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Abstract: One of the most important sources of energy is the sun. Taiwan is located at north 22-25° latitude. 

Due to its proximity to the equator, it experiences only a small angle of sunlight incidence. Its unique 

geographical location which can obtain sustainable and stable solar resources. This study takes research on the 

forecast of solar radiation to maximize the benefits of solar power generation, and develops methods that can 

predict the future solar radiation pattern to help reduce the costs of solar power generation. This study builds 

supervised machine learning models, known as deep neural network (DNN) and long short-term memory 

neural network (LSTM). The hybrid supervised and unsupervised model, namely cluster-based artificial neural 

network (k-means clustering and fuzzy C-means clustering-based models), was developed. After establishing 

these models, the study evaluated their prediction results. For different prediction periods, the study selected 

the best-performing model based on the results and proposed combining them to establish a real-time updated 

solar radiation forecast system capable of predicting the next 12 hours. The study area covered Kaohsiung, 

Hualien, and Penghu in Taiwan. Data from ground stations of the Central Weather Administration, collected 

between 1993 and 2021, as well as the solar angle parameters of each station, were used as input data for the 

model. The results of this study show that different models have their advantages and disadvantages in 

predicting different future times. Therefore, the hybrid prediction system can predict future solar radiation 

more accurately than a single model. 

Keywords: solar radiation; prediction; cluster algorithm; neural network 

 

1. Introduction 

Taiwan is located between 22°N and 25°N latitude, making it close to the equator and thus 

having a smaller solar angle deviation. Its advantageous geographical location provides stable 

sunshine, making Taiwan highly suitable for solar power development. However, Taiwan relies 

heavily on imported fossil fuels such as oil, coal, and natural gas, accounting for up to 92% of its 

energy sources, while renewable energy currently only contributes 5.5% of the total electricity 

generation. Within this renewable energy mix, as of 2021, solar photovoltaic power accounts for 

64.8%, wind power 10.7%, and other sources such as hydroelectric and geothermal power make up 

24.5% (Taipower, 2021). Therefore, more efficient development of solar energy generation has the 

potential to increase energy efficiency and enhance power supply reliability. 

In Taiwan, the development of solar energy generation needs to take into account factors such 

as the angle and timing of sunlight, cloud cover, and topographical features. As a result, the energy 

received from solar radiation varies slightly across different regions. For example, in the southern 

part of Taiwan, at Kaohsiung Station (120.32°E, 22.57°N), in the eastern region at Hualien Station 

(121.61°E, 23.98°N), and on the outlying Penghu Islands at Penghu Station (119.56°E, 23.57°N) – as 

shown in Figure 1. 

Geographically, Kaohsiung Station is located south of the Tropic of Cancer, Hualien Station is 

situated north of the Tropic of Cancer, and Penghu Station is approximately located on the Tropic of 

Cancer. Regarding topographical conditions, as shown in Figure 1, the average elevation of the 
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Central Mountain Range (CMR) in Taiwan is about 2500 meters [1]. The CMR divides Taiwan into 

two regions, with Hualien Station to the right of the CMR and Kaohsiung Station to the left. 

According to Taipower [2], the solar photovoltaic electricity generation at these three meteorological 

stations in 2020 was 3.41, 2.85, and 3.60 kWh-d, respectively. Although these three locations are 

geographically close, there is a significant difference in their solar energy generation capacity. 

 

Figure 1. Map of the study region. 

In recent years, due to the flourishing development of machine learning, the accuracy of climate 

prediction has significantly improved [3-9]. Lauret et al. [10] used a model to predict solar radiation 

in island environments and proposed the use of machine learning models to enhance the performance 

of linear regression models. They also suggested that machine learning performs better in less stable 

weather conditions. Wei [11] studied various machine learning models, such as Multilayer 

Perceptron and Random Forest, to analyze solar energy predictions for meteorological stations in 

southern Taiwan. The study compared the influence of input data from satellites, ground stations, 

and solar angle data on predictions. Additionally, it calculated the optimal placement angle for solar 

panels based on hourly solar angle data to maximize solar energy generation efficiency. Voyant et al. 

[12] also utilized various machine learning methods to predict solar radiation for the next 1-6 hours. 

The study compared methods such as random forest, Gaussian processes, persistence, artificial 

neural networks, and support vector regressions to assess their strengths and weaknesses. The 

authors suggested that there is no one-size-fits-all best model, and combining multiple models in a 

hybrid prediction system yields superior results. Wei [13] conducted research on the application of 

deep neural networks for predicting solar radiation. The study compared the results of 

backpropagation neural networks and linear regression. It also examined the impact of different 

types of solar panels on electricity generation efficiency. Ali et al. [14] optimized the design of the 

artificial neural networks for accurate global solar radiation forecasting while minimizing 

computational requirements. Chodakowska et al. [15] indicated the usefulness of ARIMA models for 

forecasting insolation in different geographical locations characterized by different climatic 

conditions. 

In recent years, the recurrent neural network (RNN) architecture, which has been thriving, finds 

widespread applications in various fields [16-23]. Qing & Niu [24] proposed the use of Long Short-

Term Memory neural networks (LSTM) to predict solar radiation and compared the results with 

linear regression and backpropagation neural networks. Ultimately, they reported a 42.9% reduction 

in Root Mean Square Error (RMSE) for the LSTM networks compared to backpropagation neural 

networks in predicting solar radiation. Li et al. [25] utilized a prediction model based on RNNs to 

forecast the short-term output power of a generating system. This model took only electrical data as 

input, without weather information, and they compared its performance within a 90-minute horizon 

against BPNN, Persistence, SVM, LSTM, and other methods. In recent times, many scholars have 

proposed the application of LSTM neural networks to predict weather changes. It is noted in the 

literature that most of these studies have achieved favorable forecasting results. Therefore, in this 
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study, to enhance the accuracy of predicting long-term outcomes, the decision was made to 

incorporate the LSTM neural network model. 

Ghofrani et al. [26] used a clustering approach to improve the performance of Bayesian neural 

networks and introduced an innovative game theoretic self-organizing map (SOM) clustering 

method. They incorporated game theory to enhance the clustering effectiveness of the basic SOM 

clustering method. They also compared the results of Windows NT clustering, k-means clustering, 

and SOM clustering with machine learning-derived predictions. Azimi et al. [27] proposed a k-means 

cluster-based algorithm to enhance the predictive performance of multilayer perceptrons. Their 

approach altered the initialization method of the k-means clustering algorithm to ensure consistent 

results each time it is trained, referred to as TB k-means. They assessed the performance of different 

data analysis clustering algorithms and compared the processing time required for training with 

different feature data. Ultimately, they suggested that this clustering approach provides better 

predictive results compared to directly using multilayer perceptrons. 

The purpose of this study is to establish a solar radiation prediction model to accurately predict 

solar radiation levels. Given that solar radiation prediction is a time-series problem with highly 

nonlinear characteristics, this research employs various algorithmic techniques, including both 

unsupervised and supervised algorithms, to effectively construct suitable localized prediction 

models. In supervised-based algorithms, this study utilizes deep neural networks (DNN) and LSTM 

neural networks. Additionally, for unsupervised-based algorithms, clustering methods such as k-

means clustering and fuzzy C-means clustering are employed. After clustering, subsets of data are 

created for each cluster, and neural network-based prediction models are established for each group. 

Consequently, under the DNN model, we can establish k-means DNN (referred to as k_DNN) and 

fuzzy C-means DNN (fc_DNN). Similarly, under the LSTM model, we can create k-means LSTM 

(k_LSTM) and fuzzy C-means LSTM (fc_LSTM). 

2. Study Area and Material 

The study was conducted in Taiwan, with test locations at Kaohsiung Station, Hualien Station, 

and Penghu Station (Figure 1). The research collected ten ground-level climate parameters related to 

solar radiation, including atmospheric pressure, surface temperature, dew temperature, relative 

humidity, water vapor, average wind speed, precipitation, rainfall duration, insolation duration, and 

global solar radiation. The data source for these parameters was the Central Weather Administration 

(CWA), and the data were recorded at an hourly frequency. The data spans from 1993 to 2021, totaling 

29 years, resulting in a total of 254,184 hourly records. Table 1 presents the attributes along with their 

respective units and statistical values. 

Table 1. Statistics of ground-level climate attributes. 

Attribute Unit Min−Max, Mean 

Kaohsiung Station Hualien Station Penghu Station 

Atmospheric pressure hPa 976.1−1030.9, 1012.0 958.8−1032.1, 1011.8 974.1−1033, 1011.8 

Surface temperature °C 7.1−36.9, 25.31 9.2−39.6, 24.66 7.9−34.8, 23.67 

Dew temperature °C -4.2−30.4, 20.49 1.5−29.2, 19.64 -0.4−29.8, 19.95 

Relative humidity % 26−100, 75.24 25−100, 74.21 27−100, 80.12 

Water vapor hPa 4.5−43.4, 24.93 6.8−40.5, 23.65 5.9−41.9, 24.34 

Average wind speed m/s 0−18, 2.17 0−16.6, 1.74 0−25.8, 4.06 

Precipitation mm 0−119.5, 0.21 0−83, 0.21 0−94.5, 0.13 

Rainfall duration h 0−1, 0.04 0−1, 0.06 0−1, 0.05 

Insolation duration h 0−1, 0.26 0−1, 0.20 0−1, 0.24 

Global solar radiation MJ/m2 0−3.90, 0.56 0−5.32, 0.63 0−4.34, 0.53 

Declination angle degree -23.45−23.45, -0.01 -23.45−23.45, -0.01 -23.45−23.45, -0.01 

Hour angle degree -165−180, 7.5 -165−180, 7.5 -165−180, 7.5 

Zenith angle degree 0.02−179.98, 90 0.028−179.97, 90 0.12−179.88, 90 

Elevation angle degree -89.98−89.98, 0.0 -89.97−89.97, -0.0 -89.88−89.88, 0.0 

Azimuth angle degree -90−90, 0.0 -90−90, 0.0 -90−90, 0.0 
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According to Wei [11], the addition of solar angle parameters can be used to improve the 

prediction of global solar radiation. Therefore, this study includes five solar angle parameters, 

namely the declination angle, hour angle, zenith angle, elevation angle, and azimuth angle [28]. 

Firstly, the declination angle (δ) is the angle between the line connecting the sun and the center of the 

Earth and the plane of the equator. The formula for this angle is as follows: 𝛿 = 23.45° 𝑠𝑖𝑛  ቀଷ଺଴(௡೏ି଼଴)ଷ଺ହ ቁ                              (1) 

The hour angle (ω) represents the angle that the sun moves relative to the position of the station 

per hour and can be calculated as follows: 𝜔 = 15°(𝐻 − 12)                                  (2) 

The zenith angle (θ) is the angle between the sun and the vertical line to the horizontal plane 

and can be calculated using the following formula: 𝜃 = 𝑐𝑜𝑠ିଵ(𝑠𝑖𝑛𝜆 ∙ 𝑠𝑖𝑛𝛿 + 𝑐𝑜𝑠𝜆 ∙ 𝑐𝑜𝑠𝜔)                        (3) 

The elevation angle (α) is the angle between the line connecting the Sun to the observation point 

and the horizontal plane. 𝛼 = 90° − 𝜃                                     (4) 

The azimuth angle (ξ) is the angle between the sun's position in its orbit and the horizontal plane. 

It can be calculated using the following formula: 𝜉 = 𝑠𝑖𝑛ିଵ(𝑐𝑜𝑠𝛿 ∙ 𝑠𝑖𝑛𝜔/𝑠𝑖𝑛𝜃)                           (5) 

In the equations (1) to (5) mentioned above, where nd represents the day of the year, ranging 

from 1 to a maximum of 365; H represents the hour of the day when the angle is calculated, ranging 

from 1 to 24 hours; and λ denotes the latitude of the test location. 

3. A Real-time Prediction System 

As predicting solar radiation cannot guarantee that a single model will provide the best forecast 

[12], this study establishes a real-time solar radiation prediction system. It aims to integrate 

simulation results from different models, following the concept of an ensemble model to jointly 

determine the optimal solution. Figure 2 illustrates the real-time prediction concept process designed 

for this study. The simulation interval is 1 hour, and the solar radiation forecast horizon ranges from 

1 to 12 hours. The steps are described as follows: 

1) At sunrise, set the time as t; 

2) Receive the real-time ground weather data; 

3) Generate model input patterns, including the global solar radiation attribute {S}, weather 

attributes {W}, and solar position attributes {P}. The dataset {P} {δ, ω, θ, α, ξ} can be derived from 

Equations (1)-(5); 

4) Execute a model selection ensemble tabular (abbreviated as MSET); 

5) Retrieve the set of optimal suggested neural network-based models from the MSET lookup table 

for the future 1 to 12 hours; 

6) Is it necessary to execute clustering models based on the suggested neural network-based 

models? If "yes," proceed to step 7; if "no," go to step 9; 

7) Calculate the distances between a current sample and cluster centers for cluster models; 

8) Execute cluster-based models (i.e., k_DNN, fc_DNN, k_LSTM, and fc_LSTM) and generate 1-12 

hour predictions; 

9) Execute DNN and LSTM models and generate 1-12 hour predictions; 

10) Generate a set of suggested neural network-based models for 1 to 12 hours in the future; 

11) Is it sunset? If "yes," conclude the analysis procedure (Step 12); if "no," return to step 2 and set 

the time as t + 1. 
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Figure 2. Flowchart of a real-time prediction process. 

In step 4, the lookup table from MSET is used to determine the optimal model for real-time 

predictions at each forecasting time (1 to 12 hours). Compared to having a single model decide the 

forecast, the collaborative decision of all models can enhance accuracy. In steps 8 and 9, the methods 

for establishing each model will be explained as follows. 

3.1. Supervised models 

Figure 3 illustrates the modeling process for supervised models. Taking DNN as an example, 

DNN is developed based on the structure of deep neural networks. A deep neural network is a model 

with multiple layers, an advanced development of the multilayer perceptron based on the principles 

of the multilayer perceptron. The multilayer perceptron includes an input layer, hidden layers, and 

an output layer. The input layer of the multilayer perceptron serves as the interface for external input 

information, while the hidden layers and the output layer perform the actual computations. The 

flowchart in Figure 3 explains that the data sets consist of the solar radiation attribute {S}, weather 

attributes {W}, and solar position attributes {P}. These three data sets are organized in a time sequence 

and then divided into a training set, a validation set, and a testing set. The training set and validation 

set are used for building prediction models, while the testing set is used to evaluate the model's 

performance. 
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Figure 3. The modeling process for DNN models. 

As shown in Figure 4, O() represents a collection of observed values, including datasets of {S}, 

{W}, and {P}. SP() represents a collection of predicted solar radiation values. The predictive function 

of the model can be written as: S୔(𝑡 + 𝑛) = DNN ቊO(𝑡 − Δ𝑡)୼௧ୀ଴,(ௗି௡ାଵ)S୔(𝑡 + 𝑘)௞ୀଵ,(௡ିଵ) ቋ୼௧∈ሾ଴,ௗሿ,௞∈ሾଵ,୒ሿ               (6) 

where SP(t+k) represents the predicted solar radiation value for the future k hours, O(t−Δt) denotes 

past observed data, d is the input delay time for the model, N is the maximum prediction time length 

(set as a constant value in this study, N = 12 hours), and n and k are parameters (indices) for the 

prediction time length. 

 

Figure 4. Input-output pattern used in DNN model. 

In Eq. (6), when predicting the solar radiation SP(t+1) for the next 1 hour, the current time data 

(Δt = 0) and the observation set of the past d hours are used. For predictions beyond t+2 in the future, 

the previous predicted values for each time step are also incorporated. 

Additionally, in this study, another supervised model is employed, namely LSTM. LSTM is an 

advanced model within RNN. RNNs are recurrent networks commonly used for handling time and 

sequence-related problems. However, during the modeling process, the issue of vanishing gradients 

or exploding gradients may occur. To address this problem, Hochreiter & Schmidhuber [29] 
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introduced the LSTM neural network, which is an improved model incorporating memory blocks 

within the hidden layers of the RNN. As shown in Figure 5, while traditional RNNs have a single 

hidden state ht, LSTM networks introduce memory blocks Ct, allowing them to retain longer 

memories and forget less relevant information. 

 

Figure 5. The concept of network structures in RNN and LSTM models. 

In the construction of the LSTM model in this study, the input data comprises the current solar 

radiation {S} and attributes {W} and {P}. The input-output format of the model, as shown in Figure 6, 

involves sequentially feeding data into the model based on the time sequence. The LSTM model is 

trained to predict 12 target values (i.e., solar radiation for the next 12 hours), with each input data 

entry having a time length of d'. The model directly outputs predictions for the next 12 hours. To 

assess accuracy, the data is split into three sets for training, validation, and testing, as illustrated in 

Figure 3, to evaluate the model's performance. 

 

Figure 6. Input-output patterns in LSTM model. 

3.2. Unsupervised combined supervised models 

The unsupervised combined with supervised models in this study utilize unsupervised 

clustering algorithms in conjunction with supervised neural networks to form an integrated 

framework. The modularized process is depicted in Figure 7. Initially, the three data sets of {S}, {W}, 

and {P} are arranged based on the time sequence and then undergo data splitting. Subsequently, the 

training set is clustered, and each group of data is used to train a single supervised model (such as 

DNN and LSTM). After the model construction is complete, each data point in the validation set 

identifies the cluster center with the shortest distance and utilizes the corresponding ANN model for 

that cluster to predict solar radiation. 
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Figure 7. The modeling process for unsupervised combined with supervised models. 

This study utilizes two clustering methods: k-means and fuzzy C-means. The k-means is a 

clustering algorithm that groups n data points into k clusters by minimizing the sum of squared 

distances between all data points and their respective cluster centroids. The objective function JK is 

the sum of squared distances between all data points and their cluster centroids, and the 

mathematical expression is as follows: J୏ = ∑ ∑ 𝑤௝௜ฮ𝑥௝ − 𝐶௜ฮଶ௡௝ୀଵ௞௜ୀଵ                             (7) 𝑤௝௜ =  ൜ 1, if ฮ𝑥௝ − 𝐶௜ฮ ൑ ฮ𝑥௝ − 𝐶௠ฮ,   ∀𝑚 ് 𝑗0, otherwise                                                                   (8) 

where K is the number of clusters; k is the cluster index; n is the number of data points; xj is the j-th 

input data sample; Ci is the centroid of the i-th cluster; wji is a weight, which is 1 if the data belongs 

to the i-th cluster, and 0 otherwise. 

The fuzzy C-means algorithm applies fuzzy theory concepts to clustering methods [30]. Unlike 

k-means, in fuzzy C-means, the weights W are not binary; instead, each attribute data is represented 

by a membership function to indicate the degree of belonging to each cluster. The objective function 

JC is the sum of the squared distances between all data points and their cluster centroids, as shown in 

the following equation: J஼ = ∑ J௜୏௜ୀଵ ＝∑ ∑ 𝑤௝௜௠ฮ𝑥௝ − 𝐶௜ฮଶ୬௝ୀଵ୏௜ୀଵ                     (9) 

where K is the number of clusters, n is the number of data points, xj represents the j-th sample data, 

Ci is the centroid of the i-th cluster, 𝑤௝௜௠ is the weight (ranging from 0 to 1) indicating the degree of 

truth for its fuzzy set, and m is the exponent coefficient, typically set to 2. 

The sum of the weight coefficients should satisfy the constraint as follows: ∑ 𝑤௜௝௜௄௜ୀଵ = 1, ∀𝑗 = 1, ⋯ , n                            (10) 

The weight formula is as follows: 𝑤௜௝௜ = ଵ∑ (ቛೣೕష಴೔ቛቛೣೕష಴ೞቛ) మ೘షభೞ಼సభ                               (11) 

The number of clusters K mentioned above will be determined using a trial and error method. 

Figure 8 illustrates the process of selecting a cluster and predicting solar radiation based on the data 
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in the validation set and testing set. After selecting the clustering method, the distance DIS between 

sample point i and cluster center Ck is calculated. kmin_dis represents the shortest distance to a certain 

cluster. Based on the kmin_dis result, you can use the predictive model associated with that cluster to 

estimate solar radiation. 

 

Figure 8. Procedure of the data samples clustering. 

4. Modeling and Results 

This study divides the data from the experimental locations (i.e., Kaohsiung Station, Hualien 

Station, and Penghu Station) into training data for 18 years (1993 to 2010), validation data for 6 years 

(2011 to 2016), and testing data for 5 years (2017 to 2021). Python programming language and the 

Keras library were used to build machine learning models and perform computations. The evaluation 

metrics employed in this study include RMSE (root mean squared error) and rRMSE (relative RMSE), 

with the formulas as follows: RMSE = ට ଵெ ∑ (𝑂௜௉௥௘ − 𝑂௜ை௕௦)ଶெ௜ୀଵ                            (12) rRMSE = ୖ୑ୗ୉ைതೀ್ೞ                                    (13) 

where M is the number of data points; 𝑂௜௉௥௘  represents the ith prediction value; 𝑂௜ை௕௦  is the ith 

observed value, and 𝑂തை௕௦ is the mean of all observed values. 

4.1. Parameter calibration 

The hyperparameters for the DNN model need to be tuned, including the learning rate, 

momentum, the number of hidden layers, and the number of neurons in a hidden layer. The learning 

rate controls the step size for weight updates and affects the convergence speed. A learning rate that 

is too small can lead to slow convergence, while a learning rate that is too large can cause oscillations. 

This study started with a learning rate of 0.001 and increased it gradually in steps of 0.001 to find the 

optimal learning rate. Momentum is an effective way to enhance the efficiency of weight adjustments. 

It involves incorporating part of the previous learning's value to update the network's weights, which 

can significantly reduce the influence of extreme values or noise in the data. This study experimented 

with momentum values in the range of 0.01, increasing by 0.01 in each step. The number of hidden 

layers in the network is another crucial hyperparameter. This study tested architectures with 1 to 3 

hidden layers. The number of neurons in a hidden layer influences the network's ability to generalize. 

Too few neurons can lead to underfitting, while too many neurons can lead to overfitting. The study 

explored the number of neurons, starting from 1 and gradually increasing up to 50 to determine the 

optimal configuration. 
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In the DNN modeling process, the performance of two optimizers, namely Stochastic Gradient 

Descent (SGD) and Adaptive Moment Estimation (Adam), was initially compared. Figure 9 illustrates 

the iterative convergence process of errors using these two optimizers for Kaohsiung Station. It is 

evident that Adam outperforms SGD in terms of error convergence. As a result, Adam optimizer was 

chosen for subsequent steps. 

 

Figure 9. Error convergence trends over iterations for SGD versus Adam optimizer. 

Next, this study determines the delay time length, d. Figure 10 presents the best RMSE at various 

delay times under the Adam optimization. With the increase in d, the error reduction is less 

pronounced. This study uses d = 7 hours, 10 hours, and 5 hours as parameter values for Kaohsiung, 

Hualien, and Penghu Station, respectively. 

 

Figure 10. Calibration of delay time d of DNN model in (a) Kaohsiung Station, (b) Hualien Station, 

(c) Penghu Station. 

Table 2 lists the parameter tuning results for the number of hidden layers and the number of 

neuron nodes in the DNN (t+1) model under the Adam optimization for the next hour (t + 1). Using 

the same method, we conducted parameter tuning for 1 to 12 hours into the future. 
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Table 2. Parameter tuning results for the DNN model. 

Station Delay time (h) Number of hidden layers Number of neuron nodes RMSE (MJ/m2) 

Kaohsiung 7 3 18 0.232196 

Hualien 10 3 10 0.262571 

Penghu 5 3 9 0.232947 

In the case of building the LSTM models, the parameter d' represents the length of data required 

for the LSTM input. The values of d determined in the previous section for the DNN model can serve 

as reference values for d', which are assumed to be 7, 10, and 7 hours for the three experimental 

stations, respectively. The number of LSTM neurons was tested for forecast horizons from 1 to 12 

hours. Taking the example of the t+1 forecast, Figure 11 shows that Kaohsiung, Hualien, and Penghu 

Stations achieved stable convergence errors with 39, 85, and 36 neurons, respectively. 

 

Figure 11. Calibration of neuron nodes in LSTM: (a) Kaohsiung Station, (b) Hualien Station, (c) 

Penghu Station. 

In the cluster-based DNN and LSTM models, during the clustering algorithm process, this study 

examined the number of clusters and determined the optimal number of clusters. Figure 12 shows 

the trial-and-error process for determining the number of clusters for k_DNN, fc_DNN, k_LSTM, and 

fc_LSTM. The results reveal that for the DNN models, the optimal number of clusters for Kaohsiung 

Station, Hualien Station, and Penghu Station were 4, 3, and 4 for k_DNN and 5, 4, and 5 for fc_DNN. 

For the LSTM models, k_LSTM had an optimal number of clusters of 5, 4, and 5, and fc_LSTM had 

an optimal number of clusters of 5, 5, and 5. The results indicate that both DNN and LSTM models 

achieve their best performance with fewer than 5 clusters. 
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Figure 12. Calibration of clustering amount in cluster-based DNN and LSTM models in (a) Kaohsiung 

Station, (b) Hualien Station, (c) Penghu Station. 

5. Simulation 

This study evaluated the DNN, LSTM, k_DNN, fc_DNN, k_LSTM, and fc_LSTM models using 

the testing set. Figure 13 presents the evaluation results using the testing set, showing the rRMSE 

performance of each model for lead times ranging from 1 to 12 hours. From Figure 13a, it can be 

observed that at Kaohsiung Station, for lead times of 1 to 2 hours, the different models have similar 

rRMSE values. However, for lead times greater than 3 hours, fc_LSTM exhibits superior prediction 

performance. In Figure 13b, at Hualien Station, for lead times of 1 to 3 hours, LSTM, fc_DNN, and 

fc_LSTM show comparable rRMSE values. For lead times greater than 4 hours, fc_LSTM 

demonstrates better prediction performance. Figure 13c shows the results for Penghu Station, where 

for lead times of 1 to 2 hours, k_DNN, LSTM, k_LSTM, fc_DNN, and fc_LSTM models have similar 

rRMSE values. However, for lead times greater than 3 hours, fc_LSTM exhibits a more significant 

advantage in terms of prediction performance. 

 

Figure 13. The results of rRMSE using testing set: (a) Kaohsiung; (b) Hualien; (c) Penghu. 
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Based on the rRMSE results of the DNN model, this study defined a "model improvement rate," 

as described below: IR = (rRMSEୈ୒୒ − rRMSE)/rRMSEୈ୒୒ × 100%             (14) 

After calculation, it was found that at all three stations, the fc_LSTM model had the highest 

improvement rate (improving by 37.27%, 30.41%, and 29.08% respectively), followed by the k_LSTM 

model with the second-highest improvement rate (improving by 20.81%, 19.54%, and 29.08% 

respectively). 

Table 3. Average performance levels for 1–12 h predictions. 

Station Measure DNN LSTM k_DNN fc_DNN k_LSTM fc_LSTM 

Kaohsiung RMSE (mj/m2) 0.601 0.570 0.567 0.574 0.457 0.342 

 rRMSE 1.033 1.008 1.003 1.023 0.818 0.648 

 IR 0% 2.42% 2.90% 0.97% 20.81% 37.27% 

Hualien RMSE (mj/m2) 0.519 0.454 0.501 0.497 0.430 0.364 

 rRMSE 1.049 0.880 1.032 0.907 0.844 0.730 

 IR 0% 16.11% 1.62% 13.54% 19.54% 30.41% 

Penghu RMSE (mj/m2) 0.503 0.401 0.437 0.421 0.389 0.352 

 rRMSE 1.035 0.823 0.933 0.873 0.763 0.734 

 IR 0% 20.48% 9.86% 15.65% 26.28% 29.08% 

5.1. Model selection ensemble tabular (MSET) 

From Section 3 of the real-time prediction system, the lookup table from MSET is used for real-

time predictions to determine the best model for each forecast time (1 to 12 hours). Table 4 presents 

the results obtained from testing data simulations. It is observed that for short-term predictions (lead 

time <= 3 h), a combination of clustering algorithms with DNN or LSTM models performs better at 

all three stations. However, for long-term predictions (lead time >= 4 h), combining clustering 

algorithms with LSTM models is the most stable choice. 

Table 4. Model selection ensemble tabular (MSET). 

Lead time Kaohsiung Station Hualien Station Penghu Station 

1 h fc_DNN fc_DNN fc_DNN 

2 h fc_DNN fc_DNN fc_LSTM 

3 h fc_LSTM fc_DNN fc_LSTM 

4-12 h fc_LSTM fc_LSTM fc_LSTM 

This study uses test data from 2017 for simulating the real-time prediction system. The best 

models selected from the MSET table for different forecast periods are further utilized for real-time 

updates in predicting solar radiation. To assess the system, ground station data and solar angle data 

obtained through k-means and fuzzy C-means clustering are used. Each set of data belongs to a 

cluster with cluster center coordinates. The model selection set table can be updated based on the 

required time intervals to ensure the accuracy of clustering and statistical results. In practice, current 

data is imported into the database every hour. The best forecast models for each upcoming hour are 

defined according to the model selection set table, and the results of all models are computed. Finally, 

the required forecast values are combined, and the current time is adjusted, enabling continuous 

predictions until the user terminates the process. 

This study has established a real-time prediction system for solar radiation. The system's 

performance is demonstrated using representative days chosen in this study: 03/20 (spring equinox), 

06/21 (summer solstice), 09/22 (autumn equinox), and 12/21 (winter solstice). Figures 14 to 16 show 

the real-time predictions for Kaohsiung Station, Hualien Station, and Penghu Station during these 

four major seasonal transitions in 2017. The orange line represents the prediction results, while the 

blue line represents the observed solar radiation. Each prediction starts from 6:00 AM and looks 
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ahead to the next 12 hours. The figure titles indicate the time of the current prediction, starting at 6:00 

AM, and the results are updated every two hours until noon, demonstrating the results up to that 

time. 

It is evident that, at 6:00 AM, some stations tend to underestimate the peak around noon. 

However, after updating the data every two hours, by 10:00 AM, the results have significantly 

improved and can reasonably predict the noon peak. The results demonstrate that real-time 

predictions roughly align with the actual values. Based on the results, most errors are concentrated 

around the high values during the day. Accurate prediction of peak values can only be achieved as 

the current time approaches noon due to the error propagation over the long-term forecast. In such 

cases, the model's output becomes increasingly conservative, leading to the observed 

underestimation. The study suggests that using more precise cluster selection methods to accurately 

choose the deep neural network trained by the noon cluster could potentially resolve this 

underestimation issue. 

 

Figure 14. Real-time prediction system simulation results for Kaohsiung Station. 
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Figure 15. Real-time prediction system simulation results for Hualien Station. 

 

Figure 16. Real-time prediction system simulation results for Penghu Station. 
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6. Conclusions 

The aim of this study is to establish a prediction model for solar radiation and develop a hybrid 

real-time solar energy prediction system to obtain reliable daily solar radiation forecasts every 

morning. The system is designed to provide hourly updates and corrections to the predictions, 

assisting in determining the future electricity generation from solar energy and the optimal timing 

for energy generation. The study covers three regions, namely Kaohsiung, Hualien, and Penghu, each 

equipped with an independent real-time prediction system, forecasting solar radiation for the next 1 

to 12 hours. 

In the model development phase, multiple models were employed, including the deep neural 

network (DNN) and the long-short term memory neural network (LSTM). Additionally, 

unsupervised-based algorithms were used, which involved clustering methods such as k-means 

clustering and fuzzy C-means clustering. After clustering the data, neural network-based prediction 

models were established for each cluster. As a result, in the DNN model, the following models were 

created: k-means DNN (k_DNN) and fuzzy C-means DNN (fc_DNN). In the case of the LSTM model, 

the following models were developed: k-means LSTM (k_LSTM) and fuzzy C-means LSTM 

(fc_LSTM). 

Based on the predictions of various models, this study evaluated the best models for different 

forecasting time intervals and proposed a real-time solar radiation prediction system. This system is 

capable of providing real-time predictions for solar radiation for the range of 1 to 12 hours ahead. To 

test its practicality, simulations were conducted using data from the year 2017. The results of the 

research's prediction system demonstrated strong predictive performance. Even with increased 

errors in long-term predictions, the system was able to dynamically adjust the predictions in real-

time, effectively forecasting solar radiation for the next 12 hours. 
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