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Abstract: This study develops a new definition of fractional derivative that mixes the definitions of

fractional derivatives with singular and non-singular kernels. Such developed definition encompasses

many types of fractional derivatives, such as the Riemann-Liouville and Caputo fractional derivatives

for singular kernel type as well as the Caputo-Fabrizio, the Atangana-Baleanu and the generalized

Hattaf fractional derivatives for non-singular kernel type. The associate fractional integral of the

new mixed fractional derivative is rigorously introduced. Furthermore, newly numerical scheme is

developed to approximate the solutions of a class of fractional differential equations (FDEs) involving

the mixed fractional derivative. Finally, an application to computational biology is presented.

Keywords: Fractional operators; singular and non-singular kernels; Laplace transform; numerical

method

1. Introduction

In recent years, fractional mathematical modeling involving nonlocal fractional derivatives plays a

robust tool and constitutes a new resource to capture the dynamics of complex systems having memory

effects or hereditary characteristics. Such systems arising from various fields including physics, fluid

mechanics, material science, signal processing, engineering, chemistry, biology, medicine, finance,

social sciences, economics and ecology.

In the literature, there are two main types of nonlocal fractional derivatives. The first named

the fractional derivatives with singular kernels like Riemann-Liouville fractional derivative [1,2] and

Caputo fractional derivative which was introduced by Caputo in 1967 [3] to find the analytic expression

for a linear dissipative mechanism whose quality factor (Q) is almost frequency independent over

large frequency ranges. The second ones have non-singular kernels such as the Caputo-Fabrizio (CF)

derivative [4] introduced by Caputo and Fabrizio in 2015 to avoid the singularity existing in [3]. In

2016, Atangana and Baleanu [5] proposed a fractional derivative to model the flow of heat transfer

through a material with different scale or heterogeneous. In 2020, Al-Refai [6] presented a weighted

fractional derivative based on Atangana-Baleanu (AB) fractional derivative [5]. By means of the

Laplace transform, he solved an associated linear fractional differential equation.

Recently, a new generalized Hattaf fractional (GHF) derivative with non-singular kernel has been

introduced in [7] to cover the CF [4], the AB [5] and the weighted AB [6] fractional derivatives. A new

class of fractal-fractional derivatives was derived from the GHF derivative and the new generalized

fractal derivative [8] that covers the Hausdorff fractal derivative [9] used to model the anomalous

diffusion process. Furthermore, the new GHF derivative was used by many researchers to describe the

dynamics of various phenomena arising from several areas of science and engineering [10–14].

The first aim of the present paper is to introduce a new definition of nonlocal fractional derivative

that includes and generalizes numerous fractional derivatives with singular and non-singular kernels

such as Riemann-Liouville [1,2], Caputo [3], CF [4], AB [5] and the weighted AB [6] fractional

derivatives. The new introduced definition also includes the GHF derivative [7], the power fractional
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derivative [15], as well as the new fractional derivative with Mittag-Leffler kernel of two parameters

intoduced in [16] and applied to thermal science.

On the other hand, most fractional differential equations (FDEs) involving nonlocal fractional

derivatives are complex and cannot solved analytically. For this reason, various numerical methods

have been proposed to approximate the solutions of such FDEs. For instance, a numerical method

that recovers the classical Euler’s scheme for ordinary differential equations (ODEs) was introduced

in [17] to approximate the solutions of FDEs with GHF derivative. Another numerical method for GHF

derivative was developed in [18] to solve numerically nonlinear biological systems of FDEs arising

from virology.

The second aim of this paper is to develop a numerical method to approximate the solutions

of FDEs with the new mixed fractional derivative mentioned in the first objective. The developed

numerical method includes the three recent numerical schemes presented in [18–20] and it is based on

Lagrange polynomial interpolation.

The remainder of the present paper is organized as follows. Section 2 defines the new mixed

fractional derivative in both Caputo and Riemann-Liouville senses and presents the particular cases

of such mixed fractional derivative available in the previous studies. Section 3 deals with Laplace

transform of the new mixed fractional derivative. Section 4 gives the fractional integral associated to

the new mixed fractional derivative and its special cases. Section 5 establishes new important formulas

and properties for the new differential and integral operators. Furthermore, Section 6 is devoted

to the new developed numerical method. Finally, Section 8 ends the paper with an application to

computational biology.

2. The new mixed fractional derivative

This section defines the new mixed fractional derivative in the sense of Caputo and

Riemann-Liouville.

Definition 2.1. Let (p, q) ∈ [0, 1]2, r, m > 0 and u ∈ H1(a, b). The mixed fractional derivative of the function

u(t) of order p in Caputo sense with respect to the weight function w(t) is given as follows:

CD
p,q,r,m
a,t,w,δ u(t) =

H(p + q − 1)

2 − p − q

1

w(t)

∫ t

a
(t − τ)q−1Er,q[−δµp,q(t − τ)m]

d

dτ
(wu)(τ)dτ, (1)

where δ ∈ R
∗, w ∈ C1(a, b), w, w′

> 0 on [a,b], H(.) is a normalization function such that H(0) = H(1) = 1,

µp,q =
p + q − 1

2 − p − q
and Er,q(t) =

+∞

∑
k=0

tk

Γ(rk + q)
is the Wiman function [21] called also Mittag-Leffler function

with two parameters r and q.

Definition 2.1 includes several existing fractional derivatives with singular and non-singular

kernels. For instance,

1. When q = 1 − p and w(t) = 1, we get the Caputo fractional derivative [3] with singular kernel

given by
CD

p,1−p,r,m
a,t,1,δ u(t) =

1

Γ(1 − p)

∫ t

a
(t − τ)−pu′(τ)dτ.

2. When q = r = m = δ = 1 and w(t) = 1, we obtain the CF fractional derivative [4] with

non-singular given by

CD
p,1,1,1
a,t,1,1 u(t) =

H(p)

1 − p

∫ t

a
exp[−µp,1(t − τ)m]u′(τ)dτ,

where µp,1 = p
1−p .

3. When q = δ = 1, r = m = p and w(t) = 1, we get the AB fractional derivative [5] given by

CD
p,1,p,p
a,t,1,1 u(t) =

H(p)

1 − p

∫ t

a
Ep[−µp,1(t − τ)p]u′(τ)dτ.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2023                   doi:10.20944/preprints202311.0242.v1

https://doi.org/10.20944/preprints202311.0242.v1


3 of 14

4. When q = δ = 1 and r = m = p, we find the weighted AB fractional derivative [6] given by

CD
p,1,p,p
a,t,w,1 u(t) =

H(p)

1 − p

1

w(t)

∫ t

a
Ep[−µp,1(t − τ)p]

d

dτ
(wu)(τ)dτ.

5. When q = δ = 1, we obtain the GHF derivative [7] given by

CD
p,1,r,m
a,t,w,1 u(t) =

H(p)

1 − p

1

w(t)

∫ t

a
Er[−µp,1(t − τ)m]

d

dτ
(wu)(τ)dτ.

6. When q = 1, m = r and δ = ln( p̄) (with p̄ > 0), we get the power fractional derivative [15] given

by
CD

p,1,r,r

a,t,w,ln( p̄)
u(t) =

H(p)

1 − p

1

w(t)

∫ t

a
Er[− ln( p̄)µp,1(t − τ)r]

d

dτ
(wu)(τ)dτ.

7. When δ = 1, m = r = p and w(t) = 1, we obtain the fractional derivative introduced in [16] given

by

CD
p,q,p,p
a,t,1,1 u(t) =

H(p + q − 1)

2 − p − q

∫ t

a
(t − τ)q−1Ep,q[−µp,q(t − τ)p]u′(τ)dτ.

Now, we define the new mixed fractional derivative in Riemann-Liouville sense.

Definition 2.2. Let (p, q) ∈ [0, 1]2, r, m > 0 and u ∈ H1(a, b). The mixed fractional derivative of the function

u(t) of order p in Riemann-Liouville sense with respect to the weight function w(t) is given as follows:

RD
p,q,r,m
a,t,w,δ u(t) =

H(p + q − 1)

2 − p − q

1

w(t)

d

dt

∫ t

a
(t − τ)q−1Er,q[−δµp,q(t − τ)m]w(τ)u(τ)dτ. (2)

Obviously, when q = 1 − p and w(t) = 1, we obtain the Riemann-Liouville fractional

derivative [1,2] with singular kernel. In addition, we have the following result.

Theorem 2.3. Let wu be an analytic function. Then

RD
p,q,r,m
a,t,w,δ u(t) = CD

p,q,r,m
a,t,w,δ u(t) +

H(p + q − 1)(t − a)q−1

(2 − p − q)w(t)
Er,q[−δµp,q(t − a)m](wu)(a). (3)

Proof. We have wu is an analytic function. Then (wu)(τ) =
+∞

∑
n=0

(w f )(n)(t)

n!
(τ − t)n and

RD
p,q,r,m
a,t,w,δ u(t) =

H(p + q − 1)

(2 − p − q)w(t)

d

dt

+∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n)(t)

n!Γ(rk + q)

∫ t

a
(t − τ)mk+n+q−1dτ

=
H(p + q − 1)

(2 − p − q)w(t)

d

dt

+∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n)(t)(t − a)mk+n+q

n!Γ(rk + q)(mk + n + q)

=
H(p + q − 1)

(2 − p − q)w(t)

[ +∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n+1)(t)(t − a)mk+n+q

n!Γ(rk + q)(mk + n + q)

+
+∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k

n!Γ(rk + q)
(wu)(n)(t)(t − a)mk+n+q−1

]

=
H(p + q − 1)

(2 − p − q)w(t)

[ +∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n+1)(t)

n!Γ(rk + q)

∫ t

a
(t − τ)mk+n+q−1dτ

+
+∞

∑
n=0

(−1)n

n!
(wu)(n)(t)(t − a)n+q−1

+∞

∑
k=0

(−δµp,q)k

Γ(rk + q)
(t − a)mk

]

= CD
p,q,r,m
a,t,w,δ u(t) +

H(p + q − 1)

(2 − p − q)w(t)
(t − a)q−1Er,q[−δµp,q(t − a)m](wu)(a).
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This ends the proof.

Theorem 2.3 extends the results in Theorem 1 of [7] for q = δ = 1 and in Theorem 4.2 of [16] for

δ = 1, m = r = p and w(t) = 1.

3. Laplace transform of the new mixed fractional derivative

In this section, we first need the following result.

Lemma 3.1. The Laplace transform of tq−1Er,q(−δµp,qtm) is given by

L{tq−1Er,q(−δµp,qtm)}(s) =
1

sq

+∞

∑
k=0

(

−δµp,q

sm

)k
Γ(mk + q)

Γ(rk + q)
. (4)

If m = r, then

L{tq−1Er,q(−δµp,qtr)}(s) =
sr−q

sr + δµp,q
,
∣

∣

δµp,q

sm

∣

∣ < 1. (5)

Proof. According to the definition of the Wiman function, we get

L{tq−1Er,q(−δµp,qtm)}(s) = L

{ +∞

∑
k=0

(−δµp,q)k

Γ(rk + q)
tmk+q−1

}

(s)

=
+∞

∑
k=0

(−δµp,q)k

Γ(rk + q)
L

{

tmk+q−1

}

(s)

=
1

sq

+∞

∑
k=0

(

−δµp,q

sm

)k
Γ(mk + q)

Γ(rk + q)
.

In particular, if m = r, then

L{tq−1Er,q(−δµp,qtr)}(s) =
sr−q

sr + δµp,q
,
∣

∣

δµp,q

sm

∣

∣ < 1.

This completes the proof.

By a simple application of Lemma 3.1, we obtain the following theorem.

Theorem 3.2.

(i) The Laplace transform of w(t)CD
p,q,r,m
0,t,w,δ u(t) is given by

L{w(t)CD
p,q,r,m
0,t,w,δ u(t)} =

H(p + q − 1)[sL{w(t)u(t)} − (wu)(0)]

(2 − p − q)sq

+∞

∑
k=0

(

−δµp,q

sm

)k
Γ(mk + q)

Γ(rk + q)
. (6)

In particular, we have

L{w(t)CD
p,q,r,r
0,t,w,δu(t)} =

H(p + q − 1)

2 − p − q

sr−q+1L{w(t)u(t)} − sr−qw(0)u(0)

sr + δµp,q
. (7)

(ii) The Laplace transform of w(t)RD
p,q,r,m
0,t,w,δ u(t) is given by

L{w(t)RD
p,q,r,m
0,t,w,δ u(t)} =

H(p + q − 1))

(2 − p − q)sq−1
L{w(t)u(t)}

+∞

∑
k=0

(

−δµp,q

sm

)k
Γ(mk + q)

Γ(rk + q)
. (8)
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In particular, we have

L{w(t)RD
p,q,r,r
0,t,w,δu(t)} =

H(p + q − 1)

2 − p − q

sr−q+1L{w(t)u(t)}

sr + δµp,q
. (9)

Remark 3.3. Lemma 3.1 and Theorem 3.2 extend the results presented in [7] for the new GHF derivative, it

suffices to take q = δ = 1.

4. The associate fractional integral

In this section, we define the fractional integral associated to the new mixed fractional derivative.

First, we consider the following fractional differential equation:

RD
p,q,r,r
0,t,w,δv(t) = u(t). (10)

Lemma 4.1. Eq. (10) has a unique solution given by

v(t) =







2−p−q
H(p+q−1)

[

RLI
1−q
a,w u(t) + δµp,q

RLI
1+r−q
a,w u(t)

]

, if q 6= 1;
1−p
H(p)

u(t) + δp
H(p)

RLI r
a,wu(t), if q = 1,

(11)

where RLIα
a,w is the standard weighted Riemann-Liouville fractional integral of order α given by

RLIα
a,wu(t) =

1

Γ(α)

1

w(t)

∫ t

a
(t − τ)α−1w(τ)u(τ)dτ. (12)

Proof. From (10), we have

w(t)RD
p,q,r,r
0,t,w,δv(t) = w(t)u(t).

By applying Theorem 3.2, we get

L{w(t)v(t)}(s) =
2 − p − q

H(p + q − 1)

1

s1−q
L{w(t)u(t)}(s) +

2 − p − q

H(p + q − 1)

δµp,q

sr−q+1
L{w(t)u(t)}(s).

• When q = 1, we have

L{w(t)v(t)}(s) =
1 − p

H(p)
L{w(t)u(t)}(s) +

1 − p

H(p)

δµp,1

sr
L{w(t)u(t)}(s)

=
1 − p

H(p)
L{w(t)u(t)}(s) +

1 − p

H(p)

δµp,1

Γ(r)
L{tr−1 ∗ (wu)(t)}(s).

By taking the inverse Laplace, we get

w(t)v(t) =
1 − p

H(p)
w(t)u(t) +

1 − p

H(p)

δµp,1

Γ(r)

(

tr−1 ∗ (wu)(t)
)

.

Hence,

v(t) =
1 − p

H(p)
u(t) +

δp

H(p)Γ(r)

1

w(t)

∫ t

a
(t − τ)r−1w(τ)u(τ)dτ. (13)

• When q 6= 1, we have

L{w(t)v(t)}(s) =
2 − p − q

H(p + q − 1)Γ(1 − q)
L{t−q ∗ w(t)u(t)}(s)

+
2 − p − q

H(p + q − 1)Γ(r − q + 1)
L{tr−q ∗ (wu)(t)}(s).
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By passage to the inverse Laplace, we obtain

w(t)v(t) =
2 − p − q

H(p + q − 1)Γ(1 − q)

(

t−q ∗ w(t)u(t)
)

+
2 − p − q

H(p + q − 1)Γ(r − q + 1)

(

tr−q ∗ (wu)(t)
)

,

which leads to

v(t) =
2 − p − q

H(p + q − 1)

[

RLI
1−q
a,w u(t) + δµp,q

RLI
1+r−q
a,w u(t)

]

. (14)

This completes the proof.

Definition 4.2. If m = r, then the fractional integral associated to the new mixed fractional derivative is defined

as follows

I
p,q,r
a,t,w,δu(t) =







2−p−q
H(p+q−1)

[

RLI
1−q
a,w u(t) + δµp,q

RLI
1+r−q
a,w u(t)

]

, if q 6= 1;
1−p
H(p)

u(t) + δp
H(p)

RLI r
a,wu(t), if q = 1.

(15)

Remark 4.3. The associate integral defined above includes a variety of fractional integral operators. For

instance,

(i) If δ = 1, r = p and w(t) = 1, then (15) reduced to the new fractional integral presented in [16].
(ii) If q = δ = 1, then (15) reduced to the new GHF integral introduced in [7] that includes the

Atangana-Baleanu fractional integral [5] and the weighted Atangana-Baleanu fractional integral [6].
(iii) If p = q = 1, then (15) reduced to the standard weighted Riemann-Liouville fractional integral of order r

and to ordinary integral when r = 1 and w(t) = 1.

5. Fondamental properties of the new differential and integral operators

In this section, we establish new important formulas and properties for the new differential and

integral operators.

For simplicity, we denote CD
p,q,r,r
a,t,w,δ by D

p,q,r
a,w,δ and I

p,q,r
a,t,w,δ by I

p,q,r
a,w,δ.

Lemma 5.1. The mixed fractional derivative D
p,q,r
a,w,δ can be expressed as follows:

D
p,q,r
a,w,δu(t) =

H(p + q − 1)

2 − p − q

+∞

∑
k=0

(−δµp,q)
k RLI

kr+q
a,w

(

(wu)′

w

)

(t). (16)

Proof. Since the Mittag-Leffler function Ep,q(t) is an entire function of t, then D
p,q,r
a,w,δ can be expressed

as follows:

D
p,q,r
a,w,δu(t) =

H(p + q − 1)

2 − p − q

1

w(t)

+∞

∑
k=0

(−δµp,q)k

Γ(rk + q)

∫ t

a
(t − τ)rk+q−1(wu)′(τ)dτ

=
H(p + q − 1)

2 − p − q

+∞

∑
k=0

(−δµp,q)
k 1

Γ(rk + q)

1

w(t)

∫ t

a
(t − τ)rk+q−1(wu)′(τ)dτ

=
H(p + q − 1)

2 − p − q

+∞

∑
k=0

(−δµp,q)
k RLI

kr+q
a,w

(

(wu)′

w

)

(t).

This ends the proof.

Remark 5.2. Lemma 5.1 extends the recent result established by Zitane and Torres in Lemma 3 of [20].

Theorem 5.3. Let (p, q) ∈ [0, 1]2, r > 0, δ ∈ R
∗ and u ∈ H1(a, b). Then, we have the following property:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2023                   doi:10.20944/preprints202311.0242.v1

https://doi.org/10.20944/preprints202311.0242.v1


7 of 14

I
p,q,r
a,w,δ

(

D
p,q,r
a,w,δu

)

(t) = u(t)−
w(a)u(a)

w(t)
. (17)

Proof. When q 6= 1, we have

I
p,q,r
a,w,δ

(

D
p,q,r
a,w,δu

)

(t) =
2 − p − q

H(p + q − 1)

[

RLI
1−q
a,w

(

D
p,q,r
a,w,δu

)

(t) + δµp,q
RLI

1+r−q
a,w

(

D
p,q,r
a,w,δu

)

(t)
]

.

By applying Lemma 5.1, we get

I
p,q,r
a,w,δ

(

D
p,q,r
a,w,δu

)

(t) = RLI
1−q
a,w

[

+∞

∑
k=0

(−δµp,q)
k RLI

kr+q
a,w

(

(wu)′

w

)

(t)
]

+δµp,q
RLI

1+r−q
a,w

[

+∞

∑
k=0

(−δµp,q)
k RLI

kr+q
a,w

(

(wu)′

w

)

(t)
]

=
+∞

∑
k=0

(−δµp,q)
k RLIkr+1

a,w

(

(wu)′

w

)

(t)−
+∞

∑
k=1

(−δµp,q)
k RLIkr+1

a,w

(

(wu)′

w

)

(t)

= RLI1
a,w

(

(wu)′

w

)

(t)

=
1

w(t)

∫ t

a
(wu)′(τ)dτ = u(t)−

w(a)u(a)

w(t)
.

For q = 1, we have

I
p,1,r
a,w,δ

(

D
p,1,r
a,w,δu

)

(t) =
1 − p

H(p)
(D

p,q,r
a,w,δu

)

(t) +
δp

H(p)
RLI r

a,w

(

D
p,q,r
a,w,δu

)

(t)

=
+∞

∑
k=0

(−δµp,1)
k RLIkr+1

a,w

(

(wu)′

w

)

(t)

+δµp,1
RLI r

a,w

[

+∞

∑
k=0

(−δµp,1)
k RLIkr+1

a,w

(

(wu)′

w

)

(t)
]

=
+∞

∑
k=0

(−δµp,1)
k RLIkr+1

a,w

(

(wu)′

w

)

(t)−
+∞

∑
k=1

(−δµp,1)
k RLIkr+1

a,w

(

(wu)′

w

)

(t)

= RLI1
a,w

(

(wu)′

w

)

(t)

= u(t)−
w(a)u(a)

w(t)
.

Hence, the proof is completed.

It is obvious that when w(t) = 1, we obtain the following first corollary of Theorem 5.3 that

extends the Newton-Leibniz formula given in [22].

Corollary 5.4. The new mixed fractional derivative and integral satisfy the Newton-Leibniz formula. In other

words, we have

I
p,q,r
a,1,δ

(

D
p,q,r
a,1,δ u

)

(t) = u(t)− u(a). (18)

Clearly, D
p,q,r
a,1,δ(c) = 0 for all constant function u(t) = c. Moreover, we have the following result.

Corollary 5.5. Let u be a solution of the following fractional differential equation

D
p,q,r
a,1,δ u(t) = 0. (19)

Then the function u is a constant function.
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Proof. It follows from (18) that u(t) = u(a). This proves that u is a constant function.

6. Numerical scheme

In this section, we first develop a numerical method to approximate the solution of the following

FDE with the new mixed fractional derivative given by

D
p,q,r
a,w,δy(t) = f

(

t, y(t)
)

, (20)

subject to the given initial condition
y(a) = y0.

From Theorem 5.3, Eq. (20) can be converted into the following fractional integral equation:

y(t)−
y(a)w(a)

w(t)
= I

p,q,r
a,w,δ f

(

t, y(t)
)

. (21)

So, we discuss to cases. When q = 1, we have

y(t)−
y(a)w(a)

w(t)
=

1 − p

H(p)
f
(

t, y(t)
)

+
δp

H(p)
RLI r

a,w f
(

t, y(t)
)

,

which implies that

y(t) =
y(a)w(a)

w(t)
+

1 − p

H(p)
f
(

t, y(t)
)

+
δp

H(p)Γ(r)

1

w(t)

∫ t

a
(t − τ)r−1w(τ) f

(

τ, y(τ)
)

dτ. (22)

Let ∆t be the discretization step and tn = a + n∆t, with n ∈ IN. We have

y(tn+1) =
y0w(a)

w(tn)
+

1 − p

H(p)
f
(

tn, y(tn)
)

+
δp

H(p)Γ(r)w(tn)

∫ tn+1

a
(tn+1 − τ)r−1w(τ) f

(

τ, y(τ)
)

dτ.

Then

y(tn+1) =
y0w(a)

w(tn)
+

1 − p

H(p)
f
(

tn, y(tn)
)

+
δp

H(p)Γ(r)w(tn)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)r−1g
(

τ, y(τ)
)

dτ, (23)

where g
(

τ, y(τ)
)

= w(τ) f
(

τ, y(τ)
)

. The function g can be approximated over [tk, tk+1] by means of

the Lagrange polynomial interpolation as follows:

Pk(τ) =
τ − tk

tk−1 − tk
g
(

tk−1, y(tk−1)
)

+
τ − tk−1

tk − tk−1
g
(

tk, y(tk)
)

,

≃
g(tk−1, yk−1)

∆t
(tk − τ) +

g(tk, yk)

∆t
(τ − tk−1). (24)

Hence,

y(tn+1) =
y0w(0)

w(tn)
+

1 − p

H(p)
f
(

tn, yn

)

+
δp

H(p)Γ(r)w(tn)

n

∑
k=0

[

g
(

tk, yk

)

∆t

∫ tk+1

tk

(

τ − tk−1

)(

tn+1 − τ
)r−1

dτ

+
g
(

tk−1, xk−1

)

∆t

∫ tk+1

tk

(

tk − τ
)(

tn+1 − τ
)r−1

dτ

]

.
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Since

∫ tk+1

tk

(tn+1 − τ)r−1(τ − tk−1)dτ =
(∆t)r+1

r(r + 1)

[

(n − k + 1)r(n − k + 2 + r)

−(n − k)r(n − k + 2 + 2r)
]

, (25)

and

∫ tk+1

tk

(tn+1 − τ)r−1(tk − τ)dτ =
(∆t)r+1

r(r + 1)

[

(n − k)r(n − k + 1 + r)

−(n − k + 1)r+1
]

, (26)

we have the following numerical scheme for the case q = 1:

yn+1 =
y0w(0)

w(tn)
+

1 − p

H(p)
f
(

tn, yn

)

+
δp(∆t)r

H(p)Γ(r + 2)w(tn)

n

∑
k=0

(

w(tk) f
(

tk, yk

)

Ar
n,k

+w(tk−1) f
(

tk−1, yk−1

)

Br
n,k

)

, (27)

where

Ar
n,k = (n − k + 1)r(n − k + 2 + r)− (n − k)r(n − k + 2 + 2r),

Br
n,k = (n − k)r(n − k + 1 + r)− (n − k + 1)r+1.

Remark 6.1. The numerical scheme given in (27) covers the numerical method of Hattaf et al. [18] when

q = δ = 1, Toufik and Atangana [19] when w(t) = 1, q = δ = 1 and r = p, as well as the recent numerical

scheme presented in [20] when q = 1 and δ = ln( p̄) with p̄ > 0.

For q 6= 1, Eq. (21) becomes

y(t) =
y(a)w(a)

w(t)
+

2 − p − q

H(p + q − 1)w(t)

[

1

Γ(1 − q)

∫ t

a
(t − τ)−qw(τ) f

(

τ, y(τ)
)

dτ

+
δµp,q

Γ(r − q + 1)

∫ t

a
(t − τ)r−qw(τ) f

(

τ, y(τ)
)

dτ

]

.

Thus,

y(tn+1) =
y(a)w(a)

w(tn)
+

2 − p − q

H(p + q − 1)w(tn)

[

1

Γ(1 − q)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)−qg
(

τ, y(τ)
)

dτ

+
δµp,q

Γ(r − q + 1)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)r−qg
(

τ, y(τ)
)

dτ

]

.

Similarly, we obtain the following scheme for the case q 6= 1:

yn+1 =
y0w(a)

w(tn)
+

(2 − p − q)(∆t)1−q

H(p + q − 1)w(tn)

[

1

Γ(3 − q)

n

∑
k=0

(

w(tk) f
(

tk, yk

)

Ar
n,k

+w(tk−1) f
(

tk−1, yk−1

)

Br
n,k

)

+
δµp,q(∆t)r

Γ(r − q + 3)

n

∑
k=0

(

w(tk) f
(

tk, yk

)

A
r−q+1
n,k

+w(tk−1) f
(

tk−1, yk−1

)

B
r−q+1
n,k

)]

. (28)
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To illustrate our numerical scheme, we consider the following FDE with the mixed fractional

derivative:
{

D
p,1,r
a,w,δy(t) = t2e−t,

y(0) = 0.
(29)

Let w(t) = e−t. By applying the fractional integral to both sides of (29) and using Theorem 5.3, we

obtain the exact solution of (29), which is given by

y(t) =
(1 − p

H(p)
+

2pδtr

H(p)Γ(r + 3)

)

t2e−t. (30)

Now, we apply the developed numerical scheme for the case q = 1 presented in (27) to approximate

the solution of (29). For all numerical simulations, we choose the normalisation function as follows

H(p) = 1 − p +
p

Γ(p)
. (31)

The comparaison between the exact and approximate solutions of (29) with the corresponding

absolute errors is visualized in Figure 1 for different values of ∆t, p = 0.7, r = 0.8 and δ = 2.5.

Furthermore, Table 1 presents the maximum error for numerous values of ∆t.
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Figure 1. The exact and numerical solutions of (29) with the corresponding absolute errors for different

values of ∆t.
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Table 1. The maximum error corresponding to different values of ∆t with p = 0.7, r = 0.8 and δ = 2.5.

Discretization step (∆t) Error

0.1 8.6991 × 10−2

0.01 8.5373 × 10−3

0.001 8.5204 × 10−4

From Figure 1, we notice that the developed numerical scheme gives a very good agreement

between the exact and approximate solutions for different values of the discretization step ∆t. Also,

Table 1 shows that the convergence of the numerical approximation depends on the discretization step

∆t. By comparing the exact and approximate solutions, we deduce that the new developed numerical

scheme is very effective and rapidly converges to the exact solution.

7. Application to computational biology

Computational biology is a branch of biology used mathematical modeling and computational

simulations in order to understand biological systems and relationships. Now, consider the following

FDE system describing the evolution of cell population in human body:

D
p,1,r
0,w,δN(t) = λ − dN(t), (32)

where N(t) is the total cell population produced at rate λ and die naturally at rate d. Applying Laplace

transform to (32), we get

L{w(t)D
p,1,r
0,w,δN(t)} = λL{w(t)} − dL{w(t)N(t)}.

According Theorem 3.2, we have

L{w(t)N(t)}(s) =
H(p)w(0)N(0)sr−1

[H(p) + d(1 − p)]sr + dpδ
+

λ(1 − p)sβ + pλδ

[N(p) + d(1 − p)]sr + dpδ
L{w(t)}(s).

Then

L{w(t)N(t)}(s) =
H(p)w(0)N(0)sr−1

apsr + dpδ
+

λ(1 − p)sβ + pλδ

apsr + dpδ
L{w(t)}(s),

where ap = H(p) + d(1 − p). Hence,

L{w(t)N(t)}(s) =
H(p)w(0)N(0)

ap

sr−1

sr + dpδ
ap

+
λ(1 − p)

ap

sr−1

sr + dpδ
aα

sL{w(t)}(s)

+
pλδ

ap

1

sr + dpδ
ap

L{w(t)}(s)

=
H(p)w(0)N(0)

ap
L{Er

(

−
dpδ

ap
tr
)

}

+
λ(1 − p)

ap
L{Er

(

−
dpδ

ap
tr
)

}
(

L{w′(t)}+ w(0)
)

−
λ

d
L{

d

dt
Er

(

−
dpδ

ap
tr
)

}L{w(t)}.

Thus,
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w(t)N(t) =
H(p)w(0)N(0)

ap
Er

(

−
dpδ

ap
tr
)

+
λ(1 − p)

ap
Er

(

−
dpδ

ap
tr
)

∗ w′(t)

+
λ(1 − p)w(0)

ap
Er

(

−
dpδ

ap
tr
)

−
λ

d

d

dt
Er

(

−
dpδ

ap
tr
)

∗ w(t).

On the other hand, we have

d

dt
Er

(

−
dpδ

ap
tr
)

∗ w(t) = Er

(

−
dpδ

ap
tr
)

w(0)− w(t) + Er

(

−
dpδ

ap
tr
)

∗ w′(t).

This leads to

N(t) =
λ

d
+

H(p)w(0)

apw(t)

(

N(0)−
λ

d

)

Er

(

−
dpδ

ap
tr
)

−
λH(p)

dapw(t)
Er

(

−
dpδ

ap
tr
)

∗ w′(t). (33)

When the weight function is constant, Eq. (33) becomes

N(t) =
λ

d
+

H(p)w(0)

apw(t)

(

N(0)−
λ

d

)

Er

(

−
dpδ

ap
tr
)

. (34)

For liver cells also called hepatocytes, λ = 5.04 ± 0.71 × 105 cell/ml/day [23] and d = 0.0039

day−1 [24]. Figure 1 shows the impact of order p on dynamical behavior of the solutions of (32) with

two initial conditions N(0) = 1.1 × 108 and N(0) = 1.5 × 108 cells/ml, for δ = 1 and r = 0.95.

Now, we investigate the impact of the parameter p on the dynamics of (32) with p = 0.8 and

r = 0.95. Figure 2 demonstrates this impact.
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Figure 2. Solution of (32) with two initial conditions for δ = 1, r = 0.95 and different values of p.
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Figure 3. Impact of the parameter δ on the dynamics of (32) with p = 0.8 and r = 0.95.
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