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Abstract: In the present work, we concentrate on a certain class of nonlinear difference equations and
obtain sufficient conditions for thi istence of almost automorphic solutions by employing fixed
point theory. Also, we investigate the relationship between the existence of bounded solutions and
the existence of almost automorphic solutions for the proposed difference equation type. Thus, we
present a Bohr-Neugebauer type theorem for difference equations.

Keywords: Discrete almost automorphic; discrete bi-almost automorhic; fixed point; contraction;
Bohr-Neugebauer

1. Introduction

In the theory of dynamic equations, investigation of the existence and uniqueness of
periodic solutions has become a very popular research topic for mathematicians, and there is
a vast literature on this research direction which focuses on the real life models constructed
on continuous, discrete or hybrid time domains with periodic structures. Indeed, analysis
of difference equations has taken a prominent attention as much as differential equations,
and the studies based on periodicity for the solutions of differential equations have been
carried on to discrete domains. Consequentially, the literature on differential and difference
equations has grown simultaneously.

Conventional periodicity is a strong but a relaxable condition for some classes of
functions. The studies concentrating on the existence of conventionally periodic solutions
of dynamic equations may not cover many mathematical models which involve not exactly
periodic but nearly periodic arguments in roughly speaking. It is possible to see such
real life models in signal processing or in astrophysics (see [1-3]). As a relaxation of the
con\mional periodicity, the almost periodicity notion was first introduced by H. Bohr ([4]),
and the theory of almost periodic functions has been developed by the contributions of
several scientists including A.S. Besicovitch, S. Bochner, J. von Neumann, and W. Stepanoff
who are very well known in the mathematics community (see [5-8]). The ﬁrs&ﬁnititm of
an almost periodic function was introduced as a tological property; that is a continuous
function f : R —R is said to be almost periodic if the set

E(e, f(t)):= {T: |f(t+T)— f(t)| < eforall t € R}

is relatively dense in R for all ¢ > 0. Subsenlently, Bochner proposed normality condition
as an almost periodicity criterion, i.e., a continuous function f(-) is called almost peri-
odic if for every real sequence {7/}, there exists a subsequence {tf{fof {z} such that
limy oo f(t + v,) = f(t) uniformly for all ¢ (see [6]). Afterwards, the theory of almost
automorphic functions was introduced by S. Bochner ([9]) by relaxing the uniform con-
vergence from the normality condition. That is, a continuous function f : B —I is called
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almost automorphic if for every real sequence {v}, }, one can extract a subsequence {v, }
of {v],} such that limy—co limu—co f(t + v —vm) = f(t) for each t € R. Thus, the almost
automorphy notion can be regarded as a weaker version of almost periodicity. It is obvious
that the following relationship holds between the periodicity notions

conventional periodicity = almost periodicity = almost automorphy,
while the inverse of the implication may not be correct. For example, the function
f(t) = sin(27t) + sin(2V27t), t € R,
is almost periodic but not conventionally periodic, and

Y(q 2 +exp(it) +exp (i\/ir)

- IZ—!—exp(it) +exp(i\/§t) |J e

is an almost automorphic function which is not almost periodic (see [10] and [11]). In
the recent past, the theories of almost perio nd almost automorphic functions have
taken prominent attention from scholars, and the existence of almost periodic and almost
automorphic solutions of dynamic equations has become a hot research topic on time do-
mains with continuous, discrete and hybrid structures. We refer to readers the monographs
([10,12-15]), papers ([16-27]), and mf@ces therein.

Analysis of the linkage between the existence of bounded and periodic solutions of
dynamic equations has always been an inter g research topicin the applied mathematics.
Massera’s theorem is the primary result for the qualitative theory of differential equations
since it E‘Lmentates boundedness and periodicity of the solutions (see [28]). Since then,
various versions of Massera'’s theorem have been studied for linear and nonlinear dynamic
equations over the last five decades. Undoubtfully, when the dynamic equation contains
almost periodic or almost automorphic arguments, it becomes a gruelling task to relate the
existence of bounded and almost periodic (almost automorphic) solutions. In [29], Bohr
and Neugebauer concentrated on the linear system

X(t) = Ax(H) + £(1),

and showed that all bounded solutions of almost periodic system of this form are almost
periodic on E. Actually, this crucial result can be regarded as an almost periodic analogue
of the Massera’s theorem. Besides, it should be noted that when A = A(t), and A is

conventionally periodic, then it is possible to pursue a simil proach in the light of
Floquet theory ([30]). On the other hand, the nonautonomous linear system with almost
periodic coefficients

X'(t) = A)x(t) + (1), teR,
is handled by Favard ([31]), and it is shown that the linear system has at least one almost
periodic solution if it has a bounded solution under a separation assumption; that is, each
bounded nontrivial solution of the system

x'(t) = B(Hx(t), teR,

satisfies inf“:_ﬂ(f” > 0 where B is in the hull of A. This conception is known as Favard's
theory in the existing literature. These milestone results have motivated researchers remark-
ably, and it is possible to find a detailed literature providing Massera, Bohr-Neugebauer,
and Favard type theorems for various kind of dynamic equations based on conventional
periodicity, almost periodicity, or almost automorphy notions. We refer to ([21,32-40])
as pioneering studies. However, we shall point out that there is a poor research backlog
on Massera or Bohr-Neugebauer type theorems on the almost automorphic solutions of
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difference equations unlike the enormous literature on differential equations. Thus, oneof =
main objectives of this research is to make a new contribution to the qualitative theory
of difference equations by filling the above-mentioned gap. 7

In this paper, we are inspired by the recent work [21] of A. Chdvez, M. Pinto and =
Zavaleta. We introduce a certain kind of nonlinear summation equation, namely a
difference equation, 7

t—1 5]
Mt +1) = a(®)x(t)+ Y Mt x() + ) At x(7))

j=—00 j=t

discrete almost automorphic arguments. As the initial task of the study, we focuson =
the existence and uniqueness of discrete almost automorphic solutions of the nonlinear =
difference equation by emplc fixed point theory. Then, we propose a Bohr-Neugebauer 1
type theorem which relates the existence of bounded and discrete almost automorphic =
solutions. To the best of our knowledge, our study is the first of its kind since it introduces o
a discrete counterpart of Bohr-Neugebauer theorem which has not been considered so far, =

and consequently, it contributes the ongoing theory of difference equations. 8
2. Background Material a

In this section, we aim to give a precise review on discrete almost automorphic s
functions, and their basic characteris For the presentation of the preliminary content, s
we will first assume that X' stands for a real (or complex) Banach space endowed with the
norm ||-[| y. 5

Definition 1 (Discrete almost automorphy ([19])). A function f: Z — X is said to be discrete
almost automorphic if for every integer sequence {v, }, o there exists a subsequence {vy},.5 of

{0}, } iz such that o
lim f(t+0,) = f(1) M

is well defined for each t € Z, and 92
lim fi(t —v,) = f(1) @

foreach t € Z. i

10

Asitis underlined in [19, Remark 2.2], Ehe convergence in Definition 1 is uniform, s
then the concept of discrete almost automorphy turns into a more specific notion, namely s
discrete almost periodicity. It is clear that every discrete almost periodic functionis discrete s
almost automorphic, however the inverse of the assertion mmot be true. In the existing &
literature, it is possible to find some studies which propose examples of discrete a.lm %
automorphic functions that are not discrete almost periodic. For example, Bochner gavean e
example of discrete almost automorphic function which is not discrete almost periodic 100

f(t) =: sgn(sin(2mtQ))), t € Z,
for an irrational number () in his pioneering work [9] (see also [41]). 101

&ﬁnitirmz (([19])). A function g : Z x X — X' is said to be discrete almost automorphic in t for 10

each x € X, if for every integer sequence {v,, },, -z, there exists a subsequence {Un }ycz of {Uh byez 100

stch that 104
"li_?;)g(r—l— Uy, X) =: §(t,x)

is well defined for each t € Z, x € X, and 103

llITl g[t - U",x) =. g[t,x}

H—r00
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foreacht € Z,and x € X.

We refer to [19, Theorem 2.4 and Theorem 2.9] (see also [14]) for reviewing the well-
known properties of discrete almost automorphic functions.

Next, we give the notion of discrete bi-almost automorphy in the light of [21, Definition
2.7] for multivariable functions.

Defini 3 (Discrete bi-almost automorphy). A function A : Zx Z x X' — X is called
discrete bi-almost automorphic in (t,s) € Z x Z uniformly for x on bounded subsets of X if given
any integer sequence {v}, }, . and a bounded set B C X, then there exists a subsequence {vn}, z
of {v};} ey, Suich that

lim A(t+vy,s+ovg,x) = Alt,s,x)
n—rea
is well defined for each (t,5) € Z x Z, x € B, and

lim A(t —v,, 5 — vy, X) = A(L,5,X)

H—F00

foreach (t,s) € Z x Z, and x € B.

Let AA(Z, X) deaes the set of all discrete almost automorphic functions defined on
Z. Then, AA(Z, X') is a Banach space when it is endowed with the norm

Il 4az,2) == SupllF(E)]| x- @)
' teZ
The next result is crucial for the setup of the main outcomes.
Theorem 1 ([19]). Let g : Z x X' — A& be discrete almost automorphic in t, for each x € X, and
suppose that it satisfies the Lipschitz condition in x uniformly in t, that is

llg(t,x) —g(t, W)lv < Llx —ylly, x,y € X.

Then, the function g(t, ¢(t)) is discrete almost automorphic function whenever ¢ : Z —X is
discrete almost automorphic.

For more details about multi-dimensional almost automorphic sequences and their
applications, we also refer the reader to our recent research paper [24].

3. Setup and Main Results
Consider the following abstract nonlinear difference equation

t—1 o0
x(t+1) =a(B)x(t) + ), M) x(j))+ (t, 7, x(7)), @
I 2

wherea :Z — C,a(t) #OQforallt e Zand A1p: ZxZx X — X.
In the sequel, we give the following fundamental result which is essential for the
outcomes of the manuscript:

Lemma 1. The function x(-) is a solution of (4) with the initinl data x(ty) = xg %d only if

t—1 t—1 t—1 k o0
0 =xffoe+ £ (T o) ( £ msizin+ £ misixin). o

s=ty k=ty \s=k+1 j=—ca j=k+1

106

116

118

126

127
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i1
Proof. We multiply both sides of (4) with [ Ja~!(s), and get

s=ty

-1 =1 -1 t—1 2
x(t+ l)Ha_l(s}7a(t}x(t}Ha_l(s} = Ha_l(s}( E Al(t,j,x(j}}+EAZ(t,j,x[j}}).

s=ty s=tg s=tg j=—ea j=t

By writing the above expression as in the following form

x(t+ ])a(t)ﬁa‘l(s} —a(t)x(t}ﬁa_l (s)

=k s=ty
F—1 i1 45 o
- Ha_l (s}( Y AL x(;'}}+):f\z(t,f;x(f)))r
=ty J=—oa j=t

we obtain

t—1 t—1 t—1
A(x(t)Ha_l(s}) = Ha—l(s}( Y Al(t,j,x(j}}+EA2(t,j,x[j))),
. £

s=tp s=tp j=—e0

wherea stands for the forward difference operator. Next, we take the summation from f;

tot—1
t—1 k-1 t—1 k k 0
E&(x(k)na_l(s]) = 3 (Ha‘l(s}) ( Y mik (i) + Y Az(k,}',x(j}}).
k=ty 5=ty k=ty \s=tp j=—ca j=k+1

This yields to

-1 -1/ k k o
x(f}nﬂ_l (s) —x0 = ;‘): (Hﬂ_l(s}) ( Y Ak jx() + ); Az(k;}lx(}'}});
5=ty =ty \s=tg j=—00 j=k+1

and may easily obtain (5). Since every step is reversible, the proof is complete. O

enceforth, we assume that the following conditions are satisfied throughout the
manuscript:

C1 The function a(-) is discrete almost automorphic.
C2 A are discrete bi-almost automorphic in t and s, uniformly for x.

C3 For uyp € X, the Lipschitz inequalities

[ At s, ur) — Aq(t, s, uz)|| y < ma(t sy —uz

and
||A2(r151”1} _Az(r!s! ”2}”(" = mz(r!s}””l - “2”(‘b
hold together with
-1
sup Z mi(t,j) = M; < eo,
tel j=—0a

sup Emz(t,j} = M, < oco.

teZ j=t

132

137

138

139

140

144
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Subsequently, we introduce the mappinéH : X — A givenby

(Hx)(t) := XUH (s) + Z( IT ac ) (S1(k, x(k)) + Sa2(k, x(k))), (6)
s=tp k=ty \s=k+1
where
17 k
Jr_—m
and .
Sa(k,x(k)) = ) Ma(kj,x(f))- (8)
j=k+1

Lemma 2. Ifx € AA(Z,X'), then Sy(-,x(-)) and Sz(-, x(-)) are discrete almost automorphic.

Proof. Suppose that&, ¢ € AA(Z, X'). Then we have

H&m@—&mwu=’ZAqM,ﬂ%—ZAﬂuQM

;_—m Jf——m

X

Eiup E ||A1(k!}!g(}}} _Al[k!jlip(.
'E?.lj_—m

<5up E my (

kel j=—c0

= Mi[| — ¢l +-

Similarly, we easily observe that

||SZ(k!g} - SZ(k!‘PH

By Theorem 1, the proof of the assertion is complete. O

A =

Lemma 3. In addition to C1, C2, and C3, also assume that the condition

C4 For every integer sequence {v}, }, . there exists a subsequence {v,}, .z of {v}, }, 7 such that

e
lim x(ty £ o) = x(fo) = x0
holds. Then, H maps AA(Z, X') into AA(Z, X).
Proof. Suppose that x € AA(PJX). By Lemma 2, the functions S (t, x(t)) and S»(t, x(1)),

which are defined in (7-8), are discrete almost automorphic functions in t for each x. That
is, for every integer sequence {v} }, ., there exists a subsequence {v, },_5 of {v};},_5 such

that
Tim Sy (t+ $+ on)) =t Si(t%(t)),
J_u& S(t— v, X(t —vn)) := S1(t, x(t))
and

lim Sy(t + v, x(t +0n)) = Sa(E, (1)),
lim S5(t — v, X(t —vy)) := Sa(t, x(t))

146

147

148

149

150

154

160
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for each t € Z. Let us write 161
12
t+uy—1 t+oy—1 fi4uv,—1
(Hx)(t4+on) = x(to+oa) [] als)+ ) ( 1T ﬂ(s}) (S1(k x(k)) + Sa(k, x(k)))
s=tg+uUn k=tyg+u, \ s=k+1

= x(tg+ vy) ﬁa(s +Uy)

+ 3 ( Hﬁ_ a(s}) (S1(k + v, x(k + vu)) + Sa(k + vn, x(k + v4)))
k=ty \s=k+uv,+1

= x(tg+ vu) ﬁa(s + )

s=ty

=1/ t=1
+ ¥ ( 1T ats + vn})(sl (k +vu, x(k4+v4)) + Sa(k +vu x(k+v4))).

k=ty \s=k+1

If we take the limit of (Hx)(t+v4) as n —+ co and utilize the Lebesgue convergence 1

theorem, then we have 163
1
- —1 =1 / -1 . .
(Hx)(t} = X Hd(s) + E H a(s) | (S1(k x(k)) + Sz(k,i(k}}).
s=ty k=ty \s=k+1
For the converse part, we can follow a similar procedure. Consider 161

t—o,—1 t—o,—1 fi—v,—1
(Hx)(t—oa) = x(to—va) [] als)+ 3 ( II E(S})(5_1(k,f(k}}+5_z(k,i(k}})

s=fy—1uy k=tg—uy, \ s=k+1

— x(to o) [[a(s o)

t—oy —p

m E ( I1 a(s}) (S1(k — vu, X(k — vu)) + S2(k — vy, Z(k — va))),

k=ty \s=k—u,+1
which results in 165

() (¢ — ) = *(to — ) [[1(s — o)

+ E ( ﬁ a(s — Un}) (S1(k — vn, 2(k — vy)) + Sa(k — vu, X(k — va)))-

By taking the limit of (Hx) (t —v,;) as 1t — e0,and using the Lebesgue convergence theorem, 1
we obtain limy e (Hx) (f — v4) = (Hx)(t). This completes the proof. O 167

Remark 1. It should be highlighted that the condition C4 is a compulsory technical condition for e
the construction of existence results. A similar condition can be found in the pioneering work of 1
Bohner and Mesquita (see [20), Theorem 3.10]). On the other hand, the main results of [21]do 1w
not require such an abstract condition since the authors concentrate on the solutions of integral —1n

equations rather than the solutions of integro-differential equations. 172
3.1 Ereuce Results 173
Now, we are ready to present our first existence result. 174

Theorem 2. Assume that C1-C4 hold, and the condition 175
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C5
t—1 t—1
sup Y|l TT a(s)|| (My+My) =x <1
teXL k=ty||s=k+1 ¥

is satisfied. Then, the abstract difference equation (4) has a unique discrete almost automorphic
solution.

Proof. In addition to C1-C4, also suppose that C5 holds. By taking Lemma 2 and Lemma 3

into consideration, it remains to show that the mapping H(:) givenin (6) is a contraction.
Let &, ¢ € AA(Z,X); then we have the following:

[[HE - HfPHAA:jza
t—1 t—
=sup| ) ( I1 “(5}) (S1(k,&(k)) = S1(k @(k)) + Sa(k, & (k)) — Sa(k, (k)
teZ ||k=ty \s=k-1 v
t—1 t—1
<sup Y || T a(s)| (My+M)|IE— ol
tED k=t ||s=k+1 X

< x[|¢ %u{z,x;-
This indicates H is a contraction; by the Banach fixed point theorem, it has a unique fixed
point. Thus, the nonlinear difference equation (4) has a unique discrete almost automorphic
solution. O

Theorem 3. Assume that the conditions C1-C5 hold. For a positive constant vy, we define the set

= : _— < }
W, {xeAA(Z,A.’} ¥ == "Mzm <7t )
where
t=1 [ t-1
() = E( T a(s}) (S1(k,0) + S2(k, 0)). (10)
k=ty \s=k+1
Let ||x|| ya(z,xy < vand
t—1
c6 | []als) < ¢ forall t.
s=ty AA(Z,X)
If

l| g ¥+ 7 <, (11)

then the nonlinear difference equation (4) has a unique discrete almost automorphic solution in W,

Proof. Consider the operator H which is defined in (6). In the proof of Theorem 2, it is
already showed that H is a contraction when the condition C5 holds. Thus, we have to
prove that H maps W, into W, to conclude the proof. We suppose that x € W,,, and the
condition (11) holds. Then, we obtain

||(H x)(t) = xﬂ(”"M:;zm

-1
[Tats)
AAZX)

s=1y

< [|xol

A

t—1 t—1
Y ( I a(s}) (S1(k, x(k)) = S1(k, 0) + S2(k, x(k)) — S2(k,0))

4
k=tg \s=k+1

AAZX)

178

179

180

184

187

188

189
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194

t—1

[T ats)

s=k+1

< [lxoll v ¢+ sup E

tEL k=t
< Ilxollx9+xy <.

(My + M) [ x|
X

Thus H(W,) € W,. This implies that H has a unique fixed point due to contraction s

mapping principle, and consequentially, (4) has a unique almost automorphic solutionin 1

W . D 187
r

Theorem 4. Suppose that the conditions C1-C6 hold, and x° is as in (10). Consider the closed ball 195

R e S D

If 199
[|x0l| v + kg + "Hxﬂ — xﬂ",ﬂu{zﬂtj < ¢, (12)

then (4) has a unique discrete almost automorphic solution in We. 200
Proof. Pick x € Wq,, and assume that (12) is satisfied. Then, m
" (H)(t) - xﬂ(r)"m:jz,x;

= "(Hx)[t) B (Hxﬂ)(t)",ful:z,k’) * || (Hxﬂj(t) - xﬂ(r)"AAfzﬂ\'J

et
s=ty AA(ZX)
+ E( ﬁ a(s)) (sl (k, x(k)) — S1(k, x°(k)) + Sa(k, x (k) — Sy (k, x° k)))
k=t \s=k+1 AA(LX)

+ " (Hxﬂ) €)== ||AA:’Z X)

< vatep g 8| T ] 0w 2], [ 52)0 200
This implies 202

|HD@ =, < ollp +xp+ [H =2 <,

and consequentially, H(Wj) C Wj. Since the mapping H is a contraction, we deduce that

(4) has a unique discrete almost automorphic solution in Wy. O 208
Example 1. Consider the nonlinear difference equation given by 205

x(t+1) = 1sgn(cos 2mtO))x(t)
+ Z s ( (sm(;;) —0—51’11(%;’\/5))) x(j) + Eﬁ an:tan(S‘ fx(;)) (13)

where Q) is an irrational number, and x(0) = xg. A comparison between (4) and (13) results in 206

a(t) = %sgrt (cos2mt(),
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Aq(t,s,x) = % (%(sm(gs) +5in(g5\/§)))f_5x,

and 1 207
As(t,s,x) = — arctan(3t5x).
2(t,s, %) = 55 ar ( )

The function a(-) is discrete almost automor phic for any irrational number Q) (see [41]). Besides s
that, the function f(t) = sin(%t) + sin (g—t\/ﬁ) is discrete almost periodic, and consequently 20
discrete almost automorphic. Thus, the function A is discrete bi-almost automorphic. Despite the 2o

fact that the function A does not contain any almost automorphic arguments, it can be considered
as a discrete bi-almost automorphic function since it is a convolution term. Next, we analyze Ay =2

and A in details. We focus on a3
1 /17 . sm T o t—s
Aa(ts,x1) = Aslts, x|y < |55 ( 3 (sin(F5) +sin(F5v2) ) ) [l —xallas
and set , 214
1 /1 -
my(t,s) = E(E(sm(gs)+sin(gsﬁ))) .
Subsequently, we write 215
t—1 =1 1 1 t—j
sup Z mi(t, j) < sup E E(E) !
teZ j=—co teZ j=—co
and obtain the constant M, = % Similarly, we consider 216

1
[[A2(t, s, x1) — Aa(t, s, %2) ||y < E3t_s||x1 — 22| s

and get my(t,s) = $;3t=5. Accordingly, we have the constant M, = % Thus, the conditions a1

C1-C3 are satisfied. Furthermore, the condition C5 holds since 218
=1 -1 =19 =1 1
= - - < —.
sup Y| JT a(s)|| (Mi+My) =sup 3 11 ngrt(cos 2msQY)|| < T
teE k=0||s=k+1 X tEL k=0" ||s=k+1 A

Then, Theorem 2 implies that the nonlinear difference equation (13) has a unique discrete almost  2s

automorphic solution whenever the technical condition C4 holds. 20
Furthermore, it is obvious that 21
t—1 1
Hisgn(cosersQ} <1
=0 AA(ZX)

If we concentrate on the Theorem 3, then we obtain the existence of unique discrete almost automor- 222
phic solution of (13) in the set 223

W, = {x € AA(Z, X) : "x _xU"M{m’J = {y}

for %Hxﬂn(‘. < oy by tacitly assuming that the condition C4 holds. 22

3.2. Bohr-Neugebauer Criterion 25

In this part of the manuscript, we focus on the connection between the existence s
of discrete almost automorphic solutions and bounded solutions of nonlinear difference 2
equations with almost automorphic arguments. Since this result is originated as the 2
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Bohr-Neugebauer theorem, the next result can be regarded as a discrete variant of Bohr-
Neugebauer theorem for a particular class of nonlinear difference equations.

Theorem 5. Suppose that the conditions C1-C5 are satisfied. Then, a bounded solution of nonlinear
abstract difference equation is discrete almost automorphic if and only if it has a relatively compact
range.

Proof. Necessity: Suppose that x(-) is an almost automorphic solution of (4). This directly
implies that its range R is relatively compact. )

Sufficiency: Assume that C1-C5 hold, and x(-) is a bounded solution of (4Bﬂh a
relatively compact range R, thatis R is compact. By C1 and C2, for any arbitrary integer
sequence {v;;}, there exists a subsequence {v}, } of {v}/} such that the following limits hold:

lim a(t+o,) =a(t), lima(t—v}) = a(t),
and

r}i_l};chlg(f+ Uhe S + U, x) = Ara(t s %), r};]l;l;lcf_\l’z(t — U5 — U, x) = Ava(t,s, x).

Next, it is clear that x(t 4 v/, ) is a sequence in R, and by sequential compactmess there exists
a subsequence {v, } of {v}, } so that x(t + v, ) — (t) as 1 — cc. For the sequel, define

6(t) = X(tn}(l—[ S}) + }:( H ) 51(k,%(k)) + Sa(k,%(K))), (14)

s=tq k=ty \s=k+1

where B ,
Sikx(k) = Y Ailkj%(j))

j_—m
and -~
S(kx(k) = Y. Aa(k g 2(j))-
j=k+1
We have
[|x(t+v,) —¢
t+ vy —1 t+on—1 ft+o,—1
x(to+oa) [] a(S)é Y ( 1T a(S))(Sl(k,x(k)HSz(k,x(k)})
s=tp+uy k=tp+uy, \ s=k+1

—x(rg}ﬁﬁ(s} + E( ﬁ a(s}) (S1(k,X(k)) + Sa(k ,x(k)))

s=ty k=t \s=k+1

A

rn—l—v,,}Ha s+vnax rg}H s}

5=t s=fg
t—1 t—1
+T ( I1 a(s—l—vn}) (S1(k + v, x(k +,)) + Sa(k + v, B + v,)))
k=ty \s=k+1
=1
rﬂ)(Ha s}) + E ( I ac ) Si(k,%(k)) + S2(k,x(k)))
s=1ty k=ty \s=k+1 X
rﬂ—l—vn}Ha (s 4 v4) —a rﬂ}H (s)
s=ty 5=ty X
+ E( ﬁ (s+vy) — Hﬁ s}) S1(k + vy, x(k +vy)) + Salk + vy, x(k + v,)))
k=ty \s=k+1 s=tg X
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+

;); (i:[ (s)) (S1(k+ vnﬁ+ on)) + Sa(k + v, x(k + vn))

s=1y

1
fy
—S1(k,%(k)) = S2(k,(K))) || v

x(to+ vn)H as+uvy) —x tg)na s)

s=1fy s=Iy

A

+E Ia s—|—vn)—Ha

[1S1(k +vn, x(k+vn)) + Sa(k +vu, x(k+vn)) | v

k=tol|ls=k+1 s=fy X
t—1 || t=1

+ Y| TTa(s) || (151 (k + vm, x(k +v4)) — S1(k,F(K)) ||
k=tylls=to

+||S2(k +vu, x(k+v4)) — S2(k,X(k))|| )

In the light of Lebesgue convergence theorem, we get ||x(t +v,) —g(t)[|, — 0as 2
n — oo. So, I(t) = ¢(t), and * satisfies (14). 48 216
Now, it remains to show that limy ., #(t — v, ) = x(t) for each t € Z. We focus on 247

[1%(t — vu) — %()] »
t—m—1

t—1
< |lx(to— o) 1T ats) - x(t0) [ Tats)
s=ty

s=t,pr,,
+ E_%_lét ﬁ_ a 5)) Sy (k,X(k)) + S2(k,®(k)))

Y

k=ty— v, s=k+1

-

—i =

= ( I1 a(S)) (S1(k, x(K)) + Sa(k, x(k)))

=ty \s=k+1

E

v
t—uy—1
= ||x(to — vu) H s)—xm)H (s)
s=tg—Ty 5=ty X
1 _
+ E( H S—Un))( E Aq(k—vn,j — v, Z(j — vn))
=t =k+1 j=—00

00

t—1 =1 k
Ra(k—vu, f —vu, %(j — vm) - E( Il a(s)) ( Y vk jox()))

=k+1

k=t \s=k+1 j=—c0
+) Az(k,f,x()')))
j=k+1 X
< rn—v")na (s —vy) —x( tg)n (s)
s=tg s=1y X
+ t_zl ( i—[l ﬁ(s 52 n)) ( Z /_\l(k_ vm}._ Umf(}._vn))
k=to \s=k+1 j=—co
E J_\Z(h_vn;}._vn £(j—ou)) - E Ay (k j,®(j — o)) - E Aa(k, jo2(j — Un)))
1] j=—c j=k+1 Y
=1/ £51 =1
+ E(Hﬁ(s—vn)—n ) ZAlk;x(}—vn))+ EAzk;x(;—vn)))
k=ty \s=k+1 s=k+1 j=k+1 ¥
t=1 t—1 k
+ ):( I1 ﬂ(S)) ( Y (Mk g 2 —va)) = Ak, (7))
k=ty \s=k+1 j=—co
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+ i (Az(k!}.!x(}. - Un}} - Az(k!}!x(}}}})

okt X
t—1 t—1
< ||x(to —vn) [ Ta(s —vu) — x(to) [ Tals) (15)
s=ty 5=ty ¥
k - . . - g
n E H (s — Uu) ( Y [ Artk = vnj = ou, 2( — vu)) = M (K . 20— va)) || o
k=ty||s=k+1 Y \j=—00
(16)
o - 49
+ E "AZ(k - 'Un,}. - 'Un,.i(}. —'Un}} - Az(k!]!i(}_ Un}}"x) (17)
j—k+l
_ _ _1 oo
a(s —va) - (kj—o) = Y Aalkj,2(j—vm)
L to lls=k+1 5= rc+1 yli=—= j=k+1 v
(18)
t—1 t—1 k
VE| T ((E i 00 sk sidla 09
k=ty ||s=k+ X \j=—o

+ E ||A2(k!}1f(} - Un}} - Az(k!j!x(. X)' (2(])
j=k+1

The expressions in (15-18) converge to 0 as n — co. On the other hand, from (19-20) we get

t—1 t—1
2| IT a6s)
k=ty||s=k+1 X

k
('Z 1Ay (k,j, (= 0n)) — M (K, j, (7))
=—00 ,f—

t—1| t=1 k 00
<Y | IT ats) ( Y mkIEG —va) =2y + Y mak IFG —va) — x(G)llx
k=ty|[s=k+1 x \j=—c0 j=k+1

where we employed C3. Since x is bounded, || %(j — v,) — x(j)|| ,, forms a bounded se-

quence, and consequently, there exists a subsequence {vp} of {vy } so that
[|£(t—2vp) —x(t)|[, — O(F)

as p — oo. This implies the inequality

t—1 t—1 k o0
o)< 5| T a0 ( o )0G)+ 3 mz(k,nem),
k=tolls=k+1 ||y \j=—eo jokt

and this results in #(t) = 0 due to C5. Therefore, x(-) is a discrete almost automorphic
solution of (4). The proof is complete. [

Remark 2. As a direct consequence of Theorem 5, one may easily conclude that any bounded
solution of the nonlinear difference equation (13) given in Example 1 is discrete almost automorphic.

4. Conclusions

This study focuses on certain kind of nonlinear difference equations, and provides
an elaborative analysis on the existence of discrete almost automorphic solutions under
sufficient conditions by fixed point theory. Utilization of the contraction mapping principle

x Tt Z [ Az(k, j, %(j — o)) = Ao @ ))HX)

)
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in the construction of the main results enables us to get the sufficient conditions regarding
the existence and uniqueness of the solutions swiftly and elementarily. In addition to main
outcomes regarding existence and uniqueness of almost automorphic solutions, the present
work provides a discrete Bohr-Neugebauer type theorem, and polishes the relationship
between the existence of bounded and discrete almost automorphic solutions. To the best
of our knowledge, our paper is the first one which proposes a Bohr-Neugebauer type result
for difference equations. As a continuation of this study, it might be an interesting task to
obtain a Bohr-Neugebauer type theorem for g-difference equations by inspiring from the
manuscripts [20] and [42].

Author Contributions: Conceptualization, M. Kosti¢, H. C. Koyuncuogly; methodology, M. Kosti¢,
H. C. Koyuncuogluand V. Federov; formal analysis, M. Kosti¢, H. C. Koyuncuoglu and V. Federov;
investigation, M. Kosti¢, H. C. Koyuncuoglu and V. Federov; writing—original draft preparation, H.
C. Koyuncuoglu; supervision, M. Kosti¢, V. Federov; project administration, M. Kosti¢

Funding: The work of Marko Kosti¢ is partially funded by grant 451-03-68 /2020 /14/200156 of
Ministry of Science and Technological Development, Republic of Serbia. The work of Vladimir E.
Fedorov is funded by the grant of President of the Russian Federation to support leading scientific
schools, project number NSh-2708.2022.1.1.

Conflicts of Interest: The authors declare no contlict of interest.

References

1.

G0 Nov

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22,

Avron, J.E.; Simon, B. Almost periodic Hill's equation and the rings of Saturn. Phys. Rev. Lett. 1981, 46, 1166-1168. htips:
/ /doiorg/10.1103/PhysRevLett.46.1166.

Ohta, M.; Koizumi, T. Digital simulation of a white noise model formed of uniformly almost periodic functions. Information and
Control 1970, 17, 340-358. https:/ /doi.org/10.1016,/S0019-9958(70)80033-X.

Ohta, M.; Hiromitsu, 5. A trial of a new formation of the random noise model by use of arbitrary uniformly almost periodic
functions. Information and Control 1977, 33, 227-252. https://doi.org/10.1016/50019-9958(77)80004-1.

Bohr, H. Zur theorie der fastperiodischen funktionen 1. Acta Math. 1925, 45, 29-127.

Besicovitch, A.S. On generalized almost periodic functions. Proc. London Math. Soc. 1926, s2-25, 495-512.

Bochner, S. Beitrage zur theorie der fastperiodischen funktionen. Math. Annalen 1926, 96, 119-147.

Bochner, S.; von Neumann, J. Almost periodic function in a group IL Trans. Amer. Math. Soc. 1935, 37, 21-50.

Stepanov, W. Uber einige verallgemeinerungen der fastperiodischen funktionen. Math. Ann. 1925, 45, 473-498.  https:
/ /doiorg/10.1007 /BF01206623.

Bochner, S. Continuous mappings of almost automorphic and almost periodic functions. Proc. Nat. Acad. Sci. LL5.A. 1964,
52,907-910.

Besicovitch, A.S. Almost Periodic Functions; Cambridge University Press: Cambridge, 1954.

Veech, W.A. On a theorem of Bochner. Ann. Math. 1967, 86, 117-137. https:/ /doi.org/10.2307 /1970363,

Bayliss, A. Almost Periodic Solutions to Difference Equations. Ph.D. Thesis, New York University, New York, USA, 1975.
Diagana, T. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces; Springer, 2013. https://doiorg/10.100
7/978-3-319-00849-3.

N'Guerekata, G.M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces; Springer, 2001. https://doiorg/10.1007 /
978-3-030-73718-4.

Vesely, M. Constructions of Almost Periodic Sequences and Functions and Homogeneous Linear Difference and Differential
Systems. Ph.D. Thesis, Masaryk University, 2011.

Adivar, M.; Koyuncuoglu, H.C. Almost automorphic solutions of discrete delayed neutral system. [. Math. Anal. Appl. 2016,
435, 532-550. https:/ /doi.org/10.1016/j.jmaa.2015.10.056.

Adivar, M.; Koyuncuoglu, H.C.; Raffoul, Y.N. Almost automorphic solutions of delayed neutral dynamic systems on hybrid
domains. Appl. Anal. Discrete Math. 2016, 10, 128-151. https:/ /doi.org/10.2298 /AADMI160402006A.

Koyuncuoglu, H.C.; Adwar, M. Almost periodic solutions of Volterra difference systems. Dem. Math. 2017, 50, 320-329.
https:/ /doi.org/10.1515/dema-2017-0030.

Araya, D;; Castro, R.; Lizama, C. Almost automorphic solutions of difference equations. Adv. Difference Equ. 2009, 2009, 1-69.
https:/ /doi.org/10.1155 /2009 /591380.

Bohner, M.; Mesquita, ].G. Almost periodic functions in quantum calculus. Electron. |. Differential Equation 2018, 2018, 1-11.
Chivez, A, Pinto, M.; Zavaleta, U. On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type
property and some applications. |. Math. Anal. Appl. 2021, 494. https:/ /doi.org/10.1016/].jmaa.2020.124395.

Castillo, S.; Pinto, M. Dichotomy and almost automorphic solution of difference system. Electron. |. Qual. Theory Differ. Equ. 2013,
32, 1-17. https:/ /dol.org/10.14232 / ejqtde.2013.1.32.




Version November 2, 2023 submitted to Mathematics 150f15

23.

24,

25.

26.

27.

28.

29.

30.

31
32.

33.

34.

35.

36.

37.

38.

39.
40.

41.
42,

Diagana, T.; Elaydi, 5.; Yakubu, A. Population models in almost periodic environments. J. Differ. Equat. Appl. 2007, 13, 239-260.
https:/ /doi.org/10.1080/10236190601079035.

Kosti¢, M.; Koyuncuoglu, H.C. Multi-dimensional almost automorphic type sequences and applications. Georgian Math. [., in
press.

Lizama, C.; Mesquita, ].G. Almost automorphic solutions of dynamic equations on time scales. J. Funct. Anal. 2013, 265, 2267-2311.
https:/ /doi.org/10.1016 /j.jfa.2013.06.013.

Lizama, C.; Mesquita, ].G. Almost automorphic solutions of non-autonomous difference equations. |. Math. Anal. Appl. 2013,
407, 339-349. https:/ /doi.org/10.1016/j.jmaa.2013.05.032.

Mishra, 1.; Bahuguna, D.; Abbas, S. Existence of almost automorphic solutions of neutral functional differential equation.
Nonlinear Dyn. Syst. Theory 2011, 11, 165-172.

Massera, J.L. The existence of periodic solutions of systems of differential equations. Duke Math. J. 1950, 17, 457-475.
https:/ / doi.org/10.1215/50012-7094-50- 01741-8.

Bohr, H.; Neugebauer, O. Uber lineare differentialgleichungen mit konstanten koeffizienten und fastperiodischer rechter seite.
Nachr. Ges. Wiss. Gott., Math.-Phys. KI. 1926, 1926, 8-22.

Floquet, G. Sur les équations différentielles linéaires a coefficients périodiques. Amnales Scientifiques de I'Ecole Normale Supérieure
1883, 12, 47-58.

Favard, ]. Sur les équations différentielles linéaires a coefficients presque-périodiques. Acta Math. 1928, 51, 31-81.

Benkhalti, R.; Es-sebbar, B.; Ezzinbi, K. On a Bohr-Neugebauer property for some almost automorphic abstract delay equations. .
Integral Equ. Appl. 2018, 30, 313-345. https:/ /doiorg/10.1216/JIE-2018-30-3-313.

Dads, E.A.; Es-sebbar, B.; Lhachimi, L. On Massera and Bohr-Neugebauer type theorems for some almost automorphic differential
equations. |. Math. Anal. Appl. 2023, 518. https://doi.org/10.1016/j.jmaa.2022.126761.

Drisi, N.; Es-sebbar, B. A Bohr-Neugebauer property for abstract almost periodic evolution equations in Banach spaces:
Application to a size-structured population model. J. Math. Anal. Appl. 2017, 456, 412-428. https://doi.org/10.1016 /] jmaa.2017.0
7.010.

Es-sebbar, B.; Ezzinbi, K.; N'Guérékata, G.M. Bohr-Neugebauer property for almost automorphic partial functional differential
equations. Appl. Anal. 2019, 98, 381-407. https:/ /doi.org/10.1080/00036811.2017.1382686.

Liu, J.; N'Guerekata, G.M.; Van Minh, N. A Massera type theorem for almost automorphic solutions of differential equations. J.
Math. Anal. Appl. 2004, 299, 587-599. https://doi.org/10.1016/jjmaa.2004.05.046.

Liu, Q.; Van Minh, N.; N'Guerekata, G.M.; Yuan, R. Massera type theorems for abstract functional differential equations. Funkcial.
Ekvac. 2008, 51, 329-350. https:/ /dot.org/10.1619/fesi.51.329.

Murakami, 5.; Hino, Y,; Van Minh, N. Massera’s theorem for almost periodic solutions of functional differential equations. J.
Math. Sec. Japan 2004, 56, 247-268. https://doi.org/10.2969 /jmsj/1191418705.

Radova, L. Theorems of Bohr-Neugebauer-type for almost-periodic differential equations. Math. Slovaca 2004, 54, 191-207.

Van Minh, N.; Minh, H.B. A Massera-type criterion for almost periodic solutions of higher-order delay or advance abstract
functional differential equations. Abstr. Appl. Anal. 2004, 2004, 881-896. https:/ /doi.org/10.1155/51085337504406046.

Veech, WA. Almost automorphic functions on groups. Amer. |. Math. 1965, 87, 719-751. https:/ /doi.org/10.2307/2373071.

Li, Y. Almost automorphic functions on the quantum time scale and applications. Discrete Dyn. Nat. Soc. 2017, 2017.
https:/ /doi.org/10.1155/2017 /1526478.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPIand/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.




mathematics_aa_difference_eqn (4).pdf

ORIGINALITY REPORT

23y

SIMILARITY INDEX

PRIMARY SOURCES

B B BB

0
Icr::t)erneet.ac.Uk 105 words — 2 Y0
www.freepatentsonline.com 2%
Internet 100 words —
0
ggrl:gmen'pljb 74 words — | Y0
H 4 n 0
Murat Adivar, Halis Can Koyuncuoglu. "Almost 59 words — 1 /0

automorphic solutions of discrete delayed neutral
system", Journal of Mathematical Analysis and Applications,
2016

Crossref

. . . s " 0
Llnas'Strlplnls, Remlguus PauIaymus. Novgl 56 words — 1 /0
Algorithm for Linearly Constrained Derivative Free
Global Optimization of Lipschitz Functions", Mathematics, 2023

Crossref

. " - . 0
Xu, L., Q. Wang, W. Li, and Y. Hou. "Stability analysis . . 1 )0
and stabilisation of full-envelope networked flight
control systems: switched system approach”, IET Control
Theory and Applications, 2012.

Crossref

repository.derby.ac.uk 47 words — 1 0%

Internet



— RN RN RN RN RN
Ul ~ W N — (@]

M n 0
Hal!s C.an Koy.uncuoglu, Murat Adlvar. Almost 45 words — 1 /0
periodic solutions of Volterra difference systems”,

Demonstratio Mathematica, 2017

Crossref

ﬁ?ﬁi'mfo 45 words — 1 %
Ir:t(ztnlitzama.usach.cl 45 words — ] 0%
Ienz:rp:grt.arxiv.org 42 words — 1 %
I(;X_’Ii)nirleninka.org 32 words — | 0%
inkspringercom 52 words— 1%

WWW.enama.org 32 words — 1 0%

Internet

. " . 0
ABBAS, Syed, and Yonghui XIA. "Existenceand o < 1 )0
attractivity of k-almost automorphic sequence
solution of a model of cellular neural networks with delay",
Acta Mathematica Scientia, 2013.

Crossref

Halis Cah Koyuncuoglu, Nezihe Turhan. "A | 23 words — < 1 %
generalized Massera theorem based on affine

periodicity"”, Journal of Mathematical Analysis and Applications,

2021

Crossref

Qian. Ye. "Mean squgre'expone'ntial and rpbust 23 words — < 1 %
stability of stochastic discrete-time genetic



—_ RN
O (0]

N N
(@)

1

22

23

B

2

25

N N
~ o

requlatory networks with uncertainties", Cognitive
Neurodynamics, 02/13/2010

Crossref

. 0
www.scielo.cl 23 words — < 1 %

Internet

. " . . . o 0
Ingolf Muller. "Clapping |r.1 dglamlnated sandywch 22 words — < 1 /0
beams due to forced oscillations", Computational
Mechanics, 2005

Crossref

ejde.math.txstate.edu 29 words — < 1 0%

Internet

M . . 0
Almost Autpmorphlc Type and Almost Periodic 21 words — < 1 /0
Type Functions in Abstract Spaces, 2013.

Crossref

mdpi-res.com 21 words — < 1 %

Internet

Claudio Cuevas. "Almost automorphic solutions to 0
. . o p. 20 words — < 1 /0
integral equations ontheline", Semigroup Forum,

05/22/2009

Crossref

Irfe|r3n<e)tzitorij.ung.si 20 words — < 1 %
mgg.mdpi.com 20 words < 1 %
www.researchgate.net >0 words — < 1 0%

Internet

, . . " 0
Alan Chavez, Mangel Pinto, Ullges Zavaleta. "On 19 words — < 1 /0
almost automorphic type solutions of abstract



integral equations, a Bohr-Neugebauer type property and
some applications", Journal of Mathematical Analysis and
Applications, 2020

Crossref

haouki Aouiti, Farah Dridi. "Pi i 0
Chaouki .oum, arah Dridi |ece.W|se | 16 words — < 1 /0
asymptotically almost automorphic solutions for

impulsive non-autonomous high-order Hopfield neural
networks with mixed delays", Neural Computing and
Applications, 2018

Crossref

. T " 0
ple) Ismgll. Kucuk, than Y|Id|r|m.. Ngcessary and 16 words — < 1 /0
Sufficient Conditions of Optimality for a Damped

Hyperbolic Equation in One-Space Dimension", Abstract and

Applied Analysis, 2014

Crossref

. . 0
I|c:tre1r?e<;:‘n|x.mf.upol.cz 15 words — < 1 )0

. . 0
x\:(\a/r\:]\g.aldelphl.com 15 words — < 1 )0

| 0
xuebao.jlu.edu.cn 14 words — < 1 )0

Internet

W
w

. . . " . 0
Chen, Quoplng, anq angha.ng Zhang. "Dynamical 13 words — < 1 /0
Behavior of Impulsive Hopfield Neural Networks

with Infinite Distributed Delays", 2010 Second WRI Global

Congress on Intelligent Systems, 2010.

Crossref

i 0
J"uan Pa.blo Ylglma,.George L. !\Iemhguser. 13 words — < 1 /0
Modeling disjunctive constraints with a

logarithmic number of binary variables and constraints”,
Mathematical Programming, 2009

Crossref



I . ) 0
Syed Abbas. "Existence anc! Attractivity of k | 13 words — < 1 A)
Pseudo Almost Automorphic Sequence Solution

of a Model of Bidirectional Neural Networks", Acta Applicandae
Mathematicae, 2011

Crossref

0
dspace.bsu.edu.ru 13 words — < 1 Yo

Internet

0)
smartech.gatech.edu 13 words — < ] 0

Internet

: " - i 0
Dlng,' H.S.. Asymptptlcally a'Imost gutomorphlc 12 words — < 1 /0
solutions for some integrodifferential equations

with nonlocal initial conditions", Journal of Mathematical

Analysis and Applications, 20080201

Crossref

. , ;s 0
James LI:J €, Gaston M. N Gl.Jerekat.a, Nguyen Van 12 words — < 1 /0
Minh 8. "Almost automorphic solutions of second

order evolution equations”, Applicable Analysis, 2005

Crossref

i 0
Ler]ser A. Aghalovyap, Lu§|ne G: Ghulghazaryan, 12 words — < 1 /0
Julius Kaplunov, Danila Prikazchikov.
"Degenerated Boundary Layers and Long-Wave Low-Frequency
Motion in High-Contrast Elastic Laminates", Mathematics, 2023

Crossref

" - TR . 0
Raffoul, Y.N:. Stability and periodicity |.n discrete 12 words — < 1 /0
delay equations”, Journal of Mathematical

Analysis and Applications, 20061215

Crossref

Shunjlan.g, Xiangsheng Zh'ang, Binjie Qu, Feng 12 words — < 1 /0
Pan. "Reliable Fault Detection for Nonlinear
Networked Systems with Imperfect Measurements: A Multi-



S 5 RN S e BN EoN
(o) (0] ~ (o) ul NN w

50

Packet Transmission Mechanism", Circuits, Systems, and Signal
Processing, 2013

Crossref

I(;Egztjournal.org 11 words — < 1 0%
Ikn\tczlrlr;gandle.net 11 words — < 1 0/0
Irnrtlerrrnwettjz.uctm.edu 11 words — < 1 %
Irn?e?nlg.mtak.hu 11 words — < 1 %
i?e;?e[nazonaws.com 11 words — < 1 0%
Ilitre?nTto'dz 11 words — < 1 %
Alber, Ya.l.. "On the stability of iterative 10 words — < 1 0%

approximations to fixed points of nonexpansive
mappings", Journal of Mathematical Analysis and Applications,
20070415

Crossref

Almost AuFomorphlc and Almost Periodic 10 words — < 1 /0
Functions in Abstract Spaces, 2001.

Crossref

. _ M M n 0
E. Ait Dads, B. Es-sebbar, L. Lhachimi. "On 10 words — < 1 )0
Massera and Bohr-Neugebauer type theorems
for some almost automorphic differential equations", Journal of
Mathematical Analysis and Applications, 2023

Crossref



9
N

Ul I Ul I U7 BN U7 B U1 B U1
B 5 HHB B

Jishad Kumar. "Thermodynamics of a quantum
dissipative charged magneto-oscillator"”, Annalen

der Physik, 2014

Crossref

ebin.pub

Internet

moam.info

Internet

vdoc.pub

Internet

WWW.ams.org

Internet

www.biorxiv.org

Internet

www.jaac-online.com

Internet

ON
ON

10 words — < 1%

10 words — < 1%
10 words — < 1%
10 words — < 1%
10 words — < 1%
10 words — < 1%

10 words — < 1%

OFF
<10 WORDS



