

mathematics_aa_difference_eqn (4).pdf

By koyuncuoglu

WORD COUNT

7469

TIME SUBMITTED

02-NOV-2023 11:21AM

PAPER ID

103929524

Article

Almost automorphic solutions to nonlinear difference equations

Marko Kostić^{1,†*}, Halis Can Koyuncuoğlu^{2,‡} and Vladimir E. Fedorov^{3,‡}¹ University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21125 Novi Sad, Serbia;⁸ marco.s@verat.net² Izmir Katip Celebi University, Department of Engineering Sciences, 35620, Izmir, Turkey;³⁶ scan.koyuncuoğlu@ikcu.edu.tr³ Chelyabinsk State University, Kashirin Brothers St. 129, Chelyabinsk, 454001 Russia; kar@csu.ru^{*} ²² Correspondence: marco.s@verat.net[†] These authors contributed equally to this work.

32

Abstract: In the present work, we concentrate on a certain class of nonlinear difference equations and obtain sufficient conditions for the ¹³ existence of almost automorphic ¹⁴ solutions by employing fixed point theory. Also, we investigate the relationship between the existence ¹⁵ of bounded ¹⁶ solutions and the existence of almost automorphic ¹⁷ solutions for the proposed difference equation type. Thus, we present a Bohr-Neugebauer type theorem for difference equations.

Keywords: Discrete almost automorphic; discrete bi-almost automorphic; fixed point; contraction; Bohr-Neugebauer

1. Introduction

In the theory of dynamic equations, investigation of the existence and uniqueness of periodic solutions has become a very popular research topic for mathematicians, and there is a vast literature on this research direction which focuses on the real life models constructed on continuous, discrete or hybrid time domains with periodic structures. Indeed, analysis of difference equations has taken a prominent attention as much as differential equations, and the studies based on periodicity for the solutions of differential equations have been carried on to discrete domains. Consequentially, the literature on differential and difference equations has grown simultaneously.

Conventional periodicity is a strong but a relaxable condition for some classes of functions. The studies concentrating on the existence of conventionally periodic solutions of dynamic equations may not cover many mathematical models which involve not exactly periodic but nearly periodic arguments in roughly speaking. It is possible to see such real life models in signal processing or in astrophysics (see [1–3]). As a relaxation of the ⁵⁴ conventional periodicity, the almost periodicity notion was first introduced by H. Bohr ([4]), and the theory of almost periodic functions has been developed by the contributions of several scientists including A.S. Besicovitch, S. Bochner, J. von Neumann, and W. Stepanoff who are very well known in the mathematics community (see [5–8]). The first ³ definition of an almost periodic function was introduced as a topological property; that is a continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to be almost periodic if the set

$$E(\varepsilon, f(t)) := \{\tau : |f(t + \tau) - f(t)| < \varepsilon \text{ for all } t \in \mathbb{R}\}$$

is relatively dense in \mathbb{R} for all $\varepsilon > 0$. Subsequently, Bochner proposed normality condition as an almost periodicity criterion, i.e., a continuous function $f(\cdot)$ is called almost periodic if for every real sequence $\{v'_n\}$, there exists a subsequence $\{v'_m\}$ of $\{v'_n\}$ such that $\lim_{n \rightarrow \infty} f(t + v'_n) = f(t)$ uniformly for all t (see [6]). Afterwards, the theory of almost automorphic functions was introduced by S. Bochner ([9]) by relaxing the uniform convergence from the normality condition. That is, a continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$ is called

Citation: Kostić, M.; Koyuncuoğlu, H.C.; Fedorov, V.E. Almost automorphic solutions to nonlinear difference equations. *Mathematics* **2023**, *1*, 0. <https://doi.org/10.3390/math1001001>

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.Submitted to *Mathematics* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

9

almost automorphic if for every real sequence $\{v'_n\}$, one can extract a subsequence $\{v_n\}$ of $\{v'_n\}$ such that $\lim_{n \rightarrow \infty} \lim_{m \rightarrow \infty} f(t + v_n - v_m) = f(t)$ for each $t \in \mathbb{R}$. Thus, the almost automorphy notion can be regarded as a weaker version of almost periodicity. It is obvious that the following relationship holds between the periodicity notions

$$\text{conventional periodicity} \Rightarrow \text{almost periodicity} \Rightarrow \text{almost automorphy},$$

while the inverse of the implication may not be correct. For example, the function

$$f(t) = \sin(2\pi t) + \sin(2\sqrt{2}\pi t), \quad t \in \mathbb{R},$$

is almost periodic but not conventionally periodic, and

$$g(t) = \frac{2 + \exp(it) + \exp(i\sqrt{2}t)}{|2 + \exp(it) + \exp(i\sqrt{2}t)|}, \quad t \in \mathbb{R},$$

is an almost automorphic function which is not almost periodic (see [10] and [11]). In the recent past, the theories of almost periodic and almost automorphic functions have taken prominent attention from scholars, and the existence of almost periodic and almost automorphic solutions of dynamic equations has become a hot research topic on time domains with continuous, discrete and hybrid structures. We refer to readers the monographs ([10,12–15]), papers ([16–27]), and references therein.

Analysis of the linkage between the existence of bounded and periodic solutions of dynamic equations has always been an interesting research topic in the applied mathematics. Massera's theorem is the primary result for the qualitative theory of differential equations since it implements boundedness and periodicity of the solutions (see [28]). Since then, various versions of Massera's theorem have been studied for linear and nonlinear dynamic equations over the last five decades. Undoubtedly, when the dynamic equation contains almost periodic or almost automorphic arguments, it becomes a gruelling task to relate the existence of bounded and almost periodic (almost automorphic) solutions. In [29], Bohr and Neugebauer concentrated on the linear system

$$x'(t) = Ax(t) + f(t),$$

and showed that all bounded solutions of almost periodic system of this form are almost periodic on \mathbb{R} . Actually, this crucial result can be regarded as an almost periodic analogue of the Massera's theorem. Besides, it should be noted that when $A = A(t)$, and A is conventionally periodic, then it is possible to pursue a similar approach in the light of Floquet theory ([30]). On the other hand, the nonautonomous linear system with almost periodic coefficients

$$x'(t) = A(t)x(t) + f(t), \quad t \in \mathbb{R},$$

is handled by Favard ([31]), and it is shown that the linear system has at least one almost periodic solution if it has a bounded solution under a separation assumption; that is, each bounded nontrivial solution of the system

$$x'(t) = B(t)x(t), \quad t \in \mathbb{R},$$

51

satisfies $\inf_{t \in \mathbb{R}} |x(t)| > 0$ where B is in the hull of A . This conception is known as Favard's theory in the existing literature. These milestone results have motivated researchers remarkably, and it is possible to find a detailed literature providing Massera, Bohr-Neugebauer, and Favard type theorems for various kind of dynamic equations based on conventional periodicity, almost periodicity, or almost automorphy notions. We refer to ([21,32–40]) as pioneering studies. However, we shall point out that there is a poor research backlog on Massera or Bohr-Neugebauer type theorems on the almost automorphic solutions of

difference equations unlike the enormous literature on differential equations. Thus, one of 71
 13 main objectives of this research is to make a new contribution to the qualitative theory 72
 of difference equations by filling the above-mentioned gap. 73

In this paper, we are inspired by the recent work [21] of A. Chávez, M. Pinto and 74
 1 Zavaleta. We introduce a certain kind of nonlinear summation equation, namely a 75
 difference equation, 76

$$x(t+1) = a(t)x(t) + \sum_{j=-\infty}^{t-1} \Lambda_1(t, j, x(j)) + \sum_{j=t}^{\infty} \Lambda_2(t, j, x(j))$$

20 In discrete almost automorphic arguments. As the initial task of the study, we focus on 77
 the existence and uniqueness of discrete almost automorphic solutions of the nonlinear 78
 difference equation by employing 55 fixed point theory. Then, we propose a Bohr-Neugebauer 79
 type theorem which relates the existence of bounded and discrete almost automorphic 80
 solutions. To the best of our knowledge, our study is the first of its kind since it introduces 81
 a discrete counterpart of Bohr-Neugebauer theorem which has not been considered so far, 82
 and consequently, it contributes the ongoing theory of difference equations. 83

2. Background Material

In this section, we aim to give a precise review on discrete almost automorphic 84
 functions, and their basic characteristics [35]. For the presentation of the preliminary content, 85
 we will first assume that \mathcal{X} stands for a real (or complex) Banach space endowed with the 86
 norm $\|\cdot\|_{\mathcal{X}}$. 87

15
Definition 1 (Discrete almost automorphy ([19])). *A function $f : \mathbb{Z} \rightarrow \mathcal{X}$ is said to be discrete 88
 almost automorphic if for every integer sequence $\{v'_n\}_{n \in \mathbb{Z}}$ there exists a subsequence $\{v_n\}_{n \in \mathbb{Z}}$ of 89
 $\{v'_n\}_{n \in \mathbb{Z}}$ such that 90*

$$\lim_{n \rightarrow \infty} f(t + v_n) =: \bar{f}(t) \quad (1)$$

is well defined for each $t \in \mathbb{Z}$, and

$$\lim_{n \rightarrow \infty} \bar{f}(t - v_n) = f(t) \quad (2)$$

for each $t \in \mathbb{Z}$.

10
 As it is underlined in [19, Remark 2.2], if the convergence in Definition 1 is uniform, 94
 then the concept of discrete almost automorphy turns into a more specific notion, namely 95
 discrete almost periodicity. It is clear that every discrete almost periodic function is discrete 96
 almost automorphic, however the inverse of the assertion may not be true. In the existing 97
 literature, it is possible to find some studies which propose examples of discrete almost 98
 automorphic functions that are not discrete almost periodic. For example, Bochner gave an 99
 example of discrete almost automorphic function which is not discrete almost periodic. 100

$$f(t) =: \operatorname{sgn}(\sin(2\pi t\Omega)), t \in \mathbb{Z},$$

for an irrational number Ω in his pioneering work [9] (see also [41]).

4
Definition 2 ([19]). *A function $g : \mathbb{Z} \times \mathcal{X} \rightarrow \mathcal{X}$ is said to be discrete almost automorphic in t for 102
 each $x \in \mathcal{X}$, if for every integer sequence $\{v'_n\}_{n \in \mathbb{Z}}$, there exists a subsequence $\{v_n\}_{n \in \mathbb{Z}}$ of $\{v'_n\}_{n \in \mathbb{Z}}$ 103
 such that 104*

$$\lim_{n \rightarrow \infty} g(t + v_n, x) =: \bar{g}(t, x) \quad 9$$

is well defined for each $t \in \mathbb{Z}$, $x \in \mathcal{X}$, and

$$\lim_{n \rightarrow \infty} \bar{g}(t - v_n, x) =: g(t, x)$$

for each $t \in \mathbb{Z}$, and $x \in \mathcal{X}$.

We refer to [19, Theorem 2.4 and Theorem 2.9] (see also [14]) for reviewing the well-known properties of discrete almost automorphic functions.

Next, we give the notion of discrete bi-almost automorphy in the light of [21, Definition 2.7] for multivariable functions.

Definition 3 (Discrete bi-almost automorphy). A function $\Lambda : \mathbb{Z} \times \mathbb{Z} \times \mathcal{X} \rightarrow \mathcal{X}$ is called discrete bi-almost automorphic in $(t, s) \in \mathbb{Z} \times \mathbb{Z}$ uniformly for x on bounded subsets of \mathcal{X} if given any integer sequence $\{v'_n\}_{n \in \mathbb{Z}}$ and a bounded set $B \subset \mathcal{X}$, then there exists a subsequence $\{v_n\}_{n \in \mathbb{Z}}$ of $\{v'_n\}_{n \in \mathbb{Z}}$ such that

$$\lim_{n \rightarrow \infty} \Lambda(t + v_n, s + v_n, x) = \bar{\Lambda}(t, s, x)$$

is well defined for each $(t, s) \in \mathbb{Z} \times \mathbb{Z}$, $x \in B$, and

$$\lim_{n \rightarrow \infty} \bar{\Lambda}(t - v_n, s - v_n, x) = \Lambda(t, s, x)$$

for each $(t, s) \in \mathbb{Z} \times \mathbb{Z}$, and $x \in B$.

Let $\mathcal{AA}(\mathbb{Z}, \mathcal{X})$ denotes the set of all discrete almost automorphic functions defined on \mathbb{Z} . Then, $\mathcal{AA}(\mathbb{Z}, \mathcal{X})$ is a Banach space when it is endowed with the norm

$$\|f\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} := \sup_{t \in \mathbb{Z}} \|f(t)\|_{\mathcal{X}}. \quad (3)$$

The next result is crucial for the setup of the main outcomes.

Theorem 1 ([19]). Let $g : \mathbb{Z} \times \mathcal{X} \rightarrow \mathcal{X}$ be discrete almost automorphic in t , for each $x \in \mathcal{X}$, and suppose that it satisfies the Lipschitz condition in x uniformly in t , that is

$$\|g(t, x) - g(t, y)\|_{\mathcal{X}} \leq L \|x - y\|_{\mathcal{X}}, \quad x, y \in \mathcal{X}.$$

Then, the function $g(t, \varphi(t))$ is discrete almost automorphic function whenever $\varphi : \mathbb{Z} \rightarrow \mathcal{X}$ is discrete almost automorphic.

For more details about multi-dimensional almost automorphic sequences and their applications, we also refer the reader to our recent research paper [24].

3. Setup and Main Results

Consider the following abstract nonlinear difference equation

$$x(t+1) = a(t)x(t) + \sum_{j=-\infty}^{t-1} \Lambda_1(t, j, x(j)) + \sum_{j=t}^{\infty} \Lambda_2(t, j, x(j)), \quad (4)$$

where $a : \mathbb{Z} \rightarrow \mathbb{C}$, $a(t) \neq 0$ for all $t \in \mathbb{Z}$, and $\Lambda_{1,2} : \mathbb{Z} \times \mathbb{Z} \times \mathcal{X} \rightarrow \mathcal{X}$.

In the sequel, we give the following fundamental result which is essential for the outcomes of the manuscript:

Lemma 1. The function $x(\cdot)$ is a solution of (4) with the initial data $x(t_0) = x_0$ 41 and only if

$$x(t) = x_0 \prod_{s=t_0}^{t-1} a(s) + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) \left(\sum_{j=-\infty}^k \Lambda_1(k, j, x(j)) + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, x(j)) \right). \quad (5)$$

Proof. We multiply both sides of (4) with $\prod_{s=t_0}^{t-1} a^{-1}(s)$, and get

$$x(t+1) \prod_{s=t_0}^{t-1} a^{-1}(s) - a(t)x(t) \prod_{s=t_0}^{t-1} a^{-1}(s) = \prod_{s=t_0}^{t-1} a^{-1}(s) \left(\sum_{j=-\infty}^{t-1} \Lambda_1(t, j, x(j)) + \sum_{j=t}^{\infty} \Lambda_2(t, j, x(j)) \right). \quad 132$$

By writing the above expression as in the following form

$$\begin{aligned} & x(t+1)a(t) \prod_{s=t_0}^t a^{-1}(s) - a(t)x(t) \prod_{s=t_0}^{t-1} a^{-1}(s) \\ &= \prod_{s=t_0}^{t-1} a^{-1}(s) \left(\sum_{j=-\infty}^{t-1} \Lambda_1(t, j, x(j)) + \sum_{j=t}^{\infty} \Lambda_2(t, j, x(j)) \right), \end{aligned} \quad 133$$

we obtain

$$\Delta \left(x(t) \prod_{s=t_0}^{t-1} a^{-1}(s) \right) = \prod_{s=t_0}^{t-1} a^{-1}(s) \left(\sum_{j=-\infty}^{t-1} \Lambda_1(t, j, x(j)) + \sum_{j=t}^{\infty} \Lambda_2(t, j, x(j)) \right), \quad 134$$

where Δ stands for the forward difference operator. Next, we take the summation from t_0 to $t-1$

$$\sum_{k=t_0}^{t-1} \Delta \left(x(k) \prod_{s=t_0}^{k-1} a^{-1}(s) \right) = \sum_{k=t_0}^{t-1} \left(\prod_{s=t_0}^k a^{-1}(s) \right) \left(\sum_{j=-\infty}^k \Lambda_1(k, j, x(j)) + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, x(j)) \right).$$

This yields to

$$x(t) \prod_{s=t_0}^{t-1} a^{-1}(s) - x_0 = \sum_{k=t_0}^{t-1} \left(\prod_{s=t_0}^k a^{-1}(s) \right) \left(\sum_{j=-\infty}^k \Lambda_1(k, j, x(j)) + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, x(j)) \right), \quad 135$$

and one may easily obtain (5). Since every step is reversible, the proof is complete. \square

Henceforth, we assume that the following conditions are satisfied throughout the manuscript:

C1 The function $a(\cdot)$ is discrete almost automorphic.

C2 $\Lambda_{1,2}$ are discrete bi-almost automorphic in t and s , uniformly for x .

C3 For $u_{1,2} \in \mathcal{X}$, the Lipschitz inequalities

$$\|\Lambda_1(t, s, u_1) - \Lambda_1(t, s, u_2)\|_{\mathcal{X}} \leq m_1(t, s) \|u_1 - u_2\|_{\mathcal{X}}$$

and

$$\|\Lambda_2(t, s, u_1) - \Lambda_2(t, s, u_2)\|_{\mathcal{X}} \leq m_2(t, s) \|u_1 - u_2\|_{\mathcal{X}} \quad 144$$

hold together with

$$\sup_{t \in \mathbb{Z}} \sum_{j=-\infty}^{t-1} m_1(t, j) = M_1 < \infty, \quad 145$$

$$\sup_{t \in \mathbb{Z}} \sum_{j=t}^{\infty} m_2(t, j) = M_2 < \infty.$$

Subsequently, we introduce the mapping $H : \mathcal{X} \rightarrow \mathcal{X}$ given by

$$(Hx)(t) := x_0 \prod_{s=t_0}^{t-1} a(s) + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) (S_1(k, x(k)) + S_2(k, x(k))), \quad (6)$$

where

$$S_1(k, x(k)) := \sum_{j=-\infty}^k \Lambda_1(k, j, x(j)), \quad (7)$$

and

$$S_2(k, x(k)) := \sum_{j=k+1}^{\infty} \Lambda_2(k, j, x(j)). \quad (8)$$

Lemma 2. If $x \in \mathcal{AA}(\mathbb{Z}, \mathcal{X})$, then $S_1(\cdot, x(\cdot))$ and $S_2(\cdot, x(\cdot))$ are discrete almost automorphic.

Proof. Suppose that $\xi, \varphi \in \mathcal{AA}(\mathbb{Z}, \mathcal{X})$. Then we have

$$\begin{aligned} \|S_1(k, \xi) - S_1(k, \varphi)\|_{\mathcal{X}} &= \left\| \sum_{j=-\infty}^k \Lambda_1(k, j, \xi(j)) - \sum_{j=-\infty}^k \Lambda_1(k, j, \varphi(j)) \right\|_{\mathcal{X}} \\ &\leq \sup_{k \in \mathbb{Z}} \sum_{j=-\infty}^k \|\Lambda_1(k, j, \xi(j)) - \Lambda_1(k, j, \varphi(j))\|_{\mathcal{X}} \\ &\leq \sup_{k \in \mathbb{Z}} \sum_{j=-\infty}^k m_1(k, j) \|\xi - \varphi\|_{\mathcal{X}} \\ &= M_1 \|\xi - \varphi\|_{\mathcal{X}}. \end{aligned}$$

Similarly, we easily observe that

$$\|S_2(k, \xi) - S_2(k, \varphi)\|_{\mathcal{X}} \leq M_2 \|\xi - \varphi\|_{\mathcal{X}}.$$

By Theorem 1, the proof of the assertion is complete. \square

Lemma 3. In addition to C1, C2, and C3, also assume that the condition

C4 For every integer sequence $\{v'_n\}_{n \in \mathbb{Z}}$ there exists a subsequence $\{v_n\}_{n \in \mathbb{Z}}$ of $\{v'_n\}_{n \in \mathbb{Z}}$ such that

$$\lim_{n \rightarrow \infty} x(t_0 \pm v_n) = x(t_0) = x_0$$

holds. Then, H maps $\mathcal{AA}(\mathbb{Z}, \mathcal{X})$ into $\mathcal{AA}(\mathbb{Z}, \mathcal{X})$.

Proof. Suppose that $x \in \mathcal{AA}(\mathbb{Z}, \mathcal{X})$. By Lemma 2, the functions $S_1(t, x(t))$ and $S_2(t, x(t))$, which are defined in (7)-(8), are discrete almost automorphic functions in t for each x . That is, for every integer sequence $\{v'_n\}_{n \in \mathbb{Z}}$ there exists a subsequence $\{v_n\}_{n \in \mathbb{Z}}$ of $\{v'_n\}_{n \in \mathbb{Z}}$ such that

$$\begin{aligned} \lim_{n \rightarrow \infty} S_1(t + v_n, x(t + v_n)) &=: \overline{S}_1(t, \bar{x}(t)), \\ \lim_{n \rightarrow \infty} \overline{S}_1(t - v_n, \bar{x}(t - v_n)) &:= S_1(t, x(t)) \end{aligned}$$

and

$$\begin{aligned} \lim_{n \rightarrow \infty} S_2(t + v_n, x(t + v_n)) &=: \overline{S}_2(t, \bar{x}(t)), \\ \lim_{n \rightarrow \infty} \overline{S}_2(t - v_n, \bar{x}(t - v_n)) &:= S_2(t, x(t)) \end{aligned}$$

for each $t \in \mathbb{Z}$. Let us write

$$\begin{aligned}
 (Hx)(t+v_n) &= x(t_0+v_n) \prod_{s=t_0+v_n}^{t+v_n-1} a(s) + \sum_{k=t_0+v_n}^{t+v_n-1} \left(\prod_{s=k+1}^{t+v_n-1} a(s) \right) (S_1(k, x(k)) + S_2(k, x(k))) \\
 &= x(t_0+v_n) \prod_{s=t_0}^{t-1} a(s+v_n) \\
 &\quad + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+v_n+1}^{t+v_n-1} a(s) \right) (S_1(k+v_n, x(k+v_n)) + S_2(k+v_n, x(k+v_n))) \\
 &= x(t_0+v_n) \prod_{s=t_0}^{t-1} a(s+v_n) \\
 &\quad + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s+v_n) \right) (S_1(k+v_n, x(k+v_n)) + S_2(k+v_n, x(k+v_n))).
 \end{aligned}$$

If we take the limit of $(Hx)(t+v_n)$ as $n \rightarrow \infty$ and utilize the Lebesgue convergence theorem, then we have

$$(\overline{Hx})(t) = x_0 \prod_{s=t_0}^{t-1} \bar{a}(s) + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s) \right) (\overline{S_1}(k, \bar{x}(k)) + \overline{S_2}(k, \bar{x}(k))).$$

For the converse part, we can follow a similar procedure. Consider

$$\begin{aligned}
 (\overline{Hx})(t-v_n) &= x(t_0-v_n) \prod_{s=t_0-v_n}^{t-v_n-1} \bar{a}(s) + \sum_{k=t_0-v_n}^{t-v_n-1} \left(\prod_{s=k+1}^{t-v_n-1} \bar{a}(s) \right) (\overline{S_1}(k, \bar{x}(k)) + \overline{S_2}(k, \bar{x}(k))) \\
 &= x(t_0-v_n) \prod_{s=t_0}^{t-1} \bar{a}(s-v_n) \\
 &\quad + \sum_{k=t_0}^{t-1} \left(\prod_{s=k-v_n+1}^{t-v_n-1} \bar{a}(s) \right) (\overline{S_1}(k-v_n, \bar{x}(k-v_n)) + \overline{S_2}(k-v_n, \bar{x}(k-v_n))),
 \end{aligned}$$

which results in

$$\begin{aligned}
 (\overline{Hx})(t-v_n) &= x(t_0-v_n) \prod_{s=t_0}^{t-1} \bar{a}(s-v_n) \\
 &\quad + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s-v_n) \right) (\overline{S_1}(k-v_n, \bar{x}(k-v_n)) + \overline{S_2}(k-v_n, \bar{x}(k-v_n))).
 \end{aligned}$$

By taking the limit of $(\overline{Hx})(t-v_n)$ as $n \rightarrow \infty$, and using the Lebesgue convergence theorem, we obtain $\lim_{n \rightarrow \infty} (\overline{Hx})(t-v_n) = (Hx)(t)$. This completes the proof. \square

Remark 1. It should be highlighted that the condition C4 is a compulsory technical condition for the construction of existence results. A similar condition can be found in the pioneering work of Bohner and Mesquita (see [20, Theorem 3.10]). On the other hand, the main results of [21] do not require such an abstract condition since the authors concentrate on the solutions of integral equations rather than the solutions of integro-differential equations.

3.1. Existence Results

Now, we are ready to present our first existence result.

Theorem 2. Assume that C1-C4 hold, and the condition

C5

$$\sup_{t \in \mathbb{Z}} \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} (M_1 + M_2) = \kappa < 1$$

is satisfied. Then, the abstract difference equation (4) has a unique discrete almost automorphic solution.

Proof. In addition to **C1-C4**, also suppose that **C5** holds. By taking Lemma 2 and Lemma 3 into consideration, it remains to show that the mapping $H(\cdot)$ given in (6) is a contraction. Let $\xi, \varphi \in \mathcal{AA}(\mathbb{Z}, \mathcal{X})$; then we have the following:

$$\begin{aligned} & \|H\xi - H\varphi\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \\ &= \sup_{t \in \mathbb{Z}} \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) (S_1(k, \xi(k)) - S_1(k, \varphi(k)) + S_2(k, \xi(k)) - S_2(k, \varphi(k))) \right\|_{\mathcal{X}} \\ &\leq \sup_{t \in \mathbb{Z}} \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} (M_1 + M_2) \|\xi - \varphi\|_{\mathcal{X}} \\ &\leq \kappa \|\xi - \varphi\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})}. \end{aligned}$$

28

This indicates H is a contraction; by the Banach fixed point theorem, it has a unique fixed point. Thus, the nonlinear difference equation (4) has a unique discrete almost automorphic solution. \square

Theorem 3. Assume that the conditions **C1-C5** hold. For a positive constant γ , we define the set

$$W_\gamma = \left\{ x \in \mathcal{AA}(\mathbb{Z}, \mathcal{X}) : \|x - x^0\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \gamma \right\}, \quad (9)$$

where

$$x^0(t) = \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) (S_1(k, 0) + S_2(k, 0)). \quad (10)$$

Let $\|x\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \gamma$ and

$$\mathbf{C6} \quad \left\| \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \psi \text{ for all } t. \quad (187)$$

If

$$\|x_0\|_{\mathcal{X}} \psi + \kappa \gamma \leq \gamma, \quad (11)$$

then the nonlinear difference equation (4) has a unique discrete almost automorphic solution in W_γ .

Proof. Consider the operator H which is defined in (6). In the proof of Theorem 2, it is already showed that H is a contraction when the condition **C5** holds. Thus, we have to prove that H maps W_γ into W_γ to conclude the proof. We suppose that $x \in W_\gamma$, and the condition (11) holds. Then, we obtain

$$\begin{aligned} & \|(Hx)(t) - x^0(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \\ &\leq \|x_0\|_{\mathcal{X}} \left\| \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \quad 42 \\ &+ \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) (S_1(k, x(k)) - S_1(k, 0) + S_2(k, x(k)) - S_2(k, 0)) \right\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \end{aligned}$$

194

$$\begin{aligned} &\leq \|x_0\|_{\mathcal{X}} \psi + \sup_{t \in \mathbb{Z}} \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} (M_1 + M_2) \|x\|_{\mathcal{X}} \\ &\leq \|x_0\|_{\mathcal{X}} \psi + \kappa \gamma \leq \gamma. \end{aligned}$$

Thus $H(W_\gamma) \subset W_\gamma$. This implies that H has a unique fixed point due to contraction mapping principle, and consequentially, (4) has a unique almost automorphic solution in W_γ . \square

Theorem 4. Suppose that the conditions C1-C6 hold, and x^0 is as in (10). Consider the closed ball 198

$$W_\phi = W_\phi(x_0, \phi) = \left\{ x \in \mathcal{AA}(\mathbb{Z}, \mathcal{X}) : \|x - x^0\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \phi \right\}.$$

If 199

$$\|x_0\|_{\mathcal{X}} \psi + \kappa \phi + \|Hx^0 - x^0\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \phi, \quad (12)$$

then (4) has a unique discrete almost automorphic solution in W_ϕ . 200

Proof. Pick $x \in W_\phi$, and assume that (12) is satisfied. Then, 201

$$\begin{aligned} &\|(Hx)(t) - x^0(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \\ &\leq \|(Hx)(t) - (Hx^0)(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} + \|(Hx^0)(t) - x^0(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \\ &\leq \|x_0\|_{\mathcal{X}} \left\| \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \quad 17 \\ &\quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) (S_1(k, x(k)) - S_1(k, x^0(k)) + S_2(k, x(k)) - S_2(k, x^0(k))) \right\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \\ &\quad + \|(Hx^0)(t) - x^0(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \\ &\leq \|x_0\|_{\mathcal{X}} \psi + \sup_{t \in \mathbb{Z}} \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} (M_1 + M_2) \|x - x^0\|_{\mathcal{X}} + \|(Hx^0)(t) - x^0(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})}. \end{aligned}$$

This implies 202

$$\|(Hx)(t) - x^0(t)\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \|x_0\|_{\mathcal{X}} \psi + \kappa \phi + \|Hx^0 - x^0\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \phi,$$

and consequentially, $H(W_\phi) \subset W_\phi$. Since the mapping H is a contraction, we deduce that 203
(4) has a unique discrete almost automorphic solution in W_ϕ . \square 204

18

Example 1. Consider the nonlinear difference equation given by 205

$$\begin{aligned} x(t+1) &= \frac{1}{2} \operatorname{sgn}(\cos 2\pi t \Omega) x(t) \\ &\quad + \sum_{j=-\infty}^{t-1} \frac{1}{20} \left(\frac{1}{4} \left(\sin\left(\frac{\pi}{2} j\right) + \sin\left(\frac{\pi}{2} j\sqrt{2}\right) \right) \right)^{t-j} x(j) + \sum_{j=t}^{\infty} \frac{1}{20} \arctan(3^{t-j} x(j)), \quad (13) \end{aligned}$$

where Ω is an irrational number, and $x(0) = x_0$. A comparison between (4) and (13) results in 206

$$a(t) = \frac{1}{2} \operatorname{sgn}(\cos 2\pi t \Omega),$$

$$\Lambda_1(t, s, x) = \frac{1}{20} \left(\frac{1}{4} \left(\sin\left(\frac{\pi}{2}s\right) + \sin\left(\frac{\pi}{2}s\sqrt{2}\right) \right) \right)^{t-s} x,$$

and

$$\Lambda_2(t, s, x) = \frac{1}{20} \arctan(3^{t-s} x).$$

The function $a(\cdot)$ is discrete almost automorphic for any irrational number Ω (see [41]). Besides that, the function $f(t) = \sin\left(\frac{\pi}{2}t\right) + \sin\left(\frac{\pi}{2}t\sqrt{2}\right)$ is discrete almost periodic, and consequently discrete almost automorphic. Thus, the function Λ_1 is discrete bi-almost automorphic. Despite the fact that the function Λ_2 does not contain any almost automorphic arguments, it can be considered as a discrete bi-almost automorphic function since it is a convolution term. Next, we analyze Λ_1 and Λ_2 in details. We focus on

$$\|\Lambda_1(t, s, x_1) - \Lambda_1(t, s, x_2)\|_{\mathcal{X}} \leq \left| \frac{1}{20} \left(\frac{1}{4} \left(\sin\left(\frac{\pi}{2}s\right) + \sin\left(\frac{\pi}{2}s\sqrt{2}\right) \right) \right)^{t-s} \right| \|x_1 - x_2\|_{\mathcal{X}},$$

and set

$$m_1(t, s) = \left| \frac{1}{20} \left(\frac{1}{4} \left(\sin\left(\frac{\pi}{2}s\right) + \sin\left(\frac{\pi}{2}s\sqrt{2}\right) \right) \right)^{t-s} \right|.$$

Subsequently, we write

$$\sup_{t \in \mathbb{Z}} \sum_{j=-\infty}^{t-1} m_1(t, j) \stackrel{19}{\leq} \sup_{t \in \mathbb{Z}} \left\| \sum_{j=-\infty}^{t-1} \frac{1}{20} \left(\frac{1}{4} \left(\sin\left(\frac{\pi}{2}s\right) + \sin\left(\frac{\pi}{2}s\sqrt{2}\right) \right) \right)^{t-j} \right\|_{\mathcal{X}}$$

and obtain the constant $M_1 = \frac{1}{20}$. Similarly, we consider

$$\|\Lambda_2(t, s, x_1) - \Lambda_2(t, s, x_2)\|_{\mathcal{X}} \leq \frac{1}{20} 3^{t-s} \|x_1 - x_2\|_{\mathcal{X}},$$

and get $m_2(t, s) = \frac{1}{20} 3^{t-s}$. Accordingly, we have the constant $M_2 = \frac{3}{40}$. Thus, the conditions **C1-C3** are satisfied. Furthermore, the condition **C5** holds since

$$\sup_{t \in \mathbb{Z}} \sum_{k=0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} (M_1 + M_2) = \sup_{t \in \mathbb{Z}} \sum_{k=0}^{t-1} \frac{1}{8} \left\| \prod_{s=k+1}^{t-1} \frac{1}{2} \operatorname{sgn}(\cos 2\pi s \Omega) \right\|_{\mathcal{X}} \leq \frac{1}{16}.$$

Then, Theorem 2 implies that the nonlinear difference equation (13) has a unique discrete almost automorphic solution whenever the technical condition **C4** holds.

Furthermore, it is obvious that

$$\left\| \prod_{s=0}^{t-1} \frac{1}{2} \operatorname{sgn}(\cos 2\pi s \Omega) \right\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq 1.$$

If we concentrate on the Theorem 3, then we obtain the existence of unique discrete almost automorphic solution of (13) in the set

$$W_{\gamma} = \left\{ x \in \mathcal{AA}(\mathbb{Z}, \mathcal{X}) : \|x - x^0\|_{\mathcal{AA}(\mathbb{Z}, \mathcal{X})} \leq \gamma \right\}$$

for $\frac{16}{15} \|x_0\|_{\mathcal{X}} \leq \gamma$ by tacitly assuming that the condition **C4** holds.

3.2. Bohr-Neugebauer Criterion

In this part of the manuscript, we focus on the connection between the existence of discrete almost automorphic solutions and bounded solutions of nonlinear difference equations with almost automorphic arguments. Since this result is originated as the

53

Bohr-Neugebauer theorem, the next result can be regarded as a discrete variant of Bohr-Neugebauer theorem for a particular class of nonlinear difference equations.

27

Theorem 5. Suppose that the conditions **C1-C5** are satisfied. Then, a bounded solution of nonlinear abstract difference equation is discrete almost automorphic if and only if it has a relatively compact range.

Proof. **Necessity:** Suppose that $x(\cdot)$ is an almost automorphic solution of (4). This directly implies that its range \mathcal{R} is relatively compact.

Sufficiency: Assume that **C1-C5** hold, and $x(\cdot)$ is a bounded solution of (4) with a relatively compact range \mathcal{R} , that is \mathcal{R} is compact. By **C1** and **C2**, for any arbitrary integer sequence $\{v_n''\}$, there exists a subsequence $\{v_n'\}$ of $\{v_n''\}$ such that the following limits hold:

$$\lim_{n \rightarrow \infty} a(t + v_n') = \bar{a}(t), \quad \lim_{n \rightarrow \infty} \bar{a}(t - v_n') = a(t),$$

and

11

$$\lim_{n \rightarrow \infty} \Lambda_{1,2}(t + v_n', s + v_n', x) = \bar{\Lambda}_{1,2}(t, s, x), \quad \lim_{n \rightarrow \infty} \bar{\Lambda}_{1,2}(t - v_n', s - v_n', x) = \Lambda_{1,2}(t, s, x).$$

Next, it is clear that $x(t + v_n')$ is a sequence in $\bar{\mathcal{R}}$, and by sequential compactness there exists a subsequence $\{v_n\}$ of $\{v_n'\}$ so that $x(t + v_n) \rightarrow \bar{x}(t)$ as $n \rightarrow \infty$. For the sequel, define

$$\xi(t) := x(t_0) \left(\prod_{s=t_0}^{t-1} \bar{a}(s) \right) + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s) \right) (\bar{S}_1(k, \bar{x}(k)) + \bar{S}_2(k, \bar{x}(k))), \quad (14)$$

where

$$\bar{S}_1(k, \bar{x}(k)) = \sum_{j=-\infty}^k \bar{\Lambda}_1(k, j, \bar{x}(j)), \quad 34$$

and

$$\bar{S}_2(k, \bar{x}(k)) = \sum_{j=k+1}^{\infty} \bar{\Lambda}_2(k, j, \bar{x}(j)).$$

We have

$$\begin{aligned} & \|x(t + v_n) - \xi(t)\|_{\mathcal{X}} \\ &= \left\| x(t_0 + v_n) \prod_{s=t_0+v_n}^{t+v_n-1} a(s) + \sum_{k=t_0+v_n}^{t+v_n-1} \left(\prod_{s=k+1}^{t+v_n-1} a(s) \right) (S_1(k, x(k)) + S_2(k, x(k))) \right. \\ &\quad \left. - x(t_0) \prod_{s=t_0}^{t-1} \bar{a}(s) + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s) \right) (\bar{S}_1(k, \bar{x}(k)) + \bar{S}_2(k, \bar{x}(k))) \right\|_{\mathcal{X}} \\ &\leq \left\| x(t_0 + v_n) \prod_{s=t_0}^{t-1} a(s + v_n) - x(t_0) \prod_{s=t_0}^{t-1} \bar{a}(s) \right\|_{\mathcal{X}} \\ &\quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s + v_n) \right) (S_1(k + v_n, x(k + v_n)) + S_2(k + v_n, x(k + v_n))) \right. \\ &\quad \left. - x(t_0) \left(\prod_{s=t_0}^{t-1} \bar{a}(s) \right) + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s) \right) (\bar{S}_1(k, \bar{x}(k)) + \bar{S}_2(k, \bar{x}(k))) \right\|_{\mathcal{X}} \\ &\leq \left\| x(t_0 + v_n) \prod_{s=t_0}^{t-1} a(s + v_n) - x(t_0) \prod_{s=t_0}^{t-1} \bar{a}(s) \right\|_{\mathcal{X}} \\ &\quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s + v_n) - \prod_{s=t_0}^{t-1} \bar{a}(s) \right) (S_1(k + v_n, x(k + v_n)) + S_2(k + v_n, x(k + v_n))) \right\|_{\mathcal{X}} \end{aligned}$$

$$\begin{aligned}
& + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=t_0}^{t-1} \bar{a}(s) \right) (S_1(k+v_n, \bar{x}(k+v_n)) + S_2(k+v_n, x(k+v_n)) \right. \\
& \quad \left. - \bar{S}_1(k, \bar{x}(k)) - \bar{S}_2(k, \bar{x}(k))) \right\|_{\mathcal{X}} \\
& \leq \left\| x(t_0+v_n) \prod_{s=t_0}^{t-1} a(s+v_n) - x(t_0) \prod_{s=t_0}^{t-1} \bar{a}(s) \right\|_{\mathcal{X}} \\
& \quad + \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s+v_n) - \prod_{s=t_0}^{t-1} \bar{a}(s) \right\|_{\mathcal{X}} \|S_1(k+v_n, x(k+v_n)) + S_2(k+v_n, x(k+v_n))\|_{\mathcal{X}} \\
& \quad + \sum_{k=t_0}^{t-1} \left\| \prod_{s=t_0}^{t-1} \bar{a}(s) \right\| \left(\|S_1(k+v_n, x(k+v_n)) - \bar{S}_1(k, \bar{x}(k))\|_{\mathcal{X}} \right. \\
& \quad \left. + \|S_2(k+v_n, x(k+v_n)) - \bar{S}_2(k, \bar{x}(k))\|_{\mathcal{X}} \right).
\end{aligned}$$

In the light of Lebesgue convergence theorem, we get $\|x(t+v_n) - \zeta(t)\|_{\mathcal{X}} \rightarrow 0$ as 245
 $n \rightarrow \infty$. So, $\bar{x}(t) = \zeta(t)$, and \bar{x} satisfies (14). 246

Now, it remains to show that $\lim_{n \rightarrow \infty} \bar{x}(t-v_n) = \bar{x}(t)$ for each $t \in \mathbb{Z}$. We focus on 247

$$\begin{aligned}
& \|\bar{x}(t-v_n) - \bar{x}(t)\|_{\mathcal{X}} \\
& \leq \left\| x(t_0-v_n) \prod_{s=t_0-v_n}^{t-v_n-1} \bar{a}(s) - x(t_0) \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{X}} \\
& \quad + \left\| \sum_{k=t_0-v_n}^{t-v_n-1} \left(\prod_{s=k+1}^{t-v_n-1} \bar{a}(s) \right) (\bar{S}_1(k, \bar{x}(k)) + \bar{S}_2(k, \bar{x}(k))) \right. \\
& \quad \left. + \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) (S_1(k, x(k)) + S_2(k, x(k))) \right\|_{\mathcal{X}} \\
& = \left\| x(t_0-v_n) \prod_{s=t_0-v_n}^{t-v_n-1} \bar{a}(s) - x(t_0) \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{X}} \\
& \quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s-v_n) \right) \left(\sum_{j=-\infty}^k \bar{\Lambda}_1(k-v_n, j-v_n, \bar{x}(j-v_n)) \right. \right. \\
& \quad \left. \left. + \sum_{j=k+1}^{\infty} \bar{\Lambda}_2(k-v_n, j-v_n, \bar{x}(j-v_n)) \right) - \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) \left(\sum_{j=-\infty}^k \Lambda_1(k, j, x(j)) \right. \right. \\
& \quad \left. \left. + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, x(j)) \right) \right\|_{\mathcal{X}} \\
& \leq \left\| x(t_0-v_n) \prod_{s=t_0}^{t-1} \bar{a}(s-v_n) - x(t_0) \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{X}} \\
& \quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s) \right) \left(\sum_{j=-\infty}^k \bar{\Lambda}_1(k-v_n, j-v_n, \bar{x}(j-v_n)) \right. \right. \\
& \quad \left. \left. + \sum_{j=k+1}^{\infty} \bar{\Lambda}_2(k-v_n, j-v_n, \bar{x}(j-v_n)) - \sum_{j=-\infty}^k \Lambda_1(k, j, \bar{x}(j-v_n)) - \sum_{j=k+1}^{\infty} \Lambda_2(k, j, \bar{x}(j-v_n)) \right) \right\|_{\mathcal{X}} \\
& \quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} \bar{a}(s-v_n) - \prod_{s=k+1}^{t-1} a(s) \right) \left(\sum_{j=-\infty}^k \Lambda_1(k, j, \bar{x}(j-v_n)) + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, \bar{x}(j-v_n)) \right) \right\|_{\mathcal{X}} \\
& \quad + \left\| \sum_{k=t_0}^{t-1} \left(\prod_{s=k+1}^{t-1} a(s) \right) \left(\sum_{j=-\infty}^k (\Lambda_1(k, j, \bar{x}(j-v_n)) - \Lambda_1(k, j, x(j))) \right. \right. \\
& \quad \left. \left. + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, \bar{x}(j-v_n)) - \Lambda_2(k, j, x(j)) \right) \right\|_{\mathcal{X}}
\end{aligned}$$

$$+ \sum_{j=k+1}^{\infty} (\Lambda_2(\bar{k}, j, \bar{x}(j - v_n)) - \Lambda_2(k, j, x(j))) \Big) \Big\|_{\mathcal{X}} \\ \leq \left\| x(t_0 - v_n) \prod_{s=t_0}^{t-1} \bar{a}(s - v_n) - x(t_0) \prod_{s=t_0}^{t-1} a(s) \right\|_{\mathcal{X}} \quad (15)$$

$$+ \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} \bar{a}(s - v_n) \right\|_{\mathcal{X}} \left(\sum_{j=-\infty}^k \|\bar{\Lambda}_1(k - v_n, j - v_n, \bar{x}(j - v_n)) - \Lambda_1(k, j, \bar{x}(j - v_n))\|_{\mathcal{X}} \right. \quad (16)$$

$$+ \sum_{j=k+1}^{\infty} \|\bar{\Lambda}_2(k - v_n, j - v_n, \bar{x}(j - v_n)) - \Lambda_2(k, j, \bar{x}(j - v_n))\|_{\mathcal{X}} \quad (17)$$

$$+ \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} \bar{a}(s - v_n) - \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} \left\| \sum_{j=-\infty}^k \Lambda_1(k, j, \bar{x}(j - v_n)) + \sum_{j=k+1}^{\infty} \Lambda_2(k, j, \bar{x}(j - v_n)) \right\|_{\mathcal{X}} \quad (18)$$

$$+ \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} \bar{a}(s - v_n) \right\|_{\mathcal{X}} \left(\sum_{j=-\infty}^k \|\Lambda_1(k, j, \bar{x}(j - v_n)) - \Lambda_1(k, j, x(j))\|_{\mathcal{X}} \right. \quad (19)$$

$$+ \sum_{j=k+1}^{\infty} \|\Lambda_2(k, j, \bar{x}(j - v_n)) - \Lambda_2(k, j, x(j))\|_{\mathcal{X}} \Big). \quad (20)$$

The expressions in (15-18) converge to 0 as $n \rightarrow \infty$. On the other hand, from (19-20) we get 249

$$\sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} \\ \times \left(\sum_{j=-\infty}^k \|\Lambda_1(k, j, \bar{x}(j - v_n)) - \Lambda_1(k, j, x(j))\|_{\mathcal{X}} + \sum_{j=k+1}^{\infty} \|\Lambda_2(k, j, \bar{x}(j - v_n)) - \Lambda_2(k, j, x(j))\|_{\mathcal{X}} \right) \quad (24) \\ \leq \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} \left(\sum_{j=-\infty}^k m_1(k, j) \|\bar{x}(j - v_n) - x(j)\|_{\mathcal{X}} + \sum_{j=k+1}^{\infty} m_2(k, j) \|\bar{x}(j - v_n) - x(j)\|_{\mathcal{X}} \right), \quad (29)$$

where we employed C3. Since x is bounded, $\|\bar{x}(j - v_n) - x(j)\|_{\mathcal{X}}$ forms a bounded sequence, and consequently, there exists a subsequence $\{v_p\}$ of $\{v_n\}$ so that

$$\|\bar{x}(t - v_p) - x(t)\|_{\mathcal{X}} \rightarrow \theta(t)$$

as $p \rightarrow \infty$. This implies the inequality 250

$$\theta(t) \leq \sum_{k=t_0}^{t-1} \left\| \prod_{s=k+1}^{t-1} a(s) \right\|_{\mathcal{X}} \left(\sum_{j=-\infty}^k m_1(k, j) \theta(j) + \sum_{j=k+1}^{\infty} m_2(k, j) \theta(j) \right),$$

and this results in $\theta(t) = 0$ due to C5. Therefore, $x(\cdot)$ is a discrete almost automorphic solution of (4). The proof is complete. \square 251
252

Remark 2. As a direct consequence of Theorem 5, one may easily conclude that any bounded solution of the nonlinear difference equation (13) given in Example 1 is discrete almost automorphic. 253
254

4. Conclusions

This study focuses on certain kind of nonlinear difference equations, and provides an elaborative analysis on the existence of discrete almost automorphic solutions under sufficient conditions by fixed point theory. Utilization of the contraction mapping principle 255
256
257
258

in the construction of the main results enables us to get the sufficient conditions regarding the existence and uniqueness of the solutions swiftly and elementarily. In addition to main outcomes regarding existence and uniqueness of almost automorphic solutions, the present work provides a discrete Bohr-Neugebauer type theorem, and polishes the relationship between the existence of bounded and discrete almost automorphic solutions. To the best of our knowledge, our paper is the first one which proposes a Bohr-Neugebauer type result for difference equations. As a continuation of this study, it might be an interesting task to obtain a Bohr-Neugebauer type theorem for q -difference equations by inspiring from the manuscripts [20] and [42].

Author Contributions: Conceptualization, M. Kostić, H. C. Koyuncuoglu; methodology, M. Kostić, H. C. Koyuncuoglu and V. Federov; formal analysis, M. Kostić, H. C. Koyuncuoglu and V. Federov; investigation, M. Kostić, H. C. Koyuncuoglu and V. Federov; writing—original draft preparation, H. C. Koyuncuoglu; supervision, M. Kostić, V. Federov; project administration, M. Kostić

Funding: The work of Marko Kostić is partially funded by grant 451-03-68/2020/14/200156 of Ministry of Science and Technological Development, Republic of Serbia. The work of Vladimir E. Fedorov is funded by the grant of President of the Russian Federation to support leading scientific schools, project number NSh-2708.2022.1.1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Avron, J.E.; Simon, B. Almost periodic Hill's equation and the rings of Saturn. *Phys. Rev. Lett.* **1981**, *46*, 1166–1168. <https://doi.org/10.1103/PhysRevLett.46.1166>. 259
2. Ohta, M.; Koizumi, T. Digital simulation of a white noise model formed of uniformly almost periodic functions. *Information and Control* **1970**, *17*, 340–358. [https://doi.org/10.1016/S0019-9958\(70\)80033-X](https://doi.org/10.1016/S0019-9958(70)80033-X). 260
3. Ohta, M.; Hiromitsu, S. A trial of a new formation of the random noise model by use of arbitrary uniformly almost periodic functions. *Information and Control* **1977**, *33*, 227–252. [https://doi.org/10.1016/S0019-9958\(77\)80004-1](https://doi.org/10.1016/S0019-9958(77)80004-1). 261
4. Bohr, H. Zur theorie der fastperiodischen funktionen I. *Acta Math.* **1925**, *45*, 29–127. 262
5. Besicovitch, A.S. On generalized almost periodic functions. *Proc. London Math. Soc.* **1926**, *s2-25*, 495–512. 263
6. Bochner, S. Beitrage zur theorie der fastperiodischen funktionen. *Math. Annalen* **1926**, *96*, 119–147. 264
7. Bochner, S.; von Neumann, J. Almost periodic function in a group II. *Trans. Amer. Math. Soc.* **1935**, *37*, 21–50. 265
8. Stepanov, W. Über einige verallgemeinerungen der fastperiodischen funktionen. *Math. Ann.* **1925**, *45*, 473–498. <https://doi.org/10.1007/BF01206623>. 266
9. Bochner, S. Continuous mappings of almost automorphic and almost periodic functions. *Proc. Nat. Acad. Sci. U.S.A.* **1964**, *52*, 907–910. 267
10. Besicovitch, A.S. *Almost Periodic Functions*; Cambridge University Press: Cambridge, 1954. 268
11. Veech, W.A. On a theorem of Bochner. *Ann. Math.* **1967**, *86*, 117–137. <https://doi.org/10.2307/1970363>. 269
12. Bayliss, A. Almost Periodic Solutions to Difference Equations. Ph.D. Thesis, New York University, New York, USA, 1975. 270
13. Diagana, T. *Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces*; Springer, 2013. <https://doi.org/10.1007/978-3-319-00849-3>. 271
14. N'Guerekata, G.M. *Almost Automorphic and Almost Periodic Functions in Abstract Spaces*; Springer, 2001. <https://doi.org/10.1007/978-3-030-73718-4>. 272
15. Vesely, M. Constructions of Almost Periodic Sequences and Functions and Homogeneous Linear Difference and Differential Systems. Ph.D. Thesis, Masaryk University, 2011. 273
16. Adivar, M.; Koyuncuoglu, H.C. Almost automorphic solutions of discrete delayed neutral system. *J. Math. Anal. Appl.* **2016**, *435*, 532–550. <https://doi.org/10.1016/j.jmaa.2015.10.056>. 274
17. Adivar, M.; Koyuncuoglu, H.C.; Raffoul, Y.N. Almost automorphic solutions of delayed neutral dynamic systems on hybrid domains. *Appl. Anal. Discrete Math.* **2016**, *10*, 128–151. <https://doi.org/10.2298/AADM160402006A>. 275
18. Koyuncuoglu, H.C.; Adivar, M. Almost periodic solutions of Volterra difference systems. *Dem. Math.* **2017**, *50*, 320–329. <https://doi.org/10.1515/dema-2017-0030>. 276
19. Araya, D.; Castro, R.; Lizama, C. Almost automorphic solutions of difference equations. *Adv. Difference Equ.* **2009**, *2009*, 1–69. <https://doi.org/10.1155/2009/591380>. 277
20. Bohner, M.; Mesquita, J.G. Almost periodic functions in quantum calculus. *Electron. J. Differential Equation* **2018**, *2018*, 1–11. 278
21. Chávez, A.; Pinto, M.; Zavaleta, U. On almost automorphic type solutions of abstract integral equations, a Bohr-Neugebauer type property and some applications. *J. Math. Anal. Appl.* **2021**, *494*. <https://doi.org/10.1016/j.jmaa.2020.124395>. 279
22. Castillo, S.; Pinto, M. Dichotomy and almost automorphic solution of difference system. *Electron. J. Qual. Theory Differ. Equ.* **2013**, *32*, 1–17. <https://doi.org/10.14232/ejqtde.2013.1.32>. 280

23. Diagana, T.; Elaydi, S.; Yakubu, A. Population models in almost periodic environments. *J. Differ. Equat. Appl.* **2007**, *13*, 239–260. <https://doi.org/10.1080/10236190601079035>. 314
315

24. Kostić, M.; Koyuncuoglu, H.C. Multi-dimensional almost automorphic type sequences and applications. *Georgian Math. J.*, in press. 316
317

25. Lizama, C.; Mesquita, J.G. Almost automorphic solutions of dynamic equations on time scales. *J. Funct. Anal.* **2013**, *265*, 2267–2311. 318
319
<https://doi.org/10.1016/j.jfa.2013.06.013>.

26. Lizama, C.; Mesquita, J.G. Almost automorphic solutions of non-autonomous difference equations. *J. Math. Anal. Appl.* **2013**, *407*, 339–349. <https://doi.org/10.1016/j.jmaa.2013.05.032>. 320
321

27. Mishra, I.; Bahuguna, D.; Abbas, S. Existence of almost automorphic solutions of neutral functional differential equation. *Nonlinear Dyn. Syst. Theory* **2011**, *11*, 165–172. 322
323

28. Massera, J.L. The existence of periodic solutions of systems of differential equations. *Duke Math. J.* **1950**, *17*, 457–475. 324
325
<https://doi.org/10.1215/S0012-7094-50-01741-8>.

29. Bohr, H.; Neugebauer, O. Über lineare differentialgleichungen mit konstanten koeffizienten und fastperiodischer rechter seite. *Nachr. Ges. Wiss. Götts. Math.-Phys. Kl.* **1926**, 1926, 8–22. 326
327

30. Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. *Annales Scientifiques de l'École Normale Supérieure* **1883**, *12*, 47–88. 328
329

31. Favard, J. Sur les équations différentielles linéaires à coefficients presque-périodiques. *Acta Math.* **1928**, *51*, 31–81. 330

32. Benkhalti, R.; Es-sebbar, B.; Ezzinbi, K. On a Bohr-Neugebauer property for some almost automorphic abstract delay equations. *J. Integral Equ. Appl.* **2018**, *30*, 313–345. <https://doi.org/10.1216/JIE-2018-30-3-313>. 331
332

33. Dads, E.A.; Es-sebbar, B.; Lhachimi, L. On Massera and Bohr-Neugebauer type theorems for some almost automorphic differential equations. *J. Math. Anal. Appl.* **2023**, *518*. <https://doi.org/10.1016/j.jmaa.2022.126761>. 333
334

34. Drissi, N.; Es-sebbar, B. A Bohr-Neugebauer property for abstract almost periodic evolution equations in Banach spaces: Application to a size-structured population model. *J. Math. Anal. Appl.* **2017**, *456*, 412–428. <https://doi.org/10.1016/j.jmaa.2017.07.010>. 335
336
337

35. Es-sebbar, B.; Ezzinbi, K.; N'Guérékata, G.M. Bohr-Neugebauer property for almost automorphic partial functional differential equations. *Appl. Anal.* **2019**, *98*, 381–407. <https://doi.org/10.1080/00036811.2017.1382686>. 338
339

36. Liu, J.; N'Guérékata, G.M.; Van Minh, N. A Massera type theorem for almost automorphic solutions of differential equations. *J. Math. Anal. Appl.* **2004**, *299*, 587–599. <https://doi.org/10.1016/j.jmaa.2004.05.046>. 340
341

37. Liu, Q.; Van Minh, N.; N'Guérékata, G.M.; Yuan, R. Massera type theorems for abstract functional differential equations. *Funkcial. Ekvac.* **2008**, *51*, 329–350. <https://doi.org/10.1619/fesi.51.329>. 342
343

38. Murakami, S.; Hino, Y.; Van Minh, N. Massera's theorem for almost periodic solutions of functional differential equations. *J. Math. Soc. Japan* **2004**, *56*, 247–268. <https://doi.org/10.2969/jmsj/1191418705>. 344
345

39. Radova, L. Theorems of Bohr-Neugebauer-type for almost-periodic differential equations. *Math. Slovaca* **2004**, *54*, 191–207. 346

40. Van Minh, N.; Minh, H.B. A Massera-type criterion for almost periodic solutions of higher-order delay or advance abstract functional differential equations. *Abstr. Appl. Anal.* **2004**, *2004*, 881–896. <https://doi.org/10.1155/S1085337504406046>. 347
348

41. Veech, W.A. Almost automorphic functions on groups. *Amer. J. Math.* **1965**, *87*, 719–751. <https://doi.org/10.2307/2373071>. 349

42. Li, Y. Almost automorphic functions on the quantum time scale and applications. *Discrete Dyn. Nat. Soc.* **2017**, *2017*. <https://doi.org/10.1155/2017/1526478>. 350
351

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 352
353
354

mathematics_aa_difference_eqn (4).pdf

ORIGINALITY REPORT

23%

SIMILARITY INDEX

PRIMARY SOURCES

- 1 core.ac.uk
Internet 105 words — 2%
- 2 www.freepatentsonline.com
Internet 100 words — 2%
- 3 dokumen.pub
Internet 74 words — 1%
- 4 Murat Adıvar, Halis Can Koyuncuoğlu. "Almost automorphic solutions of discrete delayed neutral system", *Journal of Mathematical Analysis and Applications*, 2016
Crossref 59 words — 1%
- 5 Linas Stripinis, Remigijus Paulavičius. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions", *Mathematics*, 2023
Crossref 56 words — 1%
- 6 Xu, L., Q. Wang, W. Li, and Y. Hou. "Stability analysis and stabilisation of full-envelope networked flight control systems: switched system approach", *IET Control Theory and Applications*, 2012.
Crossref 55 words — 1%
- 7 repository.derby.ac.uk
Internet 47 words — 1%

8 Halis Can Koyuncuoglu, Murat Adivar. "Almost periodic solutions of Volterra difference systems", *Demonstratio Mathematica*, 2017
Crossref 45 words — 1 %

9 coek.info Internet 45 words — 1 %

10 netlizama.usach.cl Internet 45 words — 1 %

11 export.arxiv.org Internet 42 words — 1 %

12 cyberleninka.org Internet 32 words — 1 %

13 link.springer.com Internet 32 words — 1 %

14 www.enama.org Internet 32 words — 1 %

15 ABBAS, Syed, and Yonghui XIA. "Existence and attractivity of k-almost automorphic sequence solution of a model of cellular neural networks with delay", *Acta Mathematica Scientia*, 2013.
Crossref 27 words — < 1 %

16 Halis Can Koyuncuoğlu, Nezihe Turhan. "A generalized Massera theorem based on affine periodicity", *Journal of Mathematical Analysis and Applications*, 2021
Crossref 23 words — < 1 %

17 Qian Ye. "Mean square exponential and robust stability of stochastic discrete-time genetic 23 words — < 1 %

regulatory networks with uncertainties", Cognitive
Neurodynamics, 02/13/2010

Crossref

18 www.scielo.cl Internet 23 words – < 1 %

19 Ingolf Müller. "Clapping in delaminated sandwich-beams due to forced oscillations", Computational Mechanics, 2005 22 words – < 1 %

20 ejde.math.txstate.edu Internet 22 words – < 1 %

21 Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 2013. 21 words – < 1 %

22 mdpi-res.com Internet 21 words – < 1 %

23 Claudio Cuevas. "Almost automorphic solutions to integral equations on the line", Semigroup Forum, 05/22/2009 20 words – < 1 %

24 repozitorij.ung.si Internet 20 words – < 1 %

25 www.mdpi.com Internet 20 words – < 1 %

26 www.researchgate.net Internet 20 words – < 1 %

27 Alan Chávez, Manuel Pinto, Ulises Zavaleta. "On almost automorphic type solutions of abstract 19 words – < 1 %

integral equations, a Bohr-Neugebauer type property and some applications", Journal of Mathematical Analysis and Applications, 2020

[Crossref](#)

28 Chaouki Aouiti, Farah Dridi. "Piecewise asymptotically almost automorphic solutions for impulsive non-autonomous high-order Hopfield neural networks with mixed delays", Neural Computing and Applications, 2018

[Crossref](#)

29 Ismail Kucuk, Kenan Yildirim. "Necessary and Sufficient Conditions of Optimality for a Damped Hyperbolic Equation in One-Space Dimension", Abstract and Applied Analysis, 2014

[Crossref](#)

30 phoenix.inf.upol.cz 15 words – < 1 %

Internet

31 www.aidelphi.com 15 words – < 1 %

Internet

32 xuebao.jlu.edu.cn 14 words – < 1 %

Internet

33 Chen, Guoping, and Qingliang Zhang. "Dynamical Behavior of Impulsive Hopfield Neural Networks with Infinite Distributed Delays", 2010 Second WRI Global Congress on Intelligent Systems, 2010.

[Crossref](#)

34 Juan Pablo Vielma, George L. Nemhauser. "Modeling disjunctive constraints with a logarithmic number of binary variables and constraints", Mathematical Programming, 2009

[Crossref](#)

35 Syed Abbas. "Existence and Attractivity of k-Pseudo Almost Automorphic Sequence Solution of a Model of Bidirectional Neural Networks", *Acta Applicandae Mathematicae*, 2011
Crossref 13 words – < 1 %

36 dspace.bsu.edu.ru 13 words – < 1 %
Internet

37 smartech.gatech.edu 13 words – < 1 %
Internet

38 Ding, H.S.. "Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions", *Journal of Mathematical Analysis and Applications*, 20080201
Crossref 12 words – < 1 %

39 James Liu ¶, Gaston M. N'Guérékata, Nguyen Van Minh §. "Almost automorphic solutions of second order evolution equations", *Applicable Analysis*, 2005
Crossref 12 words – < 1 %

40 Lenser A. Aghaloyan, Lusine G. Ghulghazaryan, Julius Kaplunov, Danila Prikazchikov. "Degenerated Boundary Layers and Long-Wave Low-Frequency Motion in High-Contrast Elastic Laminates", *Mathematics*, 2023
Crossref 12 words – < 1 %

41 Raffoul, Y.N.. "Stability and periodicity in discrete delay equations", *Journal of Mathematical Analysis and Applications*, 20061215
Crossref 12 words – < 1 %

42 Shun Jiang, Xiangsheng Zhang, Binjie Gu, Feng Pan. "Reliable Fault Detection for Nonlinear Networked Systems with Imperfect Measurements: A Multi- 12 words – < 1 %

Packet Transmission Mechanism", Circuits, Systems, and Signal Processing, 2013

Crossref

43 cpostjournal.org 11 words – < 1 %
Internet

44 hdl.handle.net 11 words – < 1 %
Internet

45 mmu2.uctm.edu 11 words – < 1 %
Internet

46 real-j.mtak.hu 11 words – < 1 %
Internet

47 s3.amazonaws.com 11 words – < 1 %
Internet

48 ummto.dz 11 words – < 1 %
Internet

49 Alber, Ya.I.. "On the stability of iterative approximations to fixed points of nonexpansive mappings", Journal of Mathematical Analysis and Applications, 20070415 10 words – < 1 %
Crossref

50 Almost Automorphic and Almost Periodic Functions in Abstract Spaces, 2001. 10 words – < 1 %
Crossref

51 E. Ait Dads, B. Es-sebbar, L. Lhachimi. "On Massera and Bohr-Neugebauer type theorems for some almost automorphic differential equations", Journal of Mathematical Analysis and Applications, 2023 10 words – < 1 %
Crossref

52 Jishad Kumar. "Thermodynamics of a quantum dissipative charged magneto-oscillator", *Annalen der Physik*, 2014 10 words – < 1 %
Crossref

53 ebin.pub 10 words – < 1 %
Internet

54 moam.info 10 words – < 1 %
Internet

55 vdoc.pub 10 words – < 1 %
Internet

56 www.ams.org 10 words – < 1 %
Internet

57 www.biorxiv.org 10 words – < 1 %
Internet

58 www.jaac-online.com 10 words – < 1 %
Internet

EXCLUDE QUOTES ON
EXCLUDE BIBLIOGRAPHY ON

EXCLUDE SOURCES OFF
EXCLUDE MATCHES < 10 WORDS