, I, AT) in

Example 4.3.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 7. Frobenius norm of EG in GGNN((AT A)2, I, AT AAT) against GNN(AT A, I, AT) in

Example 4.3.

Example 4.4. Consider the matrices

A =







15 −352 −45 −238 42

−5 14 8 132 −65

235 −65 44 350 −73






, D =















−4 4 16

3 1 −9

1 −7 2

2 2 −4

4 1 −5















, A1 = DA,

that dissatisfy rank(A1) = rank(D) = 3. Now, we apply GGNN formula to solve the matrix equation

A1X = D. Notice, if we look at GGNN(A, B, D) in this example, we actually operate with A = A1 and

B = I3. So, we consider GNN(A1, I3, D). The error matrix for the corresponding GGNN model is

EG(t) = AT
1 (D − A1VI3) IT

3 = AT
1 (D − A1V) .

The gain parameter of the model is γ = 109 and the final time is t = 0.00001. The zero initial state

V(0) = 0 generates the best approximate solution X = A†
1D = (DA)†D of the matrix equation

A1X = D, given by

X = A†
1D =















−0.000742151758732906 −0.00913940509710217 0.00337604725603635

−0.00281859443979587 −0.00383668701022646 −0.000268348265455338

−0.000377755170367094 −0.00134463893719598 0.000458599151069315

−0.000177073414005706 0.00403153859974667 0.000743238210989296

−0.000956081467310272 −0.00748631706136413 0.00124829423173208















.

The Frobenius norm of the error matrix D − AV(t)B in GNN and GGNN models for both linear and

non-linear activation functions are shown on Figure 8a–c, and error matrix EG in both models for linear
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and non-linear activation function are shown on Figure 9a–c. It is observable that GGNN converges

faster than GNN.
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(a)Linear activation.
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(b)Power-sigmoid activation
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(c)Smooth power-sigmoid activation.

Figure 8. Frobenius norm of error matrix D − AV(t)B of GGNN(AT
1 A1, I3, AT

1 D) against

GNN(A1, I3, D) in Example 4.4.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 9. Frobenius norm of error matrix EG of GGNN(AT
1 A1, I3, AT

1 D) against GNN(A1, I3, D) in

Example 4.4.

Example 4.5. Table 2 shows the results obtained during experiments we conducted with nonsquared

matrices, where m × n is dimension of matrix. Table 1 is the input data in the Simulink model which

are used to perform experiments that generate results in Table 2. Best cases in Table 2 are marked in

bold text.

Table 1. Input data.

Matrix A Matrix B Matrix D Input and residual norm

m n rank(A) p q rank(B) m q rank(D) γ t f
†DB†B−D_F

10 8 8 9 7 7 10 7 7 104 0.5 1.051

10 8 6 9 7 7 10 7 7 104 0.5 1.318

10 8 6 9 7 5 10 7 7 104 0.5 1.81

10 8 6 9 7 5 10 7 5 104 5 2.048

10 8 1 9 7 2 10 7 1 104 5 2.372
20 10 10 8 5 5 20 5 5 106 5 1.984
20 10 5 8 5 5 20 5 5 106 5 2.455
20 10 5 8 5 2 20 5 5 106 1 3.769
20 10 2 8 5 2 20 5 2 106 1 2.71
20 15 15 5 2 2 20 2 2 108 1 1.1
20 15 10 5 2 2 20 2 2 108 1 1.158
20 15 10 5 2 1 20 2 2 108 1 2.211
20 15 5 5 2 1 20 2 2 108 1 1.726
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Table 2. Experimental results based on data presented in Table 1

E(t)F(GNN) E(t)F(GGNN) EG(t)F(GNN) EG(t)F(GGNN) CPU(GNN) CPU(GGNN)

1.051 1.094 2.52e−09 0.02524 5.017148 13.470995

1.318 1.393 3.122e−07 0.03661 22.753954 10.734163

1.811 1.899 0.0008711 0.03947 15.754537 15.547785

2.048 2.082 1.96e−10 0.00964 9.435709 17.137916

2.372 2.3722 1.7422e−15 2.003e-15 21.645386 13.255210

1.984 1.984 2.288e-14 9.978e-15 21.645386 13.255210

2.455 2.455 1.657e-11 1.693e-14 50.846893 19.059385

3.769 3.769 6.991e-11 4.071e-14 42.184748 13.722390

2.71 2.71 1.429e-14 1.176e-14 148.484258 13.527065

1.1 1.1 1.766e-13 5.949e-15 218.169376 17.5666568

1.158 1.158 2.747e-10 2.981e-13 45.505618 12.441782

2.211 2.211 7.942e-12 8.963e-14 194.605133 14.117241

1.726 1.726 8.042e-15 3.207e-15 22.340501 11.650829

Numerical results arranged in Table 2 are divided into two parts by a horizontal line. The

upper part corresponds to test matrices of dimensions ≤ 10 while the lower part corresponds to the

dimensions m, n ≥ 10. Considering first two columns, it is observable from the upper part that GGNN

generates smaller values ||E(t)||F compared to GGNN. Values ||E(t)||F in the lower part generated by

GNN and GGNN are equal. Considering the third and fourth columns, it is observable from the upper

part that GGNN generates smaller values ||EG(t)||F compared to GGNN. On the other hand, values

||EG(t)||F in the lower part, generated by GGNN, are smaller than corresponding values generated

by GNN. Last two columns show that the GGNN requires smaller CPU time compared to GNN.

General conclusion is that GGNN model is more efficient on rank deficient test matrices of larger order

m, n ≥ 10.

4.1. Application of GGNN to electrical networks

It is really interesting to apply the novel GGNN formula (9) for the calculation and study of

different parameters related to electrical networks. For this reason the following circuit in Figure 10

from [34] is considered.

Figure 10. Electrical Network.

Our goal is to estimate the currents I1, I2, I3 in amperes (A) while electrical potential E is measured

in volts (V) and resistors with resistance R is measured in ohms (Ω). Applying the current law in the

points A, B, relationships I1 = I2 + I3 and 8I1 + 4I2 = 20 obtained respectively and from the voltage

law the relationship 20I3 − 4I2 = 16 which lead to the following system AI = D in matrix form
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with theoretical solution I1 = 2, I2 = I3 = 1. For the parameters γ = 106 and the zero initial condition

simulink implementation from Figure 1 extracts Figures 11 and 12.
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(b)Power-sigmoid activation.
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Figure 11. Frobenius norm of error ||V(t) − I||F of GGNN(A, 1, D) against GNN(A, 1, D) for the

electrical network application.
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(a)Linear activation.
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(b)Power-sigmoid activation.

 t (sec)

×10
-5

0 0.2 0.4 0.6 0.8 1

 E
le

m
e
n

ts
 o

f 
V

(t
)

-0.5

0

0.5

1

1.5

2

2.5
 

(c)Smooth power-sigmoid activation.

Figure 12. Elementwise convergence trajectories of the GGNN(A, 1, D) network in electrical network

application.

It is observable from Figure 11 that GGNN(A, 1, D) initiates a faster convergence than

GNN(A, 1, D) formula for the same parameter γ as error ||V(t)− I||F vanishes faster to zero. Figure 12

presents state trajectories of I1, I2, I3 obtained by the exact solution with the trajectories resulting from

the GGNN formula for γ = 106 and V(0) = 0. These observations indicate that the proposed GGNN

formula for solving general linear matrix equations is usable in solving electrical networks, which is

an interesting engineering problem.

5. Mixed GGNN-GZNN model for solving matrix equations

Let us define gradient error matrix of the matrix equation AX = B by

EA,I,B(t) = AT (AV(t)− B) .

The GZNN design (10) corresponding to the error matrix EA,I,B, marked with GZNN(A, I, B), is of the

form:

ĖA,I,B(t) = −γ1F
(

AT (AV(t)− B)
)

. (21)

Now, the scalar-valued norm-based error function corresponding to EA,I,B(t) is given by

ε(t) = ε (V(t)) =
1

2
||EA,I,B(t)||F =

||AT (AV(t)− B) ||F
2

.
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The following dynamic state equation can be derived using the GGNN(A, I, B) design formula derived

from (9):

V̇(t) = −γ2 AT AF
(

AT (AV(t)− B)
)

. (22)

Further, it follows

ĖA,I,B(t) = AT AV̇(t) = −γ2 AT AAT AF
(

AT (AV(t)− B)
)

. (23)

Next step is to define new hybrid model based on the summation of (21) and (23) in the case γ1 =

γ2 = 1
2 γ, as follows:

ĖA,I,B(t) = AT AV̇(t)

= −γ

(

(

AT A
)2

+ I

)

F
(

AT (AV(t)− B)
)

= −γ

(

(

AT A
)2

+ I

)

F (EA,I,B(t)) .

(24)

The model (24) is derived as a combination of the model GGNN(A, I, B) and the model

GZNN(A, I, B). Hence, it is equally justified to use the term Hybrid GGNN (HGGNN shortly)

or Hybrid GZNN (HGZNN shortly) model. But, the model (24) is implicit, so that it is not a kind

of GGNN dynamics. On the other hand, it is designed for time-invariant matrices, which is not

in accordance with the common nature of GZNN models, because usually GZNN is used for the

time-varying case. A formal comparison of (24) and GZNN(A, I, B) reveals that both these methods

possess identical left hand sides and the right hand side of (24) can be derived multiplying the right

hand side of GZNN(A, I, B) by the term
(

AT A
)2

+ I.

Formally, (24) is closer to the GZNN dynamics, so, we will denote the model (2.4) by

HGZNN(A, I, B), considering that this model is not the exact GZNN neural dynamics and it is

applicable in time-invariant case. This is the case of constant coefficient matrices A, I, B. Figure 13

represents the Simulink implementation of HGZNN(A, I, B) dynamics (24).

(I-A^TA)X'(t)-k(I+(A^TA)̂ 2)F(A^T(AX(t)-B)]

k(I+(A^TA)̂ 2)F(A^T(AX(t)-B)]

F[A^T(AX(t)-B)]
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Figure 13. Simulink implementation of (24).
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Now, we will take into account solving the matrix equation XC = D. The error matrix for this

equation is defined by

EI,C,D(t) = (V(t)C − D)CT .

The GZNN design (10) corresponding to the error matrix EI,C,D, marked with GZNN(I, C, D), is of the

form:

ĖI,C,D(t) = V̇CCT = −γ1F
(

(V(t)C − D)CT
)

. (25)

On the other hand, the GGNN design formula (9) produces the following dynamic state equation:

V̇(t) = −γ2F
(

(V(t)C − D)CT
)

CCT , V(0) = V0. (26)

The GGNN model (26) is denoted by GGNN(I, C, D). It implies

ĖI,C,D(t) = V̇(t)CCT = −γ2F
(

(V(t)C − D)CT
)

CCTCCT . (27)

A new hybrid model based on the summation of (25) and (27) in the case γ = 2γ1 = 2γ2 can be

proposed as follows

ĖI,C,D(t) = V̇(t)CCT

= −γF
(

(V(t)C − D)CT
)

(

I +
(

CCT
)2

)

= −γF (EI,C,D(t))

(

I +
(

CCT
)2

)

.

(28)

The model (28) will be denoted by HGZNN(I, C, D). This is the case of constant coefficient matrices I,

C, D.

For the purposes of the proof of the following results, we will denote by ECR(M) the exponential

convergence rate of the model M. With λmin(K) and λmax(K), we denote the smallest and largest

eigenvalue of a matrix K, respectively. In the continuation of the work we use three types of activation

functions F : linear, power-sigmoid and smooth power-sigmoid.

Next theorem determines the equilibrium state of HGZNN(A, I, B) and defines its global

exponential convergence.

Theorem 3. Let A ∈ R
k×n, B ∈ R

k×m be given and satisfy AA†B = B and V(t) ∈ R
n×m be the state matrix

of (24), where F is defined by flin, fps or fsps.

a) Then V(t) achieves global convergence and satisfies AV(t) → B when t → +∞, starting from any initial

state X(0) ∈ R
n×m. The state matrix V(t) ∈ R

n×m of HGZNN(A, I, B) is stable in the sense of Lyapunov.

b) The exponential convergence rate of the HGZNN(A, I, B) model (24) in the linear case is equal to

ECR(HGZNN(A, I, B)) = γ

(

1 + λmin

(

(

AT A
)2

))

. (29)

c) The activation state variables matrix V(t) of the model HGZNN(A, I, B) is convergent when t → +∞ with

the equilibrium state matrix

V(t) → ṼV(0) = A†B + (I − A† A)V(0). (30)

Proof. a) With the assumption AA†B = B we have solvability of the matrix equation AX = B.
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We can define the Lyapunov function as

L(t) =
1

2
||EA,I,B(t)||

2
F

=
1

2
Tr

(

(EA,I,B(t))
T EA,I,B(t)

)

.

Hence, from (24) and d Tr(VTV) = 2Tr(VTdV), it holds that

L̇(t) =
1

2
d Tr

(

(EA,I,B(t))
T EA,I,B(t)

)

=
1

2
2Tr

(

(EA,I,B(t))
T dEA,I,B(t)

)

= Tr
(

(EA,I,B(t))
T ĖA,I,B(t)

)

= Tr

(

(EA,I,B(t))
T
(

−γ

(

(

AT A
)2

+ I

)

F (EA,I,B(t))

))

= −γTr

((

(

AT A
)2

+ I

)

F (EA,I,B(t)) (EA,I,B(t))
T
)

.

In the linear case it follows

L̇(t) = −γTr

((

(

AT A
)2

+ I

)

EA,I,B(t) (EA,I,B(t))
T
)

.

We also consider next inequality [35], which is valid for a real symmetric matrix K and a real

symmetric positive-semidefinite matrix L of the same size:

λmin(K)Tr(L) ≤ Tr(KL) ≤ λmax(K)Tr(L).

Now, it can be chosen: K =
(

AT A
)2

+ I and L = EA,I,B(t) (EA,I,B(t))
T . Let λmin

(

(

AT A
)2
)

≥ 0 be the

minimal eigenvalue of
(

AT A
)2

. Then 1 + λmin

(

(

AT A
)2
)

≥ 1 is the minimal nonzero eigenvalue of
(

AT A
)2

+ I, which implies

L̇(t) ≤ −γ

(

1 + λmin

(

(

AT A
)2

))

Tr
(

EA,I,B(t) (EA,I,B(t))
T
)

. (31)

From (31), it can be concluded

L̇(t) =

{

< 0 if EA,I,B(t) 6= 0

= 0 if EA,I,B(t) = 0.
(32)

According to (32), the Lyapunov stability theory confirms that EA,I,B(t) = AV(t)− B = 0 is a globally

asymptotically stable equilibrium point of the HGZNN(A, I, B) model (24). So, EA,I,B(t) converges to

the zero matrix, i.e. AV(t) → B from any initial state X(0).

b) From a) it follows that

L̇ ≤ −γ

(

1 + λmin

(

(

AT A
)2

))

Tr
(

(EA,I,B(t))
T EA,I,B(t)

)

= −γ

(

1 + λmin

(

(

AT A
)2

))

||EA,I,B(t)||
2
F

= −2γ

(

1 + λmin

(

(

AT A
)2

))

L(t).
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This implies

L ≤ L(0)e
−2γ

(

1+λmin

(

(AT A)
2
))

t
⇐⇒

||EA,I,B(t)||
2
F ≤ ||EA,I,B(0)||

2
F e

−2γ
(

1+λmin

(

(AT A)
2
))

⇐⇒

||EA,I,B(t)||F ≤ ||EA,I,B(0)||F e
−γ

(

1+λmin

(

(AT A)
2
))

,

which confirms the convergence rate (29) of HGZNN(A, I, B).

c) This part of the proof can be verified by following an analogous result from [17].

Theorem 4. Let C ∈ R
m×l , D ∈ R

n×l be given and satisfy DC†C = D and V(t) ∈ R
n×m be the state matrix

of (28), where F is defined by flin, fps or fsps.

a) Then V(t) achieves global convergence V(t)C → D when t → +∞, starting from any initial state

V(0) ∈ R
n×m. The state matrix V(t) ∈ R

n×m of HGZNN(I, C, D) is stable in the sense of Lyapunov.

b) The exponential convergence rate of the HGZNN(I, C, D) model (28) in the linear case is equal to

ECR(HGZNN(I, C, D)) = γ

(

1 + λmin

(

(

CCT
)2

))

. (33)

c) The activation state variables matrix V(t) of the model HGZNN(I, C, D) is convergent when t → +∞ with

the equilibrium state matrix

V(t) → ṼV(0) = DC† + V(0)(I − CC†). (34)

Proof. a) With the assumption DC†C = D we have solvability of the matrix equation XC = D.

Lets define the Lyapunov function with

L(t) =
1

2
||EI,C,D(t)||

2
F

=
1

2
Tr

(

(EI,C,D(t))
T EI,C,D(t)

)

.

Hence, from (28) and d Tr(XTX) = 2Tr(XTdX), it holds that

L̇(t) =
1

2
dTr

(

(EI,C,D(t))
T EI,C,D(t)

)

= Tr
(

(EI,C,D(t))
T ĖI,C,D(t)

)

= Tr

(

(EI,C,D(t))
T
(

−γ

(

(

CCT
)2

+ I

)

F (EI,C,D(t))

))

= −γTr

((

(

CCT
)2

+ I

)

F (EI,C,D(t)) (EI,C,D(t))
T
)

.

According to similar results from [36], one can verify the following inequality

L̇(t) = −γTr

((

(

CCT
)2

+ I

)

EI,C,D(t) (EI,C,D(t))
T
)

.

We also consider next inequality [35], which is valid for a real symmetric matrix K and a real

symmetric positive-semidefinite matrix L of the same size:

λmin(K)Tr(L) ≤ Tr(KL) ≤ λmax(K)Tr(L).

Now, it can be chosen: K =
(

CCT
)2

+ I and L = EI,C,D(t) (EI,C,D(t))
T .
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Let λmin

(

(

CCT
)2
)

≥ 0 be the minimal eigenvalue of
(

CCT
)2

. Then 1 + λmin

(

(

CCT
)2
)

≥ 1 is

the minimal nonzero eigenvalue of
(

CCT
)2

+ I. This implies

L̇(t) = −γ

(

1 + λmin

(

(

CCT
)2

))

Tr
(

EI,C,D(t) (EI,C,D(t))
T
)

. (35)

From (35), it can be concluded

L̇(t) =

{

< 0 if EI,C,D(t) 6= 0

= 0 if EI,C,D(t) = 0.
(36)

According to (36), the Lyapunov stability theory confirms that EI,C,D(t) = V(t)C − D = 0 is a globally

asymptotically stable equilibrium point of the HGZNN(A, I, B) model (28). So, EI,C,D(t) converges to

the zero matrix, i.e. V(t)C → D from any initial state V(0).

b) From a) it follows

L̇ ≤ −γ

(

1 + λmin

(

(

CCT
)2

))

Tr
(

(EI,C,D(t))
T EI,C,D(t)

)

= −γ

(

1 + λmin

(

(

CCT
)2

))

||EI,C,D(t)||
2
F

= −2γ

(

1 + λmin

(

(

CCT
)2

))

L(t).

This implies

L ≤ L(0)e
−2γ

(

1+λmin

(

(CCT)
2
))

t
⇐⇒

||EI,C,D(t)||
2
F ≤ ||EI,C,D(0)||

2
Fe

−2γ
(

1+λmin

(

(CCT)
2
))

⇐⇒

||EI,C,D(t)||F ≤ ||EI,C,D(0)||Fe
−γ

(

1+λmin

(

(CCT)
2
))

,

which confirms that the convergence rate of HGZNN(I, C, D) is

ECR(HGZNN(I, C, D)) = γ

(

1 + λmin

(

(

CCT
)2

))

.

c) This part of the proof can be verified by following an analogous result from [17].

Corollary 5.1. a) Let the matrices A ∈ R
k×n, B ∈ R

k×m be given and satisfy AA†B = B and V(t) ∈ R
n×m

be the state matrix of (24), with an arbitrary nonlinear activation F . Then ECR(GZNN(A, I, B)) = γ.

b) Let the matrices C ∈ R
m×l , D ∈ R

n×l be given and satisfy DC†C = D and V(t) ∈ R
n×m be the state

matrix of (28) with an arbitrary nonlinear activation F . Then ECR(GZNN(I, C, D)) = γ.

5.1. Regularized HGZNN model for solving matrix equations

From Theorem 3 and Corollary 5.1 (a), it follows

ECR(HGZNN(A, I, B))

ECR(GZNN(A, I, B))
= 1 + λmin

(

(

AT A
)2

)

≥ 1. (37)

Similarly, according to Theorem 4 and Corollary 5.1 (b), it can be concluded that

ECR(HGZNN(I, C, D))

ECR(GZNN(I, C, D))
= 1 + λmin

(

(

CCT
)2

)

≥ 1. (38)
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Convergence of HGZNN(A, I, B) (resp. HGZNN(I, C, D)) can be improved in the case

λmin

(

(

AT A
)2
)

> 0 (resp. λmin

(

(

CCT
)2
)

> 0). There exist two possible situations when the

acceleration terms AT A and CCT improve the convergence. The first case assumes invertibility of A

(resp. C), and the second case assumes left invertibility of A (resp. right invertibility of C). Still, in

some situations the matrices A and C could be rank deficient. Hence, in the case when A and C are

square and singular, it is useful to use the invertible matrices A + λI and C + λI, λ > 0 instead of

A and C, and consider the models HGZNN(A + λI, I, B) and HGZNN(I, C + λI, D). In below are

presented the convergence results considering nonsingularity of A + λI and C + λI.

Corollary 5.2. Let A ∈ R
n×n, B ∈ R

n×m be given and V(t) ∈ R
n×m be the state matrix of (24), where F is

defined by flin, fps or fsps. Let λ > 0 be a selected real number. Then the following statements are valid:

a) The state matrix V(t) ∈ R
n×m
r of the model HGZNN(A + λI, I, B) converges globally to

ṼV(0) = (A + λI)−1B,

when t → +∞, starting from any initial state X(0) ∈ R
n×m and the solution is stable in the sense of Lyapunov.

b) The minimal exponential convergence rate of HGZNN(A + λI, I, B) in the case F = I is equal to

ECR (HGZNN(A + λI, I, B)) = γ

(

1 + λmin

(

(

(A + λI)T (A + λI)
)2

))

.

c) Let ṼV(0) be the limiting value of V(t) when t → +∞. Then

lim
λ→0

ṼV(0) = lim
λ→0

(A + λI)−1 B. (39)

Proof. Since A + λI is invertible, it follows V = (A + λI)−1 B.

From (30) and invertibility of A + λI we can get validity of a). In this case, it follows

ṼV(0) = (A + λI)−1B + (I − (A + λI)−1(A + λI))V(0)

= (A + λI)−1B + (I − I)V(0)

= (A + λI)−1B.

Part b) is proved analogously as in Theorem 3. Last part c) follows from a).

Corollary 5.3. Let C ∈ R
m×m, D ∈ R

n×m be given and V(t) ∈ R
n×m be the state matrix of (28), where

F = I,F = Fps or F = Fsps. Let λ > 0 be a selected real number. Then the following statements are valid:

a) The state matrix V(t) ∈ R
n×m
r of HGZNN(I, C + λI, D) converges globally to

ṼV(0) = D(C + λI)−1,

when t → +∞, starting from any initial state X(0) ∈ R
n×m and the solution is stable in the sense of Lyapunov.

b) The minimal exponential convergence rate of HGZNN(I, C + λI, D) in the case F = I is equal to

ECR (HGZNN(I, C + λI, D)) = γ

(

1 + λmin

(

(

(C + λI) (C + λI)T
)2

))

.

c) Let ṼV(0) be the limiting value of V(t) when t → +∞. Then

lim
λ→0

ṼV(0) = lim
λ→0

D (C + λI)−1 . (40)

Proof. It can be proved analogously to Corollary 5.2.
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Remark 1. The notation A1 = A + λI and C1 = C + λI will be used. Main observations about the

convergence properties of HGZNN(A, I, B) and HGZNN(I, C, D) are highlighted as follows.

1. Hybrid neural dynamics HGZNN(A, I, B) (resp. HGZNN(I, C, D)) converge faster than GZNN(A, I, B)

(resp. GZNN(I, C, D)). The accelerated convergence rate is equal to 1 + λmin

(

(

AT A
)2
)

> 1 (resp. 1 +

λmin

(

(

CCT
)2
)

> 1).

2. Regularized hybrid dynamics HGZNN(A1, I, B) and HGZNN(I, C1, D) are applicable even in the case if A

and C are singular matrices.

3. HGZNN(A1, I, B)
(

resp. HGZNN(I, C1, D)
)

always faster converge than GZNN(A1, I, B) (resp.

GZNN(I, C1, D)). The accelerated convergence rate is 1 + λmin

(

(

AT
1 A1

)2
)

> 1 (resp. 1 +

λmin

(

(

C1CT
1

)2
)

> 1).

6. Numerical examples on hybrid models model

In this section the numerical examples are represented based on the Simulink implementation of

HGZNN formula. The previously mentioned three types of activation functions f (·) in (18), (19) and

(20) will be used in the following examples. The parameters γ, initial state V(0) and parameters ρ and

̺ of the nonlinear activation functions (19) and (20), are entered directly in the model, while matrices

A, B, C and D are defined from the workspace. We assume that ρ = ̺ = 3 in all examples. The

ordinary differential equation solver in configuration paremeters is the ode15s. The blocks powersig,

smoothpowersig and transpmult include the codes described in [16].

We present numerical examples in which we compare Frobenius norms ||EG||F and ||A−1B −

V(t)||F which are generated by HGZNN, GZNN and GGNN.

Example 6.1. Consider the matrix

A =















0.49 0.276 0.498 0.751 0.959

0.446 0.68 0.96 0.255 0.547

0.646 0.655 0.34 0.506 0.139

0.71 0.163 0.585 0.699 0.149

0.755 0.119 0.224 0.891 0.258















.

In this example we compare HGZNN(A, I, I) model with GZNN(A, I, I) and GGNN(A, I, I)

considering all three types of activation functions. The gain parameter of the model is γ = 106,

initial state V(0) = 0 and the final time is t = 0.00001.

Elementwise trajectories of the state variable with red lines are shown in Figure 14a–c, for

linear, power-sigmoid and smooth power-sigmoid activation functions, respectively, and is observable

the converge to the black dashed lines of the theoretical solution X. Trajectories indicate a usual

convergence behaviour, so the system is globally asymptotically stable. Error matrix EG of HGZNN,

GZNN and GGNN model for both linear and non-linear activation functions are shown on Figure 15a–c,

and error matrix A−1B − V(t) of both model for linear and non-linear activation function are shown

on Figure 16a–c. On each graph, Frobenius norm of error from HGZNN formula vanish faster to zero

than GZNN and GGNN model.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 14. Elementwise convergence trajectories of the HGZNN(A, I, I) network in Example 6.1.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation

Figure 15. Frobenius norm of error matrix EA,I,B of HGZNN(A, I, I) against GGNN(A, I, I) and

GZNN(A, I, I) in Example 6.1.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 16. Frobenius norm of the residual matrix A−1B − V(t) of HGZNN(A, I, I) against

GGNN(A, I, I) and GZNN(A, I, I) in Example 6.1.

Example 6.2. Consider the matrices

A =



















0.0818 0.0973 0.0083 0.0060 0.0292 0.0372

0.0818 0.0649 0.0133 0.0399 0.0432 0.0198

0.0722 0.0800 0.0173 0.0527 0.0015 0.0490

0.0150 0.0454 0.0391 0.0417 0.0984 0.0339

0.0660 0.0432 0.0831 0.0657 0.0167 0.0952

0.0519 0.0825 0.0803 0.0628 0.0106 0.0920



















,

B =



















0.1649 0.1813 0.0851 0.1197 0.0138 0.1437 0.1558

0.1965 0.1759 0.0625 0.0942 0.0639 0.1937 0.0847

0.1460 0.1636 0.0323 0.1392 0.1062 0.1063 0.0182

0.0688 0.0521 0.0358 0.1400 0.1309 0.0650 0.0533

0.1168 0.1189 0.0846 0.1277 0.0815 0.0211 0.0307

0.0216 0.0045 0.0188 0.0067 0.1640 0.1222 0.0562



















.
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In this example, we compare HGZNN(A, I, B) model with GZNN(A, I, B) and GGNN(A, I, B)

considering all three types of activation functions. The gain parameter of the model is γ = 1000, initial

state V(0) = 0 and the final time is t = 0.01.

Elementwise trajectories of the state variable with red lines are shown in Figure 17a–c, for linear,

power-sigmoid and smooth power-sigmoid activation functions, respectively, and is observable the

converge to the black dashed lines of the theoretical solution X. We can see that trajectories indicate a

usual convergence behaviour, so the system is globally asymptotically stable. The error matrix EG of

HGZNN, GZNN and GGNN model for both linear and non-linear activation functions are shown on

Figure 18a–c, and the residual matrix A−1B − X(t) of both models for linear and non-linear activation

function are shown on Figure 19a–c. On each graph, for both error cases, the Frobenius norm of error

HGZNN formula is similar to the Frobenius norm of error of GZNN model, and they both converges

faster to zero than GGNN model.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 17. Elementwise convergence trajectories of the HGZNN(A, I, B) network in Example 6.2.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 18. Frobenius norm of error matrix EA,I,B of HGZNN(A, I, B) against GGNN(A, I, B) and

GZNN(A, I, B) in Example 6.2.
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(a)Linear activation.
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(b)Power-sigmoid activation.
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(c)Smooth power-sigmoid activation.

Figure 19. Frobenius norm of error matrix A−1B − X(t) of HGZNN(A, I, B) against GGNN(A, I, B)

and GZNN(A, I, B) in Example 6.2.
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7. Conclusions

We show that the error function lying in the basement of GNN and ZNN dynamical evolutions

can be defined using the gradient of the Frobenius norm of the traditional error function E(t). The

result of this intention is usage of an original error function EG(t) for the basis of GNN dynamics which

results in the proposed GGNN model. The results related to the GNN model (called GNN(A, B, D)) for

solving the general matrix equation AXB = D are extended on GGNN model (called GGNN(A, B, D))

in both theoretical and computational directions. In theoretical sense, the convergence of defined

GGNN model is considered. It is shown that the neural state matrix V(t) of the GGNN(A, B, D)

model asymptotically converges to the solution of the matrix equation AXB = D, for an arbitrary

initial state matrix V(0), and coincides with the general solution of the linear matrix equation. A

number of applications of GNN(A, B, D) are considered. All applications are globally convergent.

Several particular appearances of the general matrix equation are observed and applied in computing

various classes of generalized inverses. Illustrative numerical examples and simulation results are

obtained using Matlab Simulink implementation and presented to demonstrate validity of the derived

theoretical results. The influence of various nonlinear activations on the GNN models is considered in

both the theoretical and the computational direction. In the presented examples it can be concluded

that GGNN model is faster and has smaller error compared to the GNN model.

Further research can be oriented to definition of finite-time convergent GGNN or GZNN models

as well as definition of noise-tolerant GGNN or GZNN design.
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