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W N e

Abstract: Consumer IoT (CloT) manufacturers seek customer feedback to enhance their products
and services, creating a smart ecosystem like a smart home. Due to security and privacy concerns,
Blockchain-based federated learning (BCFL) ecosystems can let CIoT manufacturers update their
Machine Learning (ML) model using end-user data. FL uses privacy-preserving ML techniques
to forecast customers’ needs and consumption habits, and blockchain replaces the centralised
aggregator to safeguard the ecosystem. However, Blockchain technology (BCT) struggles with
scalability and quick ledger expansion. In BCFL, local model generation and secure aggregation
are other issues. This research contributes a novel architecture emphasising Gateway Peer (GWP)
in blockchain network to resolve scalability, ledger optimisation and secure model transmission
issues. In the architecture we replace the centralised aggregator by the blockchain network, while
GWP restricts the number of local transactions to execute in BCN. Considering the security and
privacy of FL processes, we have added differential privacy and advanced normalisation techniques
to ML processes. The approaches strengthen end-users’ cyber security and encourage the adoption of
technological innovation standards by service providers. The proposed approach has been tested
extensively using a well-respected Stanford Cars dataset. We experimentally demonstrate that the
proposed architecture makes the network scalable and optimises the ledger significantly. In addition,
the normalisation technique outperforms batch normalisation when features are under DP protection.

Keywords: blockchain; IoT; security and privacy; smart home; distributed ledger technology

1. Introduction

Consumer Internet of Things (CIoT) devices are intended to make our lives more convenient,
efficient, and connected. CIoT refers to the network of interconnected physical devices, wearables,
appliances, and other objects embedded with sensors, software, and connectivity, enabling them
to collect and exchange data from end-users via the internet. CIoT plays a vital role in facilitating
smart home (SH) functionality, where residents use wearable CloT and appliances that provide smart
services and impact the lives of end-users. The CloTs are interconnected in a SH ecosystem, allowing
householders to monitor and control them via a central hub or smartphone app. This integration offers
occupants convenience, energy savings, enhanced security, and an overall improvement in quality
of life. Every day, the capabilities of these technologies advance and expand. In the near future, it is
anticipated that this trend will surpass all extant market demand data [1].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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According to forecasts in [2] , the number of SHs will reach 672.57 million globally by 2027, and
their penetration rate will rise to 86.47 percent. Meanwhile, total revenue is expected to grow from 83
billion USD in 2023 to 86 billion USD in 2027, a gain of 60%. In 2027, sales are expected to increase
and reach 222.9 billion USD [2]. Wearable CIoT refers to gadgets worn by home users and used to
process private data, while home appliances (HA) ensure smart services by connecting with each
other through automation. Data from these devices generates massive amounts of information with
a wide range of characteristics, including user emotions, actions, and satisfaction, which may be
used for real-time intelligent analysis, service demand analysis, and forecasting. Devices typically
employ a service-specific centralised server, such as a cloud or edge server, and are managed either
autonomously or in tandem by third-party service providers [3]. When it comes to analysing SH user
data for insights into customer service expectations, future market analyses, etc., service providers
frequently turn to machine learning (ML) and statistical methods. They also store information and run
the system mostly from a central server.

1.1. Typical Intelligent System’s Challenges

The implementation of a dedicated, autonomous, and secure control and management system
for SH is associated with significant costs, making it an impractical solution for future projections. In
addition, a multitude of novel IoT devices are consistently being introduced to provide ubiquitous
services. These devices exhibit significant diversity in terms of data kinds, message structure, and
other relevant characteristics [4]. Managing devices that are plug-and-play with a centralised server
supported by a relational database may present challenges that are not easily resolved. However,
the majority of SHs employ the services of third-party providers that commonly utilise a centralised
control system [3]. The implementation of a comprehensive system utilising centralised servers has
significant challenges, including but not limited to access control, the presence of a single point of
failure and vulnerability, data security concerns, and the management of large volumes of data [5].
The inclusion of extra obstacles complicates the task of guaranteeing the appropriate utilisation of data
for subsequent analysis. Several recent studies have proposed the utilisation of Machine Learning
(ML) techniques for the analysis and prediction of features. These studies have specifically focused on
employing a stand-alone server [6] for this purpose. However, it is worth noting that the adoption of
such a server poses concerns related to centralised control. The aforementioned complex problems can
be effectively addressed by the strategic integration of federated machine learning and decentralised
trust-less service platforms like Blockchain.

1.2. Autonomous Learning

Within the context of SHs, ML servers acquire knowledge from many aspects of users’ behaviour,
feelings, and usage patterns in order to independently deliver a personalised environment for the
individual. The task at hand involves the collection, processing, and analysis of environmental
data within a SH system [7]. This procedure entails the implementation of a learning system and
the establishment of a structured framework for handling these data. Typically, in addition to a
hardware-based system control unit that facilitates communication between wireless electrical outlets
and sensors, the gathered data is processed and managed via a third-party cloud service. The cloud
system employs adaptive decision-making mechanisms to effectively cater to the requirements of its
users within the given environment. The evaluation of performance is contingent upon the secure
handling and processing of data gathering.

In this study, the cloud server is functions as a gateway to each individual SH, fulfilling a dual
function of operating the SH and acquiring knowledge about various properties from its local data.
A cloud server has the capability to manage many households, while ensuring the maintenance of
distinct storage pathways for each home. The use of a solitary home dataset can facilitate the prediction
of individual users” behaviour. However, the aggregation of various cloud services generates extensive
data and enables pervasive activity, hence rendering it conducive for comprehensive prediction. In
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the proposed system, a cloud server would independently train a local model by utilising the data
from its service providers. The resulting knowledge will then be disseminated to the global blockchain
network to facilitate further progress. Manufacturers and other stakeholders have the ability to observe
the ultimate prediction generated by the BC network. This idea utilises a cloud server as a localised
learning server, specifically referred to as a federated learning node. Additionally, a blockchain network
is employed to fulfil the role of a global network, serving as an aggregator.

1.3. Decentralized Aggregator

Blockchain (BC) is a cryptographic and distributed ledger technology (DLT) that facilitates
secure data movement among many parties. It facilitates value exchange, commonly referred to as
transactions, with the absence of reliance on a central authority for trust. The transactions are recorded
in a ledger that is managed by a network of interconnected computers, known as peers, as opposed to
a centralised entity like as a cloud server. The BC system conducts an autonomous verification process,
commonly referred to as endorsement, prior to granting approval for a transaction. This verification
process is of utmost importance in maintaining the security of the system [8]. Furthermore, it facilitates
consortium-based inter-organizational transactions through smart contracts, which holds significant
importance in facilitating communication among service providers. According to [9], the utilisation of
a blockchain as a service platform enables the management and transformation of current centralised
servers into a decentralised distributed ledger technology (DLT) system. One of the primary difficulties
lies in effectively managing the ongoing transactions inside a Blockchain Network (BCN). Moreover, it
is customary for a block to have a capacity of up to 1IMB of data. However, in the context of federated
learning (FL), the requirement is that each model, exceeding 200MB in size, must be accommodated
within a single block. This presents a considerable challenge. Hence, we have put forth a proposition
for a GWP that can effectively manage ongoing transactions by utilising a tailored block structure to
transport the block containing the replica of the model. This study involves the utilisation of a cloud
server to build local models and afterwards construct a global model within the context of a BCN. The
network also assumes the responsibility of managing access control for cloud servers.

This article proposes an BCT leverages FL architecture for intelligent and secure analysis of daily
uses data in SHs. The architecture aims to address the issue of excessive local transactions in a SH by
processing data supplied by the SH in a GWP. The GWP assumes the function of a federated learning
server inside a global learning network that is governed by a permissioned blockchain. The BC offers
access control services for the entire ecosystem and aggregator services. It allows an CloT manufacturer
to anticipate client behaviours through the use of intelligent analysis. The article contributes —

*  blockchain-controlled federated machine learning architecture for intelligent analysis of CloT
data produced in smart home network.

*  an optimum solution for handling substantial local transactions generated in a home.

* an optimization way to handle the continuous transaction generated Big Data.

e an effective testbed analysis based on the public Stanford cars Dataset.

¢  Finally, open research issues present the technical challenges raised in the real-life environment.

The subsequent sections of this article provide further elaboration on the specifics of
implementation. Section 2 provides a comprehensive overview of recent contributions in the field
of smart home implementation terminology. The architectural specifics are illustrated in Section 3.
Section 5 provides a comprehensive overview of the implementation settings, findings, and security
analysis. Lastly, the overall contribution is summarised in Section 6.

2. Related Works

This section presents a thorough overview of recently suggested blockchain-backed machine
learning technologies aimed at enhancing SH security and privacy. Additionally, we have refined
the selection of FL systems that are relevant to our research and have uncovered notable distinctions
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in comparison to the present approach. Thus far, there have been numerous substantial proposals
put out in the realm of smart home security. The majority of these systems employ a conventional
centralised architecture, which gives rise to vulnerabilities in the form of single points of failure,
as well as concerns regarding security and privacy [10]. In light of the constraints posed by the
centralised system, there has been a growing interest in the utilisation of stand-alone BCT as a potential
solution to address the common difficulties faced in smart home environments, as discussed in various
recent publications [11,12]. In numerous scholarly works, the concept of data being considered a
valuable asset for autonomous learning and the use of BCT for enhancing cyber security have been
extensively discussed [13,14]. However, in conventional ML, computers acquire knowledge from the
unprocessed data provided by users, so giving rise to additional security concerns that are addressed by
Google’s FL technology [15]. The state of Florida permits the implementation of decentralised training
by data owners, while simultaneously sharing the acquired learning outcomes with a centralised
aggregator. The centralised aggregator is acknowledged as a drawback in terms of security [16]. the
study conducted a decentralised approach to local gradient sharing, utilising a blockchain-based
system for storing models.

The authors of [17] suggested encrypting local updates before adding them to the BC ledger as
part of a permissioned blockchain-supported FL platform. Healthcare, transport networks, the energy
industry, etc., are just a few of the many potential application domains for FL and BCT. The authors
of [18] contributed a BC-based FL that enabled an adaptable framework to guarantee the reliability
and safety of networks. It took into account user-specific trust factors ( i.e., prior positive experiences,
guarantees, transparency, and accountability) to make predictions about the devices’ trustworthiness.
The subject of device failure in IloT is discussed at length in [19]. The authors proposed a decentralised,
FL platform using BCT to ensure the authenticity of user information. The proposal’s novelty lies in its
potential to implement a blockchain-based system for the periodic storage of client data records in tree
and tree root stores.

The paper [20] examined the issue of data leaking from a model created by local members in
a BC-based FL network. The authors launched an inference assault for the purpose of analysing
experimental data. Using blockchain-assisted FL for intelligent edge computing, they took advantage
of an accidental property leakage to single out a group of users that had a particular characteristic. In
addition, a weighted fair data sampler technique has been implemented to improve training quality
by increasing data fairness. The author [21] offered a blockchain-based system for incentivizing FL
data owners to maintain data quality. In a technical sense, the blockchain-centered reputation system
transparently aggregates high-quality models. Like other contributions, BC is used only for calculating
the rewards and credit. There have been a number of articles discussing the broader concerns with FL,
its limitations, and the potential benefits of combining FL with blockchain. However, most of these
research contributions targeted to fix the problems caused by centralised aggregators using leveraging
blockchain technology. Adding noise to the local model has been proposed in certain articles as a way
to increase safety.

However, how big transactions created by SHs will be managed in the BCN, the constraints of
blocks for storing a large model, etc., were not taken into account, and neither was the security of the
smart home ecosystem as a whole. Moreover, instead of forwarding every transaction into BCN, to
the best of our knowledge, none of them considered how we could increase scalability by processing
intra-organisational networks. Instead, this article seeks to give a safe and smart learning approach
to guarantee the most cutting-edge advantages in access control, blockchain scalability, and ledger
optimisation targeting overburden to BCN.

3. Decentralised Learning Architecture

Smarthome Networks (SHN) and BCN are the two main components of this ecosystem.
Traditionally, SHN is managed by a centralised private or cloud server; in this study, the server
also acts as a gateway between SHN and BCN. The framework’s main goal is fourfold: Security,
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Scalability, ledger optimisation, and Accurate prediction. First, blockchain ensures data security and
secures remote access to home appliances. Second, Scalability and ledger optimisation are ensured
by migrating the home server to a GWP by separating transactions into local and global. Finally,
the Federated Machine learning process ensures accurate predictions through an intelligent process
of diverse data. Blockchain-controlled Federated Learning architecture for CloT data from SHN is
depicted in Figure 1. The framework comprises three layers: the top layer provides the pervasive
CloT-integrated SHN; the middle layer depicts the Gateway Peer (GWP), which is an additional peer
of BCN; and the bottom layer depicts the Blockchain Network.

Smart Home

CloT Manufacturer

= Gateway Peer &
= O} Smart Home Server

@ Local ML Model

EBL

Global ML Model

Smaﬁ Home Data
01

I Signal Tower

L &

------- Blockchain Network
-------- Peer Connectivity

I—O)))

-

fe
fe

Figure 1. Decentralised Federated Learning Platfrom.
3.1. Overview

Every device in a SHN executes transactions on its local server, which is connected to the
ecosystem through GWP. GWP serves two important functions: transaction segregation and local
training for advanced ML model generation. Firstly, GWP divides the transactions between SHN and
BCN based on the destination of the transaction, indirectly optimising the ledger. Secondly, continue
local training based on the created time series data. GWP is interconnected with a BCN via the
Certificate Authority (CA) registration procedure. The GWP serves as federated learning nodes and
gathers an initial model from the blockchain network, which is generated by the network controller
or manufacturer. After training, the model is transmitted to the BCN responsible for global model
generation. The BCN accumulates all contemporary models from each GWP during a consensus
session, a specific time session. During the consensus session, a leader peer facilitated the session,
created a global model by averaging the models, and organised the session. Additionally, the leader
collects each peer’s vote regarding the global model and waits for 51% of all participants to endorse
the global model. The global model is then transmitted to each GWP for the subsequent round of
training, and the process is repeated until the final prediction objective is achieved.


https://doi.org/10.20944/preprints202311.0273.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2023 doi:10.20944/preprints202311.0273.v1

6 of 16

3.2. Typical Smart Home Network Architecture

The SH is equipped with CloT (i.e., smart devices) and home automation services using standard
networking technology. Figure 2 depicts a typical smart home applications administration architecture
that integrates smart devices, gateways, and back-end networking components into a HAN. Successful
integration of these components with a network service provider or server enables global access

to a SH.
.VI DATA F O
‘ @ ! = = a ;»

&
| |

Remote
Access

/( Smart Appliances \\
NP ol

Smart Wearables

4 ; ’\@ — ceo
A\ 2| Internet ©°°°

Application IndenentAp Senver

Smart Home

Figure 2. Typical Smart Home Network.

3.2.1. Home Appliances Connectivity

A smart home consists of a variety of smart appliances (e.g., intelligent freezers, metres, air
conditioners, smart fans, etc.) connected to a local server. Due to the avoidance of server maintenance
complexity, many SH users use third-party services that provide cloud-based services. Typically,
appliance-generated transactions are stored and controlled on a local server or cloud server. In the
proposed architecture, we use a gateway to connect every SH. In real-life implementation, an existing
local server or cloud server can function as GW. Any transaction originating from HAN devices
is processed by the GW. Consider {ay,4a,,4a3,...,a,} € A;, where it smart home has n appliances
controlled by the gateway GW;. It is presumed that wearable devices used by family members are also
managed by a GW-functioning home server. The GW is responsible for the interoperability of home
services and functions as a GWP when connected to the BCN.

3.2.2. Independent App Server

SH users’ wearables, like smart watches, glasses, shoes, and more, generally have limited resources
and use third-party cloud services provided by the vendor, like the APP server. For learning reasons,
data is sent from the APP server to the GWP using Application Programming Interface (API) services
so that the autonomous services can be used. The trades can be sent to GW using the API. There is a
BCN access control strategy that all cloud servers follow.
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Table 1. Symbols With Labels.

Symbol | Meaning

T; ‘ Transaction from GW; weight without/with Digital Asset
B; ‘ Block generated at GW;
LW ‘ BC ledger at GW
st ‘ Transaction Destination address
Ts'¢ | Transaction Source address
LT \ Consensus leader for global transactions
M ‘ Consensus leader for global model
pkgii en ‘ Public key with signature of users
v | User

sck | Secret key of v
M ‘ Local ML Model
M8 ‘ Global ML Model

3.3. Smarthome Gateway

Gateway(GW) replaces a typical home server, and by enabling blockchain functionalities, it creates
a Gateway Peer (GWP) that works as a local peer. It is the key player in ledger optimization. Figure 1
represents the connectivity of GWP and BCN. All transactions must be executed through a GWP that
interconnects the smart home with a BC network. Hence, we propose a GWP that comprises the full
functionality of a solo-peer BCN [22]. A GWP might be implemented at home or in the cloud.
Functionalities: GWP plays dual roles, such as 1) ledger optimisation by segregating local transactions
from external transactions, and 2) local training for intelligent automation processes. It is assumed
GWP is fully functional with CPU and GPU, where we have used CPU for local transaction execution
processes and GPU roles for local training in parallel [23].

3.4. Blockchain Network (BCN)

The Blockchain Network (BCN) consists of interconnected, independent peers that maintain
their ledger and hold related smart contracts (chaincode). In the proposed framework, GWP
communicates with peers on behalf of SHN. However, every SHN can be executed remotely with
proper BCN endorsement. The following sections present details of the network components and the
working procedure.

¢ Peers: The BCN comprises multiple peers (i.e., more than three) to ensure consensus and
distributed ledger management. Peers receive the transactions from GWP and verify the source
and credentials for the next processing round. A randomly selected leader leads the validation
process through consensus. Similarly, another random peer organises the local model aggregation
services and related consensus sessions (details in consensus). Every peer holds related smart
contracts and separate ledgers for global models and IoT transactions.

*  Consensus: During consensus, BCN initially creates a consensus session leader panel randomly.
A particular leader (LT) from the panel leads global transactions for smart homes, and another
leader (LM) handles the global model generation process (details in Section 4.2). One peer
can lead only one consensus session at a time. The internal policy of the system controls the
creation of leader panels and the synchronisation of responsibilities. Based on the PBFT consensus
algorithm, leaders collect the maximum number of positive concerns from participating peers
before approving the transactions. All global transactions from every GW to BCN are led by LT
and collected by Consensus for global transactions: positive voting depends on smart contract
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validation, which was previously stored in peer The leader peer collects all simultaneous approved
transactions and affixes them to a new block. The newly generated block is forwarded to every
peer in the network.

®  Certificate Authority (CA): The CA is responsible for generating a unique certificate and keys
for every network component, including users. During transaction execution, peers justify the
validation of the source and destination devices’ and users’ certificates.

Algorithm 1: Transaction Processing at GWP.

Input :(sck,v;, T;, pky. )

sign
Output:Success/Failure

1 GW{T,, T, T%!} « VA; € i[1,n]

2 if T ezistsinGW; then

3 T; + hash(T;)

4 B; < append(T;, (sck, p;, 6, pk;}iign))
5 LEWi +— B;

6 else

7 | B; - BCN  \\ for block formation
8 By \V/?:l B;

9 if By pass in Consensus then

10 LT « B,

1 end

12 end

4. Technical Details

4.1. Scalability and Ledger Optimization

Every GWP should work as a localised peer for the home and interact with the BC network. The 1
illustrates transaction processing at GWP. As shown, during transaction execution, GWP verifies the
source and destination of the transaction. If the transaction source and destination belong to itself, it
executes locally without interaction with BCN; otherwise, it is forwarded to BCN. All locally executable
transactions initially invoke a smart contract (a pre-installed programme chaincode). Chaincode reflects
the terms and conditions between two devices. Whether the chaincode invocation result is positive
or negative, transactions are executed and stored in a local ledger specific to the home network. If
the incoming transaction destination does not belong to GWP, its integrated application prepares the
transaction to be executable in the BCN. It ultimately reduces the transaction overloading in BCN up
to 70% [24].

4.2. Federated Learning

Federated learning enables multiple users to train (i.e., local model) a shared global model without
sharing their private data. Deep neural networks (DNNSs) in this proposed architecture are capable of
learning both global and local models. Figure 3 presents the communication flow of training models in
different network components. It is assumed that # GWP trains an accurate machine learning model
using their previously generated data {D1, D, ..., Dy}. A GWP;, on behalf of the user i chooses to
process its local data (D;) and download initial model (M;) training tasks from BCN for fast training
epoch. At the end of the training round, it generates a local model Mf Before forwarding to the
BCN, a differential privacy parameter (details in Section 4.3) is added to the local model to ensure
the advanced security of the local model. Similarly, all other V}'  GWP; generate their local model
{Ml , Mlz, e, qu} belongs to {GWP;, GWP;, ..., GWP, }. By leveraging federated learning, all users
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can forward their local models into BCN for generating a global model (M¢) for knowledge sharing
without exposing their sensitive data.

-
5

Home Appliances Getway peer/ A

1
Federated Server ! Global Modal

Blockchain
Network

Wearblea lot Getway peer/
Federated Server

Figure 3. Federated Training Steps.

BCN initiates a consensus session and elects a leader for the averaging task. The leader creates a
global model (M‘l-g ) using Eq. (1) at the end of the i training round.

1 n
M =5) M} 1)
i=1

In the context of the learning process, a generic FL. model is formulated, in which a user denoted
as i acquires and processes an input matrix denoted as X; = [xj, Xjp, . . . xidi]. Here, x;; represents an
input vector utilised inside the FL. method. The output of the input X;; can be represented as Y;;. The
output vector utilised for training, acquired by the FL algorithm, by a specific user designated as GWP;,
is represented as y; = [yj1, Vi, --- - - - Yig,)- The local FL model’s (i.e., M) parameters are determines
by the vector w;. The projected output of a linear regression approach can be represented by the
expression xizwi, where the weight vector (w;) determines the efficacy of the linear regression learning
process. In the quest to minimise the training loss, the user designated as i strives to determine the
ideal parameters for the learning model. The symbol w; is used to represent a variable or parameter in
the context of the training procedure of a FL algorithm is conducted by

1 & &
M€ = D o L f(®@ixia yia) @)
i=1d=1

Here, D represents the summation of the training data from all users included in the study where
% averaging the weights. Likely, M® and f(w;, x; 4, y; 4) refers to the global model and loss function
respectively.

The effectiveness of FL algorithms is contingent upon the values of both M and M/, particularly
following the initiation phase. The weight parameter w; of each user is updated based on M®, whereas
the update of MC is influenced by the M! of all users. The modification of the local FL. model w; is
contingent upon the selection of the learning algorithm and optimisation algorithm. The Stochastic
Gradient Descent (S5GD) technique was employed to perform updates on the local FL. model.
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4.2.1. Local Training

As mentioned earlier, GWP acts as a Federated Learning Server (FLS). During the local training,
FLS initially collects an initial model from BCN and continues training using its local data. While
training is completed, the updated model is stored in off-chain storage (e.g., Interplanetary File System
(IPFS)) [25]. Then, the model’s file reference and location pointer are fitted in a block with other
meta-data (i.e., block-hash, source, destination, sign, etc.) and forwarded to BCN for global model
generation.

4.3. Differential Privacy

Differential Privacy (DP) guarantees the privacy of data during mutual learning with the active
participation of multiple smart homes. We incorporate a DP-enabled FL that protects data from external
and internal sources (e.g., analysts) at training stages. Due to its advanced security features, it is well
recommended in both academia and industry. For example, RaPPOR used DP in the Google Chrome
browser [26] as a smaller privacy parameter. A randomised algorithm f provides (¢, ) differential
privacy if their neighbouring datasets D and D and f confirm that

-

Pr[f(D) € Y] <e‘Pr[f(D) € Y]+ 6

Here ¢ is introduced to account for the probability (Pr) that plain e-DP is broken [27]. Y iterates
through all subsets of the output range of mechanism f. When é = 0, the mechanism f becomes e—
deferentially private.

4.4. Normalization Technique

To ensure the confidentiality of users” updates, we introduce perturbations to the extracted
features within the normalisation layer. In the case of a singular channel, it is assumed that the
convolutional layers produce an output with dimensions Ly x W¢. The value at position (i, j) for the
feature of image 7 is denoted as P; ;..

We employed pi,j,n for n € B with a mean 0 and variance 1 instead of typical batch normalisation,

Pijn
! Y b 0
I ijn =
|B| neB
and ,
, 2
ﬁ Z (Pi,j,n) =1
neB

According to the Cauchy-Schwarz inequality [28] bounds |B| = M and

Pjne(—VM—-1,VM-1)

where for any i, j, n while a single value of features
{Pjnmlic{1,2,...,Liyandj € {1,2,..., Wr}}

of image n varies, the sensitivity of

{Pjnlic{1,2,...,Liyandj € {1,2,..., Ws}}
can be at most 2v/M — 1.

To ensure e-differential privacy, the Laplace mechanism [29] is employed. Specifically, a zero-mean
Laplace noise with a scale of 24/M — 1/ € is independently added to each pi,j,n/ where i ranges from 1

to Ly and j ranges from 1 to Wy. This measure is taken to secure the privacy of P; .
This research normalize pi,j,n fori e {1,2,..., Lf} andj e {1,2,..., Wf} as,
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,],ne( VM —1,VM—1)

while if one value in the feature

varies for image n, the sensitivity in
{Byjnlic{l2...... JLetandje {1,2,...... JWet}

is2vM —1.

Our normalization technique requires only

,],ne[ VM —1,VM —1]

without any constraints on the mean and variance.

In this experiment, the input layer is augmented using zero-mean Laplace noise, which is a
common approach of existing solutions. However, the feature distribution is modelled using a
Gaussian distribution, which is widely employed in various real-world applications. The majority of
feature values, following the application of batch normalisation, are often within the range of [—3c, 307,
where o represents the standard deviation. This range is in contrast to the previously assumed range of
[-vVM —1,vV/M — 1], where M denotes the number of features. On the other hand, when employing
this normalisation strategy, the feature values are distributed more uniformly across the range of
[-vM —1,vM — 1]. Batch normalisation approaches are more susceptible to perturbations in feature
values compared to an equivalent quantity of Laplace noise. As an illustration, in the case when the
batch size is set to N = 32 and the scale parameter of the Laplace distribution is given by 2/M — 1/ €.

5. Evaluations and Analysis

In two testbeds, we evaluated our proposed blockchain-based FL framework. Initially,
we evaluated the blockchain transaction for ledger optimisation issues without ML using the
Hyperledger Fabric (v2.0) platform within a Docker container. It aids in predicting the software-based
implementation of a real-world application. As machine learning application implementation in
Hyperledger Fabric is a complex undertaking, we re-simulated it in a Python environment to evaluate
the performance of the entire ecosystem (details in Section 5.2).

5.1. Stand-alone Blockchain Applications

In order to incorporate blockchain with machine learning, two physical systems were utilised: 7)
an Intel i5 processor running at 3 GHz, equipped with 8 GB of 1600 MHz DDR3 RAM, and ii) an Intel
i7 processor running at 2.7 GHz, equipped with 16 GB of 1600 MHz DDR3 RAM. The prototype is
implemented with four peers, with a node-red based application employed for transaction generation.

Figure 4 presents the ledger growth and ledger scalability synopsis. It evaluates the execution of
the continuous transactions in the BC network and the impact on ledger expansion in the BC Ledger.
From experimental evaluation on Hyperledger Fabric, we know that every trade is ~ 5 — 10KB on
average, a block is formed with an average of 500 transactions per second, and a block header is 4.5KB.
It expands the ledger at a rate of approximately 50-100 KB/sec, or approximately 4-8 GB/day, or
approximately 1.5-3 TB/year. Although this does not seem very high for a single node, it becomes
impractical in a 10K home network with 20 devices per home. Figure 4(a) presents a production
environment synopsis for 1K smart homes in a blockchain network where approx. 15 devices are
contained per home. It shows three scenarios for whether transaction weight may vary from source to
source depending on formats. In this experiment, we have considered three different sizes: 5KB to


https://doi.org/10.20944/preprints202311.0273.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2023 doi:10.20944/preprints202311.0273.v1

12 0of 16

7KB, 8KB to 9KB, and 10KB to 12KB. Ledger size is proportional to the transaction amount and size.
The core impact of GWP has been presented in Figure 4(b).
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Figure 4. Ledger Optimization Effect on Gateway Peer Implementation.

Figure 4(b) presents the ledger optimisation implemented in the Hyperledger Fabric platform
in the proposed network. It evaluates the consecutive ten blocks both in the GWP and blockchain
networks. The figure shows that GWP and BC peer carry almost 60% and 40% of the total required
ledger present in generic blockchain lines, respectively.

5.2. Prediction Analysis

To forecast the comprehensive performance of the ecosystem, we employed the widely recognised
public Stanford Cars Dataset [30], which comprises 16,185 photos representing 196 distinct automobile
classes. The dataset comprises 8,144 photos for training purposes and 8,041 images for testing purposes.
In order to provide a well-balanced dataset for each user, we evenly divide the overall training and
test sets according to their respective classes. In conventional FL without blockchain, a comparable
tailored dataset is employed to establish a baseline comprehension. Moreover, the experiment expands
upon the identical experimental configuration by employing a stand-alone methodology to obtain the
baseline outcome by conventional machine learning techniques.

The models are trained using the PyTorch library, employing the SGD with a learning rate of
0.01. The utilisation of a pre-trained ResNet50 model is employed for the purpose of conducting
traditional image classification and carrying out the local training procedure within the Generalised
Weighted Pooling (GWP) of each individual local organisation, also referred to as a learning node. The
NVIDIA GeForce RTX 2080 GPU is utilised for each learning node. In the initial phase, a configuration
consisting of four private servers, each equipped with four GPUs, is employed to establish numerous
local training settings, resulting in a total of 16 GPUs. In order to facilitate experimentation, each GPU
operates as an autonomous learning node. Concurrently, the CPU of a dedicated server functions as a
generalised work processor to assess the execution process of the blockchain. The Blockchain network
comprises six peers distributed among four remote servers. Each server is equipped with an Intel
Xeon E7 v3 processor and a Core(TM) i7-5960X CPU running at a clock speed of 3.00 GHz, featuring 8
cores. Additionally, each server is equipped with 125 GB of RAM. The simulation of the blockchain
network and consensus process is implemented using Python 3.8.

The CNN network that we have created incorporates hidden layers to facilitate the process
of feature extraction, as well as fully connected layers to enable classification. In our network
architecture, we incorporated two hidden layers, each consisting of 30 and 80 channels, respectively.
The dimensionality of the output is lowered through the utilisation of the max-pooling layer. Hence,
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the utilisation of max-pooling layers enhances the pace of learning in neural networks. Following the
normalisation of each CNN layer, various benefits are observed. Firstly, it facilitates the computation
of sensitivity, which aids in determining the appropriate level of noise to be added. Additionally; it
contributes to the acceleration of the learning rate and serves to regularise gradients, hence mitigating
the impact of distractions and outliers.

5.3. Result and Discussion

This section provides a comprehensive overview of the learning outcomes associated with the
proposed framework for federated learning utilising blockchain technology. We considered three
scenarios where the typical FL learning approach is used as a baseline compared with our proposed
method, and the typical ML method is used for overall bench marking. Figure 5 illustrates the training
progress and accuracy. For the experiment, we ran 100 rounds to train the model in six federated
learning nodes parallel. Training success is shown in Fig. 5(a) where the loss declines gradually.
Loss decreases firstly in baseline and typical ML than our proposed method. However, they reach a
convergence point almost at the end of the same round. The Figure 5(b) demonstrates the learning
accuracy through train the model for the object detection model compared to baseline and typical
approaches. The figure demonstrates the proposed framework converges with typical approaches
almost at the same time.

6 —&— Proposed method 1.0
—8— Baseline
5 —8— Stand alone aproch 0.8
4
0.6
0 w
g3 g
3 3
0.4
2
1 0.2 —8— Proposed method
—8— Baseline
0 o -5 -8 Py 0.0 —e— Stand alone approch
0 5 10 15 20 25 0 5 10 15 20 25
Epoch Epoch
(a) Learning Progress (b) Learning accuracy

Figure 5. Training Outcomes.

The classification performance of the proposed system in comparison to conventional FL and
stand-alone ML systems is illustrated in Figure 1. The proposed methodology is assessed using both a
validation dataset and a test set. The validation accuracy based on the validation dataset is depicted
in Figure 1. The results indicate that the suggested scheme has an image recognition accuracy of
approximately 88%, which is approximately 30% higher than the average performance of traditional
federated learning methods. While the proposed system does not outperform stand-alone approaches
much, there is still a noticeable difference in performance. Furthermore, the primary objective of
this project is to enhance federated learning (FL) with regards to the security and privacy of users’
data. Several test photos were evaluated using the models created by the proposed framework, as
depicted in Figure 6(b). Various global models, derived by averaging the FL models, were employed
to assess their efficacy in real-world situations. The presented data illustrates that the 10th global
model exhibits a classification accuracy of around 56% for the photos, while the final model (50th)
demonstrates a successful classification rate of 86% for the test images. Hence, it can be concluded that
the performance of the proposed system is comparatively superior to that of classic federated learning
systems. Additionally, the incorporation of blockchain technology in the aggregator strengthens the
security measures of the entire ecosystem, hence demonstrating the effectiveness of the proposed
system design.
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Figure 6. Validation and Test evaluations

6. Conclusion

Users of CIoT especially in smart homes seek to reap the benefits of automation without giving
up their personal safety or confidentiality. For the safety of the entire ecosystem, having the most
recent system is essential. Additionally, standard, external services should have robust regulation. The
proposed architecture includes safety measures for automated prediction and update management.
Blockchain is being used to tackle problems with secure automation, and our gateway peer helps to
alleviate some of the current scaling problems in blockchain. Federated learning also prevents data
sharing for machine learning, which is a significant improvement to the security policy. The testbed
outcome demonstrates that the contribution provides solutions to significant problems that may occur
as a result of combining HAN with blockchain and an intelligent automation system. In addition to
addressing security concerns, the suggested GWP method has the potential to dramatically improve
scalability by doubling throughput (TPS) and decreasing ledger overhead by more than 60% compared
to conventional procedures. It devises a workable and safe method of dealing with the continual data
provided by smart homes.
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