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Abstract: This study develops a new definition of fractional derivative that mixes the definitions of
fractional derivatives with singular and non-singular kernels. Such developed definition encompasses
many types of fractional derivatives, such as the Riemann-Liouville and Caputo fractional derivatives
for singular kernel type as well as the Caputo-Fabrizio, the Atangana-Baleanu and the generalized
Hattaf fractional derivatives for non-singular kernel type. The associate fractional integral of the
new mixed fractional derivative is rigorously introduced. Furthermore, newly numerical scheme is
developed to approximate the solutions of a class of fractional differential equations (FDEs) involving
the mixed fractional derivative. Finally, an application to computational biology is presented.

Keywords: Fractional operators; singular and non-singular kernels; Laplace transform; numerical
method

1. Introduction

In recent years, fractional mathematical modeling involving nonlocal fractional derivatives plays a
robust tool and constitutes a new resource to capture the dynamics of complex systems having memory
effects or hereditary characteristics. Such systems arising from various fields including physics, fluid
mechanics, material science, signal processing, engineering, chemistry, biology, medicine, finance,
social sciences, economics and ecology.

In the literature, there are two main types of nonlocal fractional derivatives. The first named
the fractional derivatives with singular kernels like Riemann-Liouville fractional derivative [1,2] and
Caputo fractional derivative which was introduced by Caputo in 1967 [3] to find the analytic expression
for a linear dissipative mechanism whose quality factor (Q) is almost frequency independent over
large frequency ranges. The second ones have non-singular kernels such as the Caputo-Fabrizio (CF)
derivative [4] introduced by Caputo and Fabrizio in 2015 to avoid the singularity existing in [3]. In
2016, Atangana and Baleanu [5] proposed a fractional derivative to model the flow of heat transfer
through a material with different scale or heterogeneous. In 2020, Al-Refai [6] presented a weighted
fractional derivative based on Atangana-Baleanu (AB) fractional derivative [5]. By means of the
Laplace transform, he solved an associated linear fractional differential equation.

Recently, a new generalized Hattaf fractional (GHF) derivative with non-singular kernel has been
introduced in [7] to cover the CF [4], the AB [5] and the weighted AB [6] fractional derivatives. A new
class of fractal-fractional derivatives was derived from the GHF derivative and the new generalized
fractal derivative [8] that covers the Hausdorff fractal derivative [9] used to model the anomalous
diffusion process. Furthermore, the new GHF derivative was used by many researchers to describe the
dynamics of various phenomena arising from several areas of science and engineering [10-14].

The first aim of the present paper is to introduce a new definition of nonlocal fractional derivative
that includes and generalizes numerous fractional derivatives with singular and non-singular kernels
such as Riemann-Liouville [1,2], Caputo [3], CF [4], AB [5] and the weighted AB [6] fractional
derivatives. The new introduced definition also includes the GHF derivative [7], the power fractional
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derivative [15], as well as the new fractional derivative with Mittag-Leffler kernel of two parameters
intoduced in [16] and applied to thermal science.

On the other hand, most fractional differential equations (FDEs) involving nonlocal fractional
derivatives are complex and cannot solved analytically. For this reason, various numerical methods
have been proposed to approximate the solutions of such FDEs. For instance, a numerical method
that recovers the classical Euler’s scheme for ordinary differential equations (ODEs) was introduced
in [17] to approximate the solutions of FDEs with GHF derivative. Another numerical method for GHF
derivative was developed in [18] to solve numerically nonlinear biological systems of FDEs arising
from virology.

The second aim of this paper is to develop a numerical method to approximate the solutions
of FDEs with the new mixed fractional derivative mentioned in the first objective. The developed
numerical method includes the three recent numerical schemes presented in [18-20] and it is based on
Lagrange polynomial interpolation.

The remainder of the present paper is organized as follows. Section 2 defines the new mixed
fractional derivative in both Caputo and Riemann-Liouville senses and presents the particular cases
of such mixed fractional derivative available in the previous studies. Section 3 deals with Laplace
transform of the new mixed fractional derivative. Section 4 gives the fractional integral associated to
the new mixed fractional derivative and its special cases. Section 5 establishes new important formulas
and properties for the new differential and integral operators. Furthermore, Section 6 is devoted
to the new developed numerical method. Finally, Section 8 ends the paper with an application to
computational biology.

2. The new mixed fractional derivative
This section defines the new mixed fractional derivative in the sense of Caputo and

Riemann-Liouville.

Definition 2.1. Let (p,q) € [0,1]?,r,m > 0and u € H'(a,b). The mixed fractional derivative of the function
u(t) of order p in Caputo sense with respect to the weight function w(t) is given as follows:

Hp+q—1) 1 /f _ d
Cnypqrm — _ ~\g9-1 _ _\ym 2
Dl = s [ 0T gt~ 1) ) ()
where 6 € R*, w € C'(a,b), w,w' > 0on [a,b], H(.) is a normalization function such that H(0) = H(1) =1,
p+q-—1 ok . . . .
= and E, ,(t) = ———— isthe W tion [21] called also Mittag-L t
Hpa = 5—)— . and E, 4(t) k;o Tk q) is the Wiman function [21] called also Mittag-Leffler function

with two parameters r and q.

Definition 2.1 includes several existing fractional derivatives with singular and non-singular
kernels. For instance,

1. Wheng =1—pandw(t) =1, we get the Caputo fractional derivative [3] with singular kernel
given by

Cppd-prm :#/t =P,
Diias u(t) Ta—p) /s (t—1) P/ (t)dr.

2. Wheng =r =m =6 = 1and w(t) = 1, we obtain the CF fractional derivative [4] with
non-singular given by

11, H !
Cpbiu(t) = 1£”; / expl—pipa (t — )" (T)dT,

where p1,1 = %

3. Wheng=46=1,r=m=pand w(t) = 1, we get the AB fractional derivative [5] given by

Lp, H f
CDf,tlflpu(t) = 1£p;/u Ep[—ppa(t— )P (t)dT.
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4. Whengq =0 =1andr = m = p, we find the weighted AB fractional derivative [6] given by

H(p) 1)/t p[fypll(tfT)P]%(wu)(T)dT.

CppLp.p
D u(t) = T

utwl

5. When g = 6 = 1, we obtain the GHF derivative [7] given by

1, H 1t d
CDL;T (t) = 189;110(1?)/,1 Er[—ppa(t — T)m]E(wu)(T)dT.
6. Wheng=1,m=randd = In(p) (with p > 0), we get the power fractional derivative [15] given
by
Crplrr _H(p) 1 /t s nd
Dl t) = s [ Bl () (¢ = 7)) (o) (e
7. Whené =1, m=r = pand w(t) = 1, we obtain the fractional derivative introduced in [16] given
by
Hp+q-1) [t _
CDPATPu(t) = g’”_p”’_q) / (t = 7)1 E g [—tp (£ — T)PJ (T)dT.

Now, we define the new mixed fractional derivative in Riemann-Liouville sense.

Definition 2.2. Let (p,q) € [0,1]?,7,m > 0and u € H'(a,b). The mixed fractional derivative of the function
u(t) of order p in Riemann-Liouville sense with respect to the weight function w(t) is given as follows:
Hp+q—-1) 1 d

t
D) = S i Jy ¢ Bl =gt =) (@ @)

Obviously, when g = 1 —p and w(t) = 1, we obtain the Riemann-Liouville fractional
derivative [1,2] with singular kernel. In addition, we have the following result.

Theorem 2.3. Let wu be an analytic function. Then

H(p+q-1)(t—a)’!
RpypAqrm CryPA4rm
Datw& () Datw& (t)+ (2—p—q)w(t)

Er,q[_‘sl/‘p,q(t —a)"](wu)(a). 3)

| N = (W),
Proof. We have wu is an analytic function. Then (wu)(7) = ) | T(T —t)"and

n=0
H(p+q—1) d 2 (=1)"(=8pupg) (wu) (1) rt _
Rpypa,r,m — il pA _ \mk+n+gq—1
Dt 4(1) (2—p—q)w(t)dt n;()kzo n!T(rk +q) /,1 (t=1) aT

H(p+g—1) d £ (=1)"(=0pp,)F (wu) ) () (£ — a)mk+n+a
@-p- g 5 Zo "!F573<+q)(mk+n+q)

. Hp+q-1) +00 400 (—1)"(—5Vp,q)k(wu)(n+1)(t)(t . a)kar”JrvI
| I (k) (k1 +0)

n=0k=0
= DY 5VPq)k mk4ntg—1
+nz‘,0k2—n,r e o)) (1) a0 1|
B (P+q_1 400 +oo 5]/[ ) ( )(n+l)(t) ¢ mia
= 4(2 - q)w [nzbkz n'l"p(jquq) /Q(t—r) ktn+q-1 41
— n n 5# m
+n;0 n! (wu)( )(t e Z rk-ri]-qq) t=a) k]

= CDZ:’JJ? (1) +m(t—a)q1E,,q[—(5yp,q(t—a)m](wu)(a).
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This ends the proof. O

Theorem 2.3 extends the results in Theorem 1 of [7] for 4 = § = 1 and in Theorem 4.2 of [16] for
d=1m=r=pandw(t) =1

3. Laplace transform of the new mixed fractional derivative

In this section, we first need the following result.

Lemma 3.1. The Laplace transform of t17 E, 4(—6pp at™) is given by

_ 1 £/ —6ppa\ T(mk + q)
—1p (_ m _ 1 P
LT Er g (=Oppat™) }(s) qu;)< s ) T(rk+q)° 4)
Ifm =r, then
-1p (_ r _ 5 OHpg
Lt Epg(—0ppat") }(s) R R T | <1 )

Proof. According to the definition of the Wiman function, we get

400 (_ k
‘C{tq_lEr,q(*(S"l/tp,qtm)}(S) _ E{k_zo(((syp'q)tmk—i-q—l}(s)

I(rk+q)

+oo (_ k

_ Z ( 57/‘%‘7) E{tmk—i-q—l}(s)
= T(rk+q)

o (5yp,q)kr<mk+q>
s1 &= s I(rk+q)"

In particular, if m = r, then
1 B s'4q é}lp,q
L{t9 g (=0ppqet") }(s) = o, o | <1

This completes the proof. [

By a simple application of Lemma 3.1, we obtain the following theorem.

Theorem 3.2.

()  The Laplace transform of w(t) D" u(t) is given by

© k
gty = A= OO (O] 5 () Tot).

In particular, we have

ﬁ{w( )CDP‘V” (t)} — H(p +q- 1) Sr_q+l£{w(t)”(t)} — sr—qw(o)u(o) )

Otwé Z—P—q 5r+5ﬂp,q @)
(ii)  The Laplace transform of w(t)RDg,’Z;Z’,?u(t) is given by
H(p+q-1) 3% (=tna\"T(mk + )
L HRDEAT My (1)) = 12 ¢ tu(t A . 8
(w0 Dhtu) = G D) & () R ®


https://doi.org/10.20944/preprints202311.0242.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2023 doi:10.20944/preprints202311.0242.v1

5o0f 14

In particular, we have

_ r—q+1
ottty - AN .

Remark 3.3. Lemma 3.1 and Theorem 3.2 extend the results presented in [7] for the new GHF derivative, it
suffices to take g = 6 = 1.

4. The associate fractional integral

In this section, we define the fractional integral associated to the new mixed fractional derivative.
First, we consider the following fractional differential equation:

RDpf;;v( ) = u(t). (10)

Lemma 4.1. Eq. (10) has a unique solution given by

—p—q [RL RL~+1+7r—q ) '
v(t)Z{ e | To"u(t) + tpg“ Tz Mu(t)], ifq £ 1 .

Lu(t) + ‘5” SRETL (), ifg=1,
RLIoc

where “" 1, , is the standard weighted Riemann-Liouville fractional integral of order « given by

RLTE u(f) = - 1) /t(t—r)"‘_lw(r)u(r)dt (12)

T(a) w(t) Ja

Proof. From (10), we have
w(t)RDg 5o (t) = w(t)u(t).

By applying Theorem 3.2, we get

L)) = g L L L))+ o s S L lu(1))6)

* Wheng =1, wehave

L0} e) = FELOun}E) + P L (w(Bu(t)} ()

_ 1-p u 1-p Oppa =1y (wu
— H(p)ﬁ{w(t) (t)}(s)+H(p) NG L{t (wu)(t)}(s).

By taking the inverse Laplace, we get

Hence,

o(t) = 1= pu(t) + o 1’5) /at(t — ) w(t)u(t)dr. (13)

e Wheng # 1, we have

L@OP0}E) = Frr ey L w0}

zfp*q r—
e e e T A GRG0 S
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By passage to the inverse Laplace, we obtain
2—-p—gq _
w(t)v(t) = s w(t)u(t
0e0) = o tora—y ! eu)
2—-p—gq -
£ t)),
NECErEn R
which leads to 5
o(t) = P T [RET) () + Spup R Tas Tu(b)]. (14)

H(p+4g9-1)

This completes the proof. [

Definition 4.2. If m = r, then the fractional integral associated to the new mixed fractional derivative is defined
as follows

(15)

HI

2 1— 1+r— .
s ey = { D [RLf W1 + g Tou (D], ifa £
a,t,w ( u(t) P RLIr u(t), lfq=1.

p)

Remark 4.3. The associate integral defined above includes a variety of fractional integral operators. For
instance,

G If6 =1,r=pand w(t) = 1, then (15) reduced to the new fractional integral presented in [16].

Gi) If g = 0 = 1, then (15) reduced to the new GHF integral introduced in [7] that includes the
Atangana-Baleanu fractional integral [5] and the weighted Atangana-Baleanu fractional integral [6].

(iii) If p = q =1, then (15) reduced to the standard weighted Riemann-Liouville fractional integral of order r
and to ordinary integral when r = 1 and w(t) = 1.

5. Fondamental properties of the new differential and integral operators

In this section, we establish new important formulas and properties for the new differential and

integral operators.

For simplicity, we denote CDP q’r | s by Dp’q’ w,sand I’ i’ q’ 5 by Ifg)’ 5

Lemma 5.1. The mixed fractional derivative DZ’;’; can be expressed as follows:
+g— 1 +00 k wu !/
D) = T 5 gy ezt () o, 16)
P=49 =0 w

Proof. Since the Mittag-Leffler function E, 4(t) is an entire function of ¢, then Ds Z}; can be expressed

as follows:
H(p+q—1) 1 % (=dppq)" /t ktq— /
par — _ \rk+g-1
Daw5 u(t) pp——Y kg%) Tk +q) Ja (t—1) (wu)' (t)dt

_ Hp+q-1) 11 1
- W};(—éﬂm)kr(ﬂ(ww(ﬂ/‘l (t — 7)1 (wu)/ (t)dt

_ Hp+q-1) Jio(—éyp,q)k RLI{’;,VJq ((w”)/>(t>'

2—-p—gq =0 w
This ends the proof. O

Remark 5.2. Lemma 5.1 extends the recent result established by Zitane and Torres in Lemma 3 of [20].

Theorem 5.3. Let (p,q) € [0,1]?,7 > 0,5 € R* and u € H'(a, b). Then, we have the following property:
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TP (DPAT ) (1) = u(t) — 2 D1@), (17)

a,w,0
Proof. When g # 1, we have

2—p— _ _
PAT (P _ P—4q (RL71-qppar RL47—q (a7
Ia,w,(i (,Da,w,b‘u) (t) - H(P + q— 1) [ I“/w (Du,w,éu) (t) + 5:“17/51 Iﬂ/w (Du,zv,éu) (t)] :

By applying Lemma 5.1, we get

ot wu)’
b (,Dp/ﬂr:su) (t) _ RLI;,wq [ 2 (_5‘uprq)k RLI;‘,VJ"? << w) ) (t)]

a,w,0 a,w,
k=0

+o0 1
_ ki wu
+5P‘P,qRLI;,?vr Y (=0upg) RLIHTJ%( w) )(t)]
p

_ _io(_éyplq)k RLILIIc,ru—Ji-l ((wu)/) (t) o —i_zoo(—é‘uplq)k RLI{I;,';Z_l ( (wu)/> (t)

k=0 w k=1 w

=, ()0

w

IR T LV _ w(a)u(a)
- W/ () (e)de = wu(t) = L

For g = 1, we have

TR0 = PO 0+ T (0
_ Y, k RLkr+1 [ (1)
= Lt (5o
o T ()t Mt () )
k=0 w
Y () Rzl (%u)/) (1)~ Y (bt BT <(w£ )/) (t)
k=0 k=1
= o, ()0
i w@u)
= u(t)—w.

Hence, the proof is completed. O

It is obvious that when w(t) = 1, we obtain the following first corollary of Theorem 5.3 that
extends the Newton-Leibniz formula given in [22].

Corollary 5.4. The new mixed fractional derivative and integral satisfy the Newton-Leibniz formula. In other
words, we have

L (Do) (8) = u(t) = u(a). (18)

Clearly, fo;(c) = 0 for all constant function u(t) = c. Moreover, we have the following result.
Corollary 5.5. Let u be a solution of the following fractional differential equation

DY u(t) = 0. (19)

Then the function u is a constant function.
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Proof. It follows from (18) that u(t) = u(a). This proves that u is a constant function. [

6. Numerical scheme

In this section, we first develop a numerical method to approximate the solution of the following
FDE with the new mixed fractional derivative given by

syt = f (L y(1), (20)
subject to the given initial condition
y(a) = vo.
From Theorem 5.3, Eq. (20) can be converted into the following fractional integral equation:
y(@)w(a) _ pa,
y(t) — Twl s f (B y(h). (21)

So, we discuss to cases. When g = 1, we have

y(t) - YO2@ 1P e ) 4 OP Ry e (),

w(t) H(p) H(p)
which implies that
_yl@w(a) 1-p op Lot r—
y(t) = () + H(p)f(t,y(t)) + Wm/u (t—0)" w(r)f (T, y(1))dr. (22)

Let At be the discretization step and ¢, = a + nAt, with n € N. We have

) = G55 g et

+[—[(p)1"(zrp)w(tn) /utn+l (tpg1 — T)rflw(T)f(T/y(T))dT‘

Then

_ yow(a) 1-—p
y(tn-‘rl) = ;:J(tn) +mf(tn/]/(tn))

n

tre+1
i L [ s = g @)

THpT ) &)

where g(7,y(7)) = w(7)f(7,y(7)). The function g can be approximated over [f, t;1] by means of
the Lagrange polynomial interpolation as follows:

T—tk T—tk,1
P, ——(t_1, Yt + — gt y(te)),
% (T) tk—l_tkg(k 1y (t-1)) tk_tk—lg(ky( x)
Sthv Y1), Sltoye)
Hence,
w(0 1-—
y(ti’l+l) = Yo ( )+7pf(tnryn)

w(ty) H(p)

5’9 3 g(tkr ]/k) te+1 1
+H(p)F(r)w(tn) kg;‘) [ At /tk (T - tkfl) (tn+1 — T) dt

te_1, Xp— t _
+W [ =) b ) %ﬂ.
te
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Since
tea B Ap) L
/tk (tyy1 —T) N7 = ty_q)dT = r((r)+1)[<n —k+1)(n—k+2+7)
—(n—k)'(n—k+2+2r)], (25)
and
frt1 _ A) 1
/fk (tyo1 —T) YNt —T)dT = r((rzf—l) [(n—k)'(n—k+1+r)
(- k1)), (26)
we have the following numerical scheme for the case g = 1:
_ yow(©)  1-p
Yny1 = ZU(tn) + H(p)f(tn/yn)
op(At)’ . ( r
t t,
+H(p)1“(r+2)w(tn) kgo w( k)f( k yk)An,k
+w(tk1)f(fk1,yk1)32,k), (27)
where
we = (m—k+1)'(n—k+2+r)—(n—k)'(n—k+2+2r),
By, = (n—k'(n—k+1+r)—(n —k+1),

Remark 6.1. The numerical scheme given in (27) covers the numerical method of Hattaf et al. [18] when
g = 6 =1, Toufik and Atangana [19] when w(t) =1, q = 6 = 1 and r = p, as well as the recent numerical
scheme presented in [20] when q = 1 and § = In(p) with p > 0.

For g # 1, Eq. (21) becomes

vy = W 2t [0 e ()

+m /at(t - T)’qW(T)f(TfV<T))dT] '

Thus,

_ y(a)w(a) 2-p—q ay
) = e T (T =g Dy (vt =0 et

5.”!’5 - /tk“ r— ]
o B b1 — Tg(T, dart|.
I"(r q 1) k_;o fk ( n+1 T) g(T y(T)) T

Similarly, we obtain the following scheme for the case q # 1:

_ yow(a)  (2-p—g)(An1 z
Yl = z(:)(tn) +H(p+q—1)w(tn)[ r(3— Z( ) (e ye) A

1) Ar) LG r_
+w(te—1)f (b-1, Yi-1) Z,k>+ (qu;+3 Z( )f (b ye) AL

+w(te—1) f (t—1, Y1) B,, kqﬂﬂ- (28)
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To illustrate our numerical scheme, we consider the following FDE with the mixed fractional

derivative: )
pLr — 2t
{ Da,w,éy(t) = t?e 1, (29)
y(0) = 0.
Let w(t) = e~. By applying the fractional integral to both sides of (29) and using Theorem 5.3, we
obtain the exact solution of (29), which is given by

2pot”

_d—p _
V0= () s

H(p)

Now, we apply the developed numerical scheme for the case g = 1 presented in (27) to approximate
the solution of (29). For all numerical simulations, we choose the normalisation function as follows

(30)

p
H(p)=1-p+ .
I'(p)
The comparaison between the exact and approximate solutions of (29) with the corresponding
absolute errors is visualized in Figure 1 for different values of At, p = 0.7, r = 0.8 and § = 2.5.
Furthermore, Table 1 presents the maximum error for numerous values of At.

(31)

At=0.1
1.2 0.1
1
=== Approximate o 0.08
0.8 e
()
_ 06 2006
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Figure 1. The exact and numerical solutions of (29) with the corresponding absolute errors for different

values of At.
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Table 1. The maximum error corresponding to different values of At with p = 0.7, r = 0.8 and 6 = 2.5.

Discretization step (At) Error
0.1 8.6991 x 1072
0.01 8.5373 x 1073
0.001 8.5204 x 10~4

From Figure 1, we notice that the developed numerical scheme gives a very good agreement
between the exact and approximate solutions for different values of the discretization step At. Also,
Table 1 shows that the convergence of the numerical approximation depends on the discretization step
At. By comparing the exact and approximate solutions, we deduce that the new developed numerical
scheme is very effective and rapidly converges to the exact solution.

7. Application to computational biology

Computational biology is a branch of biology used mathematical modeling and computational
simulations in order to understand biological systems and relationships. Now, consider the following
FDE system describing the evolution of cell population in human body:

DYAN(E) = A — dN(b), (32)

where N(t) is the total cell population produced at rate A and die naturally at rate d. Applying Laplace
transform to (32), we get

L{w( DN} = AL{w(t)} — dL{w(t)N(t)}.

According Theorem 3.2, we have

~ H(p)w(0)N(0)s"! A1 — p)sP + pAs
LN = (50 T a1 — )l 1 dps T N(p) +d(1—p)ls + dps~ )
Then
LLwON(D}(s) = TPRONOSTE | AQ =) +pAS )

aps’ +dpé aps’ +dpé
where a, = H(p) +d(1 — p). Hence,

H(p)w(0)N(0) 51 AM1—p) s

clun)e) = HOGIRD S s w0
’;t‘ssr:dfgz{wu)}@)
_ HBONO) 5 )
A (- ) e )+ ()
GGE(- ) o)

Thus,
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N = HORONO) dpdyy AOp)p s
ap ap ap ap
A1 = p)w(0) dpé . _Ad  dps,
+ a E( . t) 77 Er( . ) s« w(t).
On the other hand, we have
iEr( - @tr) «w(t) = E (— @tr)w(O) —w(t)+E(— @t’) x ' (t).
dt ap ap ap
This leads to
_ A H(p)w(0) A\ dpé . AH(p) . dpé .
N(t) = i a,0(t) (N(0) d)Er( . t) dayo(t) Ei( 2 ) = w' (). (33)
When the weight function is constant, Eq. (33) becomes
_ A Hpw(©) _Mp (9P,
N(t) = 7 ayw0(D) (N(O) d)Er( » t ) (34)

For liver cells also called hepatocytes, A = 5.04 & 0.71 x 10° cell/ml/day [23] and d = 0.0039
day~! [24]. Figure 1 shows the impact of order p on dynamical behavior of the solutions of (32) with
two initial conditions N(0) = 1.1 x 108 and N(0) = 1.5 x 10® cells/ml, for 6 = 1 and r = 0.95.

Now, we investigate the impact of the parameter p on the dynamics of (32) with p = 0.8 and
r = 0.95. Figure 2 demonstrates this impact.
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0 500 1000 1500 2000 2500 3000 3500 4000
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Figure 2. Solution of (32) with two initial conditions for 6 = 1, r = 0.95 and different values of p.
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Figure 3. Impact of the parameter J on the dynamics of (32) with p = 0.8 and r = 0.95.
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