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Abstract: One of the most important sources of energy is the sun. Taiwan is located at north 22-25° latitude.
Due to its proximity to the equator, it experiences only a small angle of sunlight incidence. Its unique
geographical location which can obtain sustainable and stable solar resources. This study takes research on the
forecast of solar radiation to maximize the benefits of solar power generation, and develops methods that can
predict the future solar radiation pattern to help reduce the costs of solar power generation. This study builds
supervised machine learning models, known as deep neural network (DNN) and long short-term memory
neural network (LSTM). The hybrid supervised and unsupervised model, namely cluster-based artificial neural
network (k-means clustering and fuzzy C-means clustering-based models), was developed. After establishing
these models, the study evaluated their prediction results. For different prediction periods, the study selected
the best-performing model based on the results and proposed combining them to establish a real-time updated
solar radiation forecast system capable of predicting the next 12 hours. The study area covered Kaohsiung,
Hualien, and Penghu in Taiwan. Data from ground stations of the Central Weather Administration, collected
between 1993 and 2021, as well as the solar angle parameters of each station, were used as input data for the
model. The results of this study show that different models have their advantages and disadvantages in
predicting different future times. Therefore, the hybrid prediction system can predict future solar radiation
more accurately than a single model.

Keywords: solar radiation; prediction; cluster algorithm; neural network

1. Introduction

Taiwan is located between 22°N and 25°N latitude, making it close to the equator and thus
having a smaller solar angle deviation. Its advantageous geographical location provides stable
sunshine, making Taiwan highly suitable for solar power development. However, Taiwan relies
heavily on imported fossil fuels such as oil, coal, and natural gas, accounting for up to 92% of its
energy sources, while renewable energy currently only contributes 5.5% of the total electricity
generation. Within this renewable energy mix, as of 2021, solar photovoltaic power accounts for
64.8%, wind power 10.7%, and other sources such as hydroelectric and geothermal power make up
24.5% (Taipower, 2021). Therefore, more efficient development of solar energy generation has the
potential to increase energy efficiency and enhance power supply reliability.

In Taiwan, the development of solar energy generation needs to take into account factors such
as the angle and timing of sunlight, cloud cover, and topographical features. As a result, the energy
received from solar radiation varies slightly across different regions. For example, in the southern
part of Taiwan, at Kaohsiung Station (120.32°E, 22.57°N), in the eastern region at Hualien Station
(121.61°E, 23.98°N), and on the outlying Penghu Islands at Penghu Station (119.56°E, 23.57°N) — as
shown in Figure 1.

Geographically, Kaohsiung Station is located south of the Tropic of Cancer, Hualien Station is
situated north of the Tropic of Cancer, and Penghu Station is approximately located on the Tropic of
Cancer. Regarding topographical conditions, as shown in Figure 1, the average elevation of the
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Central Mountain Range (CMR) in Taiwan is about 2500 meters [1]. The CMR divides Taiwan into
two regions, with Hualien Station to the right of the CMR and Kaohsiung Station to the left.
According to Taipower [2], the solar photovoltaic electricity generation at these three meteorological
stations in 2020 was 3.41, 2.85, and 3.60 kWh-d, respectively. Although these three locations are
geographically close, there is a significant difference in their solar energy generation capacity.
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Figure 1. Map of the study region.

In recent years, due to the flourishing development of machine learning, the accuracy of climate
prediction has significantly improved [3-9]. Lauret et al. [10] used a model to predict solar radiation
inisland environments and proposed the use of machine learning models to enhance the performance
of linear regression models. They also suggested that machine learning performs better in less stable
weather conditions. Wei [11] studied various machine learning models, such as Multilayer
Perceptron and Random Forest, to analyze solar energy predictions for meteorological stations in
southern Taiwan. The study compared the influence of input data from satellites, ground stations,
and solar angle data on predictions. Additionally, it calculated the optimal placement angle for solar
panels based on hourly solar angle data to maximize solar energy generation efficiency. Voyant et al.
[12] also utilized various machine learning methods to predict solar radiation for the next 1-6 hours.
The study compared methods such as random forest, Gaussian processes, persistence, artificial
neural networks, and support vector regressions to assess their strengths and weaknesses. The
authors suggested that there is no one-size-fits-all best model, and combining multiple models in a
hybrid prediction system yields superior results. Wei [13] conducted research on the application of
deep neural networks for predicting solar radiation. The study compared the results of
backpropagation neural networks and linear regression. It also examined the impact of different
types of solar panels on electricity generation efficiency. Ali et al. [14] optimized the design of the
artificial neural networks for accurate global solar radiation forecasting while minimizing
computational requirements. Chodakowska et al. [15] indicated the usefulness of ARIMA models for
forecasting insolation in different geographical locations characterized by different climatic
conditions.

In recent years, the recurrent neural network (RNN) architecture, which has been thriving, finds
widespread applications in various fields [16-23]. Qing & Niu [24] proposed the use of Long Short-
Term Memory neural networks (LSTM) to predict solar radiation and compared the results with
linear regression and backpropagation neural networks. Ultimately, they reported a 42.9% reduction
in Root Mean Square Error (RMSE) for the LSTM networks compared to backpropagation neural
networks in predicting solar radiation. Li et al. [25] utilized a prediction model based on RNNs to
forecast the short-term output power of a generating system. This model took only electrical data as
input, without weather information, and they compared its performance within a 90-minute horizon
against BPNN, Persistence, SVM, LSTM, and other methods. In recent times, many scholars have
proposed the application of LSTM neural networks to predict weather changes. It is noted in the
literature that most of these studies have achieved favorable forecasting results. Therefore, in this
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study, to enhance the accuracy of predicting long-term outcomes, the decision was made to
incorporate the LSTM neural network model.

Ghofrani et al. [26] used a clustering approach to improve the performance of Bayesian neural
networks and introduced an innovative game theoretic self-organizing map (SOM) clustering
method. They incorporated game theory to enhance the clustering effectiveness of the basic SOM
clustering method. They also compared the results of Windows NT clustering, k-means clustering,
and SOM clustering with machine learning-derived predictions. Azimi et al. [27] proposed a k-means
cluster-based algorithm to enhance the predictive performance of multilayer perceptrons. Their
approach altered the initialization method of the k-means clustering algorithm to ensure consistent
results each time it is trained, referred to as TB k-means. They assessed the performance of different
data analysis clustering algorithms and compared the processing time required for training with
different feature data. Ultimately, they suggested that this clustering approach provides better
predictive results compared to directly using multilayer perceptrons.

The purpose of this study is to establish a solar radiation prediction model to accurately predict
solar radiation levels. Given that solar radiation prediction is a time-series problem with highly
nonlinear characteristics, this research employs various algorithmic techniques, including both
unsupervised and supervised algorithms, to effectively construct suitable localized prediction
models. In supervised-based algorithms, this study utilizes deep neural networks (DNN) and LSTM
neural networks. Additionally, for unsupervised-based algorithms, clustering methods such as k-
means clustering and fuzzy C-means clustering are employed. After clustering, subsets of data are
created for each cluster, and neural network-based prediction models are established for each group.
Consequently, under the DNN model, we can establish k-means DNN (referred to as k_DNN) and
fuzzy C-means DNN (fc_DNN). Similarly, under the LSTM model, we can create k-means LSTM
(k_LSTM) and fuzzy C-means LSTM (fc_LSTM).

2. Study Area and Material

The study was conducted in Taiwan, with test locations at Kaohsiung Station, Hualien Station,
and Penghu Station (Figure 1). The research collected ten ground-level climate parameters related to
solar radiation, including atmospheric pressure, surface temperature, dew temperature, relative
humidity, water vapor, average wind speed, precipitation, rainfall duration, insolation duration, and
global solar radiation. The data source for these parameters was the Central Weather Administration
(CWA), and the data were recorded at an hourly frequency. The data spans from 1993 to 2021, totaling
29 years, resulting in a total of 254,184 hourly records. Table 1 presents the attributes along with their
respective units and statistical values.

Table 1. Statistics of ground-level climate attributes.

Attribute Unit Min-Max, Mean
Kaohsiung Station Hualien Station Penghu Station
Atmospheric pressure hPa 976.1-1030.9, 1012.0 958.8-1032.1, 1011.8 974.1-1033, 1011.8

Surface temperature °C 7.1-36.9, 25.31 9.2-39.6, 24.66 7.9-34.8, 23.67
Dew temperature °C -4.2-30.4, 20.49 1.5-29.2,19.64 -0.4-29.8, 19.95
Relative humidity % 26-100, 75.24 25-100, 74.21 27-100, 80.12

Water vapor hPa 4.5-43.4,24.93 6.8-40.5, 23.65 5.9-41.9,24.34

Average wind speed m/s 0-18,2.17 0-16.6, 1.74 0-25.8, 4.06

Precipitation mm 0-119.5,0.21 0-83, 0.21 0-94.5,0.13
Rainfall duration h 0-1, 0.04 0-1, 0.06 0-1, 0.05
Insolation duration h 0-1, 0.26 0-1, 0.20 0-1, 0.24
Global solar radiation MJ/m? 0-3.90, 0.56 0-5.32, 0.63 0-4.34, 0.53
Declination angle degree -23.45-23.45,-0.01 -23.45-23.45, -0.01 -23.45-23.45,-0.01
Hour angle degree -165-180, 7.5 -165-180, 7.5 -165-180, 7.5
Zenith angle degree 0.02-179.98, 90 0.028-179.97, 90 0.12-179.88, 90
Elevation angle degree -89.98-89.98, 0.0 -89.97-89.97, -0.0 -89.88-89.88, 0.0
Azimuth angle degree -90-90, 0.0 -90-90, 0.0 -90-90, 0.0
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According to Wei [11], the addition of solar angle parameters can be used to improve the
prediction of global solar radiation. Therefore, this study includes five solar angle parameters,
namely the declination angle, hour angle, zenith angle, elevation angle, and azimuth angle [28].
Firstly, the declination angle (9) is the angle between the line connecting the sun and the center of the
Earth and the plane of the equator. The formula for this angle is as follows:

§ = 23.45° sin (22050 1)
The hour angle (w) represents the angle that the sun moves relative to the position of the station
per hour and can be calculated as follows:
w = 15°(H — 12) (2)
The zenith angle (0) is the angle between the sun and the vertical line to the horizontal plane
and can be calculated using the following formula:
0 = cos™1(sinl - sind + cosA - cosw) 3)
The elevation angle () is the angle between the line connecting the Sun to the observation point
and the horizontal plane.
a=90°-6 4)
The azimuth angle () is the angle between the sun's position in its orbit and the horizontal plane.
It can be calculated using the following formula:
& = sin"Y(cos6 - sinw/sind) (5)
In the equations (1) to (5) mentioned above, where ns represents the day of the year, ranging
from 1 to a maximum of 365; H represents the hour of the day when the angle is calculated, ranging
from 1 to 24 hours; and A denotes the latitude of the test location.

3. A Real-time Prediction System

As predicting solar radiation cannot guarantee that a single model will provide the best forecast
[12], this study establishes a real-time solar radiation prediction system. It aims to integrate
simulation results from different models, following the concept of an ensemble model to jointly
determine the optimal solution. Figure 2 illustrates the real-time prediction concept process designed
for this study. The simulation interval is 1 hour, and the solar radiation forecast horizon ranges from
1 to 12 hours. The steps are described as follows:

1) Atsunrise, set the time as t;

2) Receive the real-time ground weather data;

3) Generate model input patterns, including the global solar radiation attribute {S}, weather
attributes {W}, and solar position attributes {P}. The dataset {P} {6, w, 0, a, £} can be derived from
Equations (1)-(5);

4) Execute a model selection ensemble tabular (abbreviated as MSET);

5) Retrieve the set of optimal suggested neural network-based models from the MSET lookup table
for the future 1 to 12 hours;

6) Is it necessary to execute clustering models based on the suggested neural network-based
models? If "yes," proceed to step 7; if "no," go to step 9;

7)  Calculate the distances between a current sample and cluster centers for cluster models;

8)  Execute cluster-based models (i.e., k_DNN, fc_ DNN, k_LSTM, and fc_LSTM) and generate 1-12
hour predictions;

9) Execute DNN and LSTM models and generate 1-12 hour predictions;

10) Generate a set of suggested neural network-based models for 1 to 12 hours in the future;

11) Is it sunset? If "yes," conclude the analysis procedure (Step 12); if "no," return to step 2 and set
the time as t + 1.
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Figure 2. Flowchart of a real-time prediction process.

} Compute distances between
a current sample and cluster

9) Execute supervised DNN and LSTM
models and output 1-12 h predictions

In step 4, the lookup table from MSET is used to determine the optimal model for real-time
predictions at each forecasting time (1 to 12 hours). Compared to having a single model decide the
forecast, the collaborative decision of all models can enhance accuracy. In steps 8 and 9, the methods
for establishing each model will be explained as follows.

3.1. Supervised models

Figure 3 illustrates the modeling process for supervised models. Taking DNN as an example,
DNN is developed based on the structure of deep neural networks. A deep neural network is a model
with multiple layers, an advanced development of the multilayer perceptron based on the principles
of the multilayer perceptron. The multilayer perceptron includes an input layer, hidden layers, and
an output layer. The input layer of the multilayer perceptron serves as the interface for external input
information, while the hidden layers and the output layer perform the actual computations. The
flowchart in Figure 3 explains that the data sets consist of the solar radiation attribute {S}, weather
attributes {W}, and solar position attributes {P}. These three data sets are organized in a time sequence
and then divided into a training set, a validation set, and a testing set. The training set and validation
set are used for building prediction models, while the testing set is used to evaluate the model's
performance.
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Figure 3. The modeling process for DNN models.

As shown in Figure 4, O() represents a collection of observed values, including datasets of {S},
{W}, and {P}. Sp() represents a collection of predicted solar radiation values. The predictive function

of the model can be written as:

O(t — At) par—0 (a—
Sp(t +n) = DNN{ ( )At—o,(d n+1)

Sp(t + K)k=1,m-1) }Ate[o,d],ke[l,N]
where Se(t+k) represents the predicted solar radiation value for the future k hours, O(t—At) denotes
past observed data, d is the input delay time for the model, N is the maximum prediction time length
(set as a constant value in this study, N = 12 hours), and n and k are parameters (indices) for the

prediction time length.

(6)

r 2 ) SE—
input output
{ O(t-At)ar=0,d } »| FDNN > Sp(r+1)
\ o \ e’ | —
r \  CEE— SE—
input output
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\ J —— ——
r 1  SE— ——
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Figure 4. Input-output pattern used in DNN model.

In Eq. (6), when predicting the solar radiation Se(t+1) for the next 1 hour, the current time data
(At =0) and the observation set of the past d hours are used. For predictions beyond #+2 in the future,
the previous predicted values for each time step are also incorporated.

Additionally, in this study, another supervised model is employed, namely LSTM. LSTM is an
advanced model within RNN. RNNs are recurrent networks commonly used for handling time and
sequence-related problems. However, during the modeling process, the issue of vanishing gradients
or exploding gradients may occur. To address this problem, Hochreiter & Schmidhuber [29]
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introduced the LSTM neural network, which is an improved model incorporating memory blocks
within the hidden layers of the RNN. As shown in Figure 5, while traditional RNNs have a single
hidden state h;, LSTM networks introduce memory blocks C: allowing them to retain longer
memories and forget less relevant information.

| ¥ | ]

Cr1— — C¢

htq—> RNN —— hy LSTM

htq — — hy

. .

Figure 5. The concept of network structures in RNN and LSTM models.

In the construction of the LSTM model in this study, the input data comprises the current solar
radiation {S} and attributes {W} and {P}. The input-output format of the model, as shown in Figure 6,
involves sequentially feeding data into the model based on the time sequence. The LSTM model is
trained to predict 12 target values (i.e., solar radiation for the next 12 hours), with each input data
entry having a time length of d'. The model directly outputs predictions for the next 12 hours. To
assess accuracy, the data is split into three sets for training, validation, and testing, as illustrated in
Figure 3, to evaluate the model's performance.

t-d -3 t2 t1 t Input Layer hidden Layer Ourput Layer

O O0EErme-Q
t+3
t+4

000 e |
LSTM >

000 e
000

OO0 ]

Figure 6. Input-output patterns in LSTM model.
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3.2. Unsupervised combined supervised models

The unsupervised combined with supervised models in this study utilize unsupervised
clustering algorithms in conjunction with supervised neural networks to form an integrated
framework. The modularized process is depicted in Figure 7. Initially, the three data sets of {S}, {W},
and {P} are arranged based on the time sequence and then undergo data splitting. Subsequently, the
training set is clustered, and each group of data is used to train a single supervised model (such as
DNN and LSTM). After the model construction is complete, each data point in the validation set
identifies the cluster center with the shortest distance and utilizes the corresponding ANN model for
that cluster to predict solar radiation.
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Figure 7. The modeling process for unsupervised combined with supervised models.

This study utilizes two clustering methods: k-means and fuzzy C-means. The k-means is a
clustering algorithm that groups n data points into k clusters by minimizing the sum of squared
distances between all data points and their respective cluster centroids. The objective function Jx is
the sum of squared distances between all data points and their cluster centroids, and the

mathematical expression is as follows:

Ik = o X wiillxg — G| )
- {1' if | = Ci|| < |lx; = Cmll, vm #j ®)
st 0, otherwise

where K is the number of clusters; k is the cluster index; # is the number of data points; x; is the j-th
input data sample; Ci is the centroid of the i-th cluster; wji is a weight, which is 1 if the data belongs
to the i-th cluster, and 0 otherwise.

The fuzzy C-means algorithm applies fuzzy theory concepts to clustering methods [30]. Unlike
k-means, in fuzzy C-means, the weights W are not binary; instead, each attribute data is represented
by a membership function to indicate the degree of belonging to each cluster. The objective function
Jc is the sum of the squared distances between all data points and their cluster centroids, as shown in

the following equation:

Je = Siali = S B wit by - Gl ©)
where K is the number of clusters, n is the number of data points, x;j represents the j-th sample data,
Ciis the centroid of the i-th cluster, wji" is the weight (ranging from 0 to 1) indicating the degree of
truth for its fuzzy set, and m is the exponent coefficient, typically set to 2.

The sum of the weight coefficients should satisfy the constraint as follows:

{<=1Wiji = 1, VJ = 1,"‘,1’1 (10)
The weight formula is as follows:
1
Wiji = vz (11)
20 X;_C; m-1

The number of clusters K mentioned above will be determined using a trial and error method.
Figure 8 illustrates the process of selecting a cluster and predicting solar radiation based on the data
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in the validation set and testing set. After selecting the clustering method, the distance DIS between
sample point i and cluster center Ck is calculated. kmin_dis represents the shortest distance to a certain
cluster. Based on the kmin_dis result, you can use the predictive model associated with that cluster to
estimate solar radiation.

— Compute the distances between data
/gampl;:essftr‘zm ::t';datw“ PR samples and cluster centers
! f DIS = sqrt[(var(k)-Cy)2]
Choose the cluster approach (i.e., k=k+1 Yes
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‘L No

Start the iteration of the total

Output the specific cluster regarding the
number of K groups

minimal distance occurred
Result = Min(DIS)

v
Predict by using the corresponding
ANN model
i=i+1 Yes <.
ifi<n
No
End

Figure 8. Procedure of the data samples clustering.

4. Modeling and Results

This study divides the data from the experimental locations (i.e., Kaohsiung Station, Hualien
Station, and Penghu Station) into training data for 18 years (1993 to 2010), validation data for 6 years
(2011 to 2016), and testing data for 5 years (2017 to 2021). Python programming language and the
Keras library were used to build machine learning models and perform computations. The evaluation
metrics employed in this study include RMSE (root mean squared error) and rRMSE (relative RMSE),
with the formulas as follows:

RMSE = \/iz%il(oi””’ — 00b%)2 (12)
rRMSE = 252 (13)

where M is the number of data points; 0"® represents the ith prediction value; 07" is the ith
observed value, and 0925 is the mean of all observed values.

4.1. Parameter calibration

The hyperparameters for the DNN model need to be tuned, including the learning rate,
momentum, the number of hidden layers, and the number of neurons in a hidden layer. The learning
rate controls the step size for weight updates and affects the convergence speed. A learning rate that
is too small can lead to slow convergence, while a learning rate that is too large can cause oscillations.
This study started with a learning rate of 0.001 and increased it gradually in steps of 0.001 to find the
optimal learning rate. Momentum is an effective way to enhance the efficiency of weight adjustments.
It involves incorporating part of the previous learning's value to update the network's weights, which
can significantly reduce the influence of extreme values or noise in the data. This study experimented
with momentum values in the range of 0.01, increasing by 0.01 in each step. The number of hidden
layers in the network is another crucial hyperparameter. This study tested architectures with 1 to 3
hidden layers. The number of neurons in a hidden layer influences the network's ability to generalize.
Too few neurons can lead to underfitting, while too many neurons can lead to overfitting. The study
explored the number of neurons, starting from 1 and gradually increasing up to 50 to determine the
optimal configuration.
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In the DNN modeling process, the performance of two optimizers, namely Stochastic Gradient
Descent (SGD) and Adaptive Moment Estimation (Adam), was initially compared. Figure 9 illustrates
the iterative convergence process of errors using these two optimizers for Kaohsiung Station. It is
evident that Adam outperforms SGD in terms of error convergence. As a result, Adam optimizer was
chosen for subsequent steps.

014 — SGD

—— Adam

o
-
N

0.10

0.08

MSE (MJ/m2)?

0.06

0.04

h 2 ) 20 50
epochs

a.
5

Figure 9. Error convergence trends over iterations for SGD versus Adam optimizer.

Next, this study determines the delay time length, d. Figure 10 presents the best RMSE at various
delay times under the Adam optimization. With the increase in d, the error reduction is less
pronounced. This study uses d = 7 hours, 10 hours, and 5 hours as parameter values for Kaohsiung,
Hualien, and Penghu Station, respectively.
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Figure 10. Calibration of delay time d of DNN model in (a) Kaohsiung Station, (b) Hualien Station,
(c) Penghu Station.

Table 2 lists the parameter tuning results for the number of hidden layers and the number of
neuron nodes in the DNN (#+1) model under the Adam optimization for the next hour (t + 1). Using
the same method, we conducted parameter tuning for 1 to 12 hours into the future.
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Table 2. Parameter tuning results for the DNN model.

Station Delay time (h) Number of hidden layers Number of neuron nodes RMSE (M]/m?)

Kaohsiung 7 3 18 0.232196
Hualien 10 3 10 0.262571
Penghu 5 3 9 0.232947

In the case of building the LSTM models, the parameter d' represents the length of data required
for the LSTM input. The values of d determined in the previous section for the DNN model can serve
as reference values for d', which are assumed to be 7, 10, and 7 hours for the three experimental
stations, respectively. The number of LSTM neurons was tested for forecast horizons from 1 to 12
hours. Taking the example of the t+1 forecast, Figure 11 shows that Kaohsiung, Hualien, and Penghu
Stations achieved stable convergence errors with 39, 85, and 36 neurons, respectively.
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Figure 11. Calibration of neuron nodes in LSTM: (a) Kaohsiung Station, (b) Hualien Station, (c)
Penghu Station.

In the cluster-based DNN and LSTM models, during the clustering algorithm process, this study
examined the number of clusters and determined the optimal number of clusters. Figure 12 shows
the trial-and-error process for determining the number of clusters for k_DNN, fc_ DNN, k_LSTM, and
fc_LSTM. The results reveal that for the DNN models, the optimal number of clusters for Kaohsiung
Station, Hualien Station, and Penghu Station were 4, 3, and 4 for k_DNN and 5, 4, and 5 for fc_DNN.
For the LSTM models, k_LSTM had an optimal number of clusters of 5, 4, and 5, and fc_LSTM had
an optimal number of clusters of 5, 5, and 5. The results indicate that both DNN and LSTM models
achieve their best performance with fewer than 5 clusters.
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5. Simulation

This study evaluated the DNN, LSTM, k_DNN, fc_DNN, k_LSTM, and fc_ LSTM models using
the testing set. Figure 13 presents the evaluation results using the testing set, showing the rRMSE
performance of each model for lead times ranging from 1 to 12 hours. From Figure 13a, it can be
observed that at Kaohsiung Station, for lead times of 1 to 2 hours, the different models have similar
rRMSE values. However, for lead times greater than 3 hours, fc_LSTM exhibits superior prediction
performance. In Figure 13b, at Hualien Station, for lead times of 1 to 3 hours, LSTM, fc_DNN, and
fc LSTM show comparable rRMSE values. For lead times greater than 4 hours, fc_ LSTM
demonstrates better prediction performance. Figure 13c shows the results for Penghu Station, where
for lead times of 1 to 2 hours, k_DNN, LSTM, k_LSTM, fc_ DNN, and fc_LSTM models have similar
rRMSE values. However, for lead times greater than 3 hours, fc LSTM exhibits a more significant
advantage in terms of prediction performance.
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Figure 13. The results of rRMSE using testing set: (a) Kaohsiung; (b) Hualien; (c) Penghu.
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Based on the rRMSE results of the DNN model, this study defined a "model improvement rate,"

as described below:
IR = (rRMSEpyy — FRMSE) /rRMSEp\y X 100% (14)
After calculation, it was found that at all three stations, the fc_LSTM model had the highest
improvement rate (improving by 37.27%, 30.41%, and 29.08% respectively), followed by the k_LSTM
model with the second-highest improvement rate (improving by 20.81%, 19.54%, and 29.08%

respectively).
Table 3. Average performance levels for 1-12 h predictions.
Station Measure DNN LSTM k. DNN fc DNN k LSTM fc_LSTM

Kaohsiung RMSE (mj/m?) 0.601 0.570 0.567 0.574 0.457 0.342
rRMSE 1.033 1.008 1.003 1.023 0.818 0.648

IR 0% 2.42% 2.90% 0.97% 20.81% 37.27%
Hualien RMSE (mj/m?) 0.519 0.454 0.501 0.497 0.430 0.364
rRMSE 1.049 0.880 1.032 0.907 0.844 0.730

IR 0% 16.11% 1.62% 13.54% 19.54% 30.41%
Penghu RMSE (mj/m?) 0.503 0.401 0.437 0.421 0.389 0.352
rRMSE 1.035 0.823 0.933 0.873 0.763 0.734

IR 0% 20.48% 9.86% 15.65% 26.28% 29.08%

5.1. Model selection ensemble tabular (MSET)

From Section 3 of the real-time prediction system, the lookup table from MSET is used for real-
time predictions to determine the best model for each forecast time (1 to 12 hours). Table 4 presents
the results obtained from testing data simulations. It is observed that for short-term predictions (lead
time <= 3 h), a combination of clustering algorithms with DNN or LSTM models performs better at
all three stations. However, for long-term predictions (lead time >= 4 h), combining clustering
algorithms with LSTM models is the most stable choice.

Table 4. Model selection ensemble tabular (MSET).

Lead time Kaohsiung Station Hualien Station Penghu Station
1h fc. DNN fc_DNN fc_ DNN
2h fc_ DNN fc_ DNN fc_ LSTM
3h fc_ LSTM fc_ DNN fc_LSTM

4-12h fc_LSTM fc_ LSTM fc_ LSTM

This study uses test data from 2017 for simulating the real-time prediction system. The best
models selected from the MSET table for different forecast periods are further utilized for real-time
updates in predicting solar radiation. To assess the system, ground station data and solar angle data
obtained through k-means and fuzzy C-means clustering are used. Each set of data belongs to a
cluster with cluster center coordinates. The model selection set table can be updated based on the
required time intervals to ensure the accuracy of clustering and statistical results. In practice, current
data is imported into the database every hour. The best forecast models for each upcoming hour are
defined according to the model selection set table, and the results of all models are computed. Finally,
the required forecast values are combined, and the current time is adjusted, enabling continuous
predictions until the user terminates the process.

This study has established a real-time prediction system for solar radiation. The system's
performance is demonstrated using representative days chosen in this study: 03/20 (spring equinox),
06/21 (summer solstice), 09/22 (autumn equinox), and 12/21 (winter solstice). Figures 14 to 16 show
the real-time predictions for Kaohsiung Station, Hualien Station, and Penghu Station during these
four major seasonal transitions in 2017. The orange line represents the prediction results, while the
blue line represents the observed solar radiation. Each prediction starts from 6:00 AM and looks
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ahead to the next 12 hours. The figure titles indicate the time of the current prediction, starting at 6:00
AM, and the results are updated every two hours until noon, demonstrating the results up to that
time.

It is evident that, at 6:00 AM, some stations tend to underestimate the peak around noon.
However, after updating the data every two hours, by 10:00 AM, the results have significantly
improved and can reasonably predict the noon peak. The results demonstrate that real-time
predictions roughly align with the actual values. Based on the results, most errors are concentrated
around the high values during the day. Accurate prediction of peak values can only be achieved as
the current time approaches noon due to the error propagation over the long-term forecast. In such
cases, the model's output becomes increasingly conservative, leading to the observed
underestimation. The study suggests that using more precise cluster selection methods to accurately
choose the deep neural network trained by the noon cluster could potentially resolve this
underestimation issue.
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Figure 14. Real-time prediction system simulation results for Kaohsiung Station.
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Figure 15. Real-time prediction system simulation results for Hualien Station.
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Figure 16. Real-time prediction system simulation results for Penghu Station.
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6. Conclusions

The aim of this study is to establish a prediction model for solar radiation and develop a hybrid
real-time solar energy prediction system to obtain reliable daily solar radiation forecasts every
morning. The system is designed to provide hourly updates and corrections to the predictions,
assisting in determining the future electricity generation from solar energy and the optimal timing
for energy generation. The study covers three regions, namely Kaohsiung, Hualien, and Penghu, each
equipped with an independent real-time prediction system, forecasting solar radiation for the next 1
to 12 hours.

In the model development phase, multiple models were employed, including the deep neural
network (DNN) and the long-short term memory neural network (LSTM). Additionally,
unsupervised-based algorithms were used, which involved clustering methods such as k-means
clustering and fuzzy C-means clustering. After clustering the data, neural network-based prediction
models were established for each cluster. As a result, in the DNN model, the following models were
created: k-means DNN (k_DNN) and fuzzy C-means DNN (fc_DNN). In the case of the LSTM model,
the following models were developed: k-means LSTM (k_LSTM) and fuzzy C-means LSTM
(fc_LSTM).

Based on the predictions of various models, this study evaluated the best models for different
forecasting time intervals and proposed a real-time solar radiation prediction system. This system is
capable of providing real-time predictions for solar radiation for the range of 1 to 12 hours ahead. To
test its practicality, simulations were conducted using data from the year 2017. The results of the
research's prediction system demonstrated strong predictive performance. Even with increased
errors in long-term predictions, the system was able to dynamically adjust the predictions in real-
time, effectively forecasting solar radiation for the next 12 hours.
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