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Abstract: In this paper, intrusion detection systems are thoroughly investigated utilizing the CSE-CIC-IDS-
2018 dataset. The research is divided into three key phases: first, applying Data Cleaning, Exploratory Data 
Analysis, and Data Normalization techniques (min-max and z-score) for preparing data across distinct 
classifiers. Second, feature importance is reduced using a combination of Principal Component Analysis (PCA) 
and Random Forest (RF), with the goal of improving processing speed and decreasing model complexity. This 
stage comprises a comparison with the entire dataset. Finally, machine learning algorithms (XGBoost, CART, 
DT, KNN, MLP, RF, LR, and Bayes) are applied to specific features and preprocessing approaches. 
Surprisingly, the XGBoost, DT, and RF models outperform in both ROC values and CPU runtime. Following 
evaluation, which includes PCA and RF feature selection, an optimal set is produced. 
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1. Introduction 

In today’s world, the Internet has become an invaluable tool, effortlessly integrated into human 
life. People all over the world utilize it as a communication and information exchange medium. 
Information and communication technology (ICT) is essential in both business and daily life. 
However, in the age of big data, cyber-attacks on ICT systems have become increasingly sophisticated 
and broad, making network risks a key issue in modern life. Malicious attacks are continually 
developing, emphasizing the critical need for improved network security solutions. Given the 
world’s growing reliance on digital technologies such as computers and the Internet, building safe 
and reliable programs, frameworks, and networks that can withstand these attacks is a critical task 
[1,2].  

Intrusion detection systems (IDS) are critical for protecting computer networks. They effectively 
recognize and respond to security threats. Intrusion it used to detect irregularities in network traffic to 
improve security. Detection accuracy, detection times, false alarm alerts, and the identification of 
unknown assaults are currently issues for IDS technology [3] They are classified into three types: 
signature-based systems, anomaly-based systems, and hybrid systems. Anomaly-based systems can 
detect unknown hostile actions by recognizing deviations from a model based on typical behavior, 
whereas signature-based systems can identify known assaults by employing established signatures. 
Signature-based systems, on the other hand, have a high rate of false alarms [4]. Existing anomaly 
intrusion detection systems have accuracy problems. Certain datasets lack network traffic diversity 
and volume, others lack diverse or recent attack patterns, and still others lack crucial feature set 
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metadata. The hybrid IDS, which includes both anomaly-based and misuse-based IDSs, proved to be 
a more robust and effective solution. Network Intrusion Detection Systems (NIDS) are critical in 
resolving security issues. NIDS monitors network traffic for unusual activity, then analyzes the data 
to discover security breaches such as invasions, misuse, and anomalies. NIDS must deal with 
difficulties like large data dimensionality and high traffic volumes [5]. While many research projects 
have used machine learning techniques approaches are useful in NIDS, they have limits when 
confronted with large amounts of network data. Feature selection (FS) has become widely used in 
selecting relevant features for building strong models. It has significantly influenced the efficiency 
and performance of IDS models [6]. As a result, three critical aspects of NIDS development are 
preprocessing, feature reduction, and classifier methods. Nonetheless, network intrusion detection 
systems encounter issues such as managing massive amounts of data, high false alarm rates, and 
skewed data. 

Machine learning techniques (ML) have been widely. It used in the field of information security 
in recent years. ML have found widespread application in network security during the last two decades 
[7]. ML approaches are becoming more popular as a method of spotting anomalies [8]. ML includes 
automating the process of learning from examples. It is used to build models that distinguish between 
regular and aberrant classes [9] 

The goal of this study was to find the most effective classifier by Methods for preprocessing and 
feature selection are translated into machine learning approaches that are extensively used by we in 
intrusion detection systems. Popular classification algorithms such as eXtreme Gradient Boosting 
(XGBoost), Classification and Regression Trees (CART), Decision Tree (DT), k-Nearest Neighbors 
(KNN), Multilayer Perceptron (MLP), Random Forest (RF), Logistic Regression (LR), and Naïve 
Bayes (Bayes) are included. The evaluation of performance encompasses several dimensions as nine 
important criteria: In average accuracy k-fold cross-validation, accuracy, precision, recall, F1 score, 
PCC/BA, MCC, ROC, and average were calculated. Classification CPU Time and Model Size. 

The following are the main contributions of this study: 
• Investigation of large amounts of data linked with harmful network activity. 
• Identification of feature dimensions influencing classification performance in a labeled dataset 

with both benign and malicious traffic, resulting in improved detection accuracy. 
• Use of the CSE-CIC-IDS-2018 dataset for NIDS and testing of seven different machine learning 

classifiers and scripts for identifying various sorts of assaults. 
• In general, researchers frequently work with incomplete data. In contrast, this study uses all 

accessible DDoS data in the experiment, correlating with reality by adopting the concept of data 
imbalance. 

• Presenting various performance assessments has many elements. Furthermore, the evaluation 
considers CPU processing time, which is an important component in intrusion detection, as well 
as the size of the experimentally obtained model, which has the possibility for future extension. 
The rest of the paper is structured as follows: Section 2 describes the research sequence, as well 

as the research concept and process. The methodology and proposed framework are described in 
Section 3. The experimental setup is described and defined in Section 4. The experiments and related 
discussions are presented in Section 5. Finally, Section 6 concludes the essay by discussing the 
model’s strengths and flaws and suggesting future study directions. 

2. Related work 

There are very few datasets for network intrusion detection compared to datasets for malicious 
code. KDD CUP 99 (KDD) is the most widely used dataset for the evaluation of IDS. Numerous 
studies on ML-based IDS have been using KDD or the upgraded versions of KDD. In this work, we 
develop an IDS model using CSE-CIC-IDS-2018, a dataset containing the most up-to-date common 
network attacks [10]. The Canadian Institute for Cybersecurity’s CSE-CIC-IDS-2018 dataset 
incorporates the concept of profiles. The most recent edition of this dataset provides versatility, 
allowing both agents and individuals to generate network events. These profiles can be applied to a 
variety of network protocols and topologies. Furthermore, the dataset has been updated by adding 
the standards used in the development of CIC-IDS-2017. In addition to meeting the necessary 
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requirements, it provides the following benefits: minimum duplicate data, nearly no unclear 
information, and the dataset is already in CSV format, making it ready for use without further 
processing [11] 

As data dimensionality grows, feature selection has become a critical preprocessing step in the 
development of intrusion detection systems. Feature selection entails removing irrelevant and 
superfluous features and picking the optimal subset that best characterizes patterns in various 
classes. There are various advantages to feature selection. It reduces feature dimensionality, which 
leads to better algorithm performance. By removing redundant, irrelevant, or noisy data, it improves 
data efficiency and thus learning technique performance. It also improves the correctness of the 
output model and aids in understanding the underlying operations that generated the data [12,13]. 

Following a study of relevant documents and research articles, it was discovered that several 
studies used Machine Learning techniques in conjunction with the CEC-CIC-IDS- 2018 dataset to 
detect intrusions. The following is an overview of these findings: 
• S. Ullah et al. [14].proposed comparing some of the most efficient machine learning algorithms 

RF, Bayes, LR, KNN, DT and feature selection by RF (30 features). Use CSE-CIC-IDS-2018 
dataset. The research results showed that the decision tree had the most results. 

• Khan [15] developed a HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based 
NIDS and feature selection by RF (30 features). Compare with machine learning algorithms 
DT, LR and XGBoost. Use CSE-CIC-IDS-2018 dataset. The research results showed that the 
HCRNNIDS had the most results. 

• Kim et al.[10] discuss the creation and testing of IDS models using various machine learning 
algorithms such as artificial neural networks (ANN), support vector machines (SVM), and 
deep learning approaches such as convolutional neural networks (CNN) and recurrent neural 
networks (RNN). When applied to datasets such as CSE-CIC-IDS-2018, the experimental 
results suggest that machine learning models, notably CNN, outperform traditional 
techniques. 

• R. Qusyairi et al. [3] suggest an ensemble learning technique that incorporates various 
detection algorithms. LR, DT, and gradient boosting were chosen for the ensemble model after 
comparisons with single classifiers. The study identified 23 significant traits out of 80 using the 
CSE-CIC-IDS-2018 dataset. 

• S. Chimphlee et.al. [4] focuses on Intrusion Detection Systems (IDS) and presents an efficient 
classification scheme using the CSE-CIC-IDS-2018 dataset. The study examined the best-
performing model for classifying invaders by using data preprocessing approaches such as 
under-sampling and feature selection, as well as seven classifier machine learning algorithms. 
Notably, the study investigated the use of random forest (RF) for feature selection as well as 
machine learning approaches such as MLP and XGBoost. According to the experimental 
results, MLP provided the most successful and best-performing outcomes based on evaluation 
parameters. 
As a result, previous researchers investigated a variety of techniques based on standard machine 

learning for intrusion detection. 

3. Methods 

We learn about the problem and its solutions by studying information and relevant research 
publications. This knowledge has been translated by the we into a framework, which is illustrated in 
Figure 1, and is divided into three distinct phases. The study makes use of standardized data and is 
primarily concerned with intrusion detection systems. It specifically makes use of the CSE-CIC-IDS-
2018 dataset [16]. Data Cleaning, Exploratory Data Analysis, and Data Normalization employing two 
techniques: min-max normalization and z-score normalization are all part of the Data Preprocessing 
process in Phase 1. This is done to evaluate the effectiveness of these strategies when applied to 
different classifier models. Following that, the research moves on to Phase 2, which involves assessing 
the significance of each feature in the experimental dataset. The goal here is to reduce data 
complexity, which improves both processing speed and model size. This is accomplished by 
combining two techniques: Principal Component Analysis (PCA) [17] and Random Forest (RF) [18]. 
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The investigation includes using the complete dataset without feature reduction, allowing for a 
comparison of their efficiency when applied to multiple classifier models. In the final phase, the 
dataset, which has undergone Data Preprocessing and Feature Selection based on predetermined 
criteria, is used with machine learning algorithms chosen by the we common classification techniques 
such as XGBoost [19], CART [20], DT [21], KNN [22], MLP [23], RF [24], LR [25], and Bayes [26] are 
used to assess performance across multiple dimensions, as mentioned in the following section. 

4. Experimental Setup 

This study used a 64-bit Windows operating system (Windows 11) with the following 
specifications: an 11th Gen Intel(R) Core(TM) i7-11800H at 2.30GHz, 32 GB of 2933 MHz DDR4 
Memory. The Python 3.11 environment was utilized, and the recommended model was implemented 
and evaluated using the Numpy, pandas, and sklearn data preparation tools. Pandas and Numpy 
libraries were used for data handling, preprocessing, and analysis, while Scikit Learn was used for 
model training, evaluation, and evaluation metrics. The Seaborn package and Matplotlib were used 
to visualize the data. The subsections that follow go into greater detail. 

4.1. CSE-CIC-IDS-2018 Data Set 

The data set given for the CSE-CIC-IDS-2018 [16] was developed through a collaborative project 
between the Communications Security Establishment (CSE) and the Canadian Institute for 
Cybersecurity (CIC). It was created with the goal of evaluating intrusion detection research, and it 
has now become a benchmark data set for the evaluation of IDSs. The data was obtained a ten-day 
period, eighty columns, and There are fifteen sorts of attacks: FTP-BruteForce, SSH-Bruteforce, DoS 
attacks-GoldenEye, DoS attacks-Slowloris, DoS attacks-Hulk, DoS attacks-SlowHTTPTest, DDoS 
attacks-LOIC-HTTP, DDOS attack-HOIC, DDOS attack-LOIC-UDP, Brute Force-Web, Brute Force-
XSS, SQL Injection, Infilteration, Label and Bot. The study focuses on DDoS intrusions [14], because 
a difficult type of assault to counter. We found and use that the data contained DDoS intrusion types 
for 2 days, namely 02-20-2018.csv and 02-21-2018.csv 

4.2. Data Preprocessing 

4.2.1. Data Cleaning 

We chose two unique days’ datasets, 02-20-2018.csv (with 84 features) and 02-21-2018.csv (with 
80 features). To normalize the dataset, we reduced it to 80 features after removing the first four: Flow 
ID, Src IP, Src Port, and Dst IP. These excluded attributes from the two days were combined. Machine 
learning models were created using the remaining 84 features and compared to models created using 
the reduced 80 features. The primary focus was on DDoS attacks. The labels were divided into four 
categories, yielding a dataset of 8,997,323 rows and 80 columns. Label 0 denotes benign, Label 1 
denotes DDoS attacks-LOIC-HTTP, Label 2 denotes DDOS attacks-HOIC, and Label 3 denotes DDOS 
attacks-LOIC-UDP. 
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Figure 1. This proposed framework. 

4.2.2. Exploratory Data Analysis 

The analysis included determining the minimum, maximum, standard deviation, and mean 
values of the data for all 80 attributes, including the labels. Bwd PSH Flags, Fwd URG Flags, Bwd 
URG Flags, CWE Flag Count, Fwd Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk Rate Avg, Bwd Byts/b Avg, 
Bwd Pkts/b Avg, and Bwd Blk Rate Avg were all removed. Additionally, features of the Timestamp 
type defined as Object were eliminated to improve classification appropriateness. To prepare the 
dataset for classification, the feature with the Timestamp type classified as Object was eliminated. 
This change was made to improve the dataset’s usability for classification applications. The initial 
dataset contained 8,997,323 rows and 69 characteristics. To assure data quality, several procedures 
were done, including the removal of NaN values (36,767 rows), the elimination of +inf and -inf values 
(22,686 rows), and the deletion of duplicate rows (2,302,927 rows). The dataset was refined to 
6,634,943 rows after cleaning operations that included deleting NaN, +-inf values, and duplicates, 
making it ready for future study and use. 

The Table 1 displays data statistics before and after cleaning. Initially, there were 8,997,323 rows 
grouped into different labels, with “Benign” accounting for 85.95% of the records, “DDoS attacks-
LOIC-HTTP” accounting for 6.40%, “DDOS attack-HOIC” accounting for 7.62%, and “DDOS attack-
LOIC-UDP” accounting for 0.02%. The dataset was cleaned and reduced to 6,634,943 rows. “Benign” 
entries made up 88.31% of the cleaned data, indicating a reduction from the original dataset. “DDoS 
attacks-LOIC-HTTP” and “DDOS attack-HOIC” percentages increased somewhat, while “DDOS 
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attack-LOIC-UDP” remained at 0.03%. These modifications represent the effect of data cleansing on 
the distribution of the various attack categories. 

Table 1. The Effect of Data Cleaning on Attack Category Distribution. 

Type Original Data After Clean Data 

Label Feature Record Percent Record Percent 

Benign 7,733,390 85.95 5,858,988 88.31 
DoS attacks-LOIC-HTTP  576,191 6.40 575,364 8.67 
DDOS attack-HOIC  686,012 7.62 198,861 3.00 
DDOS attack-LOIC-UDP 1,730 0.02 1,730 0.03 

total 8,997,323 100.00 6,634,943 100.00 

4.2.3. Data Normalization 

Normalization is used in data preparation step of Machine Learning to standardize numerical 
column values and ensure they are on a consistent scale [27]. Normalization, a transformation 
method, improves a model’s performance and accuracy greatly, especially when the distribution of 
information is uncertain. Without a consistent pattern, effective Normalization relies on large 
datasets to smooth data by removing outliers. This technique, which is critical in data preprocessing 
for Network Intrusion Detection Systems (NIDS), standardizes data to a given scale, often ranging 
from 0 to 1. This ensures that all features have consistent scales and ranges, thereby improving the 
performance and accuracy of NIDS. Several normalization approaches are employed in data pre-
processing. Some of the most common are [28] 
• Min Max Normalization: This approach reduces the values of a feature to a range between 0 and 

1. It accomplishes this by subtracting the minimum value of the feature from each data point 
and then dividing the result by the range of the feature. This technique’s equivalent 
mathematical equation is shown below (1), where X is an original value, X’ is the normalized 
value [29] 𝑋ᇱ = (𝑋 − 𝑋௠௜௡)(𝑋௠௔௫ − 𝑋௠௜௡) (1) 

• Z Score Normalization: This method scales a feature’s values to have a mean of 0 and a standard 
deviation of 1. This is accomplished by removing the feature’s mean from each value and then 
dividing by the standard deviation. mathematical equation for this strategy is given below (2), 
where X is an original value, X’ is the normalized value [30]. 𝑋ᇱ = (𝑋 − 𝑚𝑒𝑎𝑛)𝑠𝑡𝑑  (2) 

4.3. Feature Selection 

We compared two feature selection methods in this study: Principal Component Analysis (PCA) 
and Random Forest (RF). Here are the comparison’s specifics. 

4.3.1. PCA. 

Principal Component Analysis is a sophisticated statistical approach used in data analysis and 
machine learning to reduce complex datasets. Its major goal is to decrease the amount of 
characteristics or dimensions in a dataset while retaining critical information. PCA does this by 
changing the original variables into a new set of variables known as principle components. These 
components, which are linear combinations of the original features, are intentionally made 
uncorrelated in order to capture the maximum variation in the data. PCA allows academics and data 
scientists to analyze high-dimensional data more effectively, identify patterns, and maximize the 
performance of machine learning algorithms by selecting the principal components that elucidate the 
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most variability. PCA, in essence, simplifies both data interpretation and processing by condensing 
the information into a more comprehensible and insightful format [17] 

4.3.2. RF. 

Random Forest, in addition to being a powerful prediction model, is also a useful tool for feature 
selection in machine learning. Random Forest evaluates the value of each feature throughout the 
training process by determining how much it contributes to lowering impurity or inaccuracy in the 
model. Higher significance scores are ascribed to features that play a substantial influence in decision-
making across multiple trees. Data scientists can find the most influential aspects in their dataset by 
examining these ratings. This inbuilt feature ranking capability simplifies the selection process, 
allowing practitioners to focus on the factors that will have the greatest impact on their study. The 
capacity of Random Forest to do feature selection improves model efficiency, reduces overfitting, and 
improves the general interpretability of machine learning systems [18]. 

4.4. Classification model 

Classification is the process of predicting the class of data. The IDS categorizes attacks as binary 
or multiclass, determining whether the network traffic is benign or malicious. Binary classification 
has two clusters, whereas multiclass datasets have n clusters. Because it requires categorizing into 
more than two categories, multiclass classification is considered more sophisticated than binary 
classification. This complexity imposes a strain on algorithms in terms of computational power and 
time, perhaps resulting in less effective algorithm outcomes. In the process of classification, each 
dataset is evaluated and categorized as either typical or unusual. Existing structures are maintained, 
and new instances are generated. Classification is employed for both identifying irregular patterns 
and detecting anomalies, although it is more frequently utilized for recognizing misuse. In the current 
study, eight machine learning techniques were applied, along with feature selection methods 
addressing class imbalances [31] 

4.4.1. XGBoost 

XGBoost is a very effective machine learning method noted for its high predicted accuracy and 
speed. It is classified as ensemble learning since it combines predictions from numerous decision 
trees to generate strong models. What distinguishes XGBoost is its emphasis on overcoming the 
constraints of existing gradient boosting methods, resulting in a highly efficient algorithm. It 
accomplishes this by training simple models iteratively to repair faults and optimize performance 
using techniques such as regularization and parallelization. The capacity of XGBoost to handle 
complicated data relationships has made it a popular choice in a variety of industries, winning 
multiple machine learning competitions and finding applications in data science and finance [19]. 

4.4.2. CART 

CART is a versatile machine learning approach capable of performing both classification and 
regression problems. It divides the dataset recursively based on feature values, resulting in a tree 
structure with each node representing a feature and a split point. This operation is repeated until the 
specified halting requirements are met, resulting in the creation of a binary tree. CART is well-known 
for its simplicity and interpretability, making it a popular choice across a wide range of industries. 
It’s notably useful for detecting non-linear correlations in data and producing accurate predictions 
for both category and numerical outcomes [20]. 

4.4.3. DT 

A Decision Tree is a fundamental machine learning technique that can be used for classification 
and regression. It works by recursively splitting the dataset into subsets based on the values of the 
input features. These splits are determined by selecting traits and criteria that produce the best class 
separation or the most accurate predictions. Decision Trees have a tree-like structure with each 
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internal node representing a feature and a split point and each leaf node representing the output, 
which is often a class label for classification tasks or a numerical value for regression tasks. The 
technique divides the data until a stopping condition is met, such as a maximum tree depth or a 
minimum amount of samples in a leaf node. Because they are simple to read and illustrate, decision 
trees are popular for exploratory analysis and decision-making processes [21]. 

4.4.4. KNN 

KNN is a basic powerful machine learning method that may be used for classification and 
regression problems. Predictions in KNN are based on the majority class or the average of the k-
nearest data points in the feature space. “K” represents the number of nearest neighbors considered, 
and the method calculates distances between the query point and all other points in the dataset to 
discover the closest ones. In classification, the most prevalent class among these neighbors 
determines the forecast, whereas in regression, the average of the nearby values defines the 
prediction. KNN is non-parametric and instance-based, which means it makes no assumptions about 
the underlying data distribution, making it adaptable and simple to grasp. However, its performance 
can be affected by the option selected [22]. 

4.4.5. Multilayer Perceptron (MLP) 

MLP is a machine learning artificial neural network. It is made up of several interconnected 
layers, including an input layer, one or more hidden layers, and an output layer. Each node 
connection has a weight, and the network learns by altering these weights during training in order 
to minimize the discrepancy between expected and actual outputs. MLPs can describe complicated 
patterns and relationships in data, making them useful for applications like as classification, 
regression, and pattern recognition. They are very good at handling huge and complex datasets 
because of their capacity to capture nonlinear correlations, but they require careful tuning and a 
significant amount of training data to avoid overfitting [23] 

4.4.6. RF 

RF is a machine learning technique that, during training, generates a set of decision trees. Each 
tree in the ensemble is built with a random subset of the data and a random subset of the features. 
For regression tasks, the algorithm makes predictions by averaging the forecasts of these individual 
trees, whereas for classification tasks, the algorithm takes a majority vote. Random Forest is well-
known for its precision, robustness, and ability to handle complex data interactions. It reduces 
overfitting by pooling the predictions of several trees, making it one of the most popular and 
powerful machine learning techniques [24] 

4.4.7. LR 

LR is a statistical technique used to perform binary classification tasks. Contrary to its name, it 
is utilized for classification rather than regression. The algorithm calculates the likelihood that a given 
input belongs to a specific class. The logistic function (also known as the sigmoid function) is applied 
to the linear combination of input features and their associated weights. The result is converted into 
a value between 0 and 1, signifying the likelihood of the input falling into the positive category. If 
this probability exceeds a certain threshold (typically 0.5), the input is considered positive; otherwise, 
it is considered negative. Logistic Regression is an essential tool in machine learning due to its 
simplicity, interpretability, and efficiency for linearly separable data [25] 

4.4.8. Bayes 

Nave Bayes is a probabilistic machine learning technique that is used for classification jobs. It is 
based on Bayes’ theorem, which assesses the likelihood of a certain event occurring based on prior 
knowledge of factors that may be relevant to the occurrence. In the context of Nave Bayes, it is 
assumed that features in the dataset are conditionally independent, which means that the presence 
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of one feature does not affect the presence of another. Despite this simplistic assumption (thus the 
term “nave”), Nave Bayes performs admirably in many actual applications, particularly text 
classification and spam filtering. It’s computationally efficient, simple to implement, and performs 
well with huge datasets, making it a popular choice for a variety of classification jobs [26] 

4.5. Evaluation model 

This research evaluates an intrusion detection method using nine important criteria: In average 
accuracy k-fold cross-validation, accuracy, precision, recall, F1 score, PCC/BA, MCC, ROC, and 
average were calculated. Classification CPU Time and Model Size 

4.5.1 Evaluation accuracy, sometimes known as accuracy, is a fundamental parameter in 
analyzing the performance of machine learning models, notably in classification tasks. It computes 
the proportion of accurately predicted cases out of all instances in the dataset. High accuracy shows 
that the model’s predictions closely match the actual outcomes. 
• F1 score contains both Recall and Precision and mathematical equation for this strategy is given 

below (3)  𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)     (3) 

The F1 score gives more weight to the lower of the two values and is the harmonic mean of 
precision and recall. This indicates that if either precision or recall is low, the F1 score will be much 
lower as well. However, if both precision and recall are strong, the F1 score will be close to 1. This 
can result in a biased outcome if one of the measurements is significantly greater than the other [4]. 
• The Matthews correlation coefficient (MCC) is a more reliable statistical rate that produces a 

high score only if the prediction performed well in all four confusion matrix categories (true 
positives, false negatives, true negatives, and false positives), proportionally to the size of 
positive and negative elements in the dataset. MCC’s formula takes into account all of the cells 
in the Confusion Matrix. In machine learning, the MCC is used to assess the quality of binary (2-
class) classification. MCC is a correlation coefficient that exists between the exact and projected 
binary classifications and typically returns a value of 0 or 1. mathematical equation for this 
strategy is given below (4) [32], where TP as correctly predicted positives are called true 
positives, FN as wrongly predicted negatives are called false negatives, TN Actual negatives that 
are correctly predicted negatives are called true negatives, and FP Actual negatives that are 
wrongly predicted positives are called false positives  𝑀𝐶𝐶 = 𝑇𝑃 ∗  𝑇𝑁 − 𝐹𝑃 ∗  𝐹𝑁ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)     (4) 

• Receiver Operating Characteristic (ROC) as Most indicators can be influenced by dataset class 
imbalance, making it difficult to rely on a single indication for model differentiation [33]. ROC 
curves are used to differentiate between attack and benign instances, with the x-axis 
representing the False Alarm Rate (FAR) and the y-axis representing the Detection Rate (DR). 

• The Probability of Correct Classification (PCC) is a probability value between 0 and 1 that 
examines the classifier’s ability to detect certain classes. It’s critical to understand that relying 
only on overall accuracy across positive and negative examples might be misleading. Even if our 
training data is balanced, performance disparities in different production batches are possible. 
As a result, accuracy alone is not a reliable measure, emphasizing the need of metrics such as 
PCC, which focus on the classifier’s accurate classification probabilities for individual classes. 

• Balanced accuracy (BA) is calculated as the average of sensitivity and specificity, or the average of 
the proportion corrects of each individually. It entails categorizing the data into two categories. 
mathematical equation for this strategy is given below (5) When all classes are balanced, so that 
each class has the same TN number of samples, TP + FN TN + FP and binary classifier’s “regular” 
Accuracy is approximately equivalent to balanced accuracy. 𝐵𝐴 = 0.5 ∗ ቆ൬ 𝑇𝑃(𝑇𝑃 + 𝐹𝑁)൰ + ൬ 𝑇𝑁(𝑇𝑁 + 𝐹𝑃)൰ቇ    (5) 

• ROC score handled the case of a few negative labels similarly to the case of a few positive labels. 
It’s worth noting that the F1 score for the model is nearly same because positive labels are 
plentiful, and it only cares about positive label misclassification. The probabilistic explanation 
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of the ROC score is that if a positive example and a negative case are chosen at random. In this 
case, rank is defined by the order of projected values. 

• Average Accuracy in k-fold cross-validation is a metric used to evaluate a machine learning 
model’s performance. The dataset is partitioned into k subsets, or folds, in k-fold cross-
validation. The model is trained on one of these folds and validated on the other. This procedure 
is performed k times, with each fold serving as validation data only once. Averaging the 
accuracy ratings obtained from each fold is used to calculate accuracy. It ensures that the model 
is evaluated on multiple subsets of data, which helps to limit the danger of overfitting and 
provides a more trustworthy estimate of how the model will perform on unseen data. 

• In the context of evaluation, CPU time refers to the overall length of time it takes a computer’s 
central processing unit (CPU) to complete a certain job or process. When analyzing algorithms 
or models, CPU time is critical for determining computational efficiency. Evaluating CPU time 
helps determine how quickly a given algorithm or model processes data, making it useful for 
optimizing performance, particularly in applications where quick processing is required, such 
as real-time systems or large scale data processing jobs. Lower CPU time indicates faster 
processing and is frequently used to determine the efficiency and practical applicability of 
algorithms or models. 

• The memory space occupied by a machine learning model when deployed for prediction tasks 
is referred to as model size in classification. Model size must be considered, especially in 
applications with limited storage capacity, such as mobile devices or edge computing 
environments. A lower model size is helpful since it minimizes memory requirements, allowing 
for faster loading times and more efficient resource utilization. However, it is critical to strike a 
balance between model size and forecast accuracy; highly compressed models may forfeit 
accuracy. As a result, analyzing model size assures that the deployed classification system is not 
only accurate but also suited for the given computer environment, hence increasing its 
practicality and usability. 
As a result, they are better suited for cases where the data is uneven. 

5. Experimental Results & Discussions 

In phase 1. We did preprocessing with Data Cleaning, Exploratory Data Analysis and 
Normalization. We double-checked for duplicates after selecting features. The dataset is divided into 
three sections: training, testing, and validation. To begin, the sample data is divided into two parts: 
80 percent train data and 20 percent test data. See Figure 2. 

 

Figure 2. Network traffic distribution. 

• We deleted 10 features that included zero for every instance: Bwd PSH Flags, Fwd URG Flags, 
CWE Flag Count, Fwd Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk Rate Avg, Bwd Byts/b Avg, Bwd 
Pkts/b Avg, and Bwd Blk Rate Avg. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2023                   doi:10.20944/preprints202311.0302.v1



 11 

 

• Remove columns (‘Timestamp’) since we didn’t want learners to discriminate between attack 
forecasts depending on time, especially when dealing with more subtle attacks. 

• The labels were divided into four categories, where Label 0 denotes Benign, Label 1 represents 
DDoS attacks-LOIC-HTTP, Label 2 represents DDOS attack-HOIC, and Label 3 represents DDOS 
attack-LOIC-UDP. 

• We Remove feature contain NaN value, inf value, and rows containing duplicate values. There 
will be 6,634,943 records and 69 features. 
After Data Cleaning and Exploratory Data Analysis we normalization dataset and converting 

the values of each feature to a specified scale, often ranging from 0 to 1. Min-Max normalization is a 
common method for this purpose, in which data are adjusted to fit inside a given range by subtracting 
the minimum value and dividing by the range. Z-score normalization is another strategy that 
standardizes features by subtracting the mean and dividing by the standard deviation, resulting in a 
mean of 0 and a standard deviation of 1. Normalization is especially crucial for algorithms that are 
sensitive to varied feature scales, since it ensures constant and fair comparisons of different qualities 
during the training phase. 

In Phase 2, we split the process into two parts. Firstly, they reduced the number of features using 
PCA and RF techniques, then fed the processed data into classification models. Secondly, they used 
all the data without feature reduction and applied various classification models to evaluate the 
outcomes of data classification, including CPU runtime and model size. 

we used PCA to minimize the number of features depending on certain variance ratios, resulting 
in several feature sets: 11 features as PCA11 for variance ratios greater than or equal to 0.006586494, 
9 features as PCA9 for variance ratios greater than or equal to 0.017037139, 7 features as PCA7 for 
variance ratios greater than or equal to 0.036543147, 5 features as PCA5 for variance ratios greater 
than or equal to 0.052597381, and 3 features as PCA3 for variance ratios greater than or equal to 
0.125926325. Figure 3. depicts the importance of these variance ratios. Once these critical qualities 
were found, they were employed in phase 3 for data classification and further evaluation 

 

Figure 3. Feature selection by using PCA considering variance ratios. 

We used Random Forest (RF) to narrow down the feature set based on particular variance ratios. 
The following criteria were used to choose features: 22 features as RF22 for variance ratios greater 
than or equal to 0.02, 13 features as RF13 for variance ratios greater than or equal to 0.03, and 4 
features as RF4 for variance ratios greater than or equal to 0.05. Figure 4. Following the identification 
of these essential features, they were employed in phase 3 for data classification and further 
evaluation 
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Figure 4. Feature selection by using RF considering variance ratios. 

Phase 3 is the final stage in which the produced dataset is analyzed further. Methods for 
preprocessing and feature selection are translated into machine learning approaches that are 
extensively used by researchers in intrusion detection systems. Popular classification algorithms such 
as XGBoost, CART, DT, KNN, MLP, RF, LR, and Bayes are included. The evaluation of performance 
encompasses several dimensions, and the results are summarized here show in Table 2. 

Table 2. Summary of Classifier Performance Metrics using Min-Max and Z Score Normalization. 

Classifier
s 

Accurac
y 

Precisio
n 

Recall F1 
Score 

PCC/B
A 

MCC ROC CV 5 
CPU 
Time 

(S) 

Model 
Size 
(KB) 

Min-Max           

XGBoost 0.999950 0.975427 0.98257
8 

0.97894
6 

0.98257
8 

0.99976
5 

0.99128
1 

0.99993
0 

92.86 590.85 

CART 0.999917 0.967775 0.96087
7 

0.96427
0 

0.96087
7 

0.99960
9 

0.98042
4 

0.99799
5 

112.79 57.31 

DT 0.999911 0.958447 
0.96085

3 
0.95964

3 
0.96085

3 
0.99958

0 
0.98041

3 
0.99988

9 65.41 68.74 

RF 0.999631 0.956304 
0.98259

3 
0.96862

6 
0.98259

3 
0.99826

0 
0.99106

4 
0.99956

0 131.67 7,860.20 

Bayes 0.950489 0.747992 0.98498
8 

0.83150
5 

0.98498
8 

0.82066
0 

0.98600
5 

0.95056
6 

7.02 6.65 

LR 0.992956 0.898140 0.98949
7 

0.93708
2 

0.98949
7 

0.96730
3 

0.99215
9 

0.98996
4 860.09 4.58 

MLP 0.999835 0.938870 
0.99386

9 
0.96285

6 
0.99386

9 
0.99922

1 
0.99687

9 
0.99890

5 2,220.53 291.93 

KNN 0.999848 0.947640 0.96362
7 

0.95532
2 

0.96362
7 

0.99928
1 

0.98177
2 

0.99981
5 

6,460.54 2,861,321.3
5 

Z Score           

XGBoost 0.999948 0.977524 0.97752
6 

0.97752
5 

0.97752
6 

0.99975
5 

0.98875
4 

0.99993
4 

89.12 581.15 

CART 0.999921 0.968903 0.96448
9 

0.96667
4 

0.96448
9 

0.99962
6 

0.98222
9 

0.99774
9 151.42 56.89 
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DT 0.999918 0.960671 0.96736
0 

0.96396
3 

0.96736
0 

0.99961
2 

0.98366
9 

0.99988
1 

76.50 68.93 

RF 0.999739 0.966118 
0.98235

3 
0.97391

8 
0.98235

3 
0.99876

9 
0.99100

8 
0.99960

3 153.25 17,055.20 

Bayes 0.949471 0.752121 
0.98473

9 
0.83472

4 
0.98473

9 
0.81770

8 
0.98573

9 
0.95083

8 7.43 6.65 

LR 0.996893 0.912855 0.99419
9 

0.94725
2 

0.99419
9 

0.98558
4 

0.99664
3 

0.99535
1 

6920.85 4.58 

MLP 0.998974 0.923494 0.99837
5 

0.95433
6 

0.99837
5 

0.99516
0 

0.99867
6 

0.99880
5 1167.41 291.81 

KNN 0.999840 0.945759 
0.96720

7 
0.95592

3 
0.96720

7 
0.99924

6 
0.98355

4 
0.99980

3 11,468.02 
2,861,321.3

5 

Table 2 contains two sections: normalized data using the Min-Max and Z Score. The Min-Max 
Normalization section presents various classifiers’ performance metrics of various classifiers. 
XGBoost outperforms in all categories, including accuracy (0.999950), precision (0.975427), recall 
(0.982578), and F1 score (0.978946). It also has a high MCC and area under the ROC curve, showing 
that it performs well overall. DT and CART classifiers outperform XGBoost in terms of accuracy and 
balanced metrics, but with smaller model sizes and cheaper computing costs. RF has a high recall 
rate (0.982593) but a much greater model size and computational load. The recall of Bayes is 
impressive (0.984988), but it comes at the sacrifice of precision and overall accuracy. LR achieves an 
excellent balance of precision and recall, whereas MLP and KNN, respectively, specialize in high 
precision and recall. The classifier should be chosen based on specific needs such as accuracy, 
computational efficiency, or the trade-off between precision and recall, while also taking into account 
aspects such as model size and processing time. and The performance metrics of the classifiers based 
on Z-score scaling are reported in this investigation. XGBoost delivers high accuracy (0.999948) as 
well as high precision, recall, F1 score, and MCC. DT and CART classifiers outperform XGBoost in a 
variety of metrics while being more computationally efficient and requiring smaller model sizes. RF 
has a high recall rate (0.982353), but it has a much greater model size and a higher computational 
cost. Bayes excels in recall at the expense of precision and overall accuracy. LR achieves a good mix 
of accuracy and recall, whereas MLP has a high recall and KNN has a high precision. Specific needs, 
like as accuracy, computational efficiency, or trade-offs between precision and recall, should be 
considered when selecting a classifier, as should model size and processing time. 

Because of the multiple evaluation criteria available, we chose to consider the ROC values, as 
well as the CPU time and model size. Among these factors, we chose three classifiers: DT, XGBoost, 
and RF, all of which produced very comparable evaluation findings. This choice was made when 
conducting feature selection trials. 

Following that, the model was used in conjunction with feature selection approaches such as 
PCA and RF. Table 3 displays the results of these tests. 

Table 3. A Comparison of Classifier Performance with Different Feature Selection and Normalization 
Techniques. 

Classifiers 
Accurac

y 
Precisio

n Recall 
F1 

Score 
PCC/B

A MCC ROC CV 5 
CPU 
Time 

(S) 

Model 
Size  
(KB) 

Min-Max           

RF-PCA11 0.996154 0.925325 0.96063
8 

0.94223
6 

0.96063
8 

0.98210
9 

0.97932
7 

0.99732
9 135.52 31,307.31 

RF-PCA9 0.996145 0.926899 
0.96058

6 
0.94305

9 
0.96058

6 
0.98206

7 
0.97929

1 
0.99732

5 131.46 31,335.76 

RF-PCA7 0.996159 0.927997 0.96065
5 

0.94367
7 

0.96065
5 

0.98213
4 

0.97933
7 

0.99732
4 

137.16 31,305.15 
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RF-PCA5 0.972420 0.869089 0.77007
1 

0.78900
2 

0.77007
1 

0.86363
7 

0.85919
3 

0.99119
1 

168.64 55,616.56 

RF-PCA3 0.958392 0.832067 
0.65214

8 
0.65523

0 
0.65214

8 
0.78854

7 
0.78758

9 
0.97743

2 197.05 334,645.57 

RF-RF22 0.999870 0.955205 
0.97594

0 
0.96507

3 
0.97594

0 
0.99938

5 
0.98793

4 
0.99976

1 188.84 10,281.29 

RF-RF13 0.999920 0.960641 0.97096
9 

0.96568
1 

0.97096
9 

0.99962
3 

0.98547
2 

0.99988
1 

154.06 5,400.85  

RF-RF4 0.999837 0.913762 0.98302
5 

0.94229
7 

0.98302
5 

0.99923
2 

0.99146
7 

0.99981
9 129.30 1,241.54  

DT-PCA11 0.996097 0.925248 
0.94088

9 
0.93262

7 
0.94088

9 
0.98183

6 
0.96939

0 
0.99727

8 8.67 1,173.92  

DT-PCA9 0.996098 0.925831 0.94089
1 

0.93291
4 

0.94089
1 

0.98184
0 

0.96939
2 

0.99727
8 

6.77 1,174.43  

DT-PCA7 0.996099 0.925985 0.94161
4 

0.93335
8 

0.94161
4 

0.98184
3 

0.96975
3 

0.99728
3 

6.20 1,174.20  

DT-PCA5 0.971348 0.861854 
0.74343

1 
0.76973

8 
0.74343

1 
0.85802

1 
0.84468

4 
0.98126

0 5.35 2,028.59  

DT-PCA3 0.957864 0.829175 
0.64371

6 
0.64752

0 
0.64371

6 
0.78541

2 
0.78249

2 
0.95982

2 5.95 12,713.26 

DT-RF22 0.999918 0.961201 0.96303
0 

0.96211
1 

0.96303
0 

0.99961
2 

0.98150
4 

0.99988
4 

40.10 83.07 

DT-RF13 0.999916 0.960222 0.96446
8 

0.96232
4 

0.96446
8 

0.99960
2 

0.98222
2 

0.99988
2 25.03 84.21 

DT-RF4 0.999836 0.913430 
0.98302

2 
0.94206

6 
0.98302

2 
0.99922

4 
0.99146

5 
0.99981

6 5.47 42.21 

XGBoost-
PCA11 

0.997706 0.920757 0.98879
0 

0.94938
8 

0.98879
0 

0.98918
0 

0.99323
6 

0.99763
5 

50.74 660.01 

XGBoost-
PCA9 0.997705 0.920756 0.98878

4 
0.94938

5 
0.98878

4 
0.98917

7 
0.99323

3 
0.99763

4 46.13 667.18 

XGBoost-
PCA7 0.997705 0.920752 

0.98878
4 

0.94938
3 

0.98878
4 

0.98917
7 

0.99323
3 

0.99763
1 44.52 661.26 

XGBoost-
PCA5 

0.994354 0.902693 0.98224
5 

0.93694
7 

0.98224
5 

0.97360
1 

0.98880
6 

0.99428
1 

45.00 787.88 

XGBoost-
PCA3 

0.984300 0.858634 0.93812
5 

0.89371
7 

0.93812
5 

0.92737
0 

0.96184
7 

0.98373
5 

44.21 741.86 

XGBoost-
RF22 0.999940 0.969710 

0.98111
0 

0.97526
5 

0.98111
0 

0.99971
9 

0.99054
5 

0.99993
3 54.15 572.66 

XGBoost-
RF13 0.999917 0.956144 

0.97456
0 

0.96495
6 

0.97456
0 

0.99960
9 

0.98726
7 

0.99991
6 44.84 573.72 

XGBoost-RF4 0.999812 0.912773 0.97651
7 

0.93938
7 

0.97651
7 

0.99911
1 

0.98820
2 

0.99980
9 

40.56 564.10 

Z Score           

RF-PCA11 0.997387 0.939662 
0.94820

0 
0.94384

0 
0.94820

0 
0.98765

8 
0.97261

6 
0.99701

6 139.92 40,746.06 

RF-PCA9 0.997396 0.940383 0.95556
9 

0.94770
5 

0.95556
9 

0.98765
8 

0.97632
3 

0.99699
1 

145.87 40,614.20 

RF-PCA7 0.997396 0.939566 0.95329
7 

0.94620
1 

0.95329
7 

0.98770
2 

0.97517
2 

0.99700
0 143.99 40,533.90 

RF-PCA5 0.991311 0.933681 
0.91360

7 
0.92248

7 
0.91360

7 
0.95851

7 
0.94989

6 
0.99104

9 183.93 69,791.18 
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RF-PCA3 0.962557 0.854850 0.69248
5 

0.72489
9 

0.69248
5 

0.81200
1 

0.81331
2 

0.97807
4 

222.77 353,408.88 

RF-RF22 0.999882 0.958170 
0.97738

1 
0.96735

0 
0.97738

1 
0.99944

1 
0.98866

0 
0.99979

4 202.37 12,587.54 

RF-RF13 0.999918 0.957692 
0.97745

3 
0.96712

1 
0.97745

3 
0.99961

2 
0.98871

4 
0.99987

9 192.22 5,940.48  

RF-RF4 0.999837 0.913762 0.98302
5 

0.94229
7 

0.98302
5 

0.99923
2 

0.99146
7 

0.99981
7 

130.35 1,221.85  

DT-PCA11 0.997312 0.941784 0.94074
5 

0.94125
4 

0.94074
5 

0.98729
0 

0.96867
9 

0.99683
2 9.58 1,290.92  

DT-PCA9 0.997311 0.941636 
0.94002

2 
0.94082

0 
0.94002

2 
0.98728

6 
0.96831

7 
0.99683

1 7.39 1,289.56  

DT-PCA7 0.997311 0.942492 0.93858
2 

0.94052
8 

0.93858
2 

0.98728
6 

0.96759
7 

0.99683
5 

6.65 1,289.70  

DT-PCA5 0.990910 0.931768 0.89630
5 

0.91242
3 

0.89630
5 

0.95652
7 

0.94055
3 

0.99063
4 

5.99 2,385.40  

DT-PCA3 0.958382 0.839611 
0.65559

4 
0.67071

3 
0.65559

4 
0.78867

6 
0.78988

5 
0.97774

4 6.86 13,686.38 

DT-RF22 0.999913 0.959644 
0.96085

8 
0.96024

9 
0.96085

8 
0.99959

1 
0.98041

7 
0.99988

9 45.22 84.20 

DT-RF13 0.999916 0.959630 0.96447
0 

0.96202
3 

0.96447
0 

0.99960
5 

0.98222
4 

0.99988
2 

29.13 82.90 

DT-RF4 0.999836 0.913430 0.98302
2 

0.94206
6 

0.98302
2 

0.99922
4 

0.99146
5 

0.99981
6 6.44 41.84 

XGBoost-
PCA11 0.997698 0.920740 

0.98877
6 

0.94937
3 

0.98877
6 

0.98914
2 

0.99322
7 

0.99763
5 50.89 667.12 

XGBoost-
PCA9 

0.997693 0.920721 0.98877
0 

0.94936
0 

0.98877
0 

0.98911
7 

0.99322
5 

0.99763
4 

45.37 668.91 

XGBoost-
PCA7 0.997697 0.920736 0.98877

0 
0.94936

7 
0.98877

0 
0.98913

8 
0.99322

3 
0.99763

3 42.65 673.14 

XGBoost-
PCA5 0.994341 0.902696 

0.98220
1 

0.93692
6 

0.98220
1 

0.97353
4 

0.98876
5 

0.99428
9 42.59 784.36 

XGBoost-
PCA3 

0.984288 0.858767 0.93982
7 

0.89448
9 

0.93982
7 

0.92739
2 

0.96278
9 

0.98373
6 

42.28 732.69 

XGBoost-
RF22 

0.999943 0.968946 0.98471
9 

0.97655
6 

0.98471
9 

0.99973
3 

0.99235
0 

0.99993
5 

52.72 573.66 

XGBoost-
RF13 0.999918 0.956262 

0.97528
2 

0.96535
0 

0.97528
2 

0.99961
2 

0.98762
8 

0.99991
6 44.31 573.12 

XGBoost-RF4 0.999812 0.912765 
0.97652

1 
0.93938

5 
0.97652

1 
0.99911

1 
0.98820

7 
0.99980

9 40.07 563.23 

Table 3 compares the efficacy of DT, XGBoost, and RF classifiers. The comparison is based on 
the use of both the min-max and Z-score normalization methods, as well as the deployment of feature 
selection approaches. The major goal is to shorten CPU runtime and reduce model size. It can be 
explained as follows. 

The Min-Max Normalization and feature selection with PCA and RF section. The data presented 
provides a full comparison of various classifier settings as well as their performance indicators. 
Higher PCA dimensions often lead to greater accuracy, precision, and recall when assessing RF 
models with various feature selection approaches (PCA) and dimensions. Notably, RF-PCA11 and 
RF-PCA9 have accuracy levels more than 0.996145, illustrating the efficiency of feature selection in 
improving model performance. DT models combined with PCA also provide competitive accuracy, 
particularly at higher PCA dimensions. When the RF and XGBoost models are coupled, they exhibit 
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extraordinary precision and recall, making them strong options for applications requiring balanced 
performance. When determining the best configuration for a given task, it’s critical to consider the 
trade-offs between accuracy, computational complexity (as measured by CPU time), and model size. 
This study emphasizes the significance of carefully selecting feature selection strategies and classifier 
combinations to produce best results tailored to individual needs. To improve understanding of 
model performance evaluation metrics, the researcher showed the data in the form of a radar graph, 
as shown in Figure 5. 

 
Figure 5. Radar Chart for Classification Performance with Feature Selection and Min-Max 
Normalization. 

The data supplied demonstrates a thorough evaluation of multiple classifiers performance 
measures using Z-score scaling. When examining RF models in conjunction with principal 
component analysis (PCA) at various dimensions, greater PCA dimensions typically result in 
improved accuracy, precision, and recall. Specifically, RF-PCA11 and RF-PCA9 exhibit outstanding 
accuracy above 0.997387, demonstrating PCA’s usefulness in optimizing model outputs. DT models 
paired with PCA also perform well, especially with larger PCA dimensions. Furthermore, combining 
RF and XGBoost with PCA results in good precision and recall, making them solid candidates for 
applications requiring balanced performance. However, when choosing the optimal model 
configuration, it is critical to carefully analyze the trade-offs between accuracy and computational 
complexity, as indicated by CPU time and model size. This analysis emphasizes the importance of 
choosing appropriate PCA dimensions and classifier combinations to produce optimal and 
personalized outcomes based on unique job requirements. To improve understanding of model 
performance evaluation metrics, the researcher showed the data in the form of a radar graph, as 
shown in Figure 6. 
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Figure 6. Radar Chart for Classification Performance with Feature Selection and Z Score 
Normalization. 

Following that, the models were used in conjunction with feature selection approaches such as 
PCA and RF. When used in conjunction with XGBoost, feature selection using PCA employing 11 
features produced the best performance (considering ROC values combined with CPU run time). 
This was true whether the data was standardized using Min-Max or Z Score approaches, because the 
evaluation findings and CPU processing times were extremely similar (insignificant differences). As 
a result, both methodologies can be used effectively. Table 4 displays the PCA features that were 
chosen, a total of 11 variables and show in Table 4. 

Table 4. List Feature and Importance score with PCA11. 

Feature Name Importance Score 

Dst Port 0.391406787 
Protocol 0.170200700 

Flow Duration 0.125926325 
Tot Fwd Pkts 0.076885293 
Tot Bwd Pkts 0.052597381 

TotLen Fwd Pkts 0.042883536 
TotLen Bwd Pkts 0.037560629 
Fwd Pkt Len Max 0.036543147 
Fwd Pkt Len Min 0.017037139 

Fwd Pkt Len Mean 0.014007651 
Fwd Pkt Len Std 0.012034106 
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Table 5. Comparison of Intrusion Detection Models Using the CSE-CIC-IDS-2018 Dataset. 

Study Method 
Feature 

Selection 

CPU 
Time 

(s) 

Accurac
y 

F1 
Score 

Precisio
n Recall ROC MCC 

PCC/B
A 

S. Ullah  
et al.[14] 

DT 
RF 
(30 

features) 

0.18 
(Train 
Time) 

0.9998 n/a n/a n/a n/a n/a n/a 

Khan [15] HCRNNIDS RF 

200–
250 

(Train 
Time) 

0.9775 0.976 n/a n/a n/a n/a n/a 

Kim et al. 
[10] CNN 

Manual  
Feature  

Extraction 

300–
900 

(Train 
Time) 

0.960 n/a n/a n/a n/a n/a n/a 

R. 
Qusyairi 
et al. [3] 

Ensemble 
model 

Chi-square 
and 

spearman’s 
rank (23 
features) 

n/a 0.988 0.979 n/a n/a n/a n/a n/a 

S. 
Chimphle
e et.al [4] 

MLP 
(Min-Max  

Normalizatio
n,  

Class Balance 
(SMOTE)) 

RF 
(16 

features) 
n/a n/a 0.99462 n/a n/a 0.99311 0.98151 0.99334 

Our 
Model 1 

XGBoost 
(Min-Max 

Normalizatio
n) 

PCA 
(11 Feature) 

50.09 
 (All 
Time

) 
Train 

& 
Test 
Time 

0.997706 
 

0.94938
8 

0.920757 0.98879 0.99323
6 

0.98918
0 

0.98879 

Our 
Model 2 

XGBoost 
(Z Score 

Normalizatio
n) 

PCA 
(11 Feature) 

50.89 
(All 

Time
) 

Train 
& 

Test 
Time 

0.997698 
0.94937

3 0.92074 
0.98877

6 
0.99322

7 
0.98914

2 
0.98877

6 

The Table 5 compares various models to the CSE-CIC-IDS-2018 dataset, measuring their 
accuracy, training time, and other performance measures. S. Ullah et al. [14] employed a Decision 
Tree (DT) with random feature selection (30 features) to achieve an astounding 0.9998 accuracy in a 
very low training period (0.18 seconds). Khan [15] Used random feature selection to implement an 
HCRNNIDS model, obtaining 0.9775 accuracy in 200-250 seconds. F1 score and precision values were 
not specified. Kim et al. [10] Convolutional Neural Network (CNN) with manual feature extraction 
was used. In a training duration ranging from 300 to 900 seconds, I achieved an accuracy of 0.960. F1 
score, precision, and recall measures were not provided in detail. R. Qusyairi et al. [3] Applied an 
ensemble model with 23 randomly chosen features. Although the accuracy was 0.988, no precise F1 
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score, precision, or recall statistics were provided. S. Chimphlee et al. [4] used Min-Max 
normalization, Random Forest feature selection, and Class Balance (SMOTE), as well as Multi-Layer 
Perceptron (MLP). A high accuracy of 0.99462 was achieved, with significant precision and recall 
values. 

Our Model 1 and Model 2: Both models used XGBoost with Principal Component Analysis 
(PCA) to pick features. Our Model 1 was 0.997706 accurate, while our Model 2 was 0.997698 accurate. 
Both models performed well across multiple parameters, including F1 score, precision, recall, ROC, 
and MCC.In conclusion, the proposed models demonstrate a variety of approaches, with PCA being 
particularly helpful in lowering feature dimensions while maintaining high accuracy. The models 
yield remarkable results in intrusion detection, reflecting the ongoing progress in the field of machine 
learning applied to cybersecurity. 

6. Conclusions 

After examining the data, it was discovered that three models, namely XGBoost, DT, and RF, 
had remarkable performance in terms of both ROC values and CPU runtime. As a result, these 
models were evaluated further in conjunction with feature selection techniques combining PCA and 
RF. Finally, the combination of XGBoost for classification and feature selection with PCA, resulting 
in 11 features, produced the best ROC and CPU runtime values. Interestingly, the usefulness of these 
values remained consistent regardless of whether normalization approaches such as min-max or z-
score were used; the changes seen were not significant. Machine learning classification techniques, 
as is widely accepted, can be used to assess and anticipate infiltrations. The algorithm performed 
admirably after preprocessing tactics and feature selection approaches were applied. Although this 
strategy outperformed others, its utility may be limited in some cases. We argue that the trained 
models are not yet ready for use in real-world scenarios. Existing models must be improved, and new 
algorithms developed to address the issues given by unbalanced datasets. Furthermore, dynamic 
testing with multiple types of infiltration is required. In the future, we intend to examine the impact 
of deep learning on increasing time complexity and model size, consequently boosting the efficiency 
of network intrusion detection in real-time settings. 
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