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Abstract: Drought is a powerful natural hazard that has significant effects on ecosystems amid the
constant threats posed by climate change. This study investigates agricultural drought in a semi-
arid Mediterranean basin through the interconnections of four indices: precipitation (meteorological
reanalysis), vegetation development, thermal stress, and soil water deficit (remote sensing
observations). The study focuses on the determination of agricultural drought periods. Firstly, the
temporal connections between the various indices at different spatial scales and in different parts of
the basin are investigated. Thereafter, a modified run-theory approach based on normality and
dryness thresholds is applied. The Pearson correlations at different spatial scales showed a medium
to low level of agreement between the indices, which was explained by the geographical
heterogeneity and the climatic variability between the agrosystems within the basin. It is also shown
that the cascade of impacts expected from lower precipitations is revealed by the cross-correlation
analysis. The connection between precipitation deficit and vegetation remains significant for at least
one month for most pairs of indices, especially during drought events, suggesting that agricultural
drought spells can be connected in time through the three or four selected indices. Short-, mid-, and
long-term impacts of precipitation deficiencies on soil moisture, vegetation, and temperature were
revealed. As expected, the more instantaneous variables of soil moisture and surface temperature
showed no lag with precipitation. Vegetation anomalies at the monthly time step showed a two-
month lag with a preceding effect of vegetation to precipitation. Finally, the determination of
drought events and stages with varying thresholds on the run-theory showed the large variability
of duration, magnitude, and intensity according to the choice of both normality and dryness
thresholds.

Keywords: drought indices; remote sensing; run theory; drought spells; Tensift basin

1. Introduction

Among the multitude of definitions of drought, WMO has defined it as « a slow onset
phenomenon caused by a lack of rainfall ». The peril of drought lies in its impact on the different
parts of the hydrological cycle of a basin, which has given rise to a typology of droughts
(meteorological, agricultural, hydrological). A deficit of precipitation might trigger a meteorological
drought which subsequently affects soil moisture and vegetation generating an agricultural drought
[1-3].

The soil-vegetation-atmosphere continuum is well known, and the effects of a prolonged deficit
of water in the root zone are well identified according to the different crop stages (tillering, flowering,
etc.). In a simplified manner, a deficit in water supply during plant development will produce a

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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deficit in the root zone soil water content. At a threshold known as the readily available water, the
plant is no longer able to work normally and reduces its functioning, resulting in a reduction in
transpiration flow. In certain critical phases, water stress can be particularly damaging to crop
production. A too-long period of water stress can eventually lead to plant death. Integrated modeling
of the full soil-vegetation-atmosphere and hydrological system is designed to respond to the complex
cascade of impact due to a lack of precipitation [4]. However, what is well-known at the plant level
is difficult to transfer to a large spatial scale. Indeed, differences in soils, crops, waterways, human
management and, quite simply, climate make it difficult to assess the complex spatio-temporal
connections at the numerous temporal scales of hydrological processes. Drought is a blurred concept
that needs to be understood macroscopically [5]. A data-driven approach is therefore preferable to a
modeling-based approach. Remote sensing has proved to be a good alternative for providing
synoptic observation of some of the most important flows and storage in the water cycle. Figure 1
provides a simplified view of how the natural water cycle view is shrunk using a data-driven
approach based on remote sensing observations. Studying such links helps anticipate drought effects
and timely forecast drought.
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Figure 1. From the natural water cycle to a data-driven approach to drought. These pictures must be
read from top to bottom and left to right. The model-driven approach focuses on the most important
fluxes of water to the system. In the continental system, the incoming fluxes are liquid precipitations
({PREC) and solid precipitations (| SNOW). Outgoing flux is mainly due to evapotranspiration (1ET).
Lateral fluxes are only represented with runoff (-RUNOFF). Groundwater fluxes are not represented
here. The main storages are shown for the snowpack (SSNOWPACK), the storages in lakes (SLAKE),
groundwater (3GW), and soil water storage (3SOIL). The complex systems of vegetation and urban
areas are shown as state values CROPS and CITIES. The black arrows show the main relations
between fluxes, storages, and complex systems. The third picture shows a representation of the data-
driven approach, in which the mechanistic inter-relations are lost and replaced by statistical relations
between indices. The fourth picture shows some of the available sources of remote sensing (RS)
platforms that can provide observations. The fifth picture shows some of the main indices provided
by RS. (https://commons.wikimedia.org/wiki/File:F3_hydrological_cycle.png).

Several indices have been developed for drought assessment and monitoring. According to its
historical distribution, a drought index typically quantifies a moisture variable's divergence from the
local normal condition [6]. Drought indices are calculated from climate or vegetation variables that
characterize each type of drought. Meteorological drought indices are often based on precipitation
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time series. The most used one is the Standardized Precipitation Index (SPI) [7] which can be
calculated at different time scales. The Standardized Precipitation Evapotranspiration Index (SPEI)
proposed by [8,9] provides a way to analyze the difference between incoming water (precipitation)
and outgoing water (evapotranspiration). Due to the small inter-annual variation of ET, SPEI is more
adapted for climate change studies. Agricultural drought indices can be inferred from earth
observation of vegetation cover, land temperature changes, or soil moisture data. The Normalized
Difference Vegetation Index (NDVI) provides information about vegetation health and is provided
by several satellite missions, including MODIS, AVHRR, SPOT-VGT, etc. NDVI is widely used for
agricultural drought monitoring [10]. Several missions have also monitored the surface temperature,
which is useful for assessing the crop water status. Kogan, (1990) proposed indices such as the
Temperature Condition Index (TCI) and Vegetation Condition Index (VCI), which have been widely
used as drought detection tools [12]. Soil moisture is a key variable that relates precipitation to
vegetation [13]. Passive and active microwave missions such as ASCAT, and SMOS, can assess soil
moisture. This type of data has been used to propose soil moisture anomaly indices [14,15].

Due to its multi-scalar and multi-topic aspect, the identification of drought events is not
straightforward. Yevjevich, (1967) proposed the use of the run theory approach to identify drought
events and their characteristics from the time series of meteorological drought indices. For a time
series where the x-axis is used for the time and the y-axis is used for an index, an arbitrary parameter
x0 on the y-axis splits the time series into several parts. The values below this threshold are
considered ‘drought’. In several studies, the thresholds are arbitrarily defined through the empirical
percentile of occurrence [17-19]. Using the same approach, McKee et al., (1993) gives a slightly
different definition of drought: “A drought event is defined here as a period in which the SPI is
continuously negative and the SPI reaches a value of -1.0 or less. The drought begins when the SPI
first falls below zero and ends with the positive value of SPI following a value of -1.0 or less”. The
SPI value of -1 which is the x0 of Yevjevich, (1967) corresponds to a probability of occurrence of 15.9%.
Several studies also consider that a drought spell should only be considered as such if the index
remains below the threshold for a minimum amount of time, which is, for example, three months for
Mo, (2011) and two months for Spinoni et al., (2018). However, this condition is also related to the
time scale at which drought is assessed. A shorter time scale (1 to 3 months) allows the assessment of
faster types of droughts, like meteorological or agricultural, while a larger time scale (12 or 48
months) corresponds to slower types of droughts like hydrological drought. Larger time scales can
also be considered as a smoothed time series of anomalies. During a long period of drought, indices
may also exceed the drought threshold for a short time. When assessing hydrological drought, some
authors have proposed to pool together drought periods separated by those small interruptions
[18,22,23]. Drought events can also be identified through a multi-index approach. For example,
Spinoni et al., (2018) combine the SPI, SPEI, and RDI indices and determine that a drought occurs if
two or more indices fall below a certain threshold. The combination is used to class the condition
(normal/wet, drought, extreme drought, and dry). The drought begins after normal/wet or dry
months, the combined index depicts drought (or extreme drought) conditions for at least two
consecutive months. It's worth noting that with the rapid evolution of the global climate [24], and the
agriculture in the Tensift region [25], the use of past data to determine thresholds might be biased, in
particular concerning the determination of probability of return, and the so-called normal conditions.

Once drought events have been identified, they can be studied in temporal, spatial, and thematic
dimensions. A collection of simple metrics allows qualifying a drought event. The most common
characteristics are duration, severity, magnitude, and intensity. According to [26], the sum of
deviation below x0 qualifies the ‘severity’ of drought, and the ‘duration’ is the period between the
start and the end of the drought. The ‘intensity’ is the average magnitude, the magnitude divided by
duration. Also, note that [7] use the term ‘magnitude’, which is comparable to ‘severity’, but which
is the absolute sum of SPIs below a certain threshold. The magnitude is used also by [27] in France.
A drought event can be categorized. McKee et al., (1993) proposed to use a random set of thresholds
to categorize drought, retaining the terms ‘Mild’, ‘Moderate’, ‘Severe’, and ‘Extreme’. Svoboda et al.,
(2002) use ‘Abnormally Dry’, ‘Moderate’, ‘Severe’, ‘Extreme’, ‘Exceptional’. In both cases, ‘Mild” and
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‘Abnormally Dry’ are not considered drought. The fact that one of the categories is commonly
referred to as "severe" and that these categories are frequently referred to as "severity" or "intensity"
causes misunderstanding with the original meaning.

A drought can also be divided into different phases. Bonsal et al., (2011) have proposed to
separate drought into six phases according to the spatial extension. A drought begins when at least
10% of the studied area is under the threshold characterizing severe drought according to SPI or
PDSI. A drought enters its last stage (termination) when less than 10% of the area is under severe
drought and finally ends when 0% of the area is under severe drought. Bonsal et al., (2011) also
considered intermediate stages, which are growth (spread and deepening of drought), persistence
(period with widespread drought conditions), peak which is the period of maximum drought
extension and severity, the fifth stage before the termination is called retreat when there is a decrease
in the affected area with possible secondary peaks. In Parry et al., (2016), the onset and offset of
hydrological drought are determined cumulatively, when the percentage of observations is
anomalous compared with the long-term average. A special termination phase is identified. In the
CDI index [31], a combination of the anomalies of rainfall, soil moisture, and the fraction of Absorbed
Photosynthetically Active Radiation is used. The authors consider that the propagation of dry
anomaly from rainfall to vegetation can be considered by summing the classified anomalies so that
the result is not considered a severity class but rather a phase of the propagation of the drought that
could be used in an alert system.

There is an evident propagation of drought through the different compartments of the
atmosphere to the groundwater continuum [19]. However, cross-correlations studies have also
shown that propagation is complex to identify through indices or remote sensing observations [32],
especially for agricultural drought. The logical precedence of one index to the other is not always
observed, which may be due to the use of different input data (model, satellite observation) and
different spatial scales [31]. The correlations between drought indices in specific regions can be used
to examine the relationship between various types of droughts or to seek interactions and feedback
mechanisms between these drought types [33-37].

The objective of this work is to study agricultural droughts in the temporal and thematical
dimensions. The study is carried out in a semi-arid basin in Morocco with a diversity of topography,
crops, and irrigated areas. A collection of drought indices is derived from various earth observation
datasets of soil moisture, surface temperature, and vegetation index, and also precipitation from a
reanalysis dataset. The calculation covers a period of 40 years (1981-2021) for the SPI and SMCI
indices and a period of 20 years for the TCI and VCI. In order to understand the drought patterns
and mechanisms, the correlation and cross-correlation between the different indices are studied for
the last 20 years of the study period at various time scales (1, 3, 6, and 12 months) and spatial scales
(basin and pixel). Then, drought events are identified with the run-theory testing the usual x0 lower
threshold, and introducing a x1 “normality” upper bound. The classical characteristics of drought are
computed to analyze the impact of varying the lower and upper bounds. Finally, a specific drought
event is selected and the phases are computed and compared between the different indices. The cross-
correlations of this event are also compared with the general cross-correlations.

2. Materials and Methods

2.1. Study Area

Morocco, as a southern Mediterranean country, has been affected by the impacts of climate
change that have caused lower rainfall and higher temperatures [38-40]. The Tensift basin (Figure 2)
in central Morocco (31°- 32°30" N, 7°-10° W, surface of about 22 000 Km?) has an arid to semi-arid
Mediterranean climate (Koppen-Geiger Csa). Due to its geographical location, economic and
agricultural activity, and population growth, the basin is considered drought-prone. The topography
is characterized by a plain surrounded by the High Atlas Mountain range at the south and the Jbilet
range at the north. Which serves as a source of water for the surrounding regions. The Haouz plain
is crossed by a network of intermittent streams coming from the Atlas.
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Figure 2. The geographical location of the Tensift basin, types of land wuse [42]
(https://land.copernicus.eu/global/products/Ic), and estimated irrigated areas.

The plain and Piedmont concentrate most of the agricultural production. Dominant crops are
cereals (51% of irrigated areas), and olive trees (30% of irrigated areas), while the non-irrigated part
of the plain is cultivated with rainfed wheat [25,41].

2.2. Dataset

In this study, we used different data derived from several sensors.

ERA5Land

The ERA5Land reanalysis is derived from ERASD, the fifth generation of the ECMWF reanalysis. It
is produced using a 4D-Var scheme, with measurements from various observing systems included in
the atmospheric model [43]. Atmospheric meteorological and flux fields from ERAS5 are used to force
the HTESSEL land surface component (Cy45r1 version) of the Integrated Forecast System (IFS) to
generate ERA5Land. Data are available from 1950 to the present day over the entire globe. The grid and
temporal resolutions are 9 km and one hour respectively. For this study, we downloaded monthly
average ERA5Land precipitation data for the study period (1981-2021) over the Tensift basin in
Morocco.

ESA CCISM

The ESA CCI SM soil moisture data were selected because of its long time series (1978-2021).
The product comes in three configurations. We used the combined active-passive product version 7.1
(https://esa-soilmoisture-cci.org/). The active soil moisture dataset was produced by merging
microwave scatterometers (ERS-1/2 Scatterometer and Metop Advanced Scatterometers). The passive
one was generated from multi-channel microwave radiometers (SMMR, SSM/I, SMOS, AMSR-E,
TRMM, Windsat, SMAP, and AMSR2). The product has a daily temporal resolution and a spatial
sampling of 0.25°. The daily data were aggregated to provide monthly soil moisture values
corresponding to the monthly time scale of the satellite data described below.

MODIS Products

We used two products from the Moderate Resolution Imaging Spectroradiometer (MODIS), the
monthly Normalized difference vegetation index (MOD13A3), and the Land surface temperature
(LST) (MOD11A1) (https://Ilpdaac.usgs.gov/). The products have a spatial resolution of 1km. The
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daily LST products were aggregated to obtain the monthly time series by calculating the monthly
average.

As LST is inherently linked to Air Temperature (Ta), we also analyze the difference between Ta
and LST. This difference is commonly used in the assessment of evapotranspiration through the
energy budget (see for example [44]). Air temperature has been retrieved from the 2 meters Air
Temperature variable given by ERA5Land, and was averaged between two-time steps to obtain Ta
at the time of MODIS overpass.

Table 1. Summary of the products considered.

Spatial and

Product temporal Temporal P.erlod of Websites
. coverage interest
resolution
1950- 19812021 https://cds.climate.copernicus.eu/cdsapp#!/d
ERA5Land 9Km/1 M present ataset/reanalysis-era5-land-monthly-
means?tab=overview
https://www.esa-soilmoisture-cci.org/
ESA CCISM 25 Km/1 D 1978-2021 2001-2021 P (last access: 23 October 2022) &
Copernicus SWI 125Km/ID 20072021 20072021 0P/ land‘wpem““vl:i‘eu/ global/products/s
February
MODIS (NDVI) 1 Km/1M 2000- near- 2001-2021 https://lpdaac.usgs.gov/
present
February
MODIS (LST) 1Km/1D 2000- near-  2001-2021 https://lpdaac.usgs.gov/
present

2.3. Methods

2.3.1. Calculation of Drought Indices

For meteorological drought, the calculated index was SPI (Standardized Precipitation Index) at
1, 3, 6, and 12 months. For agricultural drought three indices are calculated; VCI (Vegetation
Condition Index), TCI (Temperature Condition Index), and SMCI (Soil Moisture Condition Index).

The calculation of the SPI requires a long time series with at least 30 consecutive years of monthly
precipitation data to be fitted using a given probability distribution function (log-normal, Gamma, or
log-logistic). We opted for the Gamma distribution which has been approved for its relevance in the
calculation of the SPI [34,45,46]. The next step is to determine the corresponding frequencies based
on the fitted distribution. The frequencies are then converted to the corresponding quantiles of the
standard normal distribution [7,47]. SP1 is calculated over the period 1981-2021 to describe temporal
variations in meteorological drought using ERA5Land precipitation component at 9km resolution
and at different time scales (1, 3, 6, and 12 months). The SPI calculation is done at different time scales
depending on the type of drought examined. Negative SPI values indicate dry periods and wet
periods are depicted by positive SPI values.

The VCI based on NDVI, reflects the condition of vegetation during a drought event. It has been
used and evaluated in several regions of the world [48-51]. VCI is a simple normalization of NDVI

that is intended to present anomalies over a period. It is obtained from the following equation:
NDVI, — NDVI,;,
VCI = -0.5 (1)
NDVI, .. — NDVI,...
The maximum and the minimum NDVI are computed for a specific month t, using remotely
sensed MODIS-NDVI data from 2001 to 2021.
The TCI was used to determine temperature-related plant stress. TCI is derived from land
surface temperature (LST) and was calculated using MODIS LST (MOD11A1) data. The condition

index was scaled from 0 to 1 for each month over the period 2001-2021. A second version of TCI was
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also computed by replacing LST with the difference between air temperature and surface
temperature (Ts-Ta) (TCI2). This difference has the advantage of taking into account the local
meteorological conditions. To do so, the air temperature was retrieved from ERA5Land at the time

of the MODIS overpass. The monthly version is obtained with the average of (Ts-Ta).
LSTyqx — LST,
TCl = [ sy~ 05 @)
The lack of soil moisture affects crop growth and yields and is therefore widely used to study
agricultural drought issues [13]. SMCI reflects the soil moisture conditions [15]. With the ESA CCI
product, SMCI (SWI) corresponds to the surface soil moisture, while for the Copernicus SWI product,

SMCI (SWI), corresponds to the root zone soil moisture.
smct = —Me = SMmin__ ¢ o 3)
SMmax - SMmin .

2.3.2. Correlation and Cross-Correlation between Indices

The direct relationship between SPI at different time scales and the VCI, TCI, and SMCI indices
were evaluated by the Pearson correlation coefficient (R). The used time scales of SPI are 1, 3, 6, and
12 months, which are specifically associated with agricultural drought conditions. A positive value
of Rindicates a variation of the variables in the same direction, and if they vary in different directions
the value of R will be negative. It was considered that R between 0.7 and 0.9 indicates a high
correlation, between 0.5 and 0.7 moderate correlation, between 0.3 and 0.5 low correlation, and less
than 0.3 an insignificant correlation.

In addition, a time-lagged correlation analysis (cross-correlation) was performed between the
indices at a monthly time scale to define the temporal lag between the agricultural and meteorological
droughts. The lagged correlation measures the degree of similarity between a time series and a shifted
version of another time series. The correlation peak is at 0 if the time series is synchronized at that
moment, if one of the variables leads or delays another the peak shifts to another time lag where we
find the best match between the time series.

A lagged correlation between two drought indices reveals their periodicity and determines the
best match in time. The lag time between SPI and the other indices, represents the propagation time
of the effect of precipitation deficit on vegetation, through its level of development (VCI), and its level
of water stress (TCI and SMCI).

2.3.3. A Modified Run Theory with Pooling and Screening

In this work, we propose to identify drought events according to a parameterized definition [7].
The first parameter corresponds to the onset of a drought event. In the run theory used by [16], this
is the value x0. A drought is declared if the index falls below the x0 value. According to [7] when a
drought event has been declared, the drought spell starts when it falls below zero and finishes when
the index climbs above zero. Instead of using zero, we propose to use a parameter called normality
value, x1. The thresholds x0 and x1 are tested for values of probability of occurrence for the SPI3 and
VCI anomaly indices. x0 is tested for values between 5% (usually called the extreme threshold) and
20% (usually called the moderate threshold). The intermediate probabilities are obtained by
extracting the probability from the cumulative distribution function. x1 is tested for probabilities
between 5% and 50%, and is always superior or equal to x0. When x0 = x1, we are in the case of the
raw run theory. In the example of Figure 3, it would give two drought events (in red). When x1=50%,
we are in the case described by McKee et al., (1993). Figure 3a gives a single drought event (dashed
area). The two thresholds vary according to the probabilities of occurrence, which is computed with
the inverse normal function for SPI, and which is found empirically for the Tensift region for the
other indices (Table 2). An example of the impact of varying x0 and x1 is shown in Figure 3a—c.
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Figure 3. A graphic explanation of thresholds, category (blue letters), magnitude (yellow, orange, and
red areas), and stages (italic letters) in a drought spell. Figure (a) shows an example with x1=50%.
Figure (b) shows the duration of the drought spell is reduced when x1 decreases. Figure (c) shows the
impact of decreasing x0.

Table 2. Drought classification based on drought indices and corresponding event probability.

Probability of Drought
SPI VCI TCI SMCI
occurrence (%) category
5 Exceptional -1.64 -0.48 -0.49 -0.36
10 Extreme -1.28 -0.4 -0.33 -0.33
15 Severe -1.04 -0.36 -0.28 -0.28
20 Moderate -0.84 -0.33 -0.24 -0.24
25 -0.67 -0.28 -0.2 -0.21
Abnormally dry
30 -0.52 -0.25 -0.16 -0.18
35 -0.39 -0.23 -0.12 -0.14
40 -0.25 -0.19 -0.09 -0.13
Close to normal
45 -0.13 -0.14 -0.06 -0.09
50 0 -0.1 -0.03 -0.06

We then apply a pooling and screening of drought spells found in the previous step. The pooling
technique is generally applied for hydrological drought and for short time scales (daily), but it can
also be applied for long-term droughts [22]. We apply the pooling technique described by [23] with
an empirical threshold of time t. = 3 months (only interruptions shorter than 3 months can be
pooled), while the p, threshold is computed in the same way, but using the magnitude of the drought
spell ug, and the magnitude of the interruption p;, so that p. = |u;/us|. The threshold for p. is set
to 10% according to [22]. To avoid droughts of different categories, only droughts of the same severity
can be pooled together. The effect of pooling is shown in Figure 4. The drought spells are finally
screened for a short duration. As in [20], the drought spells lasting for less than 3 months are
eliminated.
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Figure 4. A graphic explanation of drought pooling. The green and red colors are simple cosmetics
for the representation of magnitude.

To characterize drought events, a set of descriptors is calculated for each drought event. The first
one is the duration which represents the temporal extent of a drought event and is computed as the
difference in months between its onset and offset. The second descriptor, magnitude, is obtained by
summing the absolute values of the drought index during a drought event. The last is intensity,
determined as the ratio between magnitude and duration, and measures the impact of the drought
over time.

2.3.4. Characterization of Drought Stages Inside a Drought Spell

In order to carry out a more detailed assessment, a drought event is separated into stages Figure
3. The ‘development stage’ begins at the onset and ends when the index falls below x0 for the first
time. The “peak phase’” occurs whenever the indices fall below x0. The ‘recovery phase’ begins when
the index climbs above x0 for the last time, and ends at the offset of the drought spell. ‘Intermediary
phases” may also occur between the peak phases. Finally, ‘Interruption phases’ only occur when
drought spells have been pooled. A graphic explanation of those phases is given in Figure 3. The
interruption phase is shown in Figure 4.

3. Results

3.1. Time Series of Drought Indices at Different Spatial Scales

The drought events were identified on the time series (2001-2021) of the SPI, VCI, TCI, and SMCI
indices using the previously determined thresholds of -0.84, -0.33, -0.24, and -0.24 for moderate
drought, and -1.64, -0.4, -0.33, -0.33 for extreme drought. As depicted in Figure 5 the Tensift basin has
gone through multiple periods of drought, with different duration and intensities. The various
indices were able to accurately identify dry and rainy periods with a discernible difference between
the beginning and end. SPI12 has detected eight drought events, although we excluded summer
droughts or those lasting for a month. The SPI12 detected the first drought, of extreme severity, since
October 2000. After a particularly wet period, the 2004 drought, with less magnitude, lasted for 10
months. The drought returned in January 2007 and persisted until December 2008, with two
extremely dry months. The 2017/2018 drought, which began in the summer of 2017 and lasted until
April 2018, was moderate but affected the year's rainy season. A long dry season started in October
2019 was followed by two wet months, before the start of another somewhat dry phase.
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Figure 5. Evolution of SPI, TCI, SMCI, and VCI in the Tensift basin, dashed lines correspond to the
thresholds for moderate and extreme droughts.

The agricultural drought indices detected the main droughts identified by the SPI. However, the
drought indices differ in the onset, offset, and intensity of dry spells. For example, drought periods
identified as moderate by the SPI may be qualified as extreme by the other indices. This variation
also occurs for wet episodes, where classifications may differ from one index to another. The VCI
detected several periods of drought, two of which stood out in terms of duration and magnitude. The
longest period was from October 2006 to November 2008. During this period, drought conditions
persisted for an exceptionally long time, with a significant impact on vegetation. The most severe
drought was detected in 2001/2002. The SMCI and TCI are highly fluctuating compared with the
other indices, which influences the magnitude and duration of drought periods detected. The most
recent drought from January 2019 had the longest duration and severity between 2001 and 2021.
Other droughts that were identified matched droughts that SPI and VCI had previously detected.

3.2. Pearson Correlation between Drought Indices at Different Spatial Scales

To analyze the direct relationship between droughts, a comparative Pearson correlation analysis
is applied to the indices on a monthly time scale, over the whole basin. In addition, the correlation
between indices is studied at four pixels of 25 km? inside the basin to assess the eventual effects of
spatial variability. The four pixels are 1-“dry land”, a mostly desertic zone with isolated irrigated
parcels relying on groundwater, 2-An intensive irrigated zone dominated by perennial tree crops
such as olive and orange orchards, 3-A coastal zone mostly covered with natural vegetation close to
the outlet of the basin, and 4-A mountainous zone (High-Atlas range) with a mix of natural pine
forests, bare soil, and some irrigated areas (Figure 2).

Correlations in the Tensift basin were high for the SPI pairs. The comparisons between the VCI
and SPI were highest at longer SPI time scales, with a maximum R-value of 0.65 with SPI12.
Temperature exhibited a stronger correlation with the monthly and seasonal SPI. A moderate
correlation was observed with SPI1 (0.42), and SPI3 (0.46), while on a longer time scale, the correlation
coefficient decreased. The same result was obtained with TCI2 but with lower R values. SMCI was
moderately correlated with the seasonal SPI. There is a low agreement between VCI and SMCI (R =
0.37). The relationship between VCI, TCI, and TCI2 was almost of the same order. Furthermore, the
results showed that there was a good relationship between SMCI and TCI (0.59).

Concerning the four pixels, the intercomparison of the four SPI scales (1, 3, 6, and 12 months),
behaved similarly to the average of the basin, meaning that the SPI does not significantly change over
the basin. We then compare SPI to the satellite indices. For the VCI-SPI pairs, while the mountain and
coastal zones behaved similarly to the average basin, the irrigated zone and dry land zone behaved
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both in the same different manner. R is stabilized after 3 months of aggregation when it was
increasing elsewhere. The fact that the SPI-VCI pair does not increase in those pixels is probably due
to irrigation which separates vegetation development from precipitation. Regarding the TCI-SPI
pairs, the four pixels behaved in mostly the same way as the basin average, but with lower
correlations. A reduction of correlation is tangible for the TCI2-SPI pairs in the irrigated zone (-50%)
and also visible in the dryland zone and mountain zone. Irrigation easily explains the decrease of
crop water stress explained by this difference of temperature, and thus the decrease of correlation as
the scale increases. A similar behavior could have been expected with the SMCI-SPI pairs, however,
this is not the case. The most important decreases in correlation are seen in the coastal and dry land
zones. Also, the irrigated and the mountain zones did not behave in the same way as the basin
average, which is somewhat abnormal. The behavior of each of the four pixels is very different from
the basin average regarding the SMCI-SPIs correlations.

The comparison between the agricultural drought indices at the selected pixels showed that each
zone shows a very contrasted behavior. The VCI-TCI and VCI-TCI2 were two similar pairs in all
cases. However, the correlation between both temperature indices varied from 0.4 (irrigated zone) to
0.6 (coastal zone). Regarding SMCI, the correlation was almost nonexistent with VCI in the coastal
zone and remained insignificant in the dry zone. It was a little more significant in the two other pixels.
The correlation of SMCI with the two temperature indices seemed to corroborate the important loss
of correlation in irrigated zones for the TCI2 index. It should also be noted that the correlation in the
coastal zone was insignificant. The low to insignificant correlation of SMCI with precipitation index
in some zones (coastal, dry land), and low correlations with the temperature indices might also be
attributed to the dataset used. For example, it is generally known that the radar signal, whether it be
SAR or scatterometer, cannot reach the soil in specific circumstances, such as those including an
important canopy or steep slopes.

Besides that, the Pearson correlations at different scales have shown interesting conclusions. As
expected, the overall behavior of the basin was a combination of several processes. SPIs were very
homogeneous, which is understandable for a relatively small area such as this basin. Agricultural
and meteorological indices pairs showed contrasted behavior, and agricultural indices pairs showed
very contrasted behavior from one location to another. The homogeneous correlation of SPIs between
the different locations in the basin does not mean that each of them is impacted in the same way by
drought. It confirmed that meteorological indices alone are pertinent for regional comparisons but
insufficient to explain local behavior. The presence of irrigation, the presence of trees, and the
variation in topography were probably the factors that most influenced the differences between these
zones.
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Figure 6. Comparative Pearson correlation at monthly scale between SPI, VCI, TCI, TCI2, and SMCI
for the whole basin and for different sites.

3.3. Cross-Correlation between Drought Indices

The cross-correlation analysis between SPIs (1, 3, 6, and 12 months) and the three agricultural
indices (VCI, SMCI, and TCI) is performed to better understand the time delay between pairs of
drought indices. The cross-correlation is implemented with steps of one-month lags ranging from -
12 months to +12 months, thus also looking at the symmetry of the cross-correlation. Figure 7 shows
the cross-correlation function between indices time series over the Tensift basin. The second variable
is the one that is lagged to the first one. The plots were created using 20 years of monthly data, from
2001 to 2021.

The three first subfigures show the cross-correlations between SPIs (1, 3, 6, and 12 months) and
the three indices (SMCI, TCL, and VCI). In the SPI approach, the index already incorporates a memory
in its conception. SPI is built to reflect the scalability of drought. It is thus logical that the cross-
correlation of SPI extends in time with the satellite indices. The two indices TCI and SMCI behaved
mostly in the same way, with a significant relationship on the right side (positive). The relation fell
below significance when the lag came close to the number of months in the SPI (the correlation
coefficient fell below 0.2 at 1, 3, 6, and 12 months). On the left side, the relation fell below significance
below -1 month. There was no symmetry in the relation. As a result, both SMCI and TCI were
generally impacted by the SPI's previous conditions. Over longer SPI aggregation periods, the SMCI,
TCI, and SPI correlation values remained positive, indicating the long- and medium-term memory of
precipitation on soil moisture and temperature indices.
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The results of the comparison between VCI and SPI displayed a preceding effect of VCI with
regard to SPL It is observed that the leading (negative) range of lags showed higher correlations. The
SPI-1, SPI-3, and SPI-6 exhibited the same pattern, while peak correlations for these three aggregation
periods of SPI were different. The strongest correlations are obtained at -2 months for SPI-1 and -1
month for SPI-3 and SPI-6. Then, with the increasing period of aggregation, this effect tends to
propagate towards the positive range of lags. A delay of 1 month was found between SPI12 and VCI.
The same idea previously seen on the TCI and SMCI graphs can be seen again. The one- to two-month
lag of the peak on the negative side between VCI and SPI reflects the response time of vegetation to
precipitation. This means that when precipitation occurs, greenery appears one or two months later.
Regarding the two other indices, there is no meaningful lagged response, and the memory of the
correlation seems only related to the conception of SPL

The last subplot (Figure 7) shows the lagged relationships between the indices. The best match
was found at lag 0, showing a good symmetry between the indices in the TCI and SMCI plots. A
preceding influence of SMCI and TCI on VCI was observed. The strongest relationships were

observed with a temporal lag of -1, showing how soil moisture and temperature regulate vegetation.
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Figure 7. Cross-correlation between the VCI, TCI, SMCIL and SPI for the Tensift basin.

The cross-correlation results between the indices for the dry period 2006-2008 revealed that
there were differences in the VCI relationship with the other indices (Figure 8). The delay between
vegetation and precipitation is prolonged during the drought period, and the peak, which was at -1
month for SPI3 and SP16, was observed here at -2 months. Thus, the duration of a precipitation deficit
will prolong the vegetation's response time. In other words, if a precipitation deficit occurs, it will
show up in the vegetation after 2 months.
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Drought event (2006-2008)

—— SPI1-TCI
—— SPI3-TCI
—— SPI6-TCI
- SPI12-1CI

0.8| — spir-smal
— SPI3-SMCI

— SPIG-SMCI
OS —— SPI12-SMCI

0.2

0.0

-0.2

-0.5

0.8| — spiLval
— sPIBVCI

— SPIGVCI
0.5 __ Spnava

= TCI-SMCI
— SMCIVCI
— TCIVCI

Correlation coefficient

0.2

0.0

-0.2

-0.5

-12-10-8 -6 -4 =2 0 2 4 6 8 10 12 -12-10-8 -6 -4 -2 0 2 4 6 8 10 12
Precedence (-) Delay (+) Precedence (-) Delay (+)
Lag (Months)

Figure 8. Cross-correlation between the VCI, TCI, SMCI, and SPI for the drought event (2006-2008).

3.4. Run Theory According to a Lower and Upper Bound

Figure 9 shows the results of the drought characteristics extracted for each pair of (x0, x1) to
highlight the importance of the choice of these parameters, which directly affect the number of
droughts per period and their intensity. x0 is the threshold determining the triggering of a drought
episode, while x1 is the threshold determining the onset and offset of a drought episode. The 25-30%
level is generally considered a threshold between dry and drought [28], while the 50% level (which
for SPI means 0), was considered by [7], as the level for normality.
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Figure 9. Drought characteristics and their averages for several thresholds over the last 20 years (2001-
2021).

Figure 9 only shows VCI and SPI3, since the other indices give roughly similar results. For each
pair of thresholds, we obtained the events detected by these thresholds, their magnitude, duration,
and intensity, as well as the total number of events. We then calculated the sum of each feature per
pair of thresholds. Next, we calculated the average magnitude and duration by dividing the sum
calculated above by the number of events detected by each pair of thresholds.

When x0=x1, this is the run-theory with one single threshold. Those are shown on the lower
diagonal of Figure 9. Although, logically, the number of drought events should increase as x0
increases, two consecutive events can overlap. For SPI3, the number of drought events rises from 7
(x0=5%) to 23 (x0=20%) and increases from 2 to 15 with VCI. The total duration of the drought periods
ranges relatively from 14 months for low x0, to 100 months for high x0. The mean duration is stable
and very short for both indices (2 to 11 months). Increasing x0 has increased the number of events,
but not their duration. Total and mean magnitudes follow the same pattern as duration. Intensity,
which is magnitude divided by duration, decreases as x0 increases this is because the higher the
threshold, the more months with a lower magnitude in the drought events dataset.

x1 varies from x0 to 50%. The number of events is not influenced by variations in x1 when x0 is
low. The events are too separated and unrelated, however with higher x0, the number of events
significantly decreases when x1 increases (from 23 to 16 for SPI3).

The average duration of events rises logically with increasing x1. For SPI3, it reaches an average
of 6 to 8 months for x1=50%, and 3 months for x1=30% (against 2 months when x0=x1). Magnitude
behaves in the same way as duration for both variables. Intensity decreases as x1 increases, meaning
that the increase in duration is greater than the increase in magnitude. The increase in average
duration due to the use of a second threshold seems more in line with the concept of a slow onset of
drought, especially for very low (exceptional) thresholds. The intensity is flattened when increasing
x1, however, each event is still well differentiated.

3.5. Drought Stages and Pooling (A Case Study)

The 2006-2008 drought episode is used as a case study. The episode is divided into several
stages. The purpose is to see how the indices behave concerning these stages, and how they vary by
changing the normality and drought thresholds. Three separate scenarios are displayed in Figure 10
where two values (10%, 20%) were given to x0 and two further values (20%, 50%) to x1.
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Figure 10. Drought stages and pooling (2006-2008 event).

The results of the three cases studied reveal significant differences in drought detection. With an
extreme threshold of 10% for x0, the TCI does not detect the drought, whereas it is visible on the other
three indices. As the threshold becomes more extreme, the detail of the start and end of the episode
takes us directly to its peak without being able to anticipate its onset. By adjusting the normality
threshold to 50%, however, we can visualize the different stages of the drought and anticipate its
appearance at the start of a development phase. In the third case, where we choose a moderate
threshold for x0, several development phases appear, the duration of peaks lengthens and the
interconnection between indices becomes more obvious. Interestingly, in this case, TCI manages to
detect the same peaks as the other indices. Furthermore, it appears that the pooling approach is
particularly applicable to indices subject to significant fluctuations, such as SMCI and VCI. Pooling
somehow works like smoothing by connecting periods of drought.

4. Discussion

4.1. Drought Assessment Using Various Indices

Drought assessment using multiple indices enables us to monitor the evolution of drought over
time within a specific area, enabling trends in increasing or decreasing drought intensity to be
identified. All indices were able to correctly identify dry periods. The drought episodes determined
by the indices used in our research were congruent with the results of previous studies. Droughts of
2001, 2004, 2007, 2017, 2019, 2020, and 2021 were the most severe dry spells. Some of these findings
line up with those reported by many authors in various Moroccan regions [48,52-54]. The Oum Er-
Rbia River basin [55], Northwestern Morocco [56], the Sebou basin [57], and the Souss basin [58] are
some of the semi-arid, arid, and Mediterranean regions where other research has been done that has
also found some of the driest years previously mentioned. There were variations between the drought
seasons identified by studies in the same areas. These variations can be explained by the data used
(in situ or satellite), the time frame used, the period under study, and the employed indices.
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Our results showed remarkable differences between the indices in terms of the characteristics of
drought events. The most striking feature is the determination of the onset of drought episodes,
which could differ from one index to another. Therefore, given the spatial and temporal complexity
of drought, it is difficult and probably inadequate to use a sole index for drought monitoring. The
complex nature of agricultural drought, which is influenced by various factors, including
temperature, and evapotranspiration, is not fully grasped by a perspective with limited drought
indices [59-61]. Thus, it was crucial to use a variety of indices to track the beginning and end of
drought events.

4.2. Interactions between Drought Indices

The difference between precipitation and actual evapotranspiration (AET) has been used in
recent studies [62,63]. However, AET does not fully take into account water demand, and
precipitation is not the only source of water, particularly in irrigated areas [64]. The cascade of impact
is theoretically better assessed with intermediate variables that can be observed synoptically by
remote sensing. At the basin scale, almost all the examined indices, SPI, VCI, SMCI, TCI, and TCI2,
showed a low to moderate correlation, and the best correlations with SPI were recorded with VCI.
This level of correlation between indices was found in several studies [65-67]. When analyzing the
correlation between indices at the four agrosystems of the basin, it was underlined that the correlation
SPI-SMCI and SPI-VCI dropped in arid and non-irrigated systems. Therefore, the spatial variation
within basins could also alter the correlations. This might be related to climatic conditions; the more
stressed the humidity conditions are, the weaker the correlations tend to be. Another reason for the
low correlation may be the method of calculating the SPI, which is an approach based on the
probability function distribution of precipitation data, is different from the approach used for
calculating the other indices.

Among the SPI calculation scales, the results showed that the 3-month scale is the one that
agreed best with all the indices. Hence, this seasonal scale seems a good compromise for multi-indice
drought analyses over long periods. Additionally, amongst the agricultural drought indices, the best
correlation at the basin scale was recorded between TCI and SMCI; in the context of scarce
precipitation, an increase in temperature induces the depletion of soil moisture. However, SMCI and
VCI unexpectedly presented a lower correlation. This could be due to the sensitivity of NDVI to soil
moisture, which depends on the density of vegetation cover. Given that wet regions are less sensitive
to soil moisture than dry regions with low vegetation density [68].

For the TCI and SMCl indices, the strongest correlations with SPI were found around lag 0. This
shows the quick interactions between the indices and SPI. The SPI's earlier and current conditions
affect the SMCI and TCI. This illustrates the lack of symmetry in the relationship between the indices,
with very limited control of soil moisture and temperature on precipitation in a semi-arid climate.
Another explanation could be the limited soil depth for which the ESA CCI SM product is represented
(2-5 cm for the combined product), which restricts its use in such climates because of the high
temperature, and thus disrupts variations in soil moisture [69].

VCI showed a preceding influence on SPI at monthly and seasonal scales, with the peak
correlation found in the negative lags for shorter SPIs. It means that vegetation is influenced by the
previous moisture conditions, and has a response time of two months. The greater the SPI
aggregation, the stronger the correlation, on the positive side of lags. The result is an asymmetrical
interaction between VCI and SPI. This outcome is coherent with the findings of [32] comparing the
evapotranspiration deficit index with SPI. Those authors interpret this loss of asymmetry as the
increase in aggregation. The interactions between the indices revealed the existence of the delay
(precedence) response to precipitation deficits. In other words, precipitation deficiencies may be
translated into deficits in land surface variables in a delayed manner. The variables' time response
may have significant adverse effects on the basin’s hydrological cycle, resulting in increased water
stress, and reduced agricultural productivity.

Temporal resolution was always a challenge for drought monitoring indices using remotely
sensed data. There is not always a clear difference between the length of the aggregation and the time
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step of the calculation. The most commonly used drought indices are calculated primarily on a
monthly basis, with a one-month aggregation. Therefore, interactions between land-soil atmosphere
variables are fast-moving in a semi-arid Mediterranean climate. Hence, some studies recommended
short time scales for drought assessment [32]. The multi-monthly aggregation has already been
tackled with the multi-scalar approach of SPI, nevertheless, smaller aggregations are generally not
considered, because SPI becomes very noisy. The aggregation time of indices such as NDVI, LST, and
SM is not straightforward and could be further investigated. Also, when indices are aggregated
beyond the seasonal scale, interaction analysis may be ambiguous due to the high influence of
aggregation when using a long-time scale.

The time response of the agricultural drought to precipitation deficits can be influenced by
several factors. Namely, the initial conditions of water resources in the basin play an important role
in the occurrence or recovery of the drought [70]. This raises uncertainties about the transmission of
precipitation deficits to the vegetation (non-linear) [19,70,71]. This is due to the properties of the
watersheds which can induce different propagation processes, and which are controlled by the
elevation which is connected with snow processes and land covers. The latter influences the
propagation of drought through the modification of evapotranspiration and the distribution of
precipitation between evapotranspiration and streamflow [19,72]. Additionally, irrigation remains a
problem in quantifying the response time of vegetation to precipitation deficits. This anthropogenic
factor affects the interactions by altering the duration and intensity of the drought (e.g., if a drought
occurs and irrigation persists, it will further hasten the drought process) [73].

4.3. Drought Characteristics and Stages

The drought events post-processing with the identification of stages, the possibility of pooling
minor events, and also the possibility (not displayed here) of screening short events is appealing.
Analysis of a single index allows us to distinguish between stages. In particular, the slow onsets and
offsets mentioned by WMO are found in the development and recovery stages. In the development
stage, we are not really into drought, but the diagnostic knows that there is a peak coming after, so
this is part of the drought event. The same can be said about the recovery. Intermediate stages are
also interesting, especially for remote sensing observations. For example, the vegetation index not
recovering back to « normality » between two peaks, probably means that the vegetation had been
lastingly affected by drought. The pooling that was previously used essentially for hydrological
drought also appeared to be an interesting tool for connecting both slow-moving indices (VCI) and
fast-moving indices (SMCI, TCI).

Finally, if the cascade of impact is not always evident with the selected indices, it was shown
that the longer delay can be seen in vegetation. In contrast, the two other indices are more erratic and
immediate. Simple combinations of indices have been done in various studies. [74] simply averaged
vegetation and brightness temperature. [21] summed three indices: at least two out of three indices
below the moderate threshold means drought. [31] considered that there is precedence between
indices to propose an emergency index. With the objective of forecasting cereal yield, [1] used a non-
linear combination of indices obtained from remote sensing. Also, the GDI index proposed by [64],
weighs how the proportion of soil or vegetation is important for the drought index, thus GDI takes
into account the seasonality of vegetation. All those different approaches, the two thresholds run-
theory technique detailed here, and the separation in phases, provide interesting hints for combining
multiple indices.

5. Conclusions

In the present study, we used remote sensing data to construct drought indices and understand
interactions between meteorological and agricultural droughts, in a Mediterranean semi-arid basin.

Four drought indices were calculated. The meteorological index SPI was determined from
ERAS5Land data at different time scales 1, 3, 6, and 12 months. The agricultural drought indices VCI
(Vegetation Condition Index, from MODIS-NDVI), TCI (Temperature Condition Index, from MODIS
LST and ERA5Land data), and SMCI (Soil Moisture Condition Index, from ESA CCI SM), were
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calculated at monthly time scale. Satellite drought indices have already proven to be a useful tool for
monitoring drought and its impacts on agriculture.

The results of the Pearson correlations revealed the effect of the spatial variability of the different
agrosystems on the drought indices concordances. The behavior of the basin as a whole is a fusion of
several heterogeneous entities. The interpretation of spatially aggregated drought indices should be
done with care, and the aggregation should probably be applied to homogeneous areas.
Homogeneously connected SPIs do not reveal the impact of the drought on different regions, in
contrast to the divergent behavior of the agricultural drought indices. Thus, meteorological indices
are significant for regional comparisons, but are insufficient to explain local patterns.

Additionally, the results proved rapid responses of temperature and soil moisture to
precipitation deficits in a semi-arid Mediterranean climate. The VCI is influenced by the previous
moisture conditions, especially in dry conditions. The SMCI and TCI showed an instantaneous
response to SPI. The correlation between SMCI, TCI, and SPI remains significant, suggesting long-
and medium-term precipitation memory.

We have proposed to modify the run-theory by introducing a normality threshold. The
agricultural drought indices were able to detect the drought periods that the SPI pointed out. Every
index may accurately identify drought periods with a contrast between the beginning and ends, and
in some cases a contrast in the intensities of the drought. Several changes affect the characteristics of
drought by modifying the thresholds of normality and dryness (x0 and x1 respectively). The arbitrary
choice of these two parameters can result in incomplete information on the drought events studied.
Based on drought indices, drought episodes can be connected, but it is crucial to use a variety of
indices to assess the impacts of meteorological drought.
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