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Abstract: The complexity of modern power grids, exacerbated by integrating diverse energy sources, especially 

inverter-based resources (IBRs), presents a significant challenge to grid operation and planning since linear 

models fail to capture the intricate IBR dynamics. This study employs the Sparse Identification of Nonlinear 

Dynamics (SINDy) method to bridge the gap between theoretical understanding and practical implementation 

in power system analysis. It introduces the novel Volterra-based Nonlinearity Index (VNI) to examine system-

level nonlinearity comprehensively. The distinction of dynamics into first-order linearizable terms, second-

order nonlinear dynamics, and third-order noise elucidates the intricacy of power systems. The findings 

demonstrate a fundamental shift in system dynamics as power sources transit to IBRs, revealing system-level 

nonlinearity compared to module-level nonlinearity in conventional synchronous generators. The VNI 

quantifies nonlinear-to-linear relationships, enriching our comprehension of power system behavior and 

offering a versatile tool for distinguishing between different nonlinearities and visualizing their distinct 

patterns through the proposed VIN profile. 

Keywords: Inverter-based resources; Measure-based method; Model identification; Non-linear dynamics; 

Power system; SINDy; Synchronous generators; System-level nonlinearity; Volterra-based nonlinearity index 

 

1. Introduction 

The systemic nonlinearity conundrum is a central focus in power system operation due to the 

intricate dynamics within modern power grids [1]. As these grids increasingly incorporate diverse 

energy sources, including inverter-based resources (IBRs), conventional linear models fail to capture 

the complex web of nonlinear interactions, feedback loops, and emergent behaviors [2]. The 

recognition and comprehensive examination of system-level nonlinearity are paramount for 

safeguarding the resilience, stability, and efficiency of contemporary electrical grids. The 

development and application of advanced modeling techniques, such as the Sparse Identification of 

Nonlinear Dynamics (SINDy), are indispensable in understanding the higher-order dynamics and 

nuanced interdependencies underpinning modern power systems [3]. 

A concise synthesis of studies emphasizes the transformative impact of IBR integration on power 

systems. A seminal work by Mishra et al. (2022) uncovers the intrinsic nonlinearities within 

conventional power grids, highlighting the challenge of maintaining stability amid dynamic 

interactions among synchronous generators and intricate load profiles [4]. Ekomwenrenren et al. 

(2021) empirically demonstrate deviations from conventional linearized frequency control in IBR 

grids, revealing nuanced nonlinear frequency responses unique to these systems [5]. Orihara et al. 

(2021) delve into the pivotal dynamics of virtual inertia in IBR grids, offering insights into nonlinear 

control mechanisms [6]. Keyon et al. (2020) examine the impact of varying IBR penetration levels on 

power system dynamics, illustrating the transition from first-order to high-order behavior [7]. 

Stankovic et al. (2020) provide a perspective on employing sparse identification techniques to capture 
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dynamics in power grids [8]. These studies collectively unveil the intricate contours of this nascent 

paradigm and the exigent hurdles it presents to the domain of power systems engineering. 

Real-time support is instrumental in tackling emerging challenges and ensuring the adaptability 

of power systems as they evolve to accommodate various energy sources. Understanding the 

distinctions between synchronous generators (SGs) and the interactions within systems that combine 

SGs and IBRs or rely exclusively on IBRs is vital for system operators [9]. The most significant impacts 

in power system analysis and management materialize in real-time operations, where precise 

mathematical system dynamics models are often unattainable [10].  

Measurement-based methodologies, rooted in empirical data and supported by advanced 

monitoring technologies and data analytics, provide a pragmatic solution for real-time decision 

support [11]. These techniques empower grid operators to make informed, agile decisions that ensure 

the continuity, stability, and reliability of electrical power systems amidst evolving energy landscapes 

characterized by nonlinear dynamics and dynamic grid architectures [11]. 

The emergence of advanced approaches has become a focal point in various fields due to their 

effectiveness as foundational frameworks. The transformative potential of innovative approaches 

that extend and refine the SINDy paradigm, making them applicable and relevant across diverse 

domains [12,13]. The development and adaptation of SINDy techniques 

• provide a novel avenue for understanding complex systems, 

• enrich our understanding of fundamental principles and 

• pave the way for groundbreaking applications and insights in various fields of study [12,13]. 

This research presents a substantial contribution to power systems analysis and modeling. One 

of our primary contributions is applying the SINDy algorithm to the power system (IEEE 15-bus), 

unraveling the intricate dynamics that govern this complex system under various operational 

scenarios. Our investigation is a foundational step toward leveraging the Volterra-based Nonlinearity 

Index (VNI) as a novel proposed analytical instrument for quantifying nonlinearity within dynamic 

systems, providing a quantitative measure that enhances our understanding of the balance between 

linear and nonlinear behaviors in power grids. 

Additionally, our study contributes to the ongoing discourse surrounding power grid dynamics, 

particularly in integrating inverter-based resources. By examining scenarios with synchronous 

generators and IBRs at varying levels of integration, the results offer insights into the nonlinear 

behaviors, at both module and system levels, that emerge when transitioning from traditional power 

generation to the integration of renewable energy sources. This contribution not only deepens the 

understanding of fundamental differences in system dynamics but also has practical implications for 

grid operators and planners aiming to optimize grid performance as renewable energy penetration 

continues to grow.  

The introduction of higher-order polynomial function libraries to model IBR integration 

represents a significant departure from traditional modeling approaches, reflecting the evolving 

needs of power grid analysis as renewable energy takes center stage. The findings pave the way for 

a better understanding of the intricacies of power systems and offer practical solutions for building 

more resilient and efficient grids. 

The subsequent sections of this manuscript are organized as follows: Section 2 provides a 

detailed explanation of the SINDy algorithm. Section 3 demonstrates the conducted study and the 

respective results followed by the introduction of the proposed index for system nonlinearity. The 

final segment comprises the concluding remarks, emphasizing the results' significance and 

elucidating potential research directions for future studies. 

2. SINDy Algorithm  

In this section, we will delve into the mechanics of the SINDy framework, exploring its 

fundamental principles and methodologies. We will begin by understanding how SINDy leverages 

sparsity methods, compressed sensing, and sparse regression techniques to identify concise and 

accurate models for complex dynamical systems. We will dissect the critical steps of the SINDy 

approach, from data collection and constructing a library of candidate functions to sparse regression 
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and model construction. Additionally, we will highlight the significance of sparsity in simplifying 

system dynamics and improving interpretability. Furthermore, we will discuss SINDy's applications, 

limitations, and the importance of adapting this methodology to the intricacies of electrical power 

systems. Finally, we will introduce a novel understanding and view of the SINDy method and its 

result by introducing a three-section data analysis structure, which extends SINDy's capabilities for 

enhanced data-driven research across diverse domains. 

Integrating sparsity methods in analyzing dynamical systems has emerged as a significant 

advancement, employing compressed sensing and sparse regression techniques to identify concise 

and accurate models representing the underlying nonlinear dynamics [13]. SINDy is a measure-based 

method specifically designed to discover governing equations or mathematical models from 

observed data. The SINDy approach focuses on dynamical systems described by the equation 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡  =  𝑓𝑓�𝑥𝑥(𝑡𝑡)�,   (1) 

where 𝑥𝑥(𝑡𝑡) ∈  𝑅𝑅𝑛𝑛 represents the system's state at time 𝑡𝑡 and 𝑓𝑓�𝑥𝑥(𝑡𝑡)� encompasses the 

dynamic constraints governing the system's equations of motion, including parameters, time 

dependence, and external forcing [3].  

Leveraging recent progress in compressed sensing and sparse regression, the sparsity 

perspective enables the identification of the nonzero terms in 𝑓𝑓 without computationally demanding 

brute-force searches. Convex methods that scale well with Moore's law allow for identifying sparse 

solutions with high probability, striking a balance between model complexity and accuracy, thereby 

avoiding overfitting the model to the available data [14]. An example case is illustrated in Figure 1 to 

demonstrate SINDy’s algorithm [3]. 

 

Figure 1. Example illustration of SINDy algorithm [3]. 

To determine the function 𝑓𝑓 from available data, a time history of the system's state, denoted 

as 𝑥𝑥(𝑡𝑡), is collected. The derivative of 𝑥𝑥(𝑡𝑡), denoted as 𝑥̇𝑥(𝑡𝑡), is directly or numerically approximated. 

The data is sampled at various time instances, {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑚𝑚} and organized into 𝑋𝑋 and 𝑋̇𝑋 matrices. 

The matrix 𝑋𝑋 is constructed as: 

𝑋𝑋 =  � |𝑥𝑥(𝑡𝑡1),

|

|𝑥𝑥(𝑡𝑡2)

|

, … ,

|𝑥𝑥(𝑡𝑡𝑚𝑚)

|

�𝑇𝑇  (2) 

and the matrix 𝑋̇𝑋 is constructed as: 

𝑋̇𝑋  =  � |𝑥̇𝑥(𝑡𝑡1)

|

,

|𝑥̇𝑥(𝑡𝑡2)

|

, … ,

|𝑥̇𝑥(𝑡𝑡𝑚𝑚)

|

�𝑇𝑇       (3) 

The next step in the SINDy approach involves defining a library of candidate nonlinear 

functions, denoted as 𝛩𝛩(𝑋𝑋), where 𝑋𝑋 is the data matrix that contains observed data points of the 

system variables [3] The library is constructed by carefully selecting relevant nonlinear functions 
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based on prior knowledge and theoretical considerations. These functions can include polynomials, 

trigonometric functions, exponentials, logarithmic functions, and other suitable nonlinear 

expressions [3]. 𝛩𝛩(𝑋𝑋) =  [1,𝑋𝑋,  𝑋𝑋2,𝑋𝑋3, … , 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋), 𝑐𝑐𝑐𝑐𝑠𝑠(𝑋𝑋), … ]      (4) 

Higher-order polynomials are denoted as 𝑋𝑋2, 𝑋𝑋3, and so on. Each column in the 𝛩𝛩(𝑋𝑋) matrix 

represents a candidate function for the right-hand side of the dynamical equation [3]. 

Assuming that only a few of these nonlinearities are active in each row of 𝑓𝑓, a sparse regression 

problem is formulated to determine the sparse vectors of coefficients, 

𝛯𝛯 = � |𝜉𝜉1
|

,

|𝜉𝜉2
|

, … ,

|𝜉𝜉𝑛𝑛
|

�     (5) 

which indicate the active nonlinearities. Mathematically, this can be expressed as: 𝑋̇𝑋  =  𝛩𝛩(𝑋𝑋)𝛯𝛯.   (6) 

Each column, 𝜉𝜉𝑘𝑘, of the 𝛯𝛯 matrix corresponds to a sparse vector of coefficients that determines 

the active terms in the right-hand side of one of the row equations, 𝑥𝑥𝑘𝑘  =  𝑓𝑓(𝑥𝑥) [3], [12]. 

Given the data matrix 𝑋𝑋 and the library of candidate functions 𝛩𝛩(𝑋𝑋), SINDy formulates the 

sparse regression problem as follows: 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚 ��𝑋̇𝑋  −  𝛩𝛩(𝑋𝑋)𝛯𝛯��2  +  𝜆𝜆 �|𝛯𝛯|�1   (7) 

where 𝛯𝛯 is the sparse vector of coefficients representing the importance or relevance of each 

term in the library, �|. |�2  denotes the L2 norm, �|. |�1  represents the L1 norm, and 𝜆𝜆  is a 

regularization parameter that controls the trade-off between data fidelity and sparsity. The first term 

ensures that the model predictions, obtained by multiplying 𝛩𝛩(𝑋𝑋) with 𝛯𝛯, are close to the observed 

data, while the second term encourages a sparse solution by promoting a minimal number of nonzero 

coefficients [3]. 

Sparse regression is a crucial step in the process, where a library of candidate functions is 

subjected to analysis to identify the most concise model that accurately captures the underlying 

nonlinear dynamics. The sparsity principle is central to this approach, as it seeks to select a subset of 

functions from the candidate library that is most relevant to the system's dynamics. By incorporating 

regularization techniques, such as L1 regularization (or the Lasso), the model achieves sparsity by 

encouraging the coefficients of irrelevant terms to be zero, thereby emphasizing the significant 

functions while minimizing the overall number of terms [18]. This strategy simplifies the 

representation of system dynamics, leading to improved interpretability and a more concise model. 

Once the Ξ matrix is determined, a model for each row equation can be constructed using the 
library of candidate functions and the corresponding sparse coefficients. Specifically, the 𝑘𝑘𝑡𝑡ℎ row 

equation, 𝑥𝑥𝑘𝑘  =  𝑓𝑓(𝑥𝑥), can be expressed as [3]: 𝑥𝑥𝑘𝑘  =  𝛩𝛩(𝑥𝑥)𝜉𝜉𝑘𝑘 ,    (8) 

where 𝛩𝛩(𝑥𝑥) is a vector of symbolic functions of the elements of x. It is important to note that 𝛩𝛩(𝑥𝑥) differs from 𝛩𝛩(𝑋𝑋) in that it represents symbolic functions of the state variables, unlike 𝛩𝛩(𝑋𝑋), 

which represents a data matrix. Consequently, the overall representation of the system dynamics can 

be written as follows: 𝑥𝑥 ̇ =  𝑓𝑓(𝑥𝑥) =  𝛯𝛯𝑇𝑇 𝛩𝛩(𝑥𝑥)  (9) 

Each column requires a separate optimization procedure to determine the sparse vector of 

coefficients, 𝜉𝜉𝑘𝑘, for the corresponding row equation. It is also possible to normalize the columns of 𝛩𝛩(𝑋𝑋), particularly when the entries of 𝑋𝑋 are small [3]. 

The SINDy has been extensively studied and validated in various scientific domains, 

showcasing its effectiveness in uncovering governing equations from data. However, the method has 

limitations. SINDy is sensitive to noise and requires careful model selection to balance sparsity and 
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accuracy [15]. Its application to densely coupled dynamics poses challenges as disentangling 

individual contributions becomes difficult [13]. Furthermore, while SINDy captures dynamics from 

data, it does not explicitly incorporate physical constraints, necessitating additional techniques or 

prior knowledge incorporation to ensure compliance with fundamental principles [3], [12]. 

Awareness of these limitations is essential for effective and informed utilization of the SINDy 

method. 

A fundamental and critical undertaking within power system analysis involves the adaptation 

and contextualization of the general SINDy methodology tailored to the intricacies of electrical power 

systems. This essential initiative involves the development of a power-specific algorithm that aligns 

the SINDy principles with the dynamics inherent to power systems. Such an adaptation holds 

paramount significance as it effectively bridges the gap between the versatile SINDy framework and 

the unique complexities of power system dynamics.  

 

Algorithm 1: 

Input:  

Time history of the system's state, denoted as x(t), where x(t)∈Rn. 

Regularization parameter λ. 
Library of candidate functions, Θ(X), where X is the data matrix that contains observed data 

points of the system variables. 

Step 1: Data Collection 

Initialize empty matrices X and 𝑋̇𝑋, where 𝑋̇𝑋 represents the time derivatives of X. 
For each time instance t in the set of time instances: 

Collect data at time t and store it in x(t). 

Compute the derivative of x(t) at time t, denoted as 𝑥̇𝑥 (t). 

Append x(t) to the X matrix. 
Append x˙(t) to the 𝑋̇𝑋 matrix. 

Step 2: Construct Library of Candidate Functions 

Initialize an empty list for the library of candidate functions. 

For each candidate function in the set of candidate functions: 

Compute the values of the candidate function using data matrix X. 
Append the function values to the library. 

Step 3: Sparse Regression 

Initialize an empty list Ξ to store the sparse coefficient matrices for each variable. 
For each system variable k: 

Perform sparse regression using data matrices X, 𝑋̇𝑋 , the library Θ(X), and regularization 
parameter λ to obtain Ξk. 

Sparse Regression Formulation: 

The sparse regression problem for variable k can be expressed as: 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚 ��𝑋̇𝑋  −  𝛩𝛩(𝑋𝑋)𝛯𝛯��2  +  𝜆𝜆 �|𝛯𝛯|�1 

where Ξk represents the sparse coefficient matrix for system variable k. �|. |�2  denotes the L2 norm. �|. |�1 represents the L1 norm. 

λ is a regularization parameter that controls the trade-off between data fidelity and sparsity. 

Step 4: Model Construction 

Initialize an empty list for the models representing the system dynamics. 

For each system variable k: 

Construct the model for variable k using the library of candidate functions Θ(x) and the 
corresponding sparse coefficient Ξk. 

Model Construction: 

The model for system variable k can be expressed as: 𝑥𝑥𝑘𝑘  =  𝛩𝛩(𝑥𝑥)𝜉𝜉𝑘𝑘 
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where Θ(x) is a vector of symbolic functions of the elements of x. 𝜉𝜉𝑘𝑘 is the sparse vector of coefficients that determines the active terms in the system variable 𝑥𝑥𝑘𝑘 = f(x) . 

Output: 

The list of models represents the system dynamics for each system variable, providing concise 

and accurate descriptions of the underlying nonlinear dynamics. 

The proposed three-section data analysis structure represents a notable evolution in data 

analysis, particularly within the SINDy framework. This innovative structure introduces a novel 

third section that extends the conventional SINDy methodology, providing new avenues for 

enhanced data analysis. The initial two sections focus on identifying linearizable and nonlinear 

dynamics within the system. The addition of the third section substantially enhances the overall data 

analysis process by categorizing and managing negligible data, often regarded as noise, which 

significantly improves the precision and accuracy of system modeling. This comprehensive approach 

enables a more profound understanding of intricate nonlinear behaviors, benefiting applications 

across diverse domains, from power systems to the natural sciences. The inclusion of the third section 

underscores the adaptability and versatility of the SINDy methodology, allowing for a more nuanced 

examination of complex system dynamics, a critical component of contemporary data-driven 

research. 

The first section of the proposed data analysis framework plays a fundamental role in 

identifying and characterizing first-order impacts within the system. Its unique focus lies in 

evaluating the nonlinearities across nodes, with a particular emphasis on those that are trivial or 

readily linearizable. This systematic approach dissects the system dynamics to isolate elements that 

exhibit straightforward and manageable nonlinearities amenable to linear approximations. This 

categorization enhances the precision and tractability of the data analysis process, providing valuable 

insights into complex system behaviors encompassing both linear and nonlinear components, 

particularly in applications spanning diverse domains, including power systems. 

The second section within the outlined data analysis structure takes a central role in the 

comprehensive examination of system dynamics. It is dedicated to discerning and categorizing true 

nonlinearity, which differs significantly from the more straightforward and readily linearizable 

elements identified in the first section. True nonlinearity represents intricate and non-trivial 

characteristics that defy simple linearization, delving deep into complex system behaviors. Focusing 

on these inherently nonlinear dynamics offers profound insights into the intricate interdependencies 

and feedback loops characterizing real-world systems, transcending linear approximation 

constraints. This in-depth analysis is pivotal for understanding nonlinearity's nuances across various 

domains, providing a fundamental foundation for a richer comprehension of system dynamics, 

particularly in the context of power systems and beyond. 

The third section within the data analysis structure serves a crucial role in isolating and 

addressing components of system dynamics categorized as negligible. These elements include 

tolerable errors, inherent noise, and other factors exerting minimal influence on the overall system 

behavior. While individually minor, their cumulative impact can introduce variations and 

perturbations in the system's dynamics. However, by considering these factors within a dedicated 

section, they can be managed and refined effectively, enhancing the overall modeling accuracy of the 

system. This meticulous categorization offers a valuable framework for researchers and system 

operators, allowing them to discern essential dynamics from negligible ones, ensuring a more 

accurate representation of system behavior. This process is fundamental for optimizing system 

models and is highly relevant to applications in various domains, with particular significance in 

power system analysis. 

3. Demonstration Study 

In this comprehensive study on an IEEE 15-bus power grid, we employed the SINDy algorithm 

to analyze voltage waveforms and identify system dynamics under various complex operational 
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scenarios. The choice of the experimental configuration was deliberate, aligning it with similar 

studies conducted by other researchers in 2022 [8]. The system architecture consists of 15 buses 

interconnected through branches representing power transmission lines, each with unique 

parameters and attributes governing power flow dynamics, as shown in Figure 2. Our discussion 

also encompasses the test scenarios, including abrupt changes and gradual load variations in the 

context of conventional SG and IBR at 50% and 100% integration. Our analysis serves as the 

foundation for introducing the Volterra-based Nonlinearity Index as a novel tool for assessing the 

level of nonlinearity in dynamic systems, offering significant insights into system dynamics. 

 

Figure 2. Single-line diagram of the implemented IEEE 15 bus network. 

A. Investigation setup: 

The system architecture consists of 15 buses, representing distinct nodes within the power 

system network, and these buses are interconnected through branches that represent the power 

transmission lines. Each bus in the IEEE 15-bus system has a unique set of parameters and attributes 

and is connected to neighboring buss via branches characterized by specific impedance, which 

govern the dynamics of power flow among the interconnected buses. Table 1 provides a 

comprehensive overview of the network configuration and branch parameters of the IEEE 15-bus 

system. 

Table 1. – The implemented IEEE 15 bus network configuration. 

Line index From bus To bus r+xi (Ω) Node index Pload+jQload (kW+kVAR) 

1 1 2 1.53+1.778i 2 100+j60 

2 2 3 1.037+1.071i 3 90+j40 

3 3 4 1.224+1.428i 4 120+j80 

4 4 5 1.262+1.499i 5 60+j30 

5 5 9 1.176+1.335i 6 60+j20 

6 6 10 1.1+0.6188i 7 200+j100 

7 7 6 1.174+0.2351i 8 200+j100 

8 8 7 1.174+0.74i 9 60+j20 

9 9 8 1.174+ 0.74i 10 60+j20 

10 10 11 1.15+ 0.065i 11 45+j30 

11 11 12 1.274+1.522i 12 60+j35 

12 12 13 1.274+1.522i 13 60+j35 

13 13 14 1.075+1.522i 14 120+j80 

14 14 15 1.075+ 1.522i 15 60+j10 
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This investigation explores a comprehensive set of power system conditions, encompassing both 

abrupt changes (faults) and gradual changes (load variations), in the context of conventional SG and 

IBRs. The study encompasses three distinct scenarios, representing both single- and multi-dynamic 

systems. The first scenario examines a system solely supplied by a synchronous generator at Bus 1, 

with all other generators disconnected from the network. The second scenario incorporates the 

integration of an IBR at Bus 3, sharing the load demand equally with the synchronous generator at 

Bus 1. In the third scenario, the network is subjected to a 100% penetration of IBRs, where the demand 

is supplied by two IBRs located at Bus 1 and Bus 3. Each scenario spans 10 seconds, with the 

synchronous generators and IBRs initiated at 𝑡𝑡 = 0𝑠𝑠 . At 𝑡𝑡 = 3.3𝑠𝑠 , a three-phase-to-ground fault 

occurs at Bus 10, cleared after four cycles of the fundamental frequency (60 Hz). Furthermore, at 𝑡𝑡 =

7𝑠𝑠, a significant load is connected to Bus 14, only to be disconnected at 𝑡𝑡 = 8𝑠𝑠. 

The SINDy algorithm, described in Algorithm 1, analyzed the acquired voltage waveforms, 

demonstrating promising system identification and modeling capabilities. Employing a refined 

computational approach, we meticulously consider essential parameters and algorithms to facilitate 

a comprehensive analysis. Careful consideration is given to the sampling rate (20,000 samples per 

second) and fundamental frequency (60 Hz) to ensure a high-fidelity representation of electrical 

phenomena. The simulation duration (10 s) and total sample count (200,000) are determined to 

capture temporal dynamics faithfully. By leveraging the Hilbert transform, converting voltage 

waveforms into complex numbers, and subsequent computation of instantaneous phase angles, we 

gain profound insights into the intricate behavior of the system. 

Furthermore, the simulation methodology incorporates the SINDy algorithm, wherein a 

polynomial library is constructed with a precise second-order polynomial and regularization 

parameter (0.8). The ensuing coefficients derived from this process are then employed to solve the 

system's ordinary differential equation, thus elucidating the underlying dynamics. Rigorous 

evaluation is conducted to assess the accuracy of the predicted slow dynamics and quantify the 

disparity between the identified fast dynamics and actual data. This meticulous simulation 

framework, accompanied by its key parameters and algorithms, engenders a robust foundation for 

comprehensive investigations into the intricacies of power systems.  

Applying polynomial function libraries up to the third order in the context of inverter-based 

resources signifies a notable departure from traditional modeling approaches. In power grid 

modeling, mainly when dealing with inverter-based resources, these higher-order polynomial 

functions allow for a more intricate representation of the dynamic behavior within the system. Unlike 

first-order models that may oversimplify the interactions between various components, including 

polynomial functions up to the third order enables the capture of nonlinearities and interactions 

characteristic of inverter-based resources. These functions provide a flexible framework to model the 

complex interplay between inverter controllers, grid conditions, and the response of renewable 

energy sources to changing environmental factors. 

The application of these polynomial function libraries has theoretical and practical implications. 

Theoretically, it acknowledges the importance of capturing higher-order dynamics and interactions. 

It aligns with the principles of complex systems theory, emphasizing the significance of nonlinear 

dynamics and the emergence of complex behaviors in systems like power grids with significant 

inverter-based resource penetration. From a practical standpoint, this approach facilitates more 

accurate modeling, enabling grid operators and planners to understand better and predict the 

behavior of inverter-based resources. The practical advantages are particularly evident when 

renewable energy integration is critical. By accommodating higher-order dynamics, these models 

enhance the ability to simulate, analyze, and optimize the grid's performance, ultimately contributing 

to a more resilient and efficient power system. 

Our investigation introduces a three-section data analysis structure, offering an enhanced 

approach to analyzing system dynamics. The initial two sections focus on identifying linear and 

nonlinear dynamics within the system, categorizing elements that are linearizable and those that are 

inherently nonlinear. The addition of the third section allows for managing negligible data 
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components, ensuring improved modeling accuracy. This comprehensive approach provides a more 

profound understanding of intricate nonlinear behaviors across various domains. 

B. SG-driven power grid dynamic identification: 

In this study we analyze the generic SINDy algorithm on a power grid, IEEE 15-bus, subjected 

to diverse dynamics and conditions, reaffirming the method's strengths and limitations in identifying 

system models, addressing the intricate coupling dynamics challenges, and discussing additional 

limitations that require consideration. The study's findings demonstrate that SINDy, with its 

utilization of voltage waveforms, successfully captures essential patterns and relationships within 

the electrical behavior of the power grid. The results highlight the potential of SINDy as a powerful 

tool for system identification and modeling in power systems. The results related to the SG model 

exhibit consistencies to foundation theories and findings from other research such as Stankovic’s 

work in 2020 [8]. Our analysis highlights the dominance of first-order terms in the extensive 15-

dimensional system. Second-order terms play minor roles and third-order terms are close to zero, 

affirming the precision of our SINDy-based model with an impressively low error rate, affirming its 

accuracy in capturing both short-term and long-term dynamics. 

In the analysis of a power grid relying exclusively on synchronous generator resources, our 

investigation aimed to identify the model characterizing the system's dynamics. Figure 3 

demonstrates that first-order terms dominate within the all 15-dimensional system. In this case, the 

SG resources are modeled with the basic model. Second-order terms and third-order terms 

coefficients are negligible, approximated to zero by the MATLAB calculation. 

 

Figure 3. Colormap of the dynamical terms identified by SINDy for the IEEE 15-bus system supplied 

by basic SG sources. 

The approximation of the system dynamics highlights the precision of the model estimated. The 

error between actual data and the identified model's approximation is impressively less than 0.001 

percent, affirming the model's accuracy in capturing both short-term and long-term dynamics. 

To reduce the potential bias introduced by our choice of SG model, we replicated the 

investigation using a 7th-order SG model – the most intricate SG model accessible within the 

MATLAB framework. This strategic adaptation allowed us to explore the impact of higher-order 

terms, primarily second-order terms, on the overall dynamics of the system. The result, presented in 

Figure 4, shows that the dynamic is still dominated by first-order terms where second-order term 

coefficients are minimal, comprising less than 1 percent of the smallest first-order term, and third-

order term coefficients are even more negligible, approximated to zero by MATLAB.  

It is noteworthy that the appearance of second-order terms did not yield any significant effects, 

which aligns with the expectations set by current theoretical frameworks. The conventional 

understanding of power systems suggests that higher-order terms, particularly second-order, tend 

to play a relatively minor role in system behavior, especially when compared to the prominence of 

first-order terms. This observation underscores the consistency of our findings with established 

theoretical principles, reaffirming the accuracy and reliability of our analysis. 
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Figure 4. Colormap of the dynamical terms identified by SINDy for the IEEE 15-bus system supplied 

by 7th-order SG sources. 

This study has analyzed the SINDy algorithm in the context of a complex power grid, specifically 

the IEEE 15-bus system. The obtained findings underscore the potential of SINDy as a robust and 

effective tool for system identification and modeling within power systems, particularly when 

utilizing voltage waveforms to capture essential patterns and relationships within the electrical 

behavior of the grid. Furthermore, our analysis of the SG model reveals consistencies with 

foundational theories and findings from previous research while exploring the impact of 

implemented models by adapting a 7th-order SG model to show results further affirm the prevailing 

influence of first-order terms and the negligible effect of second-order terms. 

C. Dynamic identification in IBR integrated power grid 

By conducting the investigations on the power system integrated with IBRs this section 

navigates through these distinct nonlinear behaviors, grounded in the principles of complex systems 

theory and nonlinear dynamics, to offer valuable insights into the dynamic response of power grids 

with substantial IBR integration. The results embark on an exploration of the dynamic behavior of 

IBRs within a power grid, shedding light on the distinctive difference in the nature of nonlinear 

dynamics caused by IBRs and SGs. The nonlinearity in SGs is characterized as "module-level dynamic 

nonlinearity," rooted in well-documented electromagnetic principles and iron core saturation effects, 

primarily influenced by the individual components of SGs. In contrast, the nonlinearity encountered 

in IBRs reveals a multifaceted character, encompassing both module and system-level nonlinearity. 

The latter, system-level nonlinearity, is a product of intricate interactions between diverse 

components, control algorithms, and the inherent variability of input sources, indicative of complex 

system dynamics. 

The investigation will analyze two scenarios. The first scenario will conduct the test over the 

same IEEE 15-bus system that is supplied by both the basic SG model and IBR where each supplies 

50 % of the load demand. The second scenario will investigate the same power system under full 

penetration of IBRs, i.e., 100 % of the load demands are supplied with IBRs. 

Through the first scenario with 50 % integration of inverter-based resources into the power grid, 

equalizing their role with SGs in supplying load demands, the SINDy algorithm was used to identify 

the underlying dynamic with the measured data. As Figure 5 illustrates, it was found that the second-

order terms become more effective in the dynamic model. The higher impact of the second-order 

terms will show that the data-based model, i.e., the underlying model within measurements, includes 

a more non-linearizable nature that shows itself in higher coefficient values for second-order terms. 

However, the third-order terms, representing the negligible data (noise) are still in the same 

condition.  

The results unveil a noteworthy transformation in the power grid dynamics during our 

exploration of IBR integration. What becomes evident is not only the heightened influence of second-

order terms (characterizing nonlinear dynamics) on the system's overall behavior within all the 

individual buses but also the activation of more terms in the second-order region, thus highlighting 
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the unmistakable imprint of system-level nonlinearity on the outcomes. This intriguing shift 

underscores the intricate interplay of components in the network and the inherent variability in each 

source, collectively contributing to the observed system-level nonlinearity. In comparison to previous 

scenarios, this outcome signifies a fundamental difference, illuminating how power grids evolve 

when IBRs are introduced, revealing a dynamic that transcends more module dynamics and delves 

into the realm of complex, system-wide nonlinear interactions.  

 

Figure 5. Colormap of the dynamical terms identified by SINDy for the IEEE 15-bus system supplied 

by basic model SG sources and IBRs. 

In the next scenario, where load demands were exclusively supplied by IBRs, our model 

identification analysis, as depicted in Figure 6, remarkably underscored the dominance of second-

order terms. This shift in the composition of dominant terms is a pivotal result that merits in-depth 

discussion. The prominence of second-order terms in this context carries profound implications for 

understanding power grid dynamics. 

 

Figure 6. Colormap of the dynamical terms identified by SINDy for the IEEE 15-bus system supplied 

by IBRs. 

This outcome indicates the profound impact of IBR-related nonlinearity on the power grid, 

highlighting the necessity for more nuanced modeling to represent these complex interactions 

accurately. The dominance of second-order terms indicates that these nonlinear behaviors have a 

substantial impact on the system's dynamics. In the context of IBRs, it becomes evident that second-

order terms play a key role in capturing and representing the system's response to these nonlinear 

effects. This underscores the need to consider and model the nonlinearity introduced by IBRs 

explicitly, as first-order models may need to be revised to represent these intricate interactions. 

Moreover, from a theoretical perspective, this result aligns with established principles of 

nonlinear system dynamics. In complex systems, it is expected to observe higher-order nonlinearities, 

especially when the interactions among system components are intricate. These second-order terms 
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can arise due to a variety of reasons, including feedback mechanisms, nonlinear component 

characteristics, and complex system interactions. 

Furthermore, a noteworthy observation emerged when comparing the level of participation of 

second-order terms in the 100 % penetration of IBRs to the 50 % and zero penetration scenarios. This 

comparison, presented in Figure 7, accentuated a significant shift, indicative of the substantial impact 

of variable interactions in contrast to the direct effects of individual variables on the system's 

dynamics.  

 

Figure 7. The normalized impact of the activated first-order and high-order terms in the dynamic of 

the variables for the scenarios with SG, a combination of SG and IBRs, and IBRs. 

As observed, the analysis of the 7th-order SG model underscores the prevalence of first-order 

terms, indicative of linearizable dynamics within the measured data. The limited influence of high-

order terms and noise in this model allows for their neglect without substantially affecting the 

model's accuracy. Furthermore, the nonlinearity in this context is primarily associated with the 

individual buses connected to SG sources, suggesting a module-level nonlinearity.  

In scenarios featuring 50% and 100% integration of IBRs, a notable increase in nonlinearity is 

evident, manifested by higher coefficients for second-order terms. It is worth noting that the 

integration of IBRs activates a greater number of terms, and these activated terms are not directly 

linked to the buses connected to IBR sources, indicating the emergence of system-level nonlinearity 

resulting from network interactions. The graphical representation vividly portrays the escalating 

nonlinearity and the increasing influence of second-order terms as IBR penetration rises from 50% to 

100%, ultimately leading to the dominance of nonlinear dynamics in the overall system behavior. 

D. Volterra-based Nonlinearity Index 

In dynamic systems, the interplay between linear and nonlinear behaviors is a common 

phenomenon, and quantifying this nonlinearity holds paramount importance for comprehending 

system performance, facilitating effective control, and optimizing signal processing. In this study, the 

Volterra-based Nonlinearity Index (VNI) is introduced as a novel analytical instrument with the 

capacity to evaluate nonlinearity in dynamic systems quantitatively. This section not only introduces 

the fundamental concept of VNI but also explores its mathematical underpinnings. VNI's significance 

transcends as it enables the quantification of the nonlinear-to-linear relationship within dynamic 

systems, offering profound insights into the intricate dynamics at play. Moreover, VNI's versatility 

allows for the recognition of different types of nonlinearities and the quantification of the relative 

influences of system-level and module-level nonlinearity, further enhancing its utility in system 

analysis and modeling. Using the case studies conducted in this research, we showcase practical 

experiments employing VNI, revealing new discoveries regarding nonlinearity in the 7th-order SG 
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model compared to IBR. These discoveries highlight different patterns of nonlinearity and emphasize 

the importance of structural analysis in identifying their sources. 

Since dynamic systems often exhibit a combination of linear and nonlinear behaviors, 

characterizing the extent of nonlinearity is pivotal in understanding system performance, control, 

and signal processing. To elucidate the impact of high-order terms and highlight the effectiveness of 

the SINDy in capturing system dynamics, we introduce a novel index that assesses the influence of 

high-order dynamics. The VNI is an analytical tool designed to assess the level of nonlinearity in 

dynamic systems quantitatively. VNI draws its foundation from the Volterra series [16], a powerful 

mathematical construction that dissects system responses into linear and higher-order nonlinear 

components, providing a systematic approach for nonlinear modeling and analysis [16]. 

VNI is expressed as the ratio of the energy (or magnitude) associated with the nonlinear 

components to the energy of the linear response within the Volterra series expansion. This 

formulation encapsulates the inherent nonlinearity of the system and the interplay between linear 

and nonlinear phenomena. Mathematically, VNI is defined as: 𝑉𝑉𝑉𝑉𝑉𝑉 =  
∑ ∬|𝐻𝐻𝑘𝑘(𝜏𝜏1,𝜏𝜏2)|2𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2𝑁𝑁𝑘𝑘=1

|𝐻𝐻0|2     (10) 

Here, N represents the selected order of the Volterra series, accommodating the analysis of a 

range of higher-order nonlinear terms 𝐻𝐻𝑘𝑘(𝜏𝜏1, 𝜏𝜏2) signifies the Volterra series coefficients on the kth 

order nonlinear terms, and |𝐻𝐻0|2 represents the squared magnitude of the linear response. 

A higher VNI value implies a greater prevalence of nonlinearity in the system. Consequently, 

VNI serves as a comprehensive gauge of the nonlinear-to-linear relationship within a dynamic 

system, contributing to a more profound understanding of the system's dynamics and its suitability 

for specific applications.  

It has to be noted that the application of machine learning approaches to the VNI introduces an 

exciting dimension in the realm of system analysis and modeling. VNI, when coupled with machine 

learning techniques, can unlock the potential to discern and differentiate various types of 

nonlinearities inherent within complex dynamic systems. Machine learning algorithms recognize 

patterns, relationships, and hidden structures within data, and when applied to VNI data, they can 

extract nuanced distinctions in the system's behavior. These distinctions manifest as different types 

of nonlinearities that are challenging to identify through conventional methods. This capability has 

significant implications for characterizing the complex behavior of systems with mixed linear and 

nonlinear components relying on measurement-based and real-time methods, as it can provide 

insights into how different nonlinear phenomena manifest and interact in the overall system 

response. 

The VNI framework could find utility in diverse applications across science and engineering 

disciplines. In control systems, it aids in assessing the stability and robustness of nonlinear control 

strategies, informing the choice of appropriate controllers. In communication systems, it provides 

insights into signal quality, especially in scenarios where nonlinear effects can degrade signal 

integrity. In physical and biological systems, VNI enables researchers to quantify and understand the 

nonlinear interactions underlying complex behaviors. 

Applying the VIN and VIN profile to the case studies in our investigations, the VIN values for 

three scenarios in the system were supplied with 7th-order SGs, a combination of basic model SG and 

IBRs, and the IBRs were calculated equal to o.78, 0.54, 3.54, respectively. 

To have a visual indicator of the extent of nonlinearity within the dynamic system the VIN 

profile, as a novel concept used to assess the linearity and nonlinearity within dynamic systems, 

particularly in system-level interactions is introduced. It is based on the proposed VIN, which 

quantitatively measures the level of nonlinearity within a dynamic system. The VIN profile associates 

a profile with the identified dynamics of the system, explicitly relating the slope of the profile, r, to 

the calculated VIN value through the following relation: 𝑟𝑟 = 𝑉𝑉𝑉𝑉𝑉𝑉 − 1      (11) 
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This relationship provides a means to classify the prevalence of either linearity or nonlinearity 

within the system. The calculation of the VIN profile for each case study serves to distinctly illustrate 

and visualize the distinctions in both the magnitude and character of nonlinearity between them. 

When the VIN profile exhibits a negative slope, it suggests that linearity dominates the system 

dynamics. In this scenario, the higher-order terms have less influence on the overall dynamics, 

indicating that the system's behavior is primarily linear or that nonlinearity is confined to a module 

level. This means that linear relationships can predominantly explain the system's response and the 

impact of higher-order terms is limited. 

Conversely, when the VIN profile shows a positive slope, it signifies the domination of 

nonlinearity within the system and suggests that the higher-order terms have a more significant 

impact on the overall dynamics. In such cases, nonlinearity is not confined to module-level 

interactions but extends to system-level interactions. By analyzing this profile, researchers and 

engineers can understand whether linearity or nonlinearity predominates in a given system and 

whether the nonlinearity is confined to the module level or extends to system-level interactions. The 

estimated VIN profiles of the scenarios with 7th-order SGs, a combination of basic model SG and IBRs, 

and the IBRs are presented in Figure 8. 

 

Figure 8. The VIN profile of the dynamic for the scenarios with SG, a combination of SG and IBRs, 

and IBRs. 

4. Conclusions 

This study has been dedicated to the development and practical application of SINDy methods 

tailored to the complex domain of power systems, as exemplified by the IEEE 15-bus network. The 

primary objective has been to bridge the gap between theoretical understanding and real-world 

implementation, with a particular focus on the analysis of system dynamics. We harnessed the state-

of-the-art SINDy algorithm and the proposed novel Volterra-based Nonlinearity Index to navigate 

the intricate landscape of power systems.  

An essential contribution of this study is the introduction of a clear and concise distinction 

among different classes of dynamical terms within power systems. We have categorized these 

dynamics into three distinct groups, offering a systematic dissection of the complexity inherent in 

power systems. The first-order terms represent system elements characterized by linear behavior, 

readily amenable to traditional modeling approaches. Second-order terms point to significant 

nonlinear dynamics, exerting a notable influence on the system's response. Lastly, the third-order 

terms correspond to noise or negligible data components, underscoring the importance of noise 

management in our analysis. 
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Our findings also underscore a fundamental shift in system dynamics as the power source 

transitions to inverter-based resources, highlighting the presence of system-level nonlinearity in 

contrast to the module-level nonlinearity observed in conventional synchronous generator resources. 

This distinction holds significant implications for the modeling and analysis of modern power 

systems, emphasizing the need for nuanced approaches to understanding their complex behavior. 

Furthermore, introducing the Volterra-based Nonlinearity Index adds a new dimension to our 

understanding of power system performance. VNI enables quantifying the nonlinear-to-linear 

relationship within dynamic systems, offering profound insights into the intricacies of power system 

behavior. Its versatility could allow for recognizing various nonlinearities, facilitating the 

differentiation between module-level and system-level nonlinearity. The VIN profile, derived from 

VNI, offers a visual representation of the extent and character of nonlinearity within a system, 

providing additional layers of insight into the behavior of intricate power systems.  

The complexities of modern power systems demand ongoing research and development to 

refine our tools and approaches. Future investigations could further enhance our ability to detect and 

identify sources of oscillations in real-time, a crucial step towards ensuring the stability and reliability 

of our power grids. 
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