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Article 
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Abstract: The critical enzyme Dihydrofolate Reductase-Thymidylate Synthase in Leishmania major (LmDHFR-
TS) serves a dual-purpose role and is essential for DNA synthesis, a cornerstone of the parasite's reproductive 
processes. Consequently, the development of inhibitors against LmDHFR-TS is crucial for the creation of novel 
anti-Leishmania chemotherapies. In this study, we employed an in-house database containing 314 secondary 
metabolites derived from cinnamic acid that occurred in the Asteraceae family. We conducted a combined 
ligand/structure-based virtual screening to identify potential inhibitors against LmDHFR-TS. By consensus 
analysis of both approaches, we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), 
and isolappaol A (308), that exhibited a high probability of being inhibitors according to both approaches and 
were consequently classified as promising hits. Subsequently, we expanded the binding mode examination of 
these compounds within the active site of the test enzyme through molecular dynamics simulations, revealing 
a high degree of structural stability and minimal fluctuations in its tertiary structure. The in-silico predictions 
were then validated through in-vitro assays to examine the inhibitory capacity of the top-ranked naturally-
occurring compounds against LmDHFR-TS recombinant protein. The test compounds effectively inhibited the 
enzyme with IC50 values ranging from 6.1 to 10.1 μM. In contrast, other common cinnamic acid derivatives (i.e., 
flavonoid glycosides) from the Asteraceae family, such as hesperidin, isovitexin 4′-O-glucoside, and rutin, 
exhibited low activity against this target. The selective index (SI) for all tested compounds was determined 
using HsDHFR, with moderate inhibitory effect. Among these hits, lignans 306 and 308 demonstrated the 
highest selectivity, displaying superior SI values compared to methotrexate, the reference inhibitor of DHFR-
TS. Therefore, continued research into the anti-leishmanial potential of these C6C3-hybrid butyrolactone 
lignans may offer a brighter outlook for combating this neglected tropical disease. 

Keywords: Leishmania; Asteraceae; DHFR-TS; lignans; flavonoids; natural products; machine learning 

 

1. Introduction 

Leishmaniasis is a neglected tropical disease (NTD) caused by protozoan parasites of the genus 
Leishmania, which are transmitted by the bite of infected sandflies. This disease affects millions of 
people worldwide, particularly in developing countries with poor health infrastructure. The primary 
clinical forms of the disease are visceral, cutaneous, and mucocutaneous. According to the World 
Health Organization (WHO), the global burden of leishmaniasis is estimated to be around 700,000 to 
1 million new cases each year, with 90% of the cases occurring in just six countries: Afghanistan, 
Algeria, Brazil, Colombia, Iran, and Syria [1,2]. The sandflies that transmit leishmaniasis are most 
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active at night and breed in wet soil, organic matter, or animal burrows [3]. In Colombia, 10 out of 
the 20 species that can infect both humans and other living beings are present. The cutaneous 
leishmaniasis (CL) form is the most frequent (98-99%), with the population under five years old and 
immunocompromised individuals being the most affected [4,5]. The number of CL cases reported in 
Colombia in 2022 was 4,906, with the departments of Amazonas, Boyacá, Caquetá, Cesar, Córdoba, 
Cundinamarca, Putumayo, Santander, and Sucre being the most affected areas [6].  

Since the late 1980s, Leishmania-HIV co-infection has been reported in 35 countries, and there 
have also been other cases of Leishmania-Malaria co-infection, which are associated with the 
worsening of the clinical condition of patients with leishmaniasis. This co-infection type has increased 
the disease's burden due to the greater difficulty of clinical treatment [7,8]. Currently, antimonial 
compounds are the primary treatment for leishmaniasis; however, they present high toxicity and 
resistance in some endemic regions. To address these challenges, alternative drugs have been 
developed, such as liposomal amphotericin B, which significantly reduces the side effects and 
treatment duration associated with free amphotericin B, but is expensive [9,10]. Other drugs, such as 
paromomycin and miltefosine, have been associated with high toxicity, resistance, and teratogenic 
and abortive effects, promoting the discovery and development of low-cost, highly effective drugs 
with low toxicity [11]. Furthermore, it is worth noting that while Leishmania is a parasitic disease 
mainly affecting humans, it also affects animals such as dogs and rodents, which can serve as 
reservoirs for the parasite and increase the risk of transmission to humans [12,13]. Therefore, efforts 
to develop effective treatments and control measures must be considered. 

High-throughput screening (HTS) has been used since the early 1990s to test the activity of large 
numbers of molecules against different diseases and thereby identify potential hits for drug 
development [14]. However, the uncertainty of success, as well as the time and screening costs, limit 
the use of this technique [15]. In recent years, chemoinformatics tools (e.g., molecular docking, 
machine learning) have been utilized to conduct in-silico studies that can predict the interactions 
between a protein and a ligand, reducing the number of actual laboratory experiments and 
accelerating the drug discovery process more efficiently and cost-effectively [14, 16]. The different 
research conducted in this field has led to the development of increasingly efficient and better-
classifying models, which take advantage of large compound databases, opening the possibility of 
studying diseases that mainly affect poorer populations (NTD), which are not attractive to large 
industries and big pharma [17]. 

Leishmaniasis is commonly treated with plants from the Asteraceae family in traditional 
medicine. Given the diversity of this family (32,913 species) and the wide range of phytochemicals 
they contain, including alkaloids, coumarins, flavonoids, benzofurans, sterols, and terpenoids, they 
are considered a promising source of new leishmanicidal compounds [18]. Some secondary 
metabolites studied in this family have been sesquiterpenoids [19,20], triterpenes [21], phytosterols 
[22], and kauranes [23]. However, although they have shown activity to inhibit the disease, their pIC50 
is not large enough, and compounds that are effective at low concentrations and selective against the 
parasite are preferred. A group of compounds that have not yet been studied, with records reporting 
promising in-vitro activity, are derivatives of cinnamic acid belonging to the Asteraceae family [24-
26]. 

Gouri et al. report some natural inhibitors against Leishmania amastigotes such as luteolin (IC50 
= 3.12 μM), quercetin (IC50 = 10.5 μM), chrysin (IC50 = 13 μM), apigenin, myricetin, cinnamic acid (IC50 
= 0.25 μM), licochalcone A (IC50 = 0.9 μM), which can play an important role in drug discovery [24]. 
Peixoto et al., on the other hand, evaluated the biological activity of 25 cinnamic acid derivatives 
against Leishmania braziliensis amastigotes, obtaining promising results and finding that aromatic 
rings with an oxygen as a heteroatom had a beneficial effect in terms of activity against Leishmania 
[25]. Considering that heterocyclic compounds have been of great importance for drug development 
in the pharmaceutical industry, derivatives of cinnamic acid, which is an aromatic carboxylic acid 
commonly substituted in trans position by an acrylic acid group, represent an interesting starting 
point for directing studies in the search for possible hits against different species of leishmaniasis 
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[27]. Although some of these compounds have already been studied, many more remain to be 
analyzed.  

In the present study, a computational approach was carried out to select potential inhibitors of 
the bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Leishmania 
major given that it plays a crucial role in the synthesis of DNA in trypanosomatids, which is essential 
for the parasite's reproduction [28]. In this regard, a custom-made, in-house library containing 314 
specialized metabolites derived from cinnamic acid was virtually screened. Initially, a ligand-based 
predictive classification model was developed using experimental information on the IC50 values 
retrieved from in-vitro assays of reported compounds against Leishmania. In parallel, using a hybrid 
LmDHFR-TS model constructed based on its amino acid sequence [29], a structure-based ranking, 
through molecular docking calculations, was performed using the investigated specialized 
metabolite database. Through a consensus analysis, molecules with the highest probability of being 
inhibitors by both approaches were classified as possible hits. These secondary metabolites were 
evaluated through in-vitro assays using the recombinant LmDHFR-TS, and ADMET properties were 
calculated to determine their pharmacokinetic properties.  

2. Results and Discussion 

2.1. Combined Ligand-/Structure-Based Virtual Screening Approach using LmDHFR-TS 

2.1.1. Ligand-Based Virtual Screening 

Initially, a bank of compounds with inhibitory activity reported against LmDHFR-TS was 
created from the ChEMBL database. These molecules were classified as active or inactive based on 
their reported IC50 values, using a cut-off point of IC50 = 5.0. Duplicate molecules were removed to 
perform the data curation process and obtain a virtual screening model with high prediction 
efficiency. Additionally, molecules with an IC50 value within ±0.1 of the cut-off point were considered. 
Finally, a total of 790 molecules were selected for model training. Among these, 378 were inactive 
(47.8%) and 412 were active (52.2%). 

In the ligand-based process, VolSurf+ (128) and AlvaDesc (more than 4000) molecular 
descriptors were calculated from the three-dimensional representation of each database compound. 
These descriptors were then used to create the Random Forest (RF) model in Knime software (KNIME 
4.5.0, the Konstanz Information Miner, Copyright 2003–2014, www.knime.org), consisting of 200 
decision trees. The Gini Index was employed as a split criterion in the RF model to reduce the number 
of false-positive results. The dataset underwent a five-fold cross-validation strategy, where it was 
divided into five subsets, each containing an 80% modeling set and a 20% validation set. The 
modeling set was exclusively used for model construction and further subdivided into multiple 
training and test sets, maintaining an 80%/20% split ratio. These procedures were conducted 
following the approach described by Fourches et al. [30]. 

Molecular descriptors play a crucial role in drug discovery and development, as they represent 
the molecular and chemical properties of the studied compounds. In this study, the employed 
descriptors were instrumental. VolSurf+ generates three-dimensional (3D) molecular descriptors 
based on the distribution of molecular electrostatic potentials and hydrophobicity, encompassing 
molecular surface properties such as size, shape, and electrostatic potential distribution [31,32]. On 
the other hand, AlvaDesc offers a wide range of descriptor types, including constitutional descriptors 
(the number and type of atoms, bonds, and functional groups in the molecule), topological 
descriptors (representing molecular shape, size, and complexity), electrostatic descriptors (conveying 
molecular polarity and charge distribution), and quantum mechanical descriptors (relating to the 
electronic structure and properties of the molecule) [33,34]. 

The performance of the RF model was evaluated to compare the effectiveness of the two types 
of descriptors. This evaluation involved calculating classification precision, recall, F1-score, and 
Matthew's correlation coefficient (MCC). Additionally, Receiver Operating Characteristic (ROC) 
curves were analyzed, and the Area Under the ROC Curve (AUC) was calculated (see Figure 1). These 
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evaluation metrics are commonly used to measure the performance of binary classification models. 
ROC curves and their AUC are often employed to assess the performance of models that produce 
continuous output scores or probabilities. AUC serves as a scalar measure of the model's overall 
ability to distinguish between positive and negative cases [33,35] 

 

Figure 1. ROC curves comparison for the RF model using AlvaDesc and VolSurf descriptors for (a) 
test sets and (b) cross-validation. Performance evaluation of RF using (c) AlvaDesc and (d)VolSurf 
descriptors. 

According to the parameters displayed in Figure 1, it is evident that the MCC and AUC values 
for both the test sets and cross-validation are higher for AlvaDesc descriptors compared to those 
obtained for VolSurf descriptors. However, considering that a higher AUC value indicates a more 
remarkable classification ability of the model and that MCC is expressed in a range of -1 to 1 (where 
a high value close to 1 suggests a strong correlation between the predicted class and the true class), 
good values were obtained for both AlvaDesc (AUC: 0.863 and 0.906, MCC: 0.554 and 0.645) and 
VolSurf (AUC: 0.855 and 0.884, MCC: 0.539 and 0.598) descriptors. 

Regarding precision, recall, and F1-score, good and similar values were obtained for both 
models, except for the recall for inactive compounds in the model created using VolSurf descriptors, 
which was low with a value of 0.69. Sensitivity and specificity measures were also calculated to assess 
the performance of the RF model. For AlvaDesc, the values were 0.807 and 0.752, while for VolSurf, 
the values were 0.843 and 0.690, respectively. These results indicate a tendency to have few false 
negatives, a higher value of true negatives, and a lower false-positive rate for both descriptors. The 
applicability domain was also determined, confirming that the regression model can provide reliable 
predictions. 

Ligand-based virtual screening (VS) was then employed to predict the potential inhibitory 
activity of 314 compounds derived from cinnamic acid in the Asteraceae family, as documented in 
the literature. Figure 2 displays the structure and probability of the five best compounds classified 
using AlvaDesc descriptors. These compounds were (E)-2-hydroxy-3',6'-dimethoxychalcone (103) 
[36], apigenin 7-O-(6´´-caffeoyl)-glucoside (235) [37], montamine (63) [38], 3-O-p-coumaroyl-betulinic 
acid (150) [39], and cordoin (202) [40]. In addition, Figure 2 presents the top five compounds predicted 
using VolSurf descriptors: 6,8-di-C-β-glucopyranosylchrysin (242) [41], montamine (63) [38], 
dihydrocubebin (305) [42], prebalanophonin (312) [43], and 4-O-feruloyl 5-O-caffeoylquinic acid (96) 
[44]. 
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Figure 2. Chemical Structures of the five top-ranked cinnamic acid derivatives using a ligand-based 
virtual screening (LB) with AlvaDesc and VolSurf+ descriptors; PLB =Active probability value. 

Among all the tested compounds, 116 were classified as active using AlvaDesc molecular 
descriptors, with probability values ranging from 0.50 to 0.71. On the other hand, 93 compounds were 
considered active with VolSurf molecular descriptors, and their probability values ranged from 0.50 
to 0.86. Some of these molecules were previously reported to exhibit various activities, such as 
analgesic activity (305), antimalarial activity (150), cytotoxic activity (63), acting as anticancer agents 
(202), and demonstrating antiproliferative properties (312) [38,40-42,45-47]. 

Regarding the best compounds, only one contains nitrogen in its structure (63). The rest have 
various oxygen atoms, forming heterocycles or containing carbonyl groups, ethers, and alcohols. 
Additionally, one of them is a steroid (150), and another is glycosylated (242). 

2.1.2. Structure-Based Virtual Screening 

The Structure-Based Virtual Screening (VS) was conducted utilizing a hybrid homology model 
of LmDHFR-TS [29], a bifunctional enzyme with a critical role in the metabolic pathway of 
Leishmania parasites, as well as several protozoa species. Leihsmania genus is autotrophic for folate 
and unconjugated pteridines, with the enzyme DHFR-TS playing a pivotal role in the reduction of 
dihydrofolate to tetrahydrofolate, a cofactor in the biosynthesis of thymine in nucleotide metabolism 
[48].  

To evaluate the putative inhibitory capability of cinnamic acid derivatives against LmDHFR-TS, 
molecular docking calculations were performed using Molegro software. The results were validated 
by redocking the co-crystalized ligand, i.e., ethyl 4-(5-{[(2,4-diaminoquinazolin-6-yl)methyl]amino}-
2-methoxyphenoxy)butanoate (DQ1) along with the reference inhibitor methotrexate (MTX) (Figure 
3). 
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Figure 3. Chemical structures of reference ligands: Methotrexate (MTX) and ethyl 4-(5-{[(2,4-
diaminoquinazolin-6-yl)methyl]amino}-2-methoxyphenoxy)butanoate (DQ1). 

The compounds were ranked according to the predicted docking binding energy using the 
probability calculation shown below (Eq. 1), as previously reported by Herrera-Acevedo et al. [19, 
20]. The ten compounds exhibiting the highest probability of being active are presented in Table 1. 
Ranked compounds that did not previously show high ligand-based probability values but appeared 
among the best-ranked derivatives through a structure-based approximation are represented in 
Figure 4, along with their respective structure-based probability (PSB) values. 𝑃𝑆𝐵 = (𝐸𝑖/𝐸𝑚𝑖𝑛) > 0.5 and 𝐸𝑖 < 𝐸𝑙𝑖𝑔𝑎𝑛𝑑 

(1) 

Where 𝑃𝑆𝐵  is the structure-based probability; 𝐸𝑖  is the docking energy of compound 𝑖 , where 𝑖 
ranges from 1 to 314 (cinnamic acid derivatives dataset); 𝐸𝑚𝑖𝑛  is the lowest energy value of the 
dataset; and 𝐸𝑙𝑖𝑔𝑎𝑛𝑑 is the ligand energy from co-crystalized inhibitor. 

The results showed that energy-based scoring values were lower for the cinnamic acid 
derivatives than for the reference ligands, suggesting that the studied compounds have a better 
affinity with the LmDHFR-TS active site in the molecular recognition process. Additionally, the 
docking results showed that 24.5% of the 314 cinnamic acid derivatives dataset had 𝑃𝑆𝐵 values above 
0.5, and 64 of these top-ranked compounds had a lower docking score than methotrexate, which 
obtained -114.15 kJ/mol.  

 

Figure 4. Chemical Structure of six of the best-ranked cinnamic acid derivatives that appear as active 
in the structure-based virtual screening with their respective probability to be active. PSB=active 
probability value. 
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Table 1. Chemical Structure of six of the best-ranked cinnamic acid derivatives that appear as active 
in the structure-based virtual screening with their respective probability to be active. PSB=active 

probability value. 

Rank Ligand Docking Score (kJ/mol) SD RMSD 

1 241 -182.8 5.4 1.0 

2 164 -175.6 7.1 1.8 

3 21 -175.5 11.2 1.0 

4 242 -169.6 1.9 1.2 

5 140 -167.0 3.3 0.4 

6 283 -165.4 4.8 1.7 

7 165 -161.8 7.4 1.2 

8 235 -161.4 5.9 0.9 

9 285 -160.9 8.8 1.2 

10 63 -160.1 5.2 1.1 

Ref methotrexate -114.2 2.2 0.3 

Ref DQ1 -134.4 2.5 0.3 

Three of the top-ranked molecules predicted to have high ligand-based probability values based 
on the RF model also demonstrated high structure-based probability values. Specifically, compound 
242, ranked fourth in the structure-based classification (Table 1), was the best classified in the ligand-
based VS model with VolSurf descriptors. Compounds 235 and 63, positioned among the top ten 
compounds in structure-based VS with docking scores of -161.4 kJ/mol and -160.1 kJ/mol, 
respectively, also showed high ligand-based probabilities. Compound 235 was predicted to be the 
second-best structure with high potential for inhibition using the model built with AlvaDesc 
descriptors, while Compound 63 was classified in the top three for both RF models (AlvaDesc and 
VolSurf molecular descriptors). 

The analysis of residues for the best poses in the top three compounds showed that the residues 
responsible for ligand binding (Val30, Val31, Ala32, Ile45, Trp47, Asp52, Met53, Phe56, Val87, Pro88, 
Fhe91, Leu94, Val156, Tyr162, and Thr180) have been previously reported in the literature as part of 
the active site [49]. Certain characteristics of these residues, such as accessibility and charge 
distribution, enable selective drug design against these protozoans without affecting human enzymes 
[49]. The interaction diagrams in Figure 5 illustrate that the compound with the highest docking score 
(compound 241, Figure 5C) possesses heterocyclic rings similar to the reference ligands, with oxygen 
atoms replacing the nitrogen atoms present in the reference ligands. However, due to the similar 
electronegativities of nitrogen and oxygen, these atoms favor nearly identical interactions with the 
enzyme's active site. 
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Figure 5. Residual interaction diagrams of A) compound 241, B) compound 164, C) compound 21, D) 
DQ1, and E) methotrexate. Interacting residues are shown in colored circles depending on the type of 
interaction: H-bond (lime), Van der Waals (green), π-π (purple), π-alkyl (pink), unfavorable (red), 
interactions carbon H-bond (light green), π-anion (orange), π-sulfide (yellowish orange). F) structural 
conformations of the coupling between the LmDHFR-TS enzyme and the ligands: DQ1(red), 
compound 241 (green), compound 164 (pink), compound 21 (blue). 

Compounds 164 and 21 lack heterocyclic rings but contain benzene rings, which participate in 
π–π and π–alkyl interactions. Additionally, these compounds exhibit a relevant number of oxygen-
containing groups, such as esters, ethers, and carboxylic acids, facilitating interactions with both 
residues within the active site and other residues. Specifically, the carboxylic moiety facilitates Van 
Der Waals interactions, crucial as they occur with the amino groups in the reference ligands and 
appear to be important since they are present in the three top-ranked molecules. On the other hand, 
compounds 242 and 140, containing only hydroxyl groups, are less favorable in this binding mode. 
Although both compounds are isomeric, compound 164 has few favorable interactions (8 
interactions), and compound 21 has more interactions (25 interactions), but it also has some 
unfavorable interactions (Ala32, Ala47, Ala119). 

Furthermore, it was observed that all ligands adopted a U-shaped conformation like the 
reference ligands DQ1 and MTX (Figure 5F), and most of them have strong hydrogen bonding 
interactions with the enzyme (Val156, Val30, Lys95, Met53, Phe91, and Arg97), which are important 
determinants for binding [50]. To further explore this behavior, a topological polar surface area 
(TPSA) map was constructed for both the reference ligands and the best-ranked compounds (Figure 
6). 
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Figure 6. Topological Polar Surface Area (TPSA) map of A) DQ1, B) methotrexate, C) compound 241, 
D) compound 164, and E) compound 21. 

The results of the TPSA maps confirmed a similar spatial distribution among the three top-
ranked compounds with respect DQ1 and MTX. An electron-deficient region was identified at the 
top of the molecule (Figure 6, blue area), which is consistently present in all evaluated molecules, 
including the two reference ligands. This observation rationalized the similar binding behavior 
within the active site of LmDHFR-TS, particularly with Met53 as a common crucial contact for these 
test compounds. 

2.1.3. Consensus Analysis of the Two VS Approaches 

A combined approach was employed to ascertain the potential activity of cinnamic acids against 
the LmDHFR-TS enzyme and to mitigate the selection of false-positive compounds. This approach 
incorporated probability scores derived from both structure-based and ligand-based virtual 
screening (VS) methods in conjunction with the true-negative rate obtained from the RF model (Eq. 
2) [19]. 

The design of this approach aimed to assign a higher weight to the ligand-based probability 
scores (considering their reliance on experimental pIC50 values), in contrast to the structure-based 
probability scores, which are founded on protein-ligand interactions. This weighting scheme 
significantly reduces the risk of incorrectly classifying inactive molecules as active (false positives) 
[23]. 

𝐶𝐴𝐿𝑚 = [𝑃𝑆𝐵 + ((1 + 𝑇𝑁𝐿𝐵(𝐴𝐷))𝑥𝑃𝐿𝐵(𝐴𝐷) + (1 + 𝑇𝑁𝐿𝐵(𝑉𝑆))𝑥𝑃𝐿𝐵(𝑉𝑆))][3 + 𝑇𝑁𝐿𝐵(𝐴𝐷) + 𝑇𝑁𝐿𝐵(𝑉𝑆)]  
(2) 

Where 𝐶𝐴𝐿𝑚= combined-approach probability, 𝑃𝑆𝐵= structure-based probability, TN = true-negative 
rate, and 𝑃𝐿𝐵= ligand-based probability (AD=AlvaDesc descriptors and VS=VolSurf descriptors).  

Table 2 presents the results of the best-ranked compounds calculated from the consensus 
analysis equation. The compounds ranked among the top five for each method are highlighted in 
bold. Except for 235, all compounds were classified as potentially active in all virtual screening 
approximations used in this study. The consensus analysis identified 110 compounds with combined-
approach probability values greater than 0.5; however, only 47% of these compounds (52) were 
classified as active through the three in-silico models used in this study (Table S1). Compound 63 
(montamine) was the top-ranked compound. Montamine is an indole alkaloid that has been isolated 
from Asteraceae species, such as Centaurea schischkinii and Centaurea montana. Previous studies 
have reported its anticancer properties [38,51], but its efficacy against Leishmania has not been 
investigated. 
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Table 2. Cinnamic acid derivatives are classified as active by combining ligand-based and structure-
based VS. The numbers in italics represent those compounds classified as active in all three in-silico 

models, but they were not previously identified as the best-ranked compounds in any approach. 

Rank Ligand PLB(AD) PLB(VS) Pdocking CALm 

1 63 0.68 0.83 0.88 0.78 

2 242 0.52 0.86 0.93 0.74 

3 96 0.55 0.73 0.77 0.67 

4 241 0.53 0.55 1.00 0.64 

5 39 0.57 0.64 0.77 0.64 

6 237 0.61 0.55 0.84 0.64 

7 306 0.63 0.53 0.83 0.63 

8 165 0.53 0.60 0.88 0.63 

9 140 0.59 0.51 0.91 0.63 

10 308 0.57 0.59 0.81 0.63 

The second best-ranked compound is 6,8-di-C-β-glucopyranosylchrysin (242), a derivative of 
chrysin obtained from Lychnophora ericoides (Asteraceae). Compared to compound 69 (chrysin) and 
231 (techtochrysin), classified as inactive, the glycosylated derivative 242 has more hydroxyl groups, 
enabling interactions with the enzyme's active site. In previous studies, chrysin was biofunctionalized 
with gold particles due to its low bioavailability, poor absorption, and rapid excretion issues, aiming 
to neutralize Leishmania parasites through its activity against the kinase-3 enzyme [52]. However, 
compound 242 could represent an alternative due to its hydrophilic character resulting from the 
glycosyl groups, potentially inhibiting Leishmania parasites by interacting with LmDHFR-TS. 

The third- and fourth best-ranked compounds were 4-O-feruloyl-5-O-caffeoylquinic acid (96) 
and lucenin-2, 6,8-di-C-β-glucopyranosylluteolin (241), both extracted from the genus Lychnophora, 
specifically Lychnophora ericoides [41] and Lychnophora salicifolia [44], respectively. Additionally, 
apigenin 7-O-rutinoside (39), lithospermic acid (237), diarctigenin (306), and isolappaol A (308) – four 
cinnamic acid derivatives that previously exhibited moderate values in both RF models and the 
molecular docking calculations (all classified as active) – appeared among the top ten ranked 
compounds in the combined approach (Figure 7). Hence, these compounds emerge as interesting 
antileishmanial candidates, as they exhibit activity across all models and maintain consistency in their 
probability values. Notably, consensus scoring methods are known to enhance hit rates by 
diminishing the likelihood of false positives [53].  

The compounds 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl)tetrahydrofuran-3-carboxy-
O-β-D-glucopyranoside (306) and 7-(3,4-dihydroxyphenyl)-3′,4′-dihydroxy-7,8,7′,8′-
tetrahydronaphtho[8,8′-c]furan-1(3H)-one (308) are two lignans found in certain species of 
Asteraceae. Notably, Hypochaeris radicata (native to Europe, northern Asia, and parts of North 
Africa) and Arctium lappa (native to Europe and Asia) have been reported as a natural sources of 
these compounds. However, A. lappa is widely disseminated in America and H. radicata has also 
become invasive in regions as far-flung as New Zealand and Chile [54]. Conversely, compound 237, 
lithospermic acid, is a common polycyclic phenolic carboxylic acid that has been isolated from species 
of multiple botanical families, including Lamiaceae and Asteraceae. It has demonstrated a wide range 
of beneficial properties, acting against cardiovascular diseases and hepatitis. It allows endothelium-
dependent vasodilatation, lowers blood pressure, and produces antioxidant effects [55,56]. 
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Figure 7. Cinnamic acid derivatives as potential inhibitors of LmDHFR-TS were identified using an 
approach that combines ligand-based and structure-based virtual screening (VS). CALm represents the 
combined probability value. 

2.2. Molecular Dynamics Simulations 

Molecular dynamics (MD) studies were conducted to assess the protein–ligand stabilities, 
considering factors such as solvent, ions, pressure, and temperature for compounds 237, 306, and 308. 
These three compounds were identified as potential inhibitors of LmDHFR-TS through the consensus 
analysis of the approaches outlined in this study. Methotrexate (MTX) was also used as the reference 
ligand. 

The structural stability was evaluated through root-mean-square deviation (RMSD) 
measurements. During the simulated time (100 ns), all tested compounds showed similar behavior 
concerning the apoenzyme of LmDHFR-TS (apoLmDHFR-TS, the protein devoid of a ligand) and the 
LmDHFR-TS···MTX complex. After 20 ns, all ligands (including the reference ligand) displayed 
diminished disturbances, reaching values ranging from 0.23 to 0.27 nm. The derivative 237 exhibited 
a higher disturbance between 60 and 85 ns, with RMSD values varying close to 0.1 nm (Figure 8a). 

 

Figure 8. (a) Root-mean-square deviation (RMSD), (b) root-mean-square fluctuation (RMSF), and (c) 
radius of gyration (RoG) values within the LmDHFR-TS binding site, obtained after molecular 
dynamics simulations. Apoenzyme (blue); DHFR-TS···MTX complex (cyan); DHFR-TS···237 complex 
(light green); DHFR-TS···306 complex (yellow) and DHFR-TS···308 complex (pink).  

Scheme 8. b), allowing us to examine residue flexibility in the presence of various ligands [23]. 
The RMSF plot revealed higher fluctuations in the N-terminus region, reaching approximately 0.35 
nm, while the C-terminal residues exhibited lower fluctuations with values close to 0.20 nm. Regions 
characterized by well-defined tertiary structures, such as α-helices or β-sheets, consistently displayed 
RMSF values ranging from 0.10 to 0.20 nm. 

In general terms, all evaluated compounds exhibited the same behavior; however, we identified 
some specific cases. The residues Glu218 and Thr410, located in the protein's loop regions, showed 
the highest fluctuations for the apoenzyme, with Glu218 having approximately twice the RMSF value 
compared to the complexes with MTX and the tested cinnamic acid derivatives. Among the selected 
compounds, compound 237 displayed higher fluctuations in the loop regions than the other 
derivatives and MTX, with Gly118, Arg254, and Arg380 being the most variable amino acids. 
Compounds 306 and 308 exhibited a similar behavior throughout the simulation, with reduced 
flexibility when complexed with LmDHFR-TS. 

The structural compactness and level of mobility of the protein-ligand complexes throughout 
the simulation period were evaluated using the radius of gyration (RoG) plot (Figure 8c) [23]. In the 
case of LmDHFR-TS, during the initial half of the 50 ns simulation, the complexes with cinnamic acid 
derivatives displayed RoG values that were indistinguishable from those of the control MTX and 
apoLmDHFR-TS (ranging from 2.64 nm to 2.70 nm). This finding suggests a high level of stability 
and low fluctuations in the tertiary structure. However, after 60 ns, compounds 237, 306, and 308 
exhibited a similar behavior (varying between 2.64 nm to 2.70 nm) with increased perturbation 
compared to the DHFR-TS···MTX complex and the apoenzyme, which maintained a consistent mean 
value with fluctuations ranging from 2.62 to 2.64 nm. 
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After conducting molecular dynamic simulations, binding free energies for complexes involving 
compounds 237, 306, 308, and the control (MTX) with LmDHFR-TS were determined using the 
MM/PBSA method. The complexes of both benzylbutyrolactone-type lignans (306 and 308) and the 
polyphenolic acid (compound 237) with LmDHFR-TS showed binding free energies of -111.1 kJ/mol, 
-81.0 kJ/mol, and -91.6 kJ/mol, respectively. In all cases, the energy was higher than the -124.5 kJ/mol 
observed for the complex of MTX with LmDHFR-TS (Table 3). 

Table 3. Binding free energies (kJ/mol) from the MM/PBSA calculations for compounds 237, 306, 
and 308 in the active site of LmDHFR-TS; MTX was used as the reference ligand. 

  237 306 308 MTX 

Energy contribution  kJ/mol SD kJ/mol SD kJ/mol SD kJ/mol SD 

van der Waals -218.3 6.2 -209.7 4.6 -217.6 6.2 -239.5 8.2 

Electrostatic -31.3 4.1 -38.0 3.9 -29.0 4.6 -57.3 4.3 

Polar solvation 181.5 6.5 157.6 6.3 185.6 6.5 194.6 8.5 

SASA -23.6 1.8 -21.0 1.9 -20.0 1.2 -22.4 2.2 

Binding energy -91.6 4.7 -111.1 4.2 -81 4.6 -124.5 5.8 

All evaluated complexes, including the reference MTX, showed the same contribution pattern 
with negative energy values from van der Waals, electrostatic, and solvent-accessible surface area 
(SASA) parameters to the binding free energy. The van der Waals parameter presented the highest 
negative contribution, with values lower than -209 kJ/mol. This observation suggested that non-polar 
electrostatic interactions are the primary factor responsible for the molecular recognition of the 
LmDHFR-TS binding site by test compounds. 

Regarding polar solvation, all compounds positively contributed to the total binding energy, 
with similar values for compounds 237, 308, and MTX. Conversely, diarctigenin (306) contributed 
less to this parameter. Moreover, electrostatic interactions negatively contributed to the binding free 
energies, being more relevant for MTX, with a negative contribution of -57.3 kJ/mol. Meanwhile, its 
influence was between 35% and 50% for the evaluated cinnamic acid derivatives compared to the 
reference ligand.  

2.3. In-vitro Enzymatic Activity Inhibition for selected cinnamic acid derivatives (compounds 237, 306, and 
308) against LmDHFR-TS and HsDHFR. 

Five compounds from our in-house compound library were available to validate the results 
derived from the combined approach employing the two virtual screening (VS) methodologies 
through in-vitro enzymatic inhibition assays. Compounds 237, 306, and 308, classified as active in all 
approaches, along with hesperidin (140), an interesting flavonoid previously reported to exhibit 
antileishmanial activity through the induction of apoptosis and inhibition of sterol C-24 reductase 
[57], were included in this in-vitro exploration. Isovitexin 4′-O-glucoside and rutin, which displayed 
a moderate level of activity and were classified as inactive in one of the three approaches, were also 
evaluated against LmDHFR-TS, with methotrexate as the positive control. 

The IC50 values were determined by analyzing concentration-response curves in the 0.1–128 μM 
range, using spectrophotometric monitoring of enzymatic activity under a standard DHFR assay. 
This analysis yielded a spectrum of values spanning from 6.1 to 53.2 μM, corresponding to pIC50 
values ranging from 4.27 to 5.21. The compounds 237, 306, and 308 were the most active molecules 
against LmDHFR-TS. Hesperidin (IC50 = 21.6 μM) showed high activity against the target among the 
three tested flavonoids, with observed IC50 values of 53.2 μM and 41.7 μM for isovitexin 4′-O-
glucoside and rutin, respectively (Table 4). 
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Table 4. Results of enzymatic activity against LmDHFR-TS and HsDHFR for selected cinnamic acid 
derivatives. CI = Confidence Interval (95%). SI = Selectivity Index. 

Compound 
LmDHFR-TS HsDHFR 

SI 
IC50 (µM) CI (95%) IC50 (µM) CI (95%) 

hesperidin 21.6 20.2-23.1 86.5 82.3-87.2 4.0 

lithospermic acid (237) 7.5 6.8-7.9 22.6 21.3-24.7 3.0 

diarctigenin (306) 6.1 5.7-6.4 27.9 26.8-28.6 4.6 

isolappaol A (308) 10.1 9.7-10.3 44.8 42.4-45.9 4.4 

isovitexin 4′-O-glucoside 53.2 51.1-54.1 125.7 122.8-127.8 2.4 

rutin 41.7 40.3-43.1 188.9 186.2-190.6 4.5 

MTX 1.4 1.1-1.5 4.9 4.7-5.1 3.5 

Structurally, we correlated the inhibitory activity against LmDHFR-TS with the relation between 
H-bond acceptors and donors (carbonyl and hydroxyl groups). Among the lignans 306 and 308, the 
presence of the γ-butyrolactone moiety showed that the most active compound (306) has a higher 
number of carbonyl groups compared to 308—a feature also observed in Lithospermic acid (237). 
Nevertheless, the low inhibitory activities of the glycosylated flavonoids (hesperidin, isovitexin 4′-O-
glucoside, and rutin) indicate that the high presence of hydroxyl groups seems to have a negative 
effect on the inhibitory activity. 

Subsequently, based on the obtained results from in-vitro tests using the recombinant protein of 
Homo sapiens (Hs) DHFR, the selectivity index (SI) was calculated. The IC50 values obtained against 
HsDHFR showed a different pattern, suggesting different mechanisms of action for these two 
proteins. Moderate SI values were revealed, with both benzylbutyrolactone-type lignans (compounds 
306 and 308) showing the highest SI values at 4.6 and 4.4, respectively. Both lignans exhibited higher 
SI values than MTX, which was used as a positive control (Table 4). 

2.4. Pharmacokinetic properties predictions. 

Pharmacokinetic properties, i.e., absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) of the compounds 237, 306, and 308, were predicted by using ADMETlab 2.0 and OSIRIS 
Datawarrior 5.5.0 [58,59]. Different approaches were used to assess the likelihood of oral 
bioavailability, and the results were mixed: on the one hand, all compounds were compliant with 
Lipinski's "rule of five" [60], but on the other hand, none of the above mentioned were accepted under 
the parameters established by Pfizer [61] and GSK [62]. Consequently, these compounds might not 
perform well regarding oral bioavailability (Table S2). 

Concerning cytochrome P450 (CYP) and its isoenzymes, compound 237 was considerably likely 
to inhibit CYP2C9, and so were compounds 306 and 308 with CYP2C19, CYP2C9, and CYP3A4; this 
means that the metabolism of other drugs might be affected by the compounds evaluated herein. 
Meanwhile, compound 237 is likely to behave as a substrate for CYP2C9, and compounds 306 and 
308 with CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4; thus, these compounds can be metabolized 
by the mentioned isoenzymes. Additionally, none of the studied compounds possess mutagenic, 
tumorigenic, reproductive, or irritant effects. Identifying potential hERG channel blockers has great 
importance when assessing the risk of cardiotoxicity [63]; for the three structures, the probabilities of 
hERG blocking were 0.212 at the most. 

3. Materials and Methods 

3.1. Cinnamic acid derivatives in-house dataset 

A custom-made, in-house virtual library of 314 distinct cinnamic acid derivatives was built from 
76 scientific articles using various search criteria, including keywords such as Asteraceae, Cinnamic 
Acid Derivatives, Lignans, Polyphenols, Flavonoids, and others. ChemAxon MarvinSketch 
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[ChemAxon, version 21.18.0 (2021), a calculation module developed by ChemAxon, 
https://www.chemaxon.com/, accessed on 12 January 2023] was used to design all the structures.  

The three-dimensional (3D) structures for the entire set were generated using Standardizer 
software [JChem, version 21.18.0 (2021), a calculation module developed by ChemAxon, 
https://www.chemaxon.com/, accessed on 12 January 2023]. This software standardized the 
structures, added hydrogens, performed aromatic form conversions, and refined molecular graphs 
in three dimensions. The final dataset was saved in Special Data File (.sdf) format. 

3.2. Classificatory Machine Learning Models. 

The analyses described below utilized Knime 4.5.0 software (KNIME 4.5.0, the Konstanz 
Information Miner, Copyright 2003–2014, www.knime.org) [64]. The process commenced with 
importing those descriptors generated by the Volsurf+ [31,32] and AlvaDesc [33,34] programs in CSV 
format.  

Subsequently, these descriptors underwent segmentation via the 'Partitioning' node, 
implementing the stratified sampling option, with 80% of the initial dataset designated as the training 
set and the remaining 20% composing the test set. Random splits were also explored while 
maintaining consistent ratios for both training and test sets.  

The model's creation processes entailed utilizing the modeling set and the RF algorithm, 
executed through a five-fold cross-validation procedure employing WEKA nodes. This approach 
provides a robust and efficient means to evaluate a model's performance by partitioning the data into 
five subsets for testing and training, facilitating model selection and generalization assessment [23].  

RF models were configured with 200 trees, a random number of generator seed of 1, and 
employed the Gini Index as the split criterion for both training and cross-validation sets. Performance 
analysis of the selected models involved an assessment of their internal and external aspects, 
incorporating parameters such as sensitivity (true-positive rate), specificity (true-negative rate), and 
accuracy (overall predictability), derived from the confusion matrix.  

To provide a more comprehensive understanding of the model's performance beyond accuracy, 
the ROC curve was employed, generated through a 'ROC curve' node, which relies on sensitivity and 
specificity. AUC values were obtained from this curve, where a value of 0.5 indicates an inability to 
distinguish between the two groups, and an AUC of 1 signifies perfect separation without overlap 
[65]. Furthermore, the MCC was calculated, with a value of 1 representing perfect prediction, 0 
denoting random prediction, and -1 indicating complete disagreement between prediction and 
observation [66].  

Additionally, a performance evaluation of the RF model using AlvaDesc and VolfSurf+ 
descriptors was conducted, incorporating precision, recall, and F1-score for both active and inactive 
sets. 

3.3. Molecular docking calculations. 

Molecular docking calculations involved the hybrid model of LmDHFR-TS bound to 
methotrexate (PDB ID: MTX) [29] and the three-dimensional structures of the cinnamic acid 
derivatives. We conducted these calculations using Molegro 6.0.1 software.  

To ensure consistency, we removed all water molecules from both the enzyme and compound 
structures, and we prepared them to use the software's default settings. The MolDock scoring 
function was utilized, considering internal ES, internal H-bond, and Sp2-Sp2 torsions as criteria for 
evaluating the ligands. 

The molecular docking process was executed through 10 runs utilizing the MolDock SE 
algorithm. It allowed for a maximum of 1500 interactions, maintained a population size of 50, 
included up to 300 steps, employed a neighbor distance factor of 1.00, and returned a maximum of 5 
poses. To cover the enzyme's ligand-binding site, we established a grid with a 15 Å radius and 0.30 
Å resolution [23,29]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2023                   doi:10.20944/preprints202311.0097.v1

https://doi.org/10.20944/preprints202311.0097.v1


 15 

 

Our results were categorized according to docking scores, reflecting the free energy or affinity 
of the interactions. Each calculation was repeated three times to ensure reliability. For comparison, 
we employed methotrexate (MTX) as a control. 

Total Polar Surface Area (TPSA) maps were calculated using Spartan 14 for Windows Spartan'14 
(Wavefunction Inc., Irvine, CA, USA) [67], and visualization of two-dimensional residual interaction 
diagrams was accomplished using Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, Dassault 
Systèmes, San Diego, CA, USA) [23,29]. 

3.4. Molecular dynamics simulations. 

Molecular dynamics (MD) simulations were conducted in YASARA Structure v. 19.12.14 [68], 
employing the AMBER14 force field to model the enzyme and ligand–enzyme systems. Before the 
simulations, each protein underwent hydrogen bond optimization, and chloride (Cl−) and (Na+) ions 
were added to the model systems through the transferable intermolecular potential 3-point (TIP3P) 
employing 0.997 g/L density for solvating the simulation cell. Acid dissociation constant values (pKa) 
were calculated for enzyme’s titratable amino acids with H-bonding network and the side-chain 
placement with a rotamer library (SCWRL) algorithm. Periodic boundary conditions were applied to 
facilitate the simulations, involving a cell size set 10 Å larger than the protein's size in all instances.    
An initial 5000-cycle energy minimization step was carried out using the steepest gradient approach. 
MD simulations used the particle-mesh Ewald (PME) method to account for long-range electrostatic 
interactions (8-Å cut-off distance). The simulations were performed under physiological conditions 
at 298 °K, pH 7.4, and 0.9% NaCl. Temperature control was maintained using a Berendsen thermostat 
while keeping the pressure constant. A multiple-time step algorithm with a time step of 2.00 fs was 
employed. Finally, MD simulations were run for 100 ns under constant pressure and the Berendsen 
thermostat, with snapshots saved at intervals of 100 p, using the YASARA macro (md_run.mcr) for 
all simulation phases. Subsequent analyses were also carried out using the default YASARA macro 
scripts. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method was 
employed to calculate the binding free energies of apoenzyme and enzyme–ligand complexes from 
the resulting MD trajectories using the g_mmpbsa tool in Gromacs 5.0.5 (open source, 
http://www.gromacs.org) [69] on an Ubuntu 12.04 server, using NPT and periodic boundary 
conditions, as previously reported [29, 70]. 

3.5. LmDHFR-TS and HsDHFR enzymatic inhibition assays. 

Purification and kinetic characterization of the recombinant LmDHFR-TS protein were 
performed according to the previously reported procedures [29,71-72], while HsDHFR protein was 
obtained from the commercial assay kit (CS0340, Merck KGaA, Darmstadt, Germany). Thus, the in-
vitro evaluation of top-ranked selected compounds (237, 306, 308, hesperidin, rutin, and isovitexin 
4′-O-glucoside) for inhibitory activity against LmDHFR-TS and HsDHFR was conducted using a 
spectrophotometric assay under standard DHFR conditions. These tested compounds were available 
from our in-house compound library. Rutin, lithospermic acid, and rutin were commercially 
purchased (>98%, Merck KGaA, Darmstadt, Germany). Isolappaol and diarctigenin were isolated 
from a commercial A. lappa powdered root extract (Prescribed For Life, Fredericksburg, TX, USA) 
through successive column chromatography, whose spectroscopic data was identical to those of 
previous reports [73-74]. 

The assay consisted of LmDHFR-TS or HsDHFR (2.7 nM), bovine serum albumin (BSA, 1 
mg/mL), N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic acid (TES) buffer (100 mM, pH 7.0, 
150 mM β-mercaptoethanol, 2 mM ethylenediaminetetraacetic acid (EDTA)), and nicotinamide 
adenine dinucleotide phosphate (NADPH, 100 μM) with varying concentrations of the test 
compounds (0.1-128 μM). The reaction was initiated by adding the substrate (7,8-dihydrofolate (H2F), 
20 μM) and was monitored for 360 seconds at 340 nm (i.e., oxidation of NADPH to NADP+) to 
determine the initial reaction rate (Vo) through linear regression analysis of the resulting absorbance 
profile. All measurements were performed in triplicate, and MTX was used as a positive control [29]. 
The resulting Vo values were used to calculate the % inhibition, as 100 - (Ri / Rc x 100), where Ri is 
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the Vo in the presence of the inhibitor, and Rc is the Vo in the absence of inhibitors (1% DMSO v/v 
final concentration). The % inhibition was measured for at least five concentrations (0.1-128 μM) for 
each test compound (i.e., cinnamic acid derivatives and MTX), and concentration-response curves (% 
inhibition vs. Log[inhibitor]) were constructed using non-linear regression to determine the IC50 
using GraphPad Prism 7.0 (GraphPad, San Diego, CA, USA) [29]. 

3.6. Pharmacokinetic properties predictions. 

For the compounds 237, 306, and 308, the ADMET parameters were calculated using the 
ADMETlab 2.0, an integrated online platform for predictions of ADMET properties [58]. Drug toxicity 
prediction was performed using OSIRIS DataWarrior v.5.2.1, based on the following parameters: 
mutagenicity, tumorigenicity, reproductive effect, and irritability [59]. 

4. Conclusions 

This study identified three cinnamic acid derivatives, Lithospermic acid (237), Diarctigenin (306), 
and Isolappaol A (308), as potential inhibitors of LmDHFR-TS using a combined Virtual Screening 
approach (structure/ligand-based). Two random forest models were built using different molecular 
descriptors. Sensitivity and specificity measures were obtained to evaluate the RF model 
performance. The models classified 116 (AlvaDesc) and 93 compounds (VolSurf) as active, showing 
a tendency to minimize false negatives. 

Molecular docking revealed that 24.5% of the 314 cinnamic acid derivatives had values above 
0.5, with 64 of them having a lower docking score than methotrexate, the reference ligand. A 
consensus analysis combining the RF models with molecular docking identified 110 compounds with 
combined-approach probability values greater than 0.5. From them, 47% were classified as active 
through the in-silico models, identifying some compounds with potential leishmanicidal activity that 
a single approach had not previously highlighted. Lithospermic acid (237), diarctigenin (306), and 
isolappaol A (308) were among the top-ranked compounds, and their binding mode was evaluated 
using molecular dynamics. Finally, in-vitro assays using recombinant LmDHFR-TS validated the 
computational results, with 237, 306, and 308 exhibiting significant activity against LmDHFR-TS. 
However, moderate selective indices (SIs) were observed when assays were performed using 
HsDHFR. Despite this finding, higher SI values than MTX were observed. Thus, these three tested 
compounds emerged as an interesting alternative as hits against LmDHFR-TS; however, specific 
assays against the parasitic forms of Leishmania major are required to extend a clearer prospect for 
fighting this neglected tropical disease. 

Supplementary Materials: The following are available online. Table S1: Combined probabilities for the entire 
structure dataset obtained from random forest model and molecular docking calculations. Table S2: Prediction 
of pharmacokinetic properties. 
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