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Abstract: 3D human pose estimation has made significant advancements through the integration
of deep learning techniques. This survey provides a comprehensive review of recent 3D human
pose estimation methods, with a focus on monocular images, videos, and multi-view cameras. Our
approach stands out through a systematic literature review methodology, ensuring an up-to-date
and meticulous overview. Unlike many existing surveys that categorize approaches based on
learning paradigms, our survey offers a fresh perspective, delving deeper into the subject. For
image-based approaches, we not only follow existing categorizations but also introduce and
compare significant 2D models. Additionally, we provide a comparative analysis of these methods,
enhancing the understanding of image-based pose estimation techniques. In the realm of video-based
approaches, we categorize them based on the types of models used to capture inter-frame information.
Furthermore, in the context of multi-person pose estimation, our survey uniquely differentiates
between approaches focusing on relative poses and those addressing absolute poses. Our survey
aims to serve as a pivotal resource for researchers, highlighting state-of-the-art deep learning strategies
and identifying promising directions for future exploration in 3D human pose estimation.

Keywords: 3D human pose estimation; systematic literature survey; deep learning based methods

1. Introduction

Human pose estimation has become a challenging and prominent research that has caught great
attention from the scientific community in the computer vision domain. By knowing the orientation
and overall appearance of a person, we can understand human behavior and recognize activities
within images or videos. This opens up numerous and diverse applications, ranging from gaming
and animation industry, human-robot cooperation, bio-mechanical analysis in medicine, sports fields,
gesture control, autonomous driving [1-4]. The goal is to estimate joints (e.g., elbow, wrist) or parts
location of a human associated with segments in a graphical form (skeleton representation) in order to
characterize the 2D or 3D pose in the corresponding space.

In real-life scenarios, depth estimation becomes crucial for accurate pose estimation. While
2D poses can often be ambiguous, leading to similar appearances for different poses when viewed
from different camera angles, 3D information helps resolve such ambiguities. Multiple approaches
have been explored to deduce 3D human poses, including using depth images (RGB-D) that provide
explicit 3D information, or leveraging multiple RGB images from different views to address occlusion
challenges. However, the most commonly available input data is monocular RGB images, which pose
challenges due to limited data availability, especially for uncontrolled or real-world images.

Early studies on 3D human body representation from image measurements date back to the
1970s [5-8]. These early works often modeled the human body as a collection of segments defined by
overlapping spheres. In the 1980s, [9] inferred 3D articulations by sequentially determining the 3D
coordinates of joints based on their 2D projections. Other approaches relied on engineering features,
skeletal hypotheses, joint mobility assumptions [10,11], or image descriptors [10,12,13]. For example,
[14] utilized shape contexts, [15] incorporated body part information, and [16] estimated 3D human
positions using Histograms of Oriented Gradients (HOG) feature vectors. Generative models, such as
the pictorial structure model (PSM), have also been widely used for pose estimation. Approaches like
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discretizing the pose space as seen in [17] and employing it as a refinement step, as demonstrated in
[18], showcase their versatility.

In recent years, deep learning paradigms have demonstrated remarkable success across various
domains, including computer vision. Consequently, new methods for 3D human pose estimation
increasingly rely on deep neural networks [19-21].

In the dynamic field of 3D human pose estimation, our study is distinguished by the use of a
systematic literature review methodology to capture the latest advances in the field. In particular,
we introduce a new taxonomy in addition to existing taxonomies that take into account two aspects:
the type of input data and the number of people involved in pose estimation. This innovative
taxonomy encompasses other types and classifies multi-person 3D pose estimation into two categories:
"root-relative” or "absolute", depending on the type of estimation, a unique contribution not found in
previous studies. In addition, we also organize video-based methods in a more comprehensible way
according to their temporal information capture techniques, which improves the comprehensiveness
of our study.

In the subsequent sections, we provide a deep dive into the state-of-the-art techniques, introduce
our unique taxonomy, and shed light on the prevailing challenges and potential future directions in
3D human pose estimation. A roadmap of our survey’s structure and content is illustrated in Figure 1.
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Figure 1. Roadmap of our survey’s structure

2. Previous Surveys

The field of 3D human pose estimation has undergone substantial development, prompting
numerous investigations over the years [22-30]. Many of these earlier surveys primarily focused on
traditional methodologies based on handcrafted image descriptors.

The first survey on pose estimation, conducted by [22], provided a foundational overview of
human motion capture approaches, which was later updated in [31]. [32] compared early approaches
for 3D human pose estimation and activity recognition within the context of multi-view setups. [29]
reviewed model-based approaches for recovering human pose in both 2D and 3D spaces, categorizing
them based on appearance, viewpoint, spatial relationships, temporal consistency, and behavior. [24]
explored single-view and multi-view human pose estimation, incorporating various input modalities
such as images, videos, and depth data. In the subsequent year, [33] also published a survey on human
pose estimation. Nevertheless, these surveys, conducted before 2016, predominantly focused on
classical approaches employing handcrafted features and did not delve into deep learning techniques.

Later, [25] introduced methods for estimating human pose from monocular RGB images, including
depth-based techniques. [23] discussed methods for estimating 3D human poses using RGB images
and videos. [34] briefly summarized pose estimation methods as part of their exploration of deep
learning applications.

Since 2019, further studies emerged in this domain. [26] presented a comprehensive overview
of 2D human pose estimation approaches rooted in deep learning, categorizing them based on
single-person and multi-person estimation methods. [35] provided an overview of contemporary
2D pose estimation models, with a focus on architecture backbones, loss functions, and limitations.
Multi-person pose estimation methods were the subject of investigation in [36,37], while [38] delved
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into deep models for 3D human pose estimation and offered comparisons of their strengths and
weaknesses. Furthermore, [39] explored and evaluated six 3D reconstruction methods for monocular
image sequences, with an emphasis on recovering 3D human pose from 2D joint locations. A
comprehensive review until 2020 was presented by [40], categorizing approaches into 2D and 3D
scenarios and further sub-categorizing 2D methods based on the number of individuals involved.

While several studies have been conducted on human pose estimation, there is currently no survey
based on a systematic selection process. Efforts have been made to develop review methodologies,
such as the selection of academic methods based on their relevance to different application fields
and their performance on popular benchmarks (Desmarais, 2021; De et al., 2021). However, given
the increasing number of publications each year, there is a need for a systematic literature review in
this area. Moreover, the previous surveys, based on our understanding, focus on single-person pose
estimation methods in 3D or multi-person but only in 2D.

Therefore, the goal of this survey is to provide an up-to-date and credible overview of the most
current methods and models for human pose estimation, with a focus on deep learning approaches.
We also cover 3D multi-person poses from monocular images, which we categorize using two types
of estimation: person-centric pose estimation and camera-centric pose estimation. Notably, these
terms are commonly used in 3D estimation but have not been comprehensively addressed in previous
surveys to the best of our knowledge. Within video-based methodologies, we organize the methods
based on the specific models utilized to capture temporal information between successive frames,
highlighting the key distinction among video-based methods. This survey constitutes a comprehensive
study of the domain, encompassing all categories and types to assist researchers in determining the
most suitable category for their specific scenarios.

The next section will describe the search strategy, research questions, and inclusion/exclusion
criteria employed in this survey.

3. Survey Methodology

This section elucidates the methodology used in our systematic review of the most recent
publications focusing on 3D human posture estimation based on deep learning from monocular
cameras.

3.1. Research Questions

Our investigation is oriented by the following research questions (RQ):

* RQ1: What are the primary pipelines and taxonomies utilized in human posture estimation?

* RQ2: What are the known approaches and associated challenges in different scenarios?

* RQ3: Which framework outperforms others in each case, and which techniques are required to
mitigate these challenges?

* RQ4: What are the most widely used public databases and evaluation metrics in the field of 3D
human posture estimation?

* RQ5: What are the current limitations and areas for future improvement in this field?

3.2. Search Strategy

The primary focus of this review is to provide an updated survey on 3D human pose estimation.
In this context, we reviewed papers published from January 2021 to May 2023, adhering to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [41] guidelines for
paper selection to ensure relevant reporting.

The search process involved a manual exploration of specific publications within the field of
human pose estimation, utilizing resources such as arXiv, Google Scholar, IEEE Xplore, ScienceDirect,
Springer Link, and ACM digital libraries. The extraction of relevant papers was conducted on 10 June
2023.
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The survey was further enriched with works published prior to 2021, where we selected the most
renowned and innovative ideas that initiated a technology or a new philosophy in various scenarios to
enhance our study. Additionally, a manual cross-reference search of relevant articles was conducted to
identify other studies not previously discovered.

Further, we included a section on 2D pose estimation, with the criteria for inclusion being the
most commonly used models in the field, and we selected number of papers on multi-view pose
estimation for comparative analysis.

3.3. Inclusion/Exclusion Criteria

In order to ensure the relevance and quality of the references included in this review, we applied
a set of specific filtering criteria. These criteria were designed to help us identify and select the
most pertinent and rigorous academic works in the field of 3D human pose estimation. The criteria
encompassed the following:

¢ Searched and extracted conference proceedings and journal papers containing terms such as "3D

human pose(s) estimation,” "3D multi-person pose(s) estimation," "deep learning,

image(s)/video(s)," or "single-view" in the title, abstract, or keywords.

Included only online papers written in English and open access full texts.

Considered only peer-reviewed articles, which were cross-verified in the SCOPUS database.

Excluded direct duplicates and literature review papers to avoid redundancy.

Prioritized the papers based on relevance and excluded those with weaker or less pertinent

contributions.

¢ Included papers that provide novel methodologies, significant improvements, or substantial
contributions to the field of 3D human pose estimation.

¢ Excluded papers that do not provide sufficient experimental results or lack rigorous
methodological details.

¢ Included a select number of papers on multi-view pose estimation for comparative analysis,
despite the main focus being on monocular pose estimation.

¢ For papers published prior to 2021, we focused on those that presented original ideas or marked
significant improvements in the field.

"o

monocular

3.4. Data Extraction, Analysis, and Synthesis

Initially, we screened the abstracts of the identified papers and retrieved the full texts of those
deemed relevant. We thoroughly read the full texts to identify eligible articles, excluding those that
deviated minimally from the original approaches or state-of-the-art counterparts.

During the data extraction process, we collected key information from the eligible articles, such as
authors, publication year, methodologies, datasets used, evaluation metrics, and results. We organized
the extracted data in a structured manner to facilitate comparison and analysis.

To ensure the quality and reliability of the included studies, we conducted a thorough quality
assessment for each selected paper. This assessment considered factors such as the clarity of the
methodology, experimental setup, and the rigor of the evaluation process. The aim of this assessment
was to ensure that only high-quality and relevant studies were included in the review.

Based on the extracted data and the research questions, we synthesized the findings from the
selected papers and organized them into coherent sections. This synthesis involved summarizing
the main pipelines and taxonomies for human posture estimation, discussing the known approaches
and challenges in different scenarios, and comparing the frameworks used in each case along with
the techniques needed to address specific challenges. Through this data synthesis, we obtained a
comprehensive overview of the current state of 3D human pose estimation by deep learning from
monocular cameras.

In total, 62 papers were selected for this systematic review.These papers were chosen based on
their relevance to the research questions and their contribution to the understanding of human posture
estimation using deep learning approaches from monocular cameras.
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Figure 2. Search and selection processes of the SLR study.

4. Taxonomy of the Survey

3D human pose estimation is a dynamic and diverse field of research in computer vision, enriched
by a variety of specifications and properties that have stimulated the proposal of numerous taxonomy
solutions. These approaches demonstrate considerable variation based on factors such as the type
of input data, the number of individuals targeted, the learning paradigm employed, the specific
pose estimation strategy implemented, and the coordinate system used for results. While many
prior surveys primarily classify methods according to their learning paradigms, whereas our study
structures these methodologies in a way that can better reflect the realistic use cases and practical
considerations inherent in 3D human pose estimation.

Primarily, our categorization begins with the type of input data—monocular images or video, and
multi-view images. Next, we consider the number of individuals involved in the case of monocular
images. For video data, our emphasis shifts towards the type of network used for temporal information
extraction across frames, disregarding the number of individuals (which is addressed similarly to
the monocular image scenario). Lastly, in the multi-view context, we provide a brief description
primarily to draw a contrast with monocular setups, especially concerning the use of world or camera
coordinates.

Thus, we organize the approaches reviewed in this survey into four main categories, each detailed
in its corresponding section:

* 3D single-person pose estimation from monocular images: In this section, we focus on
approaches that aim at estimating the pose of a single person from monocular images. We further
classify this into single-stage and two-stage pipelines, with the latter involving an intermediate
2D human pose estimation step.

¢ 3D multi-Person pose estimation from monocular images: This section broadens our review
to methods designed to estimate the poses of multiple individuals from monocular images. We
differentiate these based on whether they perform relative estimation or absolute pose estimation,
with further subdivisions within absolute estimation into top-down, bottom-up, fusion, and
unified single-stage approaches.

¢ 3D human pose estimation from monocular videos: Transitioning from static images to video
data, we review methods that are designed to estimate poses irrespective of the number of
individuals. We categorize these methods based on the type of deep learning model they use,
such as Long Short-Term Memory (LSTM), Temporal Convolutional Networks (TCN), Graph
Convolutional Networks (GCN), Transformers, or unified frameworks for real-time applications.
A performance and complexity analysis of these methods is also included.

¢ 3D human pose estimation from multi-view cameras: Lastly, we delve into methods that
employ multi-view camera systems for human pose estimation, emphasizing how these methods
exploit the additional depth information obtainable from multiple camera angles.

It’s important to mention that many pose estimation methods use fully supervised learning. But,
gathering large, labeled data-sets with 3D pose details is often difficult and expensive. As a result,
researchers are more and more interested in using self-supervised and weakly-supervised techniques.
These approaches aim to learn 3D pose estimation from single-view images, without needing exact 3D
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details during training. Instead, they might use consistency across multiple views, extract information
from sequential input, or other hints to infer the 3D pose from the data available.

Table 1. Learning Methods

Learning
paradigm

Description

Example in 3D
human pose
estimation

Supervised
Learning

refers to the use of labeled training data where each input sample
(e.g., an image or a video frame) is paired with its corresponding
ground truth 3D pose annotation. Using this labeled data, a
supervised learning algorithm, often a deep neural network, is
trained to learn the correlation between the input data and the
corresponding 3D poses. The training process involves tweaking
the model’s parameters to minimize the difference between the
predicted 3D poses and the ground truth 3D poses. This is
accomplished by defining an appropriate loss function, such as
Mean Squared Error (MSE) or L1 loss.

[42—45]

Semi-supervised
Learning

refers to an algorithm that conducts supervised learning when
only a subset of the input data is labeled. The algorithm utilizes
both labeled and unlabeled data for training the model. The model
is initially trained on the labeled data, whereas the unlabeled
data is employed to regulate the learning process or enhance
generalization.

[46-48]

Weakly-supervisethese methods do not use exact 3D pose annotations; rather, they

Learning

utilize less precise data like 2D joint locations or multi-view
images. The model could be trained using these 2D joint
annotations when direct 3D pose labels aren’t available.
Consequently, the model learns to estimate the 3D human pose
from these 2D joint locations without any direct supervision
related to the 3D poses themselves.

[49-54]

Unsupervised
learning

these algorithms learn from input variables without having any
associated output variables. In the context of 3D human pose
estimation, it doesn’t utilize any 3D data or additional views.
The objective of unsupervised learning is to deduce the 3D
pose structure directly from unlabeled 2D data, without the
necessity for explicit 3D pose annotations. Some methods employ
strategies like structure-from-motion or multi-view geometry,
using multiple 2D views to infer relative 3D poses. Alternatively,
some methods use models such as autoencoders or generative
adversarial networks (GANS) to learn a latent representation of
3D poses.

[55-59]

Self-supervised
learning

it is a specific type of unsupervised learning that makes use of
the inherent structure or information within the data to generate
its own labels. The model produces its own training labels
using the available 2D annotations or certain substitute tasks.
Additionally, some self-supervised methods may employ the
concept of temporal consistency.

[60-68]

In deep learning, although fully supervised learning is widely used, it faces difficulties because
creating data-sets with 3D annotations is complex. Manual annotation is particularly hard. Many 3D
pose data-sets are made using motion capture systems in indoor conditions, making them less useful
in real-world settings. This means fully supervised methods have limited use, especially in practical or
industrial situations.

To address these issues, researchers have explored other learning strategies, such as
semi-supervised learning, weakly supervised learning, and unsupervised or self-supervised learning.
Semi-supervised methods often use only a small amount of annotated data, like 10% of 3D labels,
showing that labeled training data is hard to come by. On the other hand, weakly supervised
methods use existing or easily obtained hints for supervision, without needing exact 3D positions.
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These hints could include matched 2D ground-truth data or camera parameters, among others.
Lastly, unsupervised methods do away with the need for multi-view image data, 3D skeletons,
correspondences between 2D and 3D points, or previously learned 3D priors during training.

5. 3D Single-Person Pose Estimation from Monocular Images

Single-person pose estimation is employed to identify and pinpoint joint coordinates and human
body parts in scenarios where the individual is the primary subject of the 2D image or video frame.
The ultimate goal is to reconstruct the 3D pose of the person. This technique not only yields significant
results on its own, but it also serves as a key component in top-down multi-person estimation methods,
where it is applied to each human bounding box. Despite the potential challenges associated with
single-person pose estimation, it provides superior accuracy and efficiency when analyzing the poses
of individual persons.

Table 2. Overview of Acronyms and Technical Terms

Acronym Meaning Explanation

2D Two-Dimensional Refers to something having width and height but no
depth. In the context of pose estimation, 2D refers to
poses estimated within a two-dimensional space, such
as an image.

3D Three-Dimensional Refers to something having width, height, and depth.
In the context of pose estimation, 3D refers to poses
estimated within a three-dimensional space, providing
a more realistic representation of human poses.

PCA Principal Component Analysis A statistical procedure that uses an orthogonal
transformation to convert a set of observations of
possibly correlated variables into a set of values
of linearly uncorrelated variables called principal
components.

CNN Convolutional Neural Network A type of artificial neural network used in image
recognition and processing that is specifically designed
to process pixel data.

GCN Graph Convolutional Network A type of neural network that operates directly on
graphs and can take into account the structure of the
graph and the attributes of its nodes and edges.

SMPL Skinned Multi-Person Linear model A method for estimating human body shape and pose
from images.

MDNs Mixture Density Networks A type of neural network that can model a conditional
probability distribution over a multi-modal output
space.

IKNet-body Inverse Kinematics Network A type of network used to calculate the angles of

joints in a mechanism (like a robotic arm or a human
skeleton) to achieve a desired pose.

IEF Iterative Error Feedback A method used in machine learning to iteratively
correct the errors made by a model.

HOGs Histogram of Oriented Gradients A feature descriptor used in computer vision and
image processing for the purpose of object detection.

LCN Locally Connected Network A type of neural network where each neuron

is connected to its neighboring neurons, but not
necessarily to all other neurons in the network.

The earliest approaches for 3D human pose estimation from single images [12-14,69-71] were
generally based on discriminative methods and viewed the pose estimation as a regression or a
classification problem. A mapping function is learned from a space of image features, that are
either extracted directly as shape context [14,72], segmentation [13], silhouette [73], HOG [18,74],
SIFT [69], or computed as body part information [15] to the pose in 3D space. This mapping must
be well generalized to accurately estimate a 3D pose from a test image that has never been seen
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before. The outstanding results of deep learning methods in computer vision have made it a general
trend to use deep nets to automatically learn the key information in images. Some papers rely on
supervision learning to directly regress joint locations and predict the 3D pose from 2D monocular
images without intermediate supervision [42,75-78]. In this case, models must be trained using a
3D pose annotated images data-set. For example, Human3.6M [12] and HumanEva-I [79] data-sets
contain images captured in controlled environments using MOCAP systems. Thus, they prevent the
models to generalize well to images in different environments as in the wild. To address this issue,
some approaches use both 2D data-sets in the wild and 3D MOCAP data-sets to guide and improve
the training.

Monocular view is a critical aspect of 3D human pose estimation from monocular images. Unlike
multi-view images or stereo images, which provide additional depth information, monocular images
only provide a single 2D view of the scene. As a result, algorithms must use only the information
contained in that single image to estimate the 3D pose of the human subject. This can be a challenging
task, as the loss of depth information can make accurately estimating the pose more difficult. However,
there are also advantages to using monocular images. For instance, monocular images are often easier
to acquire, requiring only a single camera rather than multiple cameras. Additionally, they can be more
widely used in real-world scenarios, as they do not require specialized equipment or setups. Therefore,
while the lack of depth information in monocular images can pose a challenge, it also provides an
opportunity for researchers to develop more sophisticated algorithms and techniques for accurately
estimating the 3D pose of human subjects from single-camera images.

There are two primary groups of techniques for 3D human pose estimation: direct methods and
inverse kinematics-based methods. Direct methods obtain 3D poses from input data (such as images,
videos, or depth maps) without explicitly modeling the human body’s kinematic structure. In contrast,
inverse kinematics-based methods use a pre-defined skeletal model to estimate 3D poses by optimizing
a cost function that enforces kinematic constraints. These methods typically employ 2D estimator
networks at an intermediate stage. This section focuses on methods based on deep neural networks
for 3D pose estimation.

5.1. Single-Stage Pipeline

Single-stage pipeline based on direct regression approaches forms a significant category in
3D human pose estimation. The fundamental idea of this category is to directly predict the 3D
coordinates of human joints from a input data. The first attempt to predict 3D joint locations directly
from single images using deep neural networks was made by [75]. [77] introduced an end-to-end
regression architecture that achieved structured prediction by incorporating a pre-trained auto-encoder
at the top of traditional CNN networks, rather than directly regressing joint coordinates. With the
auto-encoder, they were able to learn a high-dimensional latent pose representation and account for
joint dependencies. The same authors proposed a method in [78] to learn a regression model for 3D
pose mapping from videos using CNNs. To ensure the validity of the predicted poses, [76] embedded
a kinematic object model into a deep learning algorithm to regress joint angles of a skeleton. They
defined a continuous and differentiable kinematic function based on bone lengths, bone connections,
and a definition of joint rotations. This function was integrated into a neural network as a special
layer, called kinematic layer, to map the motion parameters to joints. [42] proposed another approach
to reduce data variance, using bones representation instead of joints in a structure-aware regression
approach. They defined a compositional loss function that encoded long-range interactions between
these bones, based on the joint connection structure.

The rest of this section reviews recent advancements in this area up to 2021 that employ innovative
techniques to improve the performance of regression-based pose estimation.

The paper [80] introduces an Intuitive Physics-based network (IPMAN) that regresses 3D human
poses directly from 2D images. This work is distinctive in that it incorporates a physics-inspired loss
function, which enforces physical plausibility in the predicted poses. However, it is worth noting
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that the idea of using physical constraints to enhance the plausibility of estimated poses is not novel.
Shimada et al. [81] proposed a method for neural monocular 3D human motion capture that also
includes physical awareness, attesting to the effectiveness of such an approach. Similarly, Huang et al.
[82] proposed a method for capturing and inferring dense full-body human-scene contact, similarities
the concepts presented in the IPMAN approach, which also focuses on body-ground contact and other
physical interactions. Likewise, Shi et al. [? ], presents a method that enforces skeleton consistency,
using a body model to constrain the estimated poses. Further, this approach reconstructs 3D human
motion from monocular video. These methods demonstrate the importance and effectiveness of
incorporating physical constraints and constraints in the 3D human pose estimation field.

On the other hand, a recent study by Luvizon et al. [83] presented SSP-Net, a scalable convolutional
neural network architecture specifically designed for real-time 3D human pose regression. SSP-Net
addresses the challenges associated with varying input sizes and model complexities. Particularly, its
pyramid structure enables multi-scale processing, capturing a wide range of details and contextual
information. SSP-Net incorporates intermediate supervisions at different resolutions, refining pose
predictions and improving accuracy. Furthermore, the sequential design of SSP-Net allows for iterative
refinement of pose estimation, resulting in enhanced accuracy and real-time performance, enabling
predictions at a frame rate of approximately 200 FPS.

In their research, Kundu et al. [68] went beyond solely relying on supervised methods and
explored the paradigm of self-supervised learning. They introduced MRP-Net, a model that not only
predicts outputs but also estimates its own prediction uncertainty. This uncertainty-aware adaptation
framework enhances the model’s performance in handling diverse domains within the self-supervised
learning framework. By integrating self-supervised learning and quantifying prediction uncertainty,
this research demonstrates the potential for more robust and adaptable 3D human pose estimation in
challenging scenarios such as occlusion and truncation.

Direct regression techniques in 3D human pose estimation extend beyond single-person or
monocular images. They have been successfully applied to videos, as demonstrated in works such
as Honari et al. [67] and Luvizon et al. [84]. These studies explore temporal information to improve
pose estimation accuracy over time. Furthermore, direct regression approaches have been extended to
handle multi-view scenarios, as shown in Zhang et al. [85]. These methods leverage information from
multiple camera views to achieve more accurate 3D pose estimation. Additionally, direct regression
techniques can be adapted to handle multi-person scenarios, as exemplified in the works of Sun et
al. [86] and Wang et al. [87]. Detailed explanations of these articles are provided in the subsequent
sections.

Convolutional Neural Networks (ConvNets) have shown impressive results in 3D pose estimation,
particularly when trained on 3D data. They employ supervised learning to directly regress joint
locations and predict the 3D pose from 2D monocular images without intermediate supervision. These
models require training using a 3D pose annotated images data-set, which are relatively rare, such as
the Human3.6M and HumanEva-I data-sets, that contain images captured in controlled environments
using MOCAP systems. However, these models often struggle to generalize to images captured in
uncontrolled, or “in-the-wild’, scenarios. To tackle this issue, researchers have explored end-to-end
approaches that utilize both 2D data-sets from "in-the-wild” scenarios and 3D MOCAP data-sets to
guide and enhance the training process. These approaches fall into two main categories.

The first category refers to training a single model that shares intermediate CNN features between
2D and 3D joint locations. For example, Park et al. [88] developed an algorithm that exploits image
features and 2D pose estimation results as inputs, learning the relationship between 2D and 3D poses.
In parallel, Pavlakos et al. [88] employed a fine-tuning strategy with 2D data to predict 3D joint
locations, introducing a coarse-to-fine supervision learning scheme to improve initial estimates. In
a significant contribution to this category, Mehta et al. [89] presented the first real-time method to
capture the full global 3D skeletal pose of a human using a single RGB camera. Their method combines
a new CNN-based pose regressor with kinematic skeleton fitting, regressing 2D and 3D joint positions
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jointly in real time. This approach has been shown to be applicable in real-time applications such as
3D character control and works well even in outdoor scenes, community videos, and with low-quality
commodity RGB cameras. Tome et al. [90] further proposed a multi-stage CNN architecture, integrating
a pre-trained layer based on a probabilistic 3D pose model into the convolutional pose machine (CPM).
This approach lifts 2D landmark coordinates into 3D space, propagating the 3D skeletal structure
information to the 2D convolutional layers. Similarly, Ghezelghieh et al. [91] predicted 2D and
3D poses by incorporating camera viewpoint information and 2D joint locations to achieve global
joint configuration information. More recently, a method known as Orthographic Projection Linear
Regression for Single Image 3D Human Pose Estimation was introduced in [92], tackling the small
angle problem in reprojection-based approaches and reducing overfitting risks in the depth dimension.
Additionally, Exemplar Fine-Tuning (EFT) for 3D Human Pose Fitting [93], was also proposed to
expand in-the-wild 3D pose collections without the need for specialized capture equipment. EFT fits a
3D parametric model to 2D keypoints, overcoming depth reconstruction ambiguity inherent in 2D
inputs.

The second category comprises approaches that combine 2D and 3D data to learn a pose regressor.
Zhao et al. [42] proposed a compositional pose model that jointly learns 2D and 3D poses, as well as
action recognition, using an intermediate volumetric representation for 3D poses. In a similar vein,
Luvison et al. [94] developed a multitask deep model that simultaneously learns 2D and 3D poses,
along with action recognition, in an end-to-end trainable manner. Additionally, Li et al. [95] proposed
a regression approach estimating 3D pose through a nearest neighbor form between images and pose.
Their network learns a similarity score function between the feature embedding of the input image
and the 3D pose, an essential step for pose estimation in an image. Adding to this category, Zhou et
al. proposed a weakly-supervised transfer learning method that uses a mix of 2D and 3D labels in
a unified deep neural network [96]. This network has a two-stage cascaded structure, augmenting
a state-of-the-art 2D pose estimation sub-network with a 3D depth regression sub-network. Their
training is end-to-end and fully exploits the correlation between the 2D pose and depth estimation
sub-tasks, allowing the 3D pose labels in controlled lab environments to be transferred to in-the-wild
images. They also introduce a 3D geometric constraint to regularize the 3D pose prediction, which is
effective in the absence of ground truth depth labels. Their method achieves competitive results on
both 2D and 3D benchmarks.

Table 3. Summary of single-stage methods in 3D human pose estimation.

Paper Input Paradigm of | Model Number of
Learning Individuals

[l Single-View Supervised CNN Single
Multi-View Supervised Transformer Multiple
Single-View Supervised CNN Multi
Video Multi-Task CNN Single
Single-View Supervised CNN Multi
Single-View Supervised CNN Single
Video Unsupervised | CNN Single
Single-View Self-Supervised| CNN Single
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5.2. Two-Stage Pipeline

Two-stage approaches to 3D human pose estimation employ a distinct two-step methodology.
The process begins with the estimation of 2D joint locations within an image, which are then elevated
or ’lifted” into the 3D space. This procedure effectively combines 2D pose estimation with 3D pose
reconstruction. The 2D pose estimation can be achieved through heatmap-based or regression-based
strategies, which will be explored in the subsequent subsection. Meanwhile, 3D pose reconstruction
can be accomplished using techniques like triangulation or model-based optimization [97]. Contrary
to the current approach of employing deep neural networks to learn the correlation between 2D
and 3D poses, early works elevated 2D poses to 3D by identifying the most suitable 3D posture that
corresponds to the 2D observations in a complete dictionary of 3D poses learned from large 3D pose
databases using principal component analysis (PCA) or another dictionary learning method. Some
methods, such as the one proposed by [98], minimize a loss on dictionary coefficients and joint speed,
which is conditioned by the pose. This approach has been refined by [99] and [100] using a convex
approach and an Expectation-Maximization algorithm, respectively, to jointly estimate the coefficients
of the sparse representation. Other methods, such as those proposed by [1,101], focus on matching the
depth of the 2D poses using the k-nearest neighbor algorithm. In contrast, [102] proposes a method
that minimizes the projection error under the constraint that the solution is close to the retrieved poses.

In the literature, several papers have relied on model-based approaches for 3D reconstruction
from 2D keypoints, as the approach used in [103], which treats pose estimation as a classification
problem over a set of pose classes, with each image being assigned to the class with the highest score.
This ensures a valid pose prediction but is limited to the existing classes. As a result, the pose obtained
is essentially an approximation. The precision of the classification approaches increases with the
number of classes, but this also complicates discrimination. In the paper [98], a dual-stream CNN was
employed to detect 2D joint landmarks using both original images and height-maps, which encode
depth information. Following the detection phase, they formulated an objective function to estimate
the 3D pose. This function minimized a loss based on the coefficients of a 3D pose dictionary and
pose-conditioned joint velocity, effectively transforming the 2D pose into a 3D pose.

A common methodology in two-stage approaches to 3D human pose estimation is to create a
comprehensive basis of 3D poses. This facilitates the estimation phase. Zhou et al. [99,100] developed
a shape dictionary by aligning all 3D poses in the training set using the Procrustes method. This
approach succinctly summarizes the variability in training data and enables a sparse representation.
They then proposed a convex approach to jointly estimate the coefficients of the sparse representation.
Similarly, Chen et al. [101] and Gupta et al. [1,104] used a large library of 2D keypoints and their
corresponding 3D representations to match the depth of the 2D poses using the k-nearest neighbor
algorithm. Ramakrishna et al. [10] built a sparse representation of 3D human pose in an over-complete
dictionary and proposed a projected matching pursuit algorithm to estimate the sparse model from
only 2D projections. Contrasting these methods, Yasin et al. [102] and Simo-Serra et al. [105] focused
on addressing 2D pose estimation errors. Simo-Serra et al. proposed a Bayesian framework that
integrates a generative kinematic model and discriminative 2D part detectors based on Histogram
of Oriented Gradients (HOGs) to generate a set of 3D pose hypotheses. Yasin et al. combined two
independent training sources using a dual-source approach. They retrieved the nearest 3D poses
using the estimated 2D pose and reconstructed the final 3D pose by minimizing the projection error
under the constraint that the solution is close to the retrieved poses. Another strategy integrates
the generative 3D body shape model with the Skinned Multi-Person Linear (SMPL) model [106] to
reconstruct 3D pose and shape. Bogo et al. [107] proposed a method called SMPLify, which first uses
DeepCut [108] to generate 2D body joint locations. These locations are then fit with the SMPL model
to predict 2D Keypoints. The fitting is driven by an objective function that matches the projected 3D
model Keypoints and detected 2D Keypoints. Tripathi et al. [57] proposed an unsupervised method
that uses the 3D Keypoints predicted by another network as pseudo ground-truth in training. In
a novel approach, Arnab et al. [93] proposed Exemplar Fine-Tuning (EFT) to augment existing 2D


https://doi.org/10.20944/preprints202311.0197.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2023 doi:10.20944/preprints202311.0197.v1

12 of 40

datasets with high-quality 3D pose fits. EFT combines the re-projection accuracy of fitting methods
like SMPLify with a 3D pose prior implicitly captured by a pre-trained 3D pose regressor network.
This method results in high-quality 3D pseudo-annotations that improve downstream performance
and are qualitatively preferable in an extensive human-based assessment. The authors also introduced
new benchmarks for the study of real-world challenges such as occlusions, truncations, and rare body
poses.

Deep neural mapping techniques, employing fully connected, convolutional, or recurrent
networks, have revolutionized the field of 3D human pose estimation from 2D Keypoints. These
techniques leverage the power of deep learning models to effectively resolve complex, non-linear
transformations. This represents a significant shift from example-based approaches, which rely on
a dictionary or predefined base of 3D poses. Instead, deep neural mapping approaches learn the
mapping directly from the data, enabling them to potentially capture a wider range of poses and
more complex relationships between 2D and 3D poses. Moreno-Noguer [109] utilized a Convolutional
Pose Machine to detect 2D joints locations, and then inferred 3D poses through Euclidean distance
matrix regressions, with the final 3D pose obtained using Multidimensional Scaling. This approach
was further developed by Martinez et al. [110], who employed a multilayer perceptron to regress
3D joint locations from 2D keypoints, which were predicted by a stacked hourglass network. This
demonstrated a similar application of deep neural mapping. Taking a different approach, Mehta et
al. [111] used transfer learning to apply knowledge from 2D joint location to 3D pose estimation,
showcasing the versatility of deep learning techniques in this domain. Building on these methods,
VNect [89] integrated a CNN with a kinematic skeleton fitting to generate temporally stable full 3D
skeletal poses, enabling real-time 3D pose estimation.

Moving forward, it’s important to highlight the innovative approaches to 3D human pose
estimation that have been proposed in recent studies up to 2021. Wu et al. introduced an improved
mixture density network for 3D human pose estimation with ordinal ranking [112]. This method
leverages Mixture Density Networks (MDNSs) to predict multiple 3D pose hypotheses, allowing the
network to learn the Gaussian distribution of human body poses. Additionally, an ordinal matrix is
introduced to select the correct pose estimation, highlighting the ability to handle ordinal ranking.

In a similar vein, Zhang et al. developed a point-to-pose mesh fitting network called P2P-MeshNet
[113]. This network incorporates a collaborative approach between a deep learning network, an inverse
kinematics network (IKNet-body), and an iterative error feedback network (IEF). This collaboration
enables improved accuracy in estimating 3D poses by leveraging the strengths of each network
component. Diving into diffusion-based approaches, Choi et al. introduced DiffuPose [45], which
utilizes a Graph Convolutional Network (GCN)-based architecture for lifting 2D Keypoints to 3D. By
treating the human skeleton as a graph, with joints as nodes, the lightweight GCN-based architecture
captures topological information between joints. The diffusion process then refines the 3D pose
estimation by propagating information across the graph, enhancing the overall accuracy. Another
approach that leverages the power of graph convolutional networks (GCNSs) is presented by Zeng
et al. with their work on learning skeletal graph neural networks for hard 3D pose estimation [114].
Their method introduces a hop-aware hierarchical channel-squeezing fusion layer, a sophisticated
technique that takes into account the distance between nodes (hop-aware), processes the nodes in
a hierarchical manner, reduces the dimensionality of the node features (channel-squeezing), and
combines information from different nodes (fusion layer). This approach effectively extracts relevant
information from neighboring nodes while suppressing undesired noises. Furthermore, the authors
construct dynamic skeletal graphs, where the connections between nodes (representing joints in the
human body) incorporate not only the fixed human skeleton topology but also the features of the
nodes themselves. This allows the model to capture action-specific poses, going beyond the static
structure of the human skeleton.

Building upon the potential of GCNs in the context of 3D pose estimation, Zhiming and Tang
introduced a novel approach with their Modulated Graph Convolutional Network [115]. Unlike the
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method proposed by Zeng et al., which focuses on extracting information from neighboring nodes
and building dynamic skeletal graphs, Zhiming and Tang’s model introduces weight modulation and
affinity modulation. The weight modulation allows the model to learn different transformation vectors
for each node, thereby learning different relations between joints. The affinity modulation adjusts the
structure of the graph to incorporate additional edges beyond the skeleton structure.

Moving beyond GCN-based models, Xu et al. proposed a unique approach that combines the
power of deep learning with a grammar-based model of human body configuration [116]. Their model,
which takes an estimated 2D pose as input, learns a generalized 2D-3D mapping function to infer the
3D pose. The model incorporates a set of knowledge regarding human body configuration, including
kinematics, symmetry, and motor coordination, enforced as high-level constraints over human poses.

In a related work, Ci et al. introduced the Locally Connected Network (LCN) [117], which
overcomes the limitations of graph convolutional networks (GCNs) by employing dedicated filters
for different joints instead of shared filters. This network is jointly trained with a 2D pose estimator,
allowing it to handle inaccurate 2D poses. By leveraging dedicated filters and local connectivity,
the LCN enhances the accuracy of monocular 3D human pose estimation, particularly in scenarios
with imperfect 2D pose inputs. By incorporating GCNs to capture the structural relationships
between human body joints into their respective frameworks, DiffuPose, learning skeletal graph
neural networks, and LCN showcase the effectiveness of graph-based approaches in improving the
accuracy and robustness of 3D human pose estimation.

On the other hand, Gu et al. proposed a transformation method from 2D Keypoints to 3D using
a temporal regression network with a gated convolution module [118]. This approach focuses on
incorporating temporal information to improve the accuracy of 3D pose estimation, emphasizing the
importance of considering temporal dynamics in the regression process.

Another type of network to consider in the field of 3D reconstruction is the Transformer network,
which has gained significant popularity. GraFormer, proposed by Zhao et al. [119], exemplifies the
effectiveness of this network. By combining the power of transformers and graph convolutions,
GraFormer enhances the interaction among 2D Keypoints and captures both apparent and hidden joint
relations. The approach utilizes two core modules, GraAttention and ChebGConv block, to effectively
exploit the relationships among joints and outperform previous methods. Another notable approach
in the same context is MHFormer, proposed by Li et al. [120]. MHFormer employs a Multi-Hypothesis
Transformer and addresses the task by decomposing it into three stages: generating multiple initial
hypothesis representations, modeling self-hypothesis communication, and learning cross-hypothesis
communication to synthesize the final 3D pose. By considering multiple hypotheses, MHFormer
significantly improves the robustness and accuracy of 3D human pose estimation.

In contrast to the previous methods that use supervised learning, unsupervised learning methods
have also been employed in the field of 3D human pose estimation. Wandt et al. introduced ElePose,
which utilizes unsupervised learning with a neural network trained to recover depth [59]. This
approach aims to estimate 3D human pose without relying on labeled training data. Furthermore,
Yang et al. proposed CameraPose, a weakly-supervised framework for 3D human pose estimation from
a single image [54]. CameraPose leverages in-the-wild 2D annotations to refine the initial 2D keypoints
using a refinement network module that incorporates a confidence-guided loss. This loss assigns
higher weights to keypoints with higher confidence, improving the accuracy of the pose estimation.
Additionally, CameraPose utilizes the camera parameters learned from the camera parameter branch to
lift the refined keypoints into 3D space. This approach enables the estimation of 3D human pose from
a single image. Furthermore, the paper by Luvizon et al. introduces a consensus-based optimization
algorithm for multi-view predictions from uncalibrated images, offering a single monocular training
procedure [121]. This algorithm allows for effective fusion of information from multiple views,
improving the accuracy and robustness of 3D pose estimation.

Having discussed the various methods employed in the second stage of the two-stage pipeline
for 3D pose estimation, namely the 2D to 3D lifting, it is crucial to delve into the first stage of this
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pipeline: the 2D pose estimation. The accuracy and effectiveness of the 3D pose estimation heavily
rely on the quality of the 2D pose estimation. Therefore, understanding the methodologies used in
2D pose estimation is essential. In the following section, we will explore the various techniques and
advancements in the field of 2D pose estimation.

5.2.1. 2D Human Pose Estimation

2-dimensional human pose estimation, the process of determining the (X, y) coordinates for each
joint from a given RGB image, serves as a critical first step in the two-stage pipeline for 3D human pose
estimation. The accuracy and robustness of this initial stage significantly influence the subsequent 3D
pose estimation, underscoring its importance in the overall pipeline.

The field of 2D human pose estimation has seen numerous methodologies and techniques
proposed over the years, each contributing to the advancement and refinement of this crucial stage. To
provide a structured and comprehensive overview of these methods, we refer to the commonly used
taxonomy depicted in Figure 3, as adopted by most literature surveys. However, in our review, we will
specifically focus on the most prevalent networks employed in the initial stage of estimating the 2D
human pose, which precedes the reconstruction of 2D keypoints into 3D. Essentially, these methods
are typically classified as 'Single Person” approaches in survey studies, and it is this subset of methods
that will form the core of our discussion.

2D Human pose estimation

SINGLE PERSON MvuLTIiPLE PER-
APPROACHES SON APPROACHES

Y

Y

Keypoint regression

Top-down pipeline

Bottom-up pipeline

Y

Heatmap estimation

Y

Figure 3. Roadmap of our survey’s structure.

Deep Neural Networks (DNN) methods for predicting keypoints location can be broadly
categorized into two main groups: keypoint regression and keypoint heatmap estimation.

Keypoint Regression Approaches: These methods treat pose estimation as a regression problem,
aiming to directly predict the Cartesian coordinates of body joints from input images. They often
employ deep learning models, particularly convolutional neural networks (CNNs), to learn the
complex, non-linear mappings from image features to keypoint coordinates. For instance, DeepPose,
introduced by Toshev et al. [122], was one of the first methods to apply a multi-stage Convolutional
Neural Network (CNN) to this problem. The authors treated pose estimation as a regression problem
and proposed to directly estimate the Cartesian coordinates of body joints using a cascade of DNN
regressors. This approach was used to refine pose estimates and predict human keypoints. Carreira et
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al. [123] proposed an iterative error feedback-based human pose estimation system, which is repeated
several times to progressively refine the pose. Zhao et al. [42] proposed a structure-aware regression
approach that adopts a re-parameterized pose representation using bones instead of joints. This
method effectively exploits the joint connection structure to define a compositional loss function that
encodes the long-range interactions in the pose.

The main advantage of these methods is their directness in predicting keypoint locations.
However, they may struggle with complex poses or occlusions due to their reliance on direct regression.

Keypoint Heatmap Estimation Approaches: These methods generate a heatmap for each
keypoint, predicting the probability of the joint occurring at each pixel location. The pixel with
the highest heatmap activation is then used as the predicted location for that joint. Tompson et al.
[124] were the first to introduce keypoints heatmap estimation to address the keypoints regression
problem. They proposed to jointly train a CNN and a graphical model. Lifshitz et al. [125] proposed
an approach that uses information from the whole image, rather than from a sparse set of keypoint
locations only. Wei et al. [126] proposed a Convolutional Pose Machines (CPM) that consists of a
sequence of CNNs that repeatedly produce 2D belief maps for the location of each part. Bulat et al.
[127] proposed a method to indicate the network where to focus, which helps guide the regression part
of the network to rely on contextual information to predict the location of occluded parts. Newell et al.
[128] introduced a novel CNN architecture called stacked hourglass network. Sun et al. [129] proposed
High-Resolution Net (HRNet), maintaining high-resolution representation through the whole process.
Groos et al. [130] proposed EfficientPose, a method based on EfficientNet backbone pretrained on
ImageNet for feature extraction.

These approaches have become the most widely used technique for coordinate representation.
They are particularly effective at handling complex poses and occlusions due to their probabilistic
nature, but they may be more computationally intensive than regression approaches due to the need
to generate and process heatmaps.

5.3. Comparative Analysis of Single-Stage and Two-Stage Approaches

To conclude, 3D pose estimation is predominantly achieved through two overarching approaches:
direct regression and a two-stage method that involves lifting from 2D joints. When we use these
methods in real situations, we can see some clear patterns. The two-step method first estimates the
pose in 2D and then uses these results to figure out the 3D pose. This way often turns out to be easier
and usually provides more accurate results than the one-step direct regression approach. In fact, most
leading methodologies that utilize monocular images, opt for this 2D-to-3D method. The substantial
advantage of this process is its ability to minimize interference from factors such as scene variation,
lighting, and clothing color, that are intrinsic to RGB images.

Two-stage methods are also preferred due to their cost-effectiveness and adaptability. First, the
2D pose data, being cheaper and more abundant than its 3D counterpart, facilitates easy and efficient
2D pose prediction. Second, the methods translating 2D to 3D are less sensitive to varying scenarios
and environments, thereby providing versatility. Yet, two-stage solutions are critically reliant on the
performance of the 2D pose estimation. This dependency becomes a significant challenge in cases with
severe occlusions in videos, where unreliable 2D keypoints can significantly impair the performance
of 3D estimation. Consequently, achieving robust 3D results with noisy and occluded 2D keypoints
remains a formidable task

On the other hand, single-stage methods, aim for end-to-end reconstruction, estimating 3D poses
directly from RGB images without the need for intermediate step of 2D pose estimation. These
methods can leverage the rich information contained within images directly. Nevertheless, they may
struggle to generalize well across varied settings such as indoor and outdoor environments, as their
performance is highly dependent on the specific environment where they are deployed. Moreover,
because large-scale 3D data are hard to collect and the process relies on specific tools for 3D marker
tracking, the application of single-stage methods is often limited to controlled environments.
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Therefore, the choice between these two approaches largely depends on the specific requirements
and constraints of the project at hand. Two-stage methods might be preferred for their accuracy and
adaptability, while single-stage methods could be favored for their directness and simplicity.

6. 3D Multi-Person Pose Estimation from Monocular Images

The task of 3D human pose estimation becomes increasingly challenging and complex when
extended to multiple persons from a monocular view. This involves detecting the poses of multiple
individuals in a scene simultaneously, which introduces additional complexities beyond those of
single-person pose estimation. These complexities arise from occlusions, variations in individual sizes,
orientations, interactions, and the spatial relationships between individuals. Indeed, the position of one
person can affect the perceived pose of another. Furthermore, the complexity increases exponentially
with the number of individuals in the scene. Despite these challenges, multi-person pose estimation is
of great importance in various applications, such as crowd analysis, team sports analytics, and social
interaction studies.

This section aims to provide an overview of recent advances in this field, focusing on two primary
types of pose estimation: relative and absolute.

6.1. Relative Estimation

Relative pose estimation, also known as person-centric coordinates, refers to a coordinate system
centered around the person being detected. In this system, the positions and orientations of human
joints are represented relative to the person’s root keypoint, typically the pelvis joint. This coordinate
system is commonly used in monocular view scenarios. We organise the approaches based on
the pipeline they follow: top-down approaches, bottom-up approaches, and Unified single-stage
approaches.

Top-down approaches involve two steps; initially detecting each person in the image, following
by estimating the 3D pose for each detected person. For example, Zanfir et al. [131] proposed a system
to estimate 3D pose and body shape of multiple people. Their system combined a single person pose
estimation model based on the Deep Multitask Human Sensing Network and semantic feedback, with
additional constraints such as ground plane estimation, mutual volume exclusion, and joint inference
for all people in the scene. The pose and shape parameters of the SMPL human body model were
then refined using non-linear optimization based on semantic fitting. Another example of a top-down
approach is the Pose estimAtioN and Dectection Anchor-based Network (PandaNet) [132] proposed by
Benzine et al. PandaNet is a single-shot anchor-based approach that perform bounding box detection
and 2D and 3D pose regression in a single forward pass, without requiring any post-processing to
regroup joints. To handle overlapping people, PandaNet uses a Pose-Aware Anchor Selection strategy
and optimizes weights associated with different people scales and joint coordinates to address the
inherent imbalance among varying people sizes in images.

Bottom-up approaches aim to estimate all individuals’ poses and then associate each pose to a
specific person. A good example is the method proposed by Mehta et al. [133]. This approach applies
temporal and kinematic constraints in three steps to predict Occlusion-Robust Pose Maps (ORPM)
and Part Affinity Fields, a technique that was previously introduced by Cao et al. [134]. This method
produces multi-person 2D joint locations and 3D pose maps in a single shot.

Finally, Unified single-stage methods aim to solve the task by directly regress the 3D poses in a
single step or stage, rather than breaking it down into several sub-tasks. An example of such methods
is the Localization-Classification-Regression (LCR) Network, commonly referred to as LCR-Net [135]
and its subsequent version, LCR-Net++ [136]. The LCR-Net architecture is an end-to-end system,
comprising three main stages that share convolutional feature layers and are jointly trained. The first
stage, localization, generates a set of pose proposals in the image using a fixed set of anchor poses.
These poses are then transformed into bounding boxes with the aid of a Region Proposal Network
(RPN). Following localization, the classification stage takes over. It scores the different pose proposals
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and predicts the closest anchor-pose for each bounding box. The set of K-poses used in this process are
obtained from a Motion Capture (MOCAP) data-set, ensuring a wide variety of potential poses. The
final stage involves a regressor, which refines the pose proposals in both 2D and 3D dimensions. This
refinement process is crucial for achieving accurate pose estimations. The final pose estimation is then
obtained by integrating neighboring pose hypotheses, providing a comprehensive and precise pose
estimation.

Furthermore, Sun et al. [86] introduced a model named BEV (Bird’s Eye View) for this task. This
model directly regresses the pose and shape of all the people in the scene, as well as their relative
depth. The end-to-end design of BEV simplifies the process and enhances efficiency, making it a
single-shot method that is end-to-end differentiable. The model introduces a novel bird’s eye view
representation, enabling powerful 3D reasoning that reduces the monocular depth ambiguity. By
exploiting the correlation between body height and depth, BEV learns depth reasoning from complex
in-the-wild scenes, leveraging relative depth relations and age group classification.

Although relative pose estimation is common in monocular view scenarios, understanding
multi-person behavior and scene visualization often require considering the distance between
individuals. This is where absolute pose estimation becomes critical. However, only a few works
tackle the problem of camera-centric multi-person 3D pose estimation from a monocular RGB image
or video.

6.2. Absolute Estimation

On the other hand, absolute pose estimation, known also as camera-centric coordinates, refers to
a coordinate system centered around the camera. Here, the positions and orientations of human joints
are represented relative to the camera’s viewpoint, making it most suitable for real-world applications.

In terms of categorizing approaches, we propose to classify them into four distinct categories.
These classifications represent the primary taxonomy used in Relative Pose Estimation Approaches.
However, we identify an additional category specific to absolute pose estimation, known as fusion
approaches. These fusion methods seamlessly integrate aspects from both top-down and bottom-up
approaches, thereby providing more nuanced and robust solutions for multi-person 3D pose
estimation.

6.2.1. Top-Down Approaches

Top-down approaches to 3D multi-person pose estimation typically involve a pipeline consisting
of human detection, absolute 3D human root localization, and root-relative 3D single-person pose
estimation modules. For example, Moon et al.[137] employed this pipeline using the RootNet model
for absolute 3D human root localization and the PoseNet model [138] for root-relative 3D single-person
pose estimation. Animepose [139] generated a 3D animation of several people from a 2D video in a
top-down manner using a depth map to locate 3D poses, a 3D IOU (Intersection Over Union) metric at
the top of the 2D pose prediction for tracking. A multi-person trajectory estimate was used to continue
the tracking process in closed frames. The end-to-end HDNet (Human Depth Estimation Network)
[140] follows the same pipeline. It estimates the depth of a person in an image by using a combination
of a Feature Pyramid Network [141] for general feature extraction and separated multi-scale feature
extraction for pose and depth estimation, and a Graph Neural Network to propagate and aggregate
features for the target person’s depth estimation. The estimated depth is represented as a bin index
and can be transformed into a continuous value using a soft-argmax operation. Similar to the above
methods for depth estimation, HMOR (Hierarchical Multi-person Ordinal Relations) [142] employs
an integrated top-down model to estimate human bounding boxes, depths, and root-relative 3D poses
simultaneously, with a coarse-to-fine architecture that, instead of using image features as the above
methods for depth estimation, hierarchically estimates multi-person ordinal relations of depths and
angles which captures body-part and joint-levels semantics while maintaining global consistency
to improve the accuracy of depth estimation. The framework proposed for 3D multi-person pose
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estimation in [143] combines GCN and TCN to estimate camera-centric poses without requiring camera
parameters. It includes GCNs that estimate frame-wise 3D poses and TCNs that enforce temporal and
human dynamics constraints to estimate person-centric with a joint-TCN and camera-centric 3D poses
across frames with a root-TCN. Reddy et al. [144] focuse on 3D pose estimation and tracking of multiple
people in video frames taken from single or multiple cameras. They propose a top-down approach,
TesseTrack, that simultaneously reasons about multiple individuals” 3D body joint reconstructions and
associations in space and time in a single end-to-end learnable framework. TesseTrack operates in
a voxelized feature space and consists of several steps: person detection, short-term person-specific
representation computation, time linking, and 3D pose deconvolution. This method treats the 2D pose
estimation, 2D-to-3D lifting, and 3D pose tracking in a joint spatio-temporal framework, contrasting
traditional piece-wise strategies. In a weakly supervised paradigm, Cong et al. [53] present a top-down
approach for 3D multi-person pose estimation in large-scale scenes. The method uses a monocular
camera and LiDAR sensor data, exploiting the benefits of multi-modal input data and temporal
information. It first detects individuals in the scene and then estimates their 3D pose using fused
data from the image and point cloud. This method is designed to be easy to deploy and insensitive to
light conditions. Temporal information is used to guide the network in learning natural and coherent
human motions without requiring precise 3D annotations.

While these methods have shown promising performance, they can be affected by inter-person
occlusions and close interactions because they process each person independently. Furthermore, they
ignore the global context since they process the cropped image.

6.2.2. Bottom-Up Approaches

Bottom-up approaches to 3D multi-person pose estimation first generate all body joint locations
and depth maps. They then associate body parts to each person based on the root depth and the
relative depth of the parts. For instance, Fabbri et al. [145] proposed a method that estimates volumetric
heatmaps in an encoder-decoder manner. They first produce compressed volumetric heatmaps, which
are used as ground truth, and then decompress them at test time to re-obtain the original representation.
Zhen et al.[146] estimated 2.5D representations of body parts and reconstructed 3D human pose in
a single-shot bottom-up framework. Zhang et al. [147] propose a unified bottom-up model which
integrates 2.5D pose representation and depth estimation. The model utilizes a structured 2.5D pose
estimation for recognizing inter-person occlusion, and an end-to-end geometry-aware depth reasoning
method. It infers camera-centric root depths using 2.5D pose and geometry information and then
refines the 2.5D pose estimation learning using root depths. The method proposed by Benzine et al.
[148] extends the Stacked Hourglass Network to handle multi-person scenarios without requiring
bounding boxes. Using an associative embedding method, it performs joint grouping and human pose
estimation. Occlusions and cropping are handled by storing joint coordinates redundantly in multiple
2D locations in the Occlusion Robust Pose Maps (ORPM). XNect [149], on the other hand, uses a
sequential multi-stage approach. Stage I employs a convolutional neural network to process the entire
input frame, generating 2D body joint heatmaps and an intermediate 3D pose encoding per detected
joint. After grouping 2D joint detections into individuals, Stage II uses a fully-connected neural network
to decode the input into a full 3D pose per individual. Stage III subsequently performs sequential
model fitting on the live stream of predictions, achieving temporally coherent motion capture results.
Even though XNect primarily adopts a bottom-up approach, the second stage introduces a top-down
component by reasoning over all joints to produce a full pose.

These bottom-up approaches offer alternatives to top-down methods, potentially better handling
inter-person occlusions and close interactions. It should be noted that these classifications are often
non-binary, and many papers utilize elements from multiple categories.
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6.2.3. Fusion Approaches

Fusion, or hybrid, approaches integrate elements from both top-down and bottom-up methods,
thus leveraging the strengths of each to improve overall performance. Typically, such methods might
initially detect individuals, estimate their joint positions, and finally refine the assignment of joints to
individuals based on the initial detections.

Several works have recently succeeded in integrating the top-down and bottom-up pipelines
to navigate inter-person occlusion and close interaction challenges. For example, the TDBU_Net
framework [47] combines a top-down network that estimates joints for all persons in an image patch
with a bottom-up network that uses human-detection-based normalized heatmaps to adeptly manage
scale variations. The 3D pose estimates generated by these two distinct networks are integrated via a
third network to produce the final 3D poses.

In another hybrid approach introduced in a subsequent study [48], a fusion network is employed
to blend top-down and bottom-up networks, enhancing the robustness of pose estimation from
monocular videos. This fusion network unifies the 3D pose estimates to generate the final 3D poses.
This method stands out due to its integrated approach and its utilization of test-time optimization to
address disparities between training and testing data. It incorporates a two-person pose discriminator
and employs a semi-supervised strategy to mitigate the scarcity of 3D ground-truth data.

6.2.4. Unified Single-Stage Approaches

These methods perform all the steps in the process, including 2D detection, 3D conversion, and
temporal information fusion, in a single forward pass without the need for separate explicit stages.

In their paper, Jin et al. [150] introduce the Decoupled Regression Model (DRM), a unified model
that simultaneously conducts 2D pose regression and depth regression. This model’s key contributions
include a novel decoupled representation for 3D pose, a 2D Pose-guided Depth Query Module (PDQM),
and a Decoupled Absolute Pose Loss (DAPL) strategy. These innovations enable DRM to perceive
scale information of instances adaptively and improve the accuracy of depth prediction.

In parallel, Wang et al.[87] present a distribution-aware single-stage (DAS) model. This approach
bypasses traditional multi-stage methods and uses a unified approach to represent 3D poses. By
incorporating a 2.5D human center and 3D center-relative joint offsets, DAS simplifies the 3D pose
estimation problem into a single-pass solution. DAS demonstrates potential for higher efficiency and
comparable accuracy compared to two-stage methods.

Zhang et al. [151] propose another significant approach within this category, the ray-based
3D (Ray3D) method. This method uses a single unified model to carry out all necessary steps for
3D human pose estimation. It directly transforms 2D keypoints into 3D rays, taking both camera
intrinsic and extrinsic parameters into account. Furthermore, it fuses temporal data, all within a single
comprehensive model.

Although these approaches are not typically classified as "top-down’ or "bottom-up’, they can
be regarded as a variant of top-down approach. This is due to their simultaneous prediction of 2D
poses and depth information from the input image, thereby eliminating the need for a separate stage
to associate detected joints into individual poses.

6.3. Analytical Comparaison of Multi-Person Pose Estimation Methods

In this section, we have provided an overview of the complex field of 3D multi-person pose
estimation from monocular images. This task brings substantial challenges to the forefront, particularly
the issues of occlusion and interaction between individuals.

We emphasized the distinction between relative and absolute poses in our discussion. Relative
poses allow us to examine the spatial relationships between various body joints in 3D space, providing
crucial information about the posture and movement of individuals. In contrast, absolute poses offer
an accurate depiction of these joints” exact locations in the world coordinate system. For real-world
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applications, understanding the exact placement of individuals within a scene is paramount, and thus,
absolute poses hold more significance. As such, we have focused more on the approaches dealing
with absolute pose estimation in our review. Furthermore, relative pose estimation can sometimes
resemble applying single-person 3D pose estimation multiple times for each person present in a scene.
However, this approach doesn’t necessarily consider the interactions between different individuals
or their precise locations within the global environment. Hence, while it may provide useful posture
information, it lacks the context provided by absolute pose estimation methods.

We also inspected and compared different methodologies for pose estimation, primarily top-down,
bottom-up, and unified single-stage approaches. Top-down techniques sequentially detect individuals
in a scene before estimating their respective poses, while bottom-up methods detect all body joints
within the scene before associating them to form individual poses. Although both these methods
hold their own strengths, they generally necessitate separate stages for detection and pose estimation,
leading to efficiency issues. Emerging unified single-stage methods such as DAS, DRM, and Ray3D
present potential solutions to these challenges. They propose to estimate 2D poses and depth
information simultaneously from the input image in a single-pass solution, achieving a promising
balance between accuracy and computational efficiency.

Nonetheless, it’s important to highlight the significant performance gap between single-camera
and multi-camera 3D pose estimation methods. The extra views you get from using multiple cameras
give them a clear advantage in creating accurate 3D poses, particularly in camera-centered coordinates.
Therefore, the big challenge is to improve methods that only use one camera so they can perform as
well, or even better, than methods using multiple cameras.

7. 3D Human Pose Estimation from Monocular Videos

The task of understanding human activity, including pose estimation, often involves processing a
sequence of images or a video. A variety of approaches have been developed to leverage temporal
information, irrespective of the specific methodology used for 3D pose estimation.

The approaches applied on video sequences generally follow the same methodologies used in
single-frame pose estimation. Some methods directly regress the 3D poses in a one-stage pipeline
[67,84], while others follow a two-stage pipeline, first locating the joints in 2D and then lifting them to
3D [136,152-154].

However, when working with sequences of images, maintaining temporal consistency is key. In
this section, we review the approaches that incorporate temporal information from video sequences.
Video-based methods face the challenge of maintaining the temporal consistency of the estimated poses,
which can be influenced by rapid movements, occlusions, and changes in the scene. Additionally,
tracking is a crucial phase when dealing with videos.

Despite these challenges, significant progress has been made in recent years, largely due to the
advancement of deep learning techniques. Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) networks, have been employed to model the temporal dependencies in
video sequences, resulting in more consistent and smooth pose estimations. More recently, Graph
Convolutional Networks (GCNs) and Transformer networks have been introduced to model the spatial
relationships among the joints and the temporal relationships among the frames, respectively.

7.1. Methods Based on LSTM

Long Short Term Memory networks (LSTMs) are a specialized type of Recurrent Neural Network
(RNN) designed to retain information over extended periods and learn long-term dependencies [155].
This makes them particularly effective for tasks requiring sequential data, such as time-series prediction,
natural language processing, and, in the context of this survey, 3D human pose estimation from video.

In the realm of 3D human pose estimation, several researchers have leveraged the capabilities
of LSTM networks. Such as Lee et al.[154], who proposed a LSTM-based deep learning architecture
called propagating LSTM networks (p-LSTMs). In this architecture, each LSTM is connected
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sequentially to reconstruct 3D depth from the centroid to edge joints through learning the intrinsic
joint interdependency (JI). The first LSTM creates and reconstructs the seed joints of 3D pose into
whole-body joints through the connected LSTMs. The p-LSTMs were connected in series to elaborate
the 3D pose while transferring the depth information, referred to as pose depth cues. In another
work, AnimePose [139] utilized Scene-LSTM to estimate the temporal trajectory of the person and
track overlapping poses in occluded frames. The authors predicted the missing poses in previous
frames, plotted the trajectory of each keypoint, and then estimated the position of joints in subsequent
frames. Zhang et al. [156] proposed a spatial-temporal convolutional long short-term memory model
(ST-CLSTM) with two parts to capture spatial features and temporal consistency among frames. The
model’s weights were updated using temporal consistency and spatial losses between the estimated
and the ground-truth depths, computed by a 3D convolutional neural network (3D CNN). To maintain
temporal consistency among the estimated depth frames, the authors used Generative Adversarial
Networks (GANSs) as a temporal consistency loss. In this setup, a 3D CNN acted as a discriminator to
output the temporal loss from the estimated and ground-truth depth sequences, while the ST-CLSTM
served as the generator. Lastly, Liu et al. [44] propose an end-to-end trainable recurrent neural network
for full pose mesh recovery from videos. Using a long short-term memory (LSTM) structure, the
model explicitly learns to model temporal coherence and imposes geometric consistency over the
recovered meshes. The authors also introduce an attention mechanism in the recurrent framework,
which achieves both precise shape estimation and coherent temporal dynamics in the resulting 3D
human pose sequences.

7.2. Methods Based on TCN

Temporal Convolutional Networks (TCNs) are a type of neural network designed for sequence
modeling. They use dilated convolutions and causal connections to capture long-range dependencies
in time series data. TCNs have been shown to outperform recurrent architectures like LSTMs on
a variety of tasks, due to their ability to handle longer sequences and their greater computational
efficiency. In the context of 3D human pose estimation from video, TCNs can be used to model the
temporal dependencies between different frames, which can help to improve the accuracy of the pose
estimation.

In the PoseNet3D study [57], the authors utilized dilated convolutions to model temporal
dynamics. This method facilitates feedback at each time-step and effectively bypasses common
issues associated with LSTM/RNN usage. The strategy of employing residual connections and dilated
temporal convolutions over 2D keypoints is also seen in other research [153,157]. Specifically, the
TCN [158] is used to lift 2D keypoints to 3D joints. The TCN architecture is a one-dimensional fully
convolutional network that integrates causal dilated convolutions. Each hidden layer in the TCN has
the same length as the input layer, enabling the architecture to map an input sequence of any length
to an output sequence of the same length, akin to an RNN. In their work, Pavllo et al. [153] start
with predicted 2D keypoints for unlabeled video, estimate 3D poses, and then use a semi-supervised
training method to back-project 3D data to the input 2D keypoints. This approach is unique in its use of
a semi-supervised training method and back-projection of 3D data. Chen et al. [159] extends the work
of "3D human pose estimation in video with temporal convolutions and semi-supervised training"
by adding a bone direction module and a bone length module to ensure human anatomy temporal
consistency across video frames. The authors propose a joint shift loss to ensure consistency between
predicted bone lengths and directions Liu et al. [152] propose a Graph Attention Spatio-Temporal
Convolutional Network (GAST-Net), which includes a dilated temporal model to handle long-term
patterns in multi-frame estimation. GAST-Net also incorporates graph attention blocks, including
a local spatial attention network to model the hierarchical and symmetrical structure of the human
skeleton, and a global spatial attention network to extract global semantic information for better
encoding of the human body’s spatial characteristics. This approach is distinct in its use of graph
attention blocks and a global spatial attention network. Lastly, in the paper [160], the authors propose
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an occlusion-guided framework that estimates more accurate poses from 2D skeletons with missing
joints as input. Missing joints are handled by introducing guidance that provides extra information
about the absence or presence of a joint. Temporal information is exploited to better estimate the joints,
using a temporal dilated Convolutional Neural Network (CNN). This approach is unique in its focus
on handling missing joints and using guidance to provide extra information about the absence or
presence of a joint.

While TCNs have proven effective in modeling temporal dependencies in video sequences,
another important aspect of 3D human pose estimation is the spatial relationships among the joints.
This is where GCNs come into play.

7.3. Methods Based on GCN

Graph Convolutional Networks are a type of neural network designed to work with
graph-structured data, making them particularly suitable for tasks that involve spatial relationships.
In the previous subsection 7.2, we introduced Gast-Net, which combines TCN and GCN. Although
we discussed it there, we can also include it in this subsection. The graph attention blocks employed
in Gast-Net capture the symmetrical hierarchy of 2D skeleton and global postural constraints. These
blocks are effectively combined with temporal dependencies to address depth ambiguity and overcome
self-occlusion. Likewise, Cheng et al. [143] also presents a method that combines GCNs and TCNs but
for 3D multi-person pose estimation in monocular videos. The framework introduces two types of
GCNs: a human-joint GCN and a human-bone GCN. The human-joint GCN is based on a directed
graph that uses the 2D pose estimator’s confidence scores to improve pose estimation results. The
human-bone GCN models the connections between bones, providing additional information beyond
human joints. These two GCNs work together to estimate spatial frame-wise 3D poses and can use
both visible joint and bone information in the target frame to estimate occluded or missing human-part
information. Wang et al. [161] proposed the Simplified-attention Enhanced Graph Convolutional
Network (SaEGC-Net), which effectively models joint dependencies through two distinct hierarchies
of human structure. Attention mechanisms are integrated into GCNs to establish stronger motion
constraints. The SaEGC-Net is a U-shaped network consisting of three stages: downsampling,
upsampling, and merging. The network accepts consecutive 2D sequences as input and produces
3D poses as output. The network architecture includes features of varying sizes, with the horizontal
size representing the number of channels, the vertical size representing the temporal length, and the
depth of the cuboid representing the number of joints. A 1-hop Spatio-Temporal Graph Convolution
(ST-GC) module, followed by a 2-hop ST-GC module, forms a single Cascaded Spatio-Temporal Graph
Convolution (CST-GC) block. The ST-GC modules in the upsampling stage utilize 1-hop graphs. In
a related study, Zhang et al. [162] introduced an approach that incorporates uncertainty awareness
through the use of Evidential Deep Learning (EDL). This approach integrates uncertainty modeling into
depth prediction and employs a probabilistic representation to account for the distribution uncertainty
of 2D detection. To further enhance the performance of their model, the authors developed an encoder
that merges a Graph Convolutional Network (GCN) and a transformer. The GCN is utilized to model
the spatial relationships among the input 2D keypoints, while the transformer is used to model the
temporal relationships among the input frames. This fusion of methodologies enables the encoder to
capture both spatial and temporal correlations among the input keypoints, leading to more accurate
pose estimation.

This work highlights the versatility and potential of Transformer networks, which were
originally introduced for natural language processing tasks. Due to their ability to model long-range
dependencies, Transformers have shown great promise in various domains, including pose estimation.
In the following section, we will delve into papers that have utilized and adapted Transformer networks
for the task of 3D human pose estimation.
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7.4. Methods Based on Transformers

Transformer-based methods constitute a category of deep learning architectures that utilize
self-attention mechanisms to handle sequential data, including text or images. Transformers can
be directly employed on image patches or can be integrated with convolutional layers to discern
long-range dependencies and spatial relationships among features. The primary advantage of
Transformer networks is their capacity to model global dependencies among all elements in a
sequence, irrespective of their relative positions. This is a contrast to TCNs, which are primarily
designed to handle temporal dependencies within a certain range. To reconstruct 3D pose from
a long sequence of predicted joint locations, Li et al. [163] introduces a Strided Transformer, an
improved Transformer-based architecture.The authors employ a Vanilla Transformer Encoder (VTE) to
model long-range dependencies of 2D pose sequences and a Strided Transformer Encoder (STE) to
reduce the redundancy of the sequence and aggregate information from local contexts. The proposed
method also includes a full-to-single supervision scheme to impose extra temporal smoothness
constraints during training. Building on this, the MixSTE approach proposed by Zhang et al.
[164] employs a temporal transformer block and a spatial transformer block alternately to achieve
better spatio-temporal feature encoding. This dual-block structure allows the network to effectively
capture both the individual movements of each joint and the relationships between different joints,
demonstrating the versatility and effectiveness of Transformer-based models in this domain. Similarly,
the PoseFormer model introduced by Zheng et al. [165] is a purely transformer-based approach that
designs a spatial-temporal transformer structure to model the human joint relations within each frame
as well as the temporal correlations across frames. This approach further underscores the potential
of Transformer networks in capturing both spatial and temporal dependencies for 3D human pose
estimation. Moreover, the work of Wei et al. [43] introduces a motion pose and shape network
(MPS-Net) that leverages visual cues observed from human motion to adaptively recalibrate the range
that needs attention in the sequence to better capture the motion continuity dependencies. Meanwhile,
Li et al. [120] propose a Multi-Hypothesis Transformer (MHFormer) designed to learn spatio-temporal
representations of multiple plausible pose hypotheses and gradually communicate across them to
synthesize a more accurate prediction. This model showcases the potential of Transformer networks
in handling multiple hypotheses and synthesizing them for a more accurate 3D pose estimation.
On the other hand, the P-STMO (Pre-trained Spatial Temporal Many-to-One) model introduced by
Shan et al. [66] presents a unique two-stage approach to 3D human pose estimation from video,
leveraging pre-training techniques and a simplified model structure to effectively capture both spatial
and temporal dependencies in human movement. The process is divided into pre-training and
fine-tuning stages, each designed to capture different aspects of spatial and temporal information. In
the pre-training stage, a self-supervised sub-task called masked pose modeling is proposed, where
human joints in the input sequence are randomly masked in both spatial and temporal domains. A
general form of denoising auto-encoder is used to recover the original 2D poses, enabling the encoder to
capture spatial and temporal dependencies. In the fine-tuning stage, the pre-trained encoder is loaded
into the STMO model and fine-tuned. The encoder is followed by a many-to-one frame aggregator
designed to predict the 3D pose in the current frame. This two-stage strategy allows the encoder to
capture 2D spatial temporal dependencies in the pre-training stage and extract 3D spatial and temporal
features in the fine-tuning stage. The P-STMO model also introduces a temporal down-sampling
strategy on the input side to reduce data redundancy. In a different paradigm, Gong et al. [65] propose
a self-supervised approach that generates 2D-3D pose pairs for augmenting supervision through a
self-enhancing dual-loop learning framework. This approach underscores the potential of Transformer
networks in self-supervised learning scenarios for 3D human pose estimation, demonstrating the
versatility and adaptability of Transformer-based methods in this domain. .
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7.5. Unified Frameworks for Real-Time Applications

Unified Frameworks are designed to handle all aspects of a particular task within a single,
integrated system. These frameworks are typically optimized for efficiency and speed, making them
suitable for real-time applications where quick processing and response times are critical.

In the context of 3D human pose estimation, a unified framework encompasses various
essential components within a single, integrated system. This comprehensive approach combines the
functionalities of detecting and tracking human figures in video, estimating 2D joint positions, lifting
these 2D positions to 3D, and smoothing or refining the pose estimates over time. Additionally, the
framework may also incorporate the capability of absolute depth estimation, further enhancing the
accuracy and completeness of the pose estimation process. By integrating all these components into a
unified structure, the framework can efficiently and rapidly process data, making it well-suited for
real-time applications where quick and accurate results are crucial.

Luvizon et al. [84] proposes a multi-task network architecture that jointly estimates 2D /3D human
poses and recognizes associated actions through regression. This approach follows a single-stage
pipeline and benefits from using images "in-the-wild" with both 2D annotated poses and 3D data. This
has been proven a very efficient way to learn good visual features. Similarly, the work [83] presents
SSP-Net, an end-to-end trainable architecture for regressing the pose in multiple scales in a sequential
coarse-to-fine manner. SSP-Net consists of an entry-flow that extracts preliminary feature maps
from input images, and a sequence of CNNs comprising prediction blocks connected by alternating
downscaling and upscaling units. Each prediction block outputs a supervised pose prediction that is
further refined by subsequent blocks and units.

In contrast, the paper [166] introduces a two-stage pipeline and presents a unified framework
that combines YOLOv5, HRNet, and TCN for real-time 2D /3D human pose estimation. In the work
presented in [167], a similar pipeline was pursued, but it was expanded by incorporating a root depth
estimator, a feature not present in the approach outlined in [166]. This incorporation enables the
system to derive camera-centric coordinates and integrates YOLOvV3 for human detection, HrNet as
the 2D pose estimator, and Gast-Net for 3D root-relative pose reconstruction. The resulting system,
named Root-GasntNet, is specifically tailored to tackle the challenges associated with recovering the
3D absolute poses of multiple individuals from a monocular perspective.

Adopting a top-down approach similar to the papers [166,167], Dong et al. [168] proposed an
approach for multi-person 3D pose estimation. However, a notable distinction lies in their consideration
of multiple views instead of a monocular view. They employed a multi-way matching algorithm to
cluster detected 2D poses across all views, encoding the 2D poses of the same individuals from different
views into resulting clusters and establishing consistent correspondences across keypoints. This key
difference allows the approach presented by Dong et al. [168] to take advantage of the multi-view setup,
leading to potentially improved accuracy and robustness in multi-person 3D pose estimation. Similarly,
in the context of multi-view setups, the work proposed in [169] presents an approach for performing
3D pose estimation of multiple individuals from a few calibrated camera views. Their architecture
aggregates feature-maps from a 2D estimator backbone, creating a comprehensive representation of
the scene. Subsequently, this representation is elaborated by a fully-convolutional volumetric network
and a decoding stage, which effectively extracts skeletons with sub-voxel accuracy.

The advantage of unified frameworks lies in their ability to achieve superior performance
compared to a collection of separate models. This is because each component within the framework
can be optimized to work seamlessly with the others, resulting in enhanced overall performance.
Additionally, unified frameworks offer greater efficiency by eliminating the need for data to be passed
between separate models or systems, making them well-suited for real-time applications that require
quick processing. As an example, in the paper presented in [167], the effectiveness of the unified
framework was demonstrated, attaining an impressive 15 frames per second (fps) on the Nvidia
GeForce GTX 1080. Emphasizing the utilization of high-performance materials and FP16 precision can
lead to even greater enhancements in processing speed.
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7.6. Performance and Complexity Analysis of Video-Based Approaches

When a video sequence is available, researchers often employ temporal models to map and model
the connections between keypoints across images, effectively reducing the search space. As we have
discussed, various networks such as LSTM and TCN are used to preserve information over extended
periods.

In terms of performance, LSTM-based methods have demonstrated robustness in managing
temporal dependencies in video sequences, making them suitable for pose estimation tasks involving
sequential data. However, they may encounter difficulties with long-term dependencies due to the
vanishing gradient problem. Conversely, TCN-based methods have exhibited superior performance in
capturing long-range dependencies, thanks to their dilated convolutions and residual connections.

GCN-based methods excel in scenarios where pose estimation involves a graph structure, such as
a human skeleton. These GCN networks are utilized for spatial relationships. They have demonstrated
high accuracy in such scenarios due to their ability to capture the dependencies between different
joints. Additionally, Transformers, with their attention mechanism, are employed to discern long-range
dependencies and spatial relationships among features. They have shown promising results in pose
estimation tasks by effectively managing long-range dependencies and occlusions.

In terms of complexity, LSTM and TCN-based methods have relatively lower computational
requirements compared to GCN and Transformers. The latter methods, while powerful, often require
significant computational resources due to their complex architectures. LSTM and TCN-based methods
are also easier to implement and train, making them more accessible for researchers and practitioners.

Unified frameworks, designed to integrate the advantages of various methods, have demonstrated
high accuracy and robustness across different scenarios. However, their performance is heavily
contingent on the specific combination of methods employed within the framework. These
frameworks are typically more complex to implement and demand substantial computational resources.
Additionally, they necessitate meticulous design and tuning to ensure the harmonious operation of the
integrated methods. In the case of multi-person scenarios, tracking must be applied to ensure temporal
consistency of poses.

In conclusion, Table 4 offers a general comparison of the methods used for 3D human pose
estimation in video sequences. The choice of network should be guided by careful consideration
of the task’s specific requirements, the computational resources available, and the balance between
complexity and performance.
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Table 4. Comparative Analysis of Networks for Video-Based Human Pose Estimation

Category Performance Complexity Key Features Best Used For
LSTM-based = Good with short-term  Low Works well with data that ~ Tasks with short-term
Methods patterns, struggles complexity follows a sequence sequential data
with long-term
patterns
TCN-based Great with long-term  Low Uses special connections Tasks needing to
Methods patterns complexity to capture long-term capture long-term
patterns patterns
GCN-based Very accurate High Captures relationships  Tasks where
Methods with  network-like complexity between different estimation involves
structures points, good for spatial a network-like
relationships structure
Transformers  Promising  results High Uses attention  Tasks needing
with long-term  complexity —mechanism, good to understand
patterns and hidden for understanding spatial long-term  patterns
points relationships and spatial
relationships
Unified High accuracy, High Combines advantages of Complex tasks where
Frameworks performance depends  complexity different methods, needs combining different
on the mix of careful setup methods could
methods improve results

8. 3D Human Pose Estimation from Multi-View Cameras

In the field of 3D human pose estimation, the use of multiple camera views has emerged as a
powerful strategy to overcome the inherent challenges associated with the loss of depth information
during the projection from the 3D world to the 2D image plane. Multi-view approaches offer a
more comprehensive understanding of spatial structure, enabling more accurate pose estimation by
capturing different perspectives of the subject.

Multi-view approaches in 3D human pose estimation can be considered as weakly supervised
human pose estimation. They aim to obtain ground truth annotations for monocular 3D human pose
estimation. One approach is the use of weak supervision transfer learning, as explored by Zhou et
al. [170], where training data with mixed 2D and 3D labels are employed. The authors introduced a
3D geometric constraint to regularize the predicted 3D poses on images with only 2D annotations.
Rhodin et al. [171] proposed replacing most of the annotations with multiple views to train the system
to predict the same pose across all views. Zhou et al. [172] exploited different views to predict 3D
keypoints of an object on unlabeled instances.

However, these methods often require synchronized and calibrated cameras, a requirement that
may not always be feasible, particularly in uncontrolled environments. Multi-view camera approaches
for 3D human pose estimation also typically follow either a single-stage [85,173] or a two-stage pipeline
[52,113,121]. These multi-view approaches are particularly crucial when the goal is to estimate poses
in camera coordinates, as they can leverage the additional spatial information provided by multiple
views to generate more accurate and robust estimations in the camera’s coordinate system. This aspect
becomes especially important in multi-person scenarios.

As example, the work by Luvizon et al. [121] proposes a method for 3D human pose estimation
in camera coordinates. This method effectively combines 2D annotated data and 3D poses, offering a
straightforward multi-view generalization. The paper also presents a consensus-based optimization
algorithm for multi-view predictions from uncalibrated images, predicting each body joint in image
pixel coordinates and in absolute depth, orthogonal to the image plane.

Transformer-based models have gained popularity in this field due to their ability to handle
complex spatial relationships and their capacity for parallel computation, which is beneficial for
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processing multi-view data. Zhang et al. [85] propose a transformer-based model, the Multi-view
Pose Transformer (MvP), which directly regresses the 3D poses by representing query embedding
of multi-person joints. The multi-view information for each joint is fused by a geometrically guided
attention mechanism, called projective attention. This mechanism effectively harnesses the additional
depth provided by multi-view data, providing complementary information that aids in the estimation
of absolute multi-person poses.

Similarly, the TransFusion framework introduced by Ma et al. [174] employs a transformer model
and introduces the concept of an epipolar field to encode 3D positional information, allowing for
efficient encoding of correspondences between pixels of different views.

The use of multi-view approaches is not limited to images. Dong et al. [168] proposes a fast
and robust approach to solve the problem of multi-person 3D pose estimation and tracking from
multiple views videos. The approach uses a multi-way matching algorithm to cluster the detected 2D
poses in all views. Each resulting cluster encodes 2D poses of the same person across different views
and consistent correspondences across the keypoints, from which the 3D pose of each person can be
effectively inferred.

Real-time applications have also been explored. Zhang et al. [113] introduce an end-to-end
point-to-pose mesh fitting network (P2P-MeshNet) to directly estimate the body joint rotations from
multi-view OpenPose 2D joint locations in real-time, with a performance of 100 frames per second.

In the realm of self-supervised learning, Wandt et al. [52]. propose CanonPose, a framework that
uses unlabelled multi-view data to infer 3D poses. The framework of CanonPose involves multiple
neural networks where each sub-network produces a 3D pose in a canonical rotation. The outputs
across different views are combined to produce the final pose. This method does not require prior
knowledge about the scene, 3D skeleton, or camera calibration, and integrates the confidences from
the 2D joint estimator into the training pipeline. The outputs across different views are combined to
produce the final pose.

In the same paradigm learning but applied to videos, Gholami et al. [175] propose a learning-based
method to overcome the limitations of classical triangulation. This approach does not require 3D
annotations or calibrated cameras for training. The framework requires un-calibrated multi-view
videos for training and can be applied to a single video at inference time.

8.1. Challenges of Multi-View Camera Systems

To conclude, multi-view camera systems have greatly advanced 3D human pose estimation,
introducing new methods for improving accuracy and expanding potential applications. However,
these techniques face challenges.

They necessitate specific camera configurations, which may not be accessible or practical in
numerous real-world contexts. Furthermore, the processing time required for information derived
from these systems can be substantial. This lack of speed can render them inefficient for scenarios
requiring immediate results, such as real-time tracking or instantaneous feedback. Spatial constraints
also pose an issue. Cameras need to be stationed at varying angles around the subject, a requirement
that might not be achievable in compact or cluttered spaces, thereby restricting the areas where these
systems can be used. Cost is another potential obstacle. Implementing multi-view systems can be
pricey due to the need for multiple cameras and their particular setup, potentially limiting their usage
to those who can bear such costs.

While multi-view camera systems have undeniably pushed 3D human pose estimation to new
heights, these constraints reduce their practicality for various real-world scenarios.

9. Discussion

As previously shown, 3D pose estimate can be done in two ways: direct regression or passing
through 2D joint estimation. In practice, separating the job into 2D pose estimation and lifting to 3D
poses turns out to be easier and more accurate than building a single end-to-end network of direct
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3D joint regression. From monocular images, most methods reaching the top results [42,153,157,176—
184] predict 3D poses from intermediate 2D coordinates (Source [185]). However, the fundamental
disadvantage of two-step methods is that they only convert one 2D posture to a 3D pose at a time.
Thus, they are well suited for estimating the pose of a single person. Analogically, the more precise
the 2D coordinates are, the more accurately the estimated 3D coordinates can be. That’s why some
methods directly use 2D ground truth joints provided by the database as an input to train their models.

In the multiple-person case, analogically, top-down approaches have a higher precision and are
more accurate compared to bottom-up methods. However, they tend to be less effective and slower,
since they must apply pose estimator to each individual. Furthermore, they sometimes fail to capture
the spatial dependencies across different people that require global inference. Bottom-up approaches
thus seem to be more robust to scenes with a lot and crowded people.

rpposeeeeectttalk about "Real-world applicability: Multi-view methods often require specific
setups, such as synchronized and calibrated cameras, which may not always be feasible, particularly
in uncontrolled environments. This limitation is highlighted in the paper "EgoHumans: An Egocentric
3D Multi-Human Benchmark" 1.

Processing times: Existing approaches often suffer from lengthy processing times due to laborious
feature matching, hardware limitations, dense point sampling, and long training times required by
the multi-layer perceptron structure with a large number of parameters. This issue is discussed in the
paper "BAA-NGP: Bundle-Adjusting Accelerated Neural Graphics Primitives" as cons of multi view

Multi-view 3D HPE. The partial occlusion is a challenging problem for 3D HPE in the single- view
setting. The natural solution to overcome this problem is to estimate 3D human pose from multiple
views, since the occluded part in one view may become visible in other views. In order to reconstruct
the 3D pose from multiple views, the association of corresponding location between different cameras
needs to be resolved. We do not specify single-person or multi-person in this category since multi-view
setting are deployed mainly for multi-person pose estimation.

10. Common Databases and Evaluation Metrics for 3D Human Pose Estimation

Table 5 provides a list of commonly used datasets for 3D human pose estimation, while Table 6
details the specific evaluation metrics employed in these studies.
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Table 5. Common databases for 3D human pose estimation.
Dataset Description Evaluation
metrics
HumanEva-I1[79] 7 calibrated video sequences using multiple RGB and 3D error
2010 gray-scale cameras, synchronized with 3D body poses metric
c obtained using marker-based motion capture system.
2 The database contains 4 subjects performing a 6 common
&‘j actions.
Y Human3.6M [186] The most popular and biggest benchmark for 3D human pose  MPJPE
&D 2013 estimation. Procrustes
93 3.6 million indoor video frames and corresponding poses of 11  aligned
professional actors captured by MoCap system from 4 camera MPJPE
viewpoints. MRPE
Subjects 9 and 11 are used for testing, as in prior studies.
MPI-INF-3DHP It consists of more than 1.3 million frame captured with MPJPE
[111] marker-less motion capture using 14 RGB cameras, consisting 3D_PCK
2017 of both constrained indoor and complex outdoor scenes. AUC,;
It has 8 subjects performing 8 activity sets.
MuCo-3DHP Training data-set which merges randomly sampled 3D poses MPJPE
[133] from single-person 3D human pose data-set MPI-INF-3DHP  3D-PCK
c 2018 to form realistic multi-person scenes. AUC,;
2 3DPCK ;5
g
Q MuPoTS-3D [133] A data-set used for testing real-world shot of a 3D human 3D-PCK
-_g" 2018 pose dataset containing 20 videos (8000 frames) captured in AUC,,;
= both indoor and outdoor scenes, with challenging occlusions ~ 3DPCK
= and person-person interactions.
Muco-Temp [187] A data-set generated in the same way as MuCo-3DHP. 3D-PCK
2020 It consists of videos instead of frames AUC,,
Usually used for temporal networks training. 3DPCK s
MPJPE

MRPE
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Table 6. Evaluation metrics. Note that T denotes the total number of test samples and N denotes the
number of joints. Ground-truth joint and the predicted joint are indicated by J and J, respectively. i
represents each joint from all joints and root represents the root-joint.

Evaluation Name
metric

Description

3D error 3D error metric

metric

which measures the average squared distance between the
predicted pose coordinates and the actual ones.

MPJPE Mean Per Joint

Position Error

is the mean euclidean error averaged over all joints and all poses,
calculated after aligning the human root of the estimated and
ground truth 3D poses.

.

The first protocol (P1) uses five subjects for training and two
for testing, while the second protocol (P2) uses six subjects for
training and one for testing. The third protocol (P3) splits the
dataset in the same way as P1 but evaluates only sequences
captured by the frontal camera in trial 1 without sub-sampling
the original video. The error is averaged over 14 joints in P1 and
P2 and a subset of 14 joints in P3. All protocols use Procrustes
analysis to calculate the pose error.

I GREIN
MPJPE = (]i(t) - ]root(t)) - - r<;())t)

-
Il

~| -
z| =
1=
M=

I
—

1i

Person-centric (relative pose)

3DPCK 3D Percentage of

Correct Keypoints

measures the percentage of correctly estimated keypoints within
a certain distance threshold.

In studies, an estimated joint is considered correct if it is within a
150 mm distance from the corresponding ground truth joint.

AUC,, Area under

3D-PCK curve

this performance metric is calculated by plotting the PCK values
against different distance thresholds and integrating the area
under the curve. A higher value of this metric indicates better
performance of the algorithm.

MRPE Mean Root

Position Error

the average error of the absolute root joint (the hip) localization.

R = 1 3 (- 120

APR! Average precision

of the root

permit to measure the 3D human root location prediction error,
which considers the prediction as correct when the Euclidean
distance between the estimated and the groundtruth coordinates
is smaller than 25cm.

Camera-centric (absolute pose)

3DPCK s

3D Percentage of
Correct absolute
Keypoints

3DPCK without root alignment to evaluate the absolute poses.
In studies, the threshold distance used for an absolute joint to be
estimated as correct is 250 mm.

11. Conclusion

In conclusion, our survey has provided a comprehensive overview of various approaches and
techniques developed for 3D human pose estimation from monocular images, videos, and multi-view
images. We have thoroughly categorized and analyzed these methods, taking into account factors
such as the number of people involved, the input data, and approaches for interpreting body structure.
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The advent of deep learning has led to significant advancements in the field of 3D human pose
estimation, enabling more accurate and precise results.

However, it is important to note that despite these advancements, there are still limitations in the
real-life application of these methods. Challenges persist in accurately estimating poses for multiple
individuals or in challenging conditions, such as outdoor environments, scenarios involving rapid
movements, or situations where the subject is either too small or far from the camera. These challenges
are particularly evident in monocular camera setups, which can pose additional difficulties in obtaining
absolute results.

To further improve the practicality and effectiveness of 3D human pose estimation techniques,
future research should focus on addressing these challenges and developing robust algorithms that
can handle complex real-world scenarios.
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