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Abstract: The future of intelligent manufacturing machines involves autonomous selection of process

parameters to maximize productivity while maintaining quality within specified constraints. To

effectively optimize process parameters, these machines need to adapt to existing uncertainties in the

physical system. This paper proposes a novel framework and methodology for feedrate optimization

that is based on a physics-informed data-driven digital twin with quantified uncertainty. The

servo dynamics are modeled using a digital twin, which incorporates the known uncertainty in the

physics-based models and predicts the distribution of contour error using a data-driven model that

learns the unknown uncertainty on-the-fly by sensor measurements. Using the quantified uncertainty,

the proposed feedrate optimization maximizes productivity while maintaining quality under desired

servo error constraints and stringency (i.e., the tolerance for constraint violation under uncertainty)

using a model predictive control framework. Experimental results obtained using a 3-axis desktop

CNC machine tool and a desktop 3D printer demonstrate significant cycle time reductions of up

to 38% and 17% respectively, while staying close to the error tolerances compared to the existing

methods.

Keywords: smart manufacturing; feedrate optimization; digital twin; CNC milling; 3D printing

1. Introduction

Quality and productivity are two important and frequently competing factors in manufacturing.

As a result, manufacturers strive to maximize productivity while adhering to quality constraints.

In practice, achieving this goal has involved a trial-and-error approach. However, there is a

growing demand for self-optimizing intelligent manufacturing machines that have the capability

to autonomously optimize their speed while ensuring desired quality levels, eliminating the need for

extensive trial-and-error [14].

Motion-induced servo error, which is one of the major sources of quality degradation in

manufacturing machines, can result from the limited bandwidth of feedback controllers, flexible

structures, nonlinear friction, and backlash. Another source of servo error is process force, such as

cutting force. Given that motion- and process-force-induced servo errors tend to increase with higher

speeds, there is a keen interest in maximizing the speed of motion while respecting the tolerances on

motion- and/or process-induced servo errors.

Extensive research has been conducted in the field of feedrate optimization with the objective of

maximizing the feedrate while respecting servo error constraints. The majority of feedrate optimization

or feedrate scheduling techniques primarily focus on maximizing the feedrate while considering

kinematic limits such as speed, acceleration, and jerk [1,25,31,34,35,39]. However, the existing studies

in [1,25,31,34,35,39] do not incorporate dynamic constraints such as servo error and cutting force,

resulting in the need for a cautious selection of kinematic limits to indirectly meet the requirements

on dynamic constraints. This indirect approach is necessary due to the complex relationship between

kinematics and dynamic constraints, which often leads to sub-optimal feedrates.
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In order to directly enforce dynamic constraints, certain feedrate optimization methods

incorporate limits on the servo error, in addition to kinematics, by using steady-state [28] or static

[20,40] approximations of servo models associated with motion velocity and acceleration. However,

their limited ability to directly incorporate dynamic aspects of servo error, such as dynamic servo error

pre-compensation, hinders their accuracy and effectiveness in optimizing feedrate.

To directly incorporate dynamic components via physics-based models, numerous feedrate

scheduling methods for CNC machines maximize feedrate in each NC block while keeping

cutting force under desired levels via mechanistic force models [9,10,15,16,27,29,38,42]. Some

feedrate scheduling techniques maximize feedrate while regulating machining error due to tool

deflection [2,4,18,24,30,37,43] or force-induced servo error [21,41] under desired tolerance in CNC

machine tools. A few works in feedrate optimization [12,13] constrain motion-induced error via linear

physics-based models of servo dynamics. However, the works in [2,4,9,10,12,13,15,16,18,21,24,27,29,

30,37,38,41–43] are unable to effectively constrain actual cutting force or servo error in situations

where uncertainties arise from nonlinear dynamics or disturbances that are not incorporated in the

physics-based models. As a result, their capability to maximize feedrate while adhering to dynamic

constraints is severely restricted.

There is increasing interest in the utilization of digital twins in manufacturing. A digital twin is a

virtual representation, parallel to a physical system, built on a bi-directional link between simulation

and actual data collection [14]. To effectively optimize feedrate with existence of uncertainties, digital

twins can be used to provide more-accurate predictions of process or servo dynamics for feedrate

optimization using data-driven models updated via sensor measurements. Model predictive control

(MPC) is a framework often used for optimizing feedrate using digital twins. In MPC [23], predictions

made using physics-based and data acquired from sensors are used to optimize an objective in a

receding horizon fashion. In the context of feedrate optimization, a linear hybrid model was augmented

with a periodic internal model in a MPC framework [11] to effectively predict and constrain servo

errors due to motion and cutting forces. Luenberger state observers [44] were used in feedrate

optimization to correct the initial system states of servo dynamic models in real-time for accurate

contour error constraint enforcement, where the objective function was based on a tunable index of

how far away an unattainable target position is from the current position. Similarly, a two-stage MPC

approach was proposed in [33], where the first stage performed feedrate optimization with contour

error constraints using a linear data-driven model, and the second stage further pre-compensated the

contour error using artificial neural networks (ANNs). However, the data-driven models in [33] were

trained offline through numerous experiments, which is time-consuming and may not be effective in

predicting contour error in the presence of in-situ uncertainties that are not included in the training

data. Moreover, the two-stage optimizations in [33] and the mixed objective functions used to balance

quality and productivity in [33,44] require trial-and-error to tune the objective function weights to

determine an acceptable quality level. Therefore, it is better to enforce quality requirements as contour

error constraints that must be met, as is often the case in practice. Furthermore, the existing MPC

methods in [11,33,44] do not quantify or exploit the uncertainty of the prediction in their feedrate

optimization. Hence, they may not effectively adhere to constraints in the presence of high uncertainty

due to a lack of training data, system variability and sudden changes in operating conditions.

To quantify uncertainties and impose robustness, studies exist on maximizing feedrate while

regulating spindle power, where the spindle power is modeled using Gaussian process regression (GPR)

[26]. The spindle power constraint is derived from a stochastic constraint with a fixed confidence level

to safely optimize feedrate in uncertain environments. However, GPR in [26] is updated cycle-by-cycle,

where the first cycle is initialized with a conservative feedrate profile followed by numerous sequential

cycles for convergence. This requires optimizing a highly non-linear GPR objective [32] to estimate

hyperparameters, which renders the process less adaptable to real-time control. Moreover, it does not

constrain the servo error nor account for the propagation of model uncertainties to the servo error.
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This oversight is critical in achieving desired part accuracy in feedrate optimization, especially for

toolpaths with high curvatures that can create significant structural vibration.

To address the shortcomings of the existing works, this paper proposes an intelligent feedrate

optimization with contour error constraints using an uncertainty-aware digital twin, by making the

following original contributions:

1. It uses a novel physics-informed data-driven digital twin to predict the contour error and its

uncertainty, where the digital twin incorporates the known uncertainty in the physics-based

models and learns the unknown uncertainty by correcting the data-driven model on-the-fly using

sensor feedback.
2. It formulates an intelligent feedrate optimization framework capable of maximizing feedrate

while accurately constraining contour error under desired tolerance and stringency, based on the

uncertainty estimation from the digital twin using a model predictive control framework.
3. It demonstrates the effectiveness of the proposed method by validating its performance in

simulations and experiments using a desktop CNC machine tool and 3D printer.

The outline of the paper is as follows: Section 2 introduces our framework for intelligent feedrate

optimization using an uncertainty-aware digital twin. Section 3 describes the methodology of the

proposed digital twin for predicting the contour error distribution. Section 4 provides a formulation of

the feedrate optimization with contour error and stringency constraints (i.e., the tolerance for constraint

violation under uncertainty). Section 5 numerically validates the proposed method via a desktop CNC

machine tol. Section 6 experimentally validates the proposed method via a desktop CNC machine tool

and 3D printer. Finally, section 7 concludes the paper and discusses future work.

2. Framework for Feedrate Optimization with Uncertainty-Aware Digital Twin

The framework for the proposed intelligent feedrate optimization with an uncertainty-aware

digital twin is depicted in Figure 1. First, a manufacturer submits a part together with the desired

dimensions and contour error tolerance to an intelligent manufacturing machine. Then, the goal of

the machine is to autonomously produce the part as quickly as possible while respecting the given

error tolerance. The machine is equipped with a digital twin that predicts the contour error, which the

machine can exploit for feedrate optimization with contour error constraints. Hence, the proposed

framework is based on model predictive control.

Figure 1. Diagram of intelligent feedrate optimization using an uncertainty-aware digital twin. A

manufacturer provides a part tolerance and stringency (i.e., the tolerance for quality constraint violation

under uncertainty). The intelligent machine leverages an uncertainty-aware digital twin to optimize

feedrate while satisfying the tolerance and stringency requirements.

However, several uncertainties exist in the physical system. Some portions are known from

available data or expert knowledge, while others, such as nonlinear dynamics, may be unknown. If

not considered, the known and unknown uncertainties cause a violation in the contour error tolerance,

hence the part quality, as illustrated in Figure 2(a).
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However, given that uncertainty exists in enforcing tolerance constraints, manufacturers have

different levels of stringency in enforcing constraints. For example, a manufacturer may want at least

99% of the produced parts to satisfy the constraints. Therefore, stringency reflects a manufacturer’s

tolerance for quality constraint violations under uncertainty. In this paper, we propose that, instead of

relying on trial-and-error, manufacturers can impose a desired stringency η% on the given tolerance

by incorporating the uncertainty of the contour error prediction as shown in Figure 2(b). Imposing the

stringency represents constraining the worst case out of η% of the entire variation of contour error, so

that η% of the manufactured parts adhere to the imposed kinematic and tolerance constraints under

the given uncertainty.

To do so, the digital twin uses the known uncertainty from the physics-based models and trains

a data-driven model using the machine’s sensor measurements to learn the unknown uncertainty.

The digital twin then predicts and quantifies the uncertainty of the contour error, which is used in

feedrate optimization with desired tolerance and stringency on the contour error. Together with the

uncertainty-aware digital twin, the feedrate optimization determines the fastest feedrate to run the

machine while respecting the limits for the contour errors (and the kinematic limits of the machine) in

a robust way. The measured sensor output is compared with the predicted output and used to adjust

the digital twin and optimization algorithm in the next iteration of feedrate optimization.

Figure 2. (a) Need for a tolerance range due to violation of error tolerance in the presence of

uncertainties, (b) Proposed method of feedrate optimization with desired tolerance stringency using

quantified uncertainty.

3. Contour Error Prediction with a Real-Time Uncertainty-Aware Digital Twin

This section first describes the methodology of the contour error prediction using a deterministic

digital twin in Section 3.1, and extends it to prediction of contour error and its distribution using an

uncertainty-aware digital twin in Section 3.2.

3.1. Overview of Contour Error Prediction Using a Deterministic Digital Twin

A flowchart of the intelligent feedrate optimization using a deterministic digital twin based on

the previous work in [11] is depicted in Figure 3. Note that the internal model in [11] is removed. Also

note that Figure 3, as well as the discussions that follow in this section, focus on only the x-axis for the

sake of brevity. However, the exact same process can be applied to the y-axis and other independent

axes of a Cartesian configured manufacturing machine. Small batches (i.e., look-ahead windows) x
j
d of

a desired position trajectory xd are fed into an intelligent feedrate optimizer to produce the optimized

motion command, x
j
c, where the superscript j ∈ {0, 1, 2, · · · } represents the batch index. Here, each

batch has a window length of nw and is defined on the time domain t ∈ {0, Ts, 2Ts, 3Ts, · · · } which
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represents discrete time at sampling interval Ts, as illustrated in Figure 4. The optimized motion

commands are sent to the servo system Hx to produce the actual position xj. The servo system is

composed of a servo error pre-compensation Cx followed by machine dynamics Gx, i.e., Hx = GxCx.

Figure 3. Flowchart of intelligent feedrate optimization using a deterministic digital twin with

physics-based and data-driven servo models (y-axis omitted for simplicity).

Figure 4. Batches j− 1 and j defined on a discrete-time domain.

A key requirement for the intelligent feedrate optimization is accurate prediction of the servo error,

which is achieved using linear regression built upon the hybrid model presented in [3]. The hybrid

model takes input x
j
c and predicts the actual position x̂j using a stable, nominal (or representative)

physics-based model Ĥ
∗
x. The predictions x̂j do not capture the effects of unmodeled dynamics and

external disturbances. Therefore, the prediction error of Ĥ
∗
x (delayed by one batch) is computed as

e
j−1
x = xj−1 − x̂j−1 and combined with x̂j and x̂j−1 to be fed into a data driven model to generate an

improved prediction x̃j which is used for constraining contour errors in the feedrate optimization.

Each element x̃(t) of x̃ is modeled as

x̃(t) = βTψt (1)

where ψt is the deterministic feature vector and β is the weight vector that is learned using linear

regression. Note that the superscript j, i.e., batch index, has been removed from x̃(t) in Eq. (1) to

directly define x̃ in time domain. The sub elements of ψt are given by

ψt = [ 1
︸︷︷︸

:=ψt1

, x̂(t− n2Ts), · · · , x̂(t),
︸ ︷︷ ︸

:=ψt2

ex(t− n3Ts), · · · , ex(t− Ts)
︸ ︷︷ ︸

:=ψt3

]T
(2)
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The sub-elements ψt1, ψt2 and ψt3 were contained in the hybrid model of [3]. They respectively

represent a bias term, the past n2 and current time steps of x̂, and the past n3 time steps of ex, where n2

and n3 are user defined.

The weight β is updated recursively in each timestep within a given window, where the final

weight is carried over to the next window for prediction, i.e., x̃j is predicted based on weight β from

the previous batch j− 1. The algorithm for learning β is described as follows. For t = 0, β and its

covariance matrix P are initialized using ridge regression with a regularization factor λ as

β = (λI + ψtψ
T
t )
−1ψtx(t)

P = (λI + ψtψ
T
t )
−1

(3)

For the rest of the timesteps t ∈ {Ts, 2Ts, ...}, a recursive least-squares is used to correct β and P

using a forgetting factor f0 as

β← β + k(x(t)− βTψt)

P← 1

f0
(P− kψT

t P)

where k = Pψt( f0 + ψT
t Pψt)

−1

(4)

Using the final weight in batch j− 1 to substitute for β, x̃j can be predicted using the feature

vector ψt formulated by Eq. (2). Since the past sensor data xj−1 is provided up to t = (jnw − 1)Ts,

for entries in batch j that have unavailable terms in ψt3, ex for all batches is approximated using the

predicted values of x̃, i.e.,

ex = x− x̂ ≈ x̃− x̂ (5)

The same procedure is applied to the y-axis to predict ỹ. Lastly, the contour error ε̃ can be estimated

from the predicted axis tracking errors ε̃x = xd − x̃ and ε̃y = yd − ỹ, using a linear approximation [5]

as

ε̃ = − sin(θ)ε̃x + cos(θ)ε̃y (6)

where θ is inclination angle of the curve (xd, yd).

3.2. Prediction and Uncertainty Quantification of Contour Error Using Uncertainty-Aware Digital Twin

The accuracy of the predictions of the physics-based and data-driven servo models in Section

3.1 can be improved by incorporating the known uncertainty from the physics-based models. To do

so, a digital twin that uses physics-informed data-driven servo model is proposed, which is updated

on-the-fly via Bayesian approach that is capable of considering uncertainty in the feature vector ψt. A

flowchart of the proposed intelligent feedrate optimization using the uncertainty-aware digital twin

is given in Figure 5. The key difference between Figure 3 and Figure 5 is that known uncertainty is

included in Ĥx, and unknown uncertainty embedded in xj is learned using the data-driven model and

used to predict x̂j with quantified uncertainty.
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Figure 5. Flowchart of intelligent feedrate optimization using an uncertainty-aware digital twin (with

physics-based and data-driven servo models, y-axis omitted).

Each element x̃(t) of the digital twin’s prediction of the output position x̃j is modeled as

x̃(t) = βTψt + ǫ (7)

where ψt ∼ N(µψt , Σψt) is the feature vector defined as an uncorrelated Gaussian random variable

with mean µψt and variance Σψt derived from the uncertainty distribution of ψt previously defined

in Eq. (2). β ∼ N(µβ, Σβ) is the weight vector defined as a correlated Gaussian random variable

learned via Bayesian linear regression, and ǫ ∼ N(0, σ2
ǫ ) is the unobserved Gaussian noise. Unlike the

deterministic point-estimation of x̃j from Section 3.1, a distribution x̃j ∼ N(µx̃j , Σx̃j) is estimated in

this section based on the uncertainties of the features and the weights.

This paper proposes that the known uncertainties of the physics-based models are embedded

into the feature vector ψt in Eq. (7) to enable efficient training of β. To do so, a set of NH stable

physics-based models {Ĥ i
x}NH

i=1 is obtained, where each model Ĥ i
x for i ∈ {1, 2, ..., NH} is identified

in the form of the complex-valued frequency response function (FRF) of the physical system Hx at

discrete frequencies ωk via experiments as

Ĥ i
x(ωk) = ai(ωk) + bi(ωk)j (8)

where ωk = k∆ω, of which ∆ω is the increment of frequencies, k ∈ {1, 2, ..., Nω
2 − 1} where Nω is

the number of discrete negative and positive frequencies at which FRF is identified, and j is the

unit imaginary number (which should not be confused with the batch index j used as a superscript

elsewhere).

Then, the uncertainty in Ĥx is propagated to the finite impulse response ĥx as follows. The

discrete sets {Ĥ i
x(ωk)}NH

i=1 for each k will introduce discrete sets of their real and imaginary coefficients,

namely {ai(ωk)}NH
i=1 and {bi(ωk)}NH

i=1. For computational efficiency, it is assumed that {ai(ωk)}NH
i=1

and {bi(ωk)}NH
i=1 are sampled from Gaussian distributions of a(ωk) and b(ωk), of which 99.73%, i.e.,

the 3-sigma range, lie within the minimum and maximum of the identified discrete sets. Then,

a(ωk) ∼ N(µa(ωk)
, σ2

a(ωk)
) can be approximated as

µa(ωk)
=

max {a(ωk)}+ min {a(ωk)}
2

σa(ωk)
=

max {a(ωk)} − µa(ωk)

3

(9)

and b(ωk) ∼ N(µb(ωk)
, σ2

b(ωk)
) can be approximated using the same procedure as Eq. (9).

Then, the impulse response ĥx (i.e., ĥx[n] for n ∈ {1, 2, ..., Nh}) of the physics-based model with

sampling time Ts can be formulated using discrete inverse Fourier transform as
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ĥ[n] =
1

Nω

Nω
2 −1

∑
k=−Nω

2

(a(ωk) + b(ωk)j)e
2π j(n−1)(k−1)

Nω (10)

where Nh = 1
Ts∆ω is the maximum estimable length of the impulse response. Then, due to the linearity

of Eq. (10), ĥ[n] follows a Gaussian distribution ĥ[n] ∼ N(µĥ[n], σ2
ĥ[n]

) as

µĥ[n] =
1

Nω

Nω

∑
k=1

(µa(ωk)
+ µb(ωk)

j)e
2π j(n−1)(k−1)

Nω

σ2
ĥ[n]

=
1

Nω

Nω

∑
k=1

(σ2
a(ωk)

− σ2
b(ωk)

)e
2π j(n−1)(k−1)

Nω

(11)

Next, the uncertainty in ĥ[n] can be propagated to x̂(t) ∼ N(µx̂(t), σ2
x̂(t)) as

µx̂(t) =
Nh

∑
i=1

µĥ[i]xd(t− iTs)

σ2
x̂(t) =

Nh

∑
i=1

σ2
ĥ[i]

xd(t− iTs)
2

(12)

Finally, the feature vector follows an uncorrelated multivariate normal distribution ψt ∼
N(µψt , Σψt), where

µψt =[ 1,
︸︷︷︸

:=µψt1

µx̂(t−n2Ts), · · · , µx̂(t),
︸ ︷︷ ︸

:=µψt2

x(t− n3Ts)− µx̂(t−n3Ts), · · · , x(t− Ts)− µx̂(t−Ts)
︸ ︷︷ ︸

:=µψt3

]T

Σψt =diag
(

0,
︸︷︷︸

:=Σψt1

σ2
x̂(t−n2Ts),

· · · , σ2
x̂(t),

︸ ︷︷ ︸

:=Σψt2

σ2
x̂(t−n3Ts)

, · · · , σ2
x̂(t−Ts)

︸ ︷︷ ︸

:=Σψt3

)T

(13)

The prior over β ∼ N(µβ, Σβ) is initialized using the nominal physics-based model µĥx
from

Eq. (11), as described in Appendix A. Now given β ∼ N(µβ, Σβ) and the feature uncertainty ψt ∼
N(µψt , Σψt) from Eq. (13), we propose to take a Bayesian route to obtain the posterior over β as more

data is collected in real time.

Mathematically, the posterior is given as:

p(β|x(t), µψt , Σψt) ∝ p(x(t)|β, µψt , Σψt) · p(β)

∝

∫

p(x(t), ψt|β, µψt , Σψt)dψt · p(β)

∝

∫

p(x(t)|ψt, β)p(ψt|µψt , Σψt)dψt

· p(β)

∝ p(x(t)|β) · p(β)

(14)
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where x(t) is the actual position on the x-axis at timestep t defined in Section 3.1. Here, p(x(t)|β) and

p(β) are given as as

p(x(t)|β) = exp

(

−1

2
(x(t)− βTµψt)

T(βT
Σψt β + σ2

ǫ )
−1

(x(t)− βTµψt)

)

p(β) = exp

(

−1

2
(β− µβ)

T
Σ
−1
β (β− µβ)

)

(15)

As shown above, a central feature of our approach is that it accounts for input uncertainty through

ψt ∼ N(µψt , Σψt). Unfortunately, the price to pay is the lack of a closed form solution due to the

quadratic term in the variance. While monte carlo (MC) sampling approach such as Markov chain MC

(i.e. MCMC) or Hamiltonian MC can be used, our goal is to obtain the posterior on the fly to enable

real-time control.

To this end, we take a Gaussian Laplacian approximation [8] where we write log of p(x(t)|β) as a

quadratic function of β. This is shown below:

ln p(x(t)|β) ≈ ln p(x(t)|β)
∣
∣
∣
β=β̄

︸ ︷︷ ︸
:=c0

+
d ln p(x(t)|β)

dβ

∣
∣
∣

T

β=β̄
︸ ︷︷ ︸

:=c1

(β− β̄)

+
1

2
(β− β̄)T d2 ln p(x(t)|β)

dβ2

∣
∣
∣
β=β̄

︸ ︷︷ ︸

:=C2

(β− β̄)

(16)

where the local point β̄ is µβ from the previous batch, i.e., the prior mean. A detailed derivation of

the coefficients c0, c1 and C2 in Eq. (16) is provided in Appendix B. Given that p(x(t)|β) ∼ N(µβ, Σβ),

now Eq. (14) can re-written in a closed-form solution as

p(β|x(t), µψt , Σψt) = exp

(

βT
(1

2
C2 −

1

2
Σ
−1
β

)
β

+
(
cT

1 + µT
βΣ
−1
β

)
β + constant

) (17)

Thus, the updated variance and mean of the Gaussian posterior p(β|x(t), µψt , Σψt) are

Σβ ← Var[β|x(t), µψt , Σψt ] = −
1

2

(1

2
C2 −

1

2
Σ
−1
β

)−1

µβ ← E[β|x(t), µψt , Σψt ] =
(
cT

1 + µT
βΣ
−1
β

)
Σβ

(18)

where the posteriors µβ and Σβ are used as priors for the next batch.

Note that, if the feature ψt is assumed to be deterministic (i.e., zero feature uncertainty), no known

uncertainties will be included in the Bayesian regression, of which the case will be compared with the

proposed method using normally distributed ψt in the following Section 5. In the case of deterministic

ψt, the posterior β ∼ N(µβ, Σβ) can be estimated as a closed-form solution using Bayes rule as
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p(β|µβ, Σβ)

= exp

(

−1

2
βT(σ−2

ǫ ψT
t ψt + Σ

−1
β )β

+ (σ−2
ǫ ψT

t x(t) + Σ
−1
β µβ)

Tβ

)

∴ Σβ ← (σ−2
ǫ ψT

t ψt + Σ
−1
β )−1

µβ ← Σβ(σ
−2
ǫ ψT

t x(t) + Σ
−1
β µβ)

(19)

Lastly, using the trained weight distribution from Eq. (18), the posterior predictive distribution

x̃(t) ∼ N(µx̃(t), σ2
x̃(t)) can be written as

µx̃(t) = µT
βψt

σ2
x̃(t) = ψT

t Σβψt + σ2
ǫ

(20)

The same procedures are applied to learn βy ∼ N(µβy
, Σβy

) and predict ỹ(t) ∼ N(µỹ(t), σ2
ỹ(t))

based on y-axis feature vector ψty and unobserved noise ǫy. Using Eq. (6), the contour error distribution

ε̃(t) ∼ N(µε̃(t), σ2
ε̃(t)) can be predicted as

µε̃(t) = − sin(θ(t))(xd(t)− µT
βψt)

+ cos(θ(t))(yd(t)− µT
βy

ψty)

σ2
ε̃(t) = sin(θ(t))2(ψT

t Σβψt + σ2
ǫ )

+ cos(θ(t))2(ψT
tyΣβy

ψty + σ2
ǫy
)

(21)

4. Methodology for Intelligent Feedrate Optimization with Contour Error Constraints

The feedrate optimization with contour error constraints using the quantified uncertainty from

the digital twin is formulated in accordance with authors’ previous work [12] using a model predictive

control framework. Taking the x-axis, for example, a desired trajectory Xd = f (p) is parametrized

with respect to a normalized, monotonically increasing path variable p, which is a vectorized form of

p. Then, Xd(t) is linearized as xd(t) with respect to p(t) using an estimated linearization point p̄(t) as

xd(t) = −
∂ f

∂p

∣
∣
∣
∣

p= p̄(t)

· (p(t)− p̄(t)) + f ( p̄(t)) (22)

The procedure for computing the optimal pj (corresponding to the optimal feedrate) using the

uncertainty-aware digital twin is as follows. The path variable pj is maximized under monotonicity,

maximum feedrate, and axis-acceleration constraints as

max 1T pj

s.t. p(t− 1) ≤ p(t) ≤ 1

D[pj] ≤ VmaxTs
∣
∣
∣D2[x

j
d]
∣
∣
∣ ≤ AmaxT2

s

(23)

where 1 is a ones-vector, D is a difference operator, and Vmax and Amax are the vectorized

representations of feedrate and acceleration limits, respectively. In addition, kinematic and dynamic
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continuity between adjacent windows is enforced. The process described above for the x-axis can be

applied to the y-axis.

The feedrate optimization constrains the contour error under a given tolerance and stringency,

using the posterior predictive distribution from Section 3.2. To do so, we show that µǫ̃(t) and σǫ̃(t) are

linear in terms of x
j
d, by showing that the only alterable feature in ψt, which is the last term in ψt2 (i.e.,

x̂(t)), is linear in x
j
d.

Let Φx ∈ R
nh×nh be the matrix (lifted domain) representation of µĥx

truncated by length nh. The

last nw rows in Φx can further be decomposed into two parts: its first nh − nw columns Φx,p and its

last nw columns Φx,c as

Φx =

[
...

...

Φx,p Φx,c

]

(24)

If xc,p represents the last nh − nw elements of the xc at past timesteps, x̂(t) can be re-written as

x̂j = Φx,cx
j
d + Φx,pxc,p

∴ x̂(t) = MtΦx,c
︸ ︷︷ ︸

:=Tx

x
j
d + MtΦx,pxcp

︸ ︷︷ ︸

:=T0x

(25)

where Mt is a selection matrix that picks the entry at timestep t. Similarly, for y-axis, the alterable

term in ψty can be derived to be linear in terms of y
j
d, by using a similar notation as Eq. (25), i.e.,

ŷ(t) = Tyy
j
d + T0y.

Then, the worst-case out of the η [%] variations of distribution of the contour error ε̃(t), where η

is a user-defined stringency, is bounded by the tolerance Emax as a stochastic constraint by

p(ε̃(t) ≤ Emax) ≥ η (26)

For the sake of brevity, the negative stochastic contour error constraint p(ε̃(t) ≥ −Emax) ≥ η is

omitted. Then, inversion the both sides of Eq. (26) becomes

µε̃(t) ≤ Emax −Φ−1(η)σε̃(t) (27)

where Φ is the cumulative density function of the distribution of ε̃(t), which is invertible because ε̃(t)

follows a Gaussian distribution as was shown in Eq. (21).

Eq. (27) can be rearranged as a linear constraint in terms of x
j
d and y

j
d using Eq. (21), written as

Uxx
j
d + Uyy

j
d ≤ U0 (28)

where the derivation of coefficients Ux, Uy and U0 is described in Appendix C. Finally, the contour

error constraint is also linear with respect to the decision variable pj using the relationship in Eq. (22).

The methodology of feedrate optimization described in this section can be broadly considered as

model predictive control [22], because it: (1) optimizes manipulatable inputs, e.g., desired trajectory,

over a finite, receding horizon using (2) predictions of the dynamical system’s behavior through a

model that is updated via feedback.

5. Numerical Validation of the Intelligent Feedrate Optimization Using Uncertainty-Aware
Digital Twin

This section validates the importance of the uncertainty quantification of the proposed

physics-informed data-driven (PIDD) uncertainty-aware digital twin in feedrate optimization, by

comparing the method with the following approaches:
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1. Conservative method, which is defined as the benchmark generated using a trapezoidal

acceleration profile [7] with kinematic limits tuned by trial-and-error to achieve the contour

error tolerance with η% stringency, by allowing up to (100− η)% RMS violation normalized by

Emax defined in Section 4
2. Physics-based (PB) method, which predicts the output position and its uncertainty using only the

known uncertainty obtained from the set of physics-based models {Ĥ i
x}NH

i=1 and {Ĥ i
y}NH

i=1
3. Data-driven (DD) method, which predicts the output position and its uncertainty by learning

the unknown uncertainty without incorporating any known uncertainties, i.e., the prior µβ0
, Σβ0,

µβy0 and Σβy0 are initialized as zero at the 0-th batch, and β and βy are learned via Bayesian

linear regression for deterministic features in Eq. (19). Note that both the PB and DD methods are

subsets of the proposed uncertainty-aware digital twin. However, we have separated them out

to highlight the effect of introducing uncertainty in both the PB and the DD models through the

PIDD method used in the uncertainty aware digital twin

A Nomad 3 three-axis desktop CNC machine tool is chosen as the simulated system, where

its setup is shown in Figure 6. To analyze its known uncertainties, the position commands are

generated and commanded by dSPACE DS1007 real-time control board running at 500 Hz sampling

rate, connected to DRV8825 stepper motor drivers for the x-, y- and z-axes stepper motors. ADXL335

accelerometers are attached on the x- and y-axis gantries to measure the x and y-axes acceleration. The

known uncertainties are identified by measuring FRFs, of which the input is a swept sine acceleration

command to the stepper motors, and the output is the relative acceleration between the x- and y-axis

using the accelerometers. The operating condition under which the FRFs are measured is varied by

modifying the input acceleration amplitude at discrete values: 2 m/s2, 3 m/s2 and 4 m/s2, and 3 FRFs

are measured per each acceleration amplitude to collect a total of NH = 9 FRFs per axes.

Figure 6. Experimental setup for Sections 5 and 6.2.

The set of FRFs {Ĥ i
x}9

i=1 of the x- and y-axis of the printer are shown in Figures 7 and 8,

respectively. The uncertainties in Ĥx are then propagated to ĥx ∼ N(µĥx
, Σĥx

) to initialize µβ and Σβ

and construct µψt and Σψt in the physics-informed data-driven digital twin. To validate the hypothesis
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that the FRF coefficients of {Ĥx}9
i=1 and {Ĥy}9

i=1 belong to Gaussian distributions, Lilliefors test [17] is

performed on every frequency ωk for k ∈ {1, 2, ..., NH} of a(ωk) and b(ωk) in x- and y-axis to compute

the test decisions at the 5% significance level and p-values. Figures 9 and 10 show the FRF coefficients

a(ωk) and b(ωk) for x- and y-axis, respectively, in the upper plots. The lower plots of Figures 9 and

10 show p-values and Lilliefors test results, where 0 and 1 represent acceptance and rejection of the

hypothesis, respectively. The figures imply that Gaussian hypothesis for both a(ωk) and b(ωk) is

accepted at 90% and 88% of the frequencies for the x- and y-axis, respectively. One way to improve

the reliability of Lillifors test result is to gather more data of FRFs. However, for the sake of simplicity

and computational efficiency, the Gaussian hypothesis will be assumed valid for all frequencies in the

following sections.

Figure 7. Frequency response functions of the Nomad 3’s x-axis showing the known uncertainty

obtained under different input acceleration amplitudes.

Figure 8. Frequency response functions of the Nomad 3’s y-axis showing the known uncertainty

obtained under different input acceleration amplitudes.
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Figure 9. Upper plot: FRF coefficients a(ωk) and b(ωk) of Nomad 3 x-axis; lower plot: p-value and

accept/reject results of Lilliefors test of FRF coefficients.
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Figure 10. Upper plot: FRF coefficients a(ωk) and b(ωk) of Nomad 3 y-axis; lower plot: p-value and

accept/reject results of Lilliefors test of FRF coefficients.

The output position x is simulated as the sum of motion-induced position xm and force-induced

position x f , as

x = xm + x f = ĥx ∗ xc + x f

where ĥx ∼ N(µĥx
, Σĥx

) is sampled at every t

and x f (t) = A f sin ω f t

(29)

where A f = 0.2 and ω f = 733 rad/s (7000 rpm) are chosen.

The butterfly trajectory [36] with its contour of the toolpath on the x- and y-axis shown in Figure

11 is selected. For the DD and PIDD methods, nw = 10, n2 = 3, n3 = 10 and σǫ = 0.01 are selected. For

the DD and PIDD methods, stringency η = 95% is selected. Vmax = 30 mm/s, Amax = 5 m/s2, and

contour error limit of Emax = 0.4 mm are selected for the feedrate optimization. The tolerance violation

γ, which will be analyzed for each method, is defined as

γ(t) =

{

|ε(t)| − Emax if |ε(t)| > Emax

0 otherwise
(30)
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Figure 11. Desired toolpath.

Figure 12 shows the optimized feedrate, acceleration, contour error, tolerance violation and

prediction error of all methods. The cycle times and RMS of tolerance violation γ are summarized

in Table 1. The PB method is the worst in prediction performance because it is not aware of the

unknown uncertainties caused by the force-induced servo error, and hence results in the highest RMS

tolerance violation. The DD method improves adherence to the tolerance by learning the unknown

uncertainties over time. However, DD method initially suffers from significant prediction error due to

its unawareness of known uncertainties. The proposed PIDD method with η = 95% enables restriction

of the contour error under the desired stringency by incorporating known uncertainties and learning

unknown uncertainties the quickest, which enables it to conservatively stay below the error limit

most of the time. Overall, the PIDD method is able to reduce cycle time by 19.3% compared to the

conservative approach while maintaining a similar tolerance violation level. To demonstrate the effect

of the selection of stringency, Figure 13 compares the commanded feedrate, acceleration, contour error,

tolerance violation and prediction error of the PIDD methods using η = 95% and 98%. It is observed

that tuning η to a higher level has the effect of making the optimized feedrate more conservative and

reducing the error violation.

Note that the proposed PIDD method is not perfect in satisfying the contour error constraints.

One reason is that the prediction error is not perfectly zero, and the stringency constraints can only

ensure that the worst-case out of η% of contour error distribution is within the tolerance. This issue

can be mitigated by increasing η, which will entail more conservative feedrate. Another reason might

be due to the nonlinear effects neglected by linearization of the contour error constraint in Eq. (33) and

sub-optimal learning in β introduced by Laplace’s approximation in Eq. (16). These problems can be

addressed by applying nonlinear optimization and non-Gaussian Bayesian regression, at the price of

higher computational cost.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2023                   doi:10.20944/preprints202311.0041.v3

https://doi.org/10.20944/preprints202311.0041.v3


17 of 29

Figure 12. Feedrate, acceleration, contour error, tolerance violation, and prediction error using

conservative (Cons.) physics-based (PB), data-driven (DD) and proposed (PIDD) methods with η =

95% for numerical validation.
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Figure 13. Feedrate, acceleration, contour error, tolerance violation, and prediction error using the

proposed (PIDD) methods with η = 95% (from Figure 12 and η = 98% for numerical validation).

Table 1. Cycle times and RMS of tolerance violation γ for conservative (Cons.), physics-based (PB),

data-driven (DD) and proposed (PIDD) methods in Figures 12 and 13.

Cons. PB DD PIDD
(η=95%)

PIDD
(η=98%)

RMS of γ
[µm]

2.2 6.6 3.0 1.7 0.8

Cycle time [s] 8.89 4.49 5.17 6.47 7.17

6. Experimental Validation

For validation of the proposed approach, two experimental setups are used. The first set of

experiments, described in Section 6.1, is carried out on an Ender 3 Pro desktop 3D printer, and the

second set of experiments, described in Section 6.2, is carried out on a Nomad 3 desktop CNC machine

tool used in Section 5. Demonstration of the proposed method on two experimental setups helps to

show its versatility.
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6.1. Desktop 3D Printer

6.1.1. Experimental Setup

The experimental setup using an Ender 3 Pro desktop 3D printer is shown in Figure 14. The

optimization algorithm is implemented on dSPACE 1007 real-time control board running at 500Hz

sampling rate, connected to DRV8825 stepper motor drivers for x, y, z and e- axes stepper motors.

The measured x and y- axes accelerations from ADXL335 accelerometers are fed back to dSPACE

1007. To deduce the x and y axes displacement from acceleration measurements, a Luenberger state

observer [6] is used. The observer gains are chosen such that the dynamics of the observer error (i.e.,

discrepancy between estimated position using the nominal physics-based model µĥx
and observed

position) obtains global asymptotic convergence with an observer frequency fo = 15 Hz.

Figure 14. Experimental setup for Section 6.1.

6.1.2. Experimental Results

This section validates the proposed approach experimentally using the desktop 3D printer, by

comparing its performance with conservative, PB and DD methods. The butterfly toolpath in Figure

11 is used to optimize the feedrate for air-printing (i.e., no material extrusion) and actual printing of

the 3D printer. The known uncertainties of x- and y-axis of the printer are incorporated from FRFs in

Figures 15 and 16. Similar to Section 5, Lilliefors test is performed on a(ωk) and b(ωk) of the FRFs in

the x- and y-axis to validate the Gaussian assumption at the 5% significance level and p-values, where

the hypothesis acceptance rates are computed as 92% and 91% out of all frequencies for the x- and

y-axis, respectively. For the DD and PIDD methods, nw = 30, n2 = 10, n3 = 30 and σǫ = 0.01 are used.

For the PIDD method, the desired stringency is selected as η = 95%. For feedrate optimization, Vmax =

70 mm/s, Amax = 3 m/s2 and Emax = 0.1 mm are chosen.
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Figure 15. Frequency response functions of the Ender 3 Pro’s x-axis showing the known uncertainty

obtained under different input acceleration amplitudes.

Figure 16. Frequency response functions of the Ender 3 Pro’s y-axis showing the known uncertainty

obtained under different input acceleration amplitudes.

Figure 17 shows the profiles of the optimized feedrate, acceleration, contour error and prediction

error of x- and y− axis using the conservative, PB, DD and PIDD methods. The RMS prediction errors,

cycle times and RMS tolerance violation of all methods are reported in Table 2. The PB approach cannot

predict the unknown uncertainties, and hence shows the most significant violation in the contour error.

The DD method mitigates the violation by learning the unknown uncertainties, and the PIDD method

further improves the accuracy by staying the closest to the tolerance with the desired stringency. As a

result, the PIDD method completes the motion 17.8% faster than, while yielding similar contour error

tolerance satisfaction as the conservative one.
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Figure 17. Commanded feedrate, acceleration, contour error, tolerance violation and prediction error

using conservative (Cons.), physics-based, data-driven and proposed approaches in air-printing.

Table 2. Comparison of RMS prediction errors, cycle times and RMS of tolerance violation γ

using conservative (Cons.), physics-based (Physics.), data-driven (Data.) and proposed methods

in air-printing

Cons. Physics. Data. Proposed
x Pred. Error [µm] N/A 37.4 22.1 18.1
y Pred. Error [µm] N/A 31.7 23.9 19.3

Cycle time [s] 4.70 1.97 2.73 3.86
RMS of γ [µm] 1.8 5.5 3.9 1.9

To further validate our findings, a 3D-augmentation of the trajectory in Figure 11 with z-height 8

mm is printed using the same printer. Conservative, PB, DD and PIDD methods are applied at each

layer of the print. Figure 18 shows the top and side views of the printed butterflies using the four

methods, as well as their print times. The physics-based and data-driven prints show vibration marks

in the side view, while the proposed and conservative prints are able to achieve vibration-free surface

quality. Overall, the proposed method is able to achieve 15.51% print time reduction compared to the

conservative approach while achieving similar print quality.
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Figure 18. Top and side views of 3D-printed butterfly models using conservative, physics-based,

data-driven and proposed approaches and their print times.

6.2. CNC Machine Tool

6.2.1. Experimental Setup

For experimental validation, the same experimental setup with the machine tool in Figure 6 in

used. The optimization algorithm is implemented on dSPACE 1007 real-time control board running at

500Hz sampling rate, connected to DRV8825 stepper motor drivers for x, y, and z- axes stepper motors.

Renishaw RKLC20-S optical linear encoders are attached to the x and y- axes gantries to measure x

and y- axes positions that are fed back to dSPACE 1007.

6.2.2. Experimental Results

This section validates proposed feedrate optimization using the same set of methods for command

generation, which are conservative, PB, DD and the proposed PIDD methods. The same desired

butterfly trajectory in Figure 11 is used for air cutting and machining an aluminum workpiece with a

3.175 mm diameter flat-end mill and spindle speed of 7000 rpm. Kinematic limits are set as Vmax =

20 mm/s and Amax = 0.5 m/s2, and contour error bound is chosen as Emax = 0.1 mm in the feedrate

optimization; nw = 30, n2 = 2, n3 = 30 and σǫ = 0.01 are used in the DD and PIDD methods. The desired

stringency is chosen as η = 95% in the DD and PIDD method.

Figure 19 shows the profiles of optimized feedrate, acceleration, contour error, tolerance violation,

and prediction error of x- and y-axis in air-cutting using the conservative, PB, DD and PIDD approaches.

The PB method frequently violates the tolerance due to unmodeled dynamics, which is caused by the

significant prediction error. The DD method slightly improves prediction accuracy, which is further

improved in the PIDD method where the contour error is able to be constrained close to the limit using

the desired stringency, similar to conservative approach. The proposed PIDD approach completes

the motion 38.06% faster than the conservative method, while maintaining a similar level of tolerance

adherence. The RMS prediction errors in x- and y-axis, cycle times and RMS tolerance violations of

each method are summarized in Table 3.
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Figure 19. Commanded feedrate, acceleration, contour error, tolerance violation, and prediction error

(with its zoomed-in images) of conservative, physics-based (PB), data-driven (DD) and proposed

(PIDD) approaches in air-cutting.

Figure 20 shows the profiles of optimized feedrate, acceleration, contour error, tolerance violation,

and prediction error of x- and y-axis in actual cutting using the conservative, PB, DD and PIDD

approaches. Similar to air-cutting, the PB method is worst in constraining the contour error due to

unmodeled dynamics and/or cutting force. The DD and PIDD methods reduce the prediction error

compared to the PB method and are able to constrain the contour error close to the limit using the

desired stringency. However, occasionally, PIDD shows worse performance than DD, which may

be due to the difference between measured FRFs when the machine tool is not cutting (shown in

Figures 7 and 8) and the FRFs while it is cutting. Research has shown that there can be significant
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differences between FRFs measured without cutting and those measured while cutting [19]. A possible

solution solve this issue is to measure the FRFs and compute known uncertainties during cutting using

operational modal analysis, which may be complicated because of FRF’s variability on the operating

condition of the cutting tool. Another solution is to discard the known uncertainties when they are

inaccurate, i.e., use DD only when PIDD may have errors. Overall, the proposed PIDD approach

completes the motion 29.02% faster than the conservative method while maintaining a similar level

of tolerance adherence. The RMS prediction errors in x- and y-axis, cycle times and RMS tolerance

violations of each method are summarized in Table 3.

Figure 20. Commanded feedrate, acceleration, contour error, tolerance violation, and prediction error

(with its zoomed-in images) of conservative, physics-based (PB), data-driven (DD) and proposed

(PIDD) approaches in actual cutting.
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Table 3. Comparison of RMS prediction errors, cycle times and RMS of tolerance violation γ using

conservative (Cons.), physics-based (PB), data-driven (DD) and proposed (PIDD) methods

Cons. PB DD PIDD
Air-cutting x Pred. Error [µm] N/A 17.8 17.5 10.2

y Pred. Error [µm] N/A 25.4 15.7 7.2
Cycle time [s] 40.2 20.0 21.1 24.9

RMS of γ [µm] 5.0 16.7 16.5 2.3
Cutting x Pred. Error [µm] N/A 47.2 17.3 16.7

y Pred. Error [µm] N/A 34.2 17.7 18.1
Cycle time [s] 39.4 20.0 23.0 27.2

RMS of γ [µm] 6.8 22.2 3.7 7.4

Figure 21 shows the machined surfaces and their zoomed-in images of upper left wing using the

trajectories from Figure 20. The surface machined using PB method shows vibration marks, while

the DD and PIDD methods mitigate the vibration and achieve similar quality to that of conservative

approach.

Figure 21. Machined parts and the zoomed-in images of upper left wing using conservative,

physics-based (PB), data-driven (DD) and proposed (PIDD) approaches

7. Conclusion and Future Work

This paper presents an MPC framework and methodology for the intelligent feedrate optimization

using an uncertainty-aware digital twin. Its key contributions are summarized as follows.

• A novel uncertainty-aware digital twin that predicts contour error is proposed. The digital

twin is able to incorporate known uncertainty from physics-based models and learn unknown

uncertainty using an online data-driven model to predict contour error’s distribution.
• For the first time, a feedrate optimization with constraints on kinematics and contour error using

quantified uncertainty is introduced. The contour error’s uncertainty using digital twin enables

the manufacturer to impose stringency constraints, which can replace trial-and-error approach of

tuning the tolerance used in practice.
• We have demonstrated the effectiveness of the intelligent feedrate optimization using

uncertainty-aware digital twin, to show up to 38% and 17% cycle time reduction using a desktop

CNC machine tool and a desktop 3D printer, respectively, while achieving similar stringency of

tolerance to that of the a conservative trial-and-error approach similar to those used in practice.
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• The proposed intelligent feedrate optimization is expected to bring impact in achieving desired

quality with higher productivity, using less trial-and-error. It is applicable to any machines that

use feed drives, such as coordinate measurement machines (CMMs), and precision machine tools.

As a limitation, the proposed method has made several assumptions in the methodology to enable

efficient computation, such as Gaussian distribution of frequency response function for computing

the known uncertainty and the linearization of contour error constraints for solving the feedrate

optimization as a sequential linear programming problem. The future work will explore more

sophisticated (non-Gaussian) uncertainty distributions and nonlinear contour error constraints to

improve the accuracy of the digital twin, at the expense of higher computational cost and non-closed

form solutions. Furthermore, additional forms of learning to the uncertainty-aware digital twin, such

as part-to-part or machine-to-machine learning, will be investigated to improve prediction accuracy.

Acknowledgments: This work is partially funded by the National Science Foundation grants #1931950 and
#2054715.

Appendix A. Initialization of µβ and Σβ in Section 3.2

The distribution of the weight β can be initialized and learned more accurately using the feature

uncertainty from Eq. (13), where the procedure is described as follows. First, µβ and Σβ are initialized

as the priors µβ0 and Σβ0 in the 0-th batch using the nominal physics-based model µĥx
from Eq. (11).

To estimate µβ0 and Σβ0, maximum likelihood estimation (MLE) method is applied on a dataset

created offline using a trial desired trajectory xd,trial with length Nx that traverses a pre-defined path

with conservative kinematics used in practice. The nominal physics-based model µĥx
is used to

filter xd,trial and formulate x̂trial . Then, Section 3.1’s framework on deterministic feature vector is

borrowed to create multiple datasets consisting of feature vectors and corresponding predictions, i.e.,

(ψ0, xtrial(0)), (ψTs , xtrial(Ts)), ..., (ψNxTs , xtrial(NxTs)), assuming ψt is deterministic and ψt3 = 0 for all

t. Finally, µβ0 and Σβ0 can be optimized using MLE as

µβ0, Σβ0

= argmin
µβΣβ

Nx

∑
i=0

(

−1

2
(xtrial(iTs)− µT

βψiTs
)T

(ψT
iTs

ΣβψTsi + σ2
ǫ )
−1(xtrial(iTs)− µT

βψiTs
)
)

(31)

where xtrial(t) is approximated as x̂trial(t).

Appendix B. Derivation of Coefficients c0, c1 and C2 in Eq. (16) in Section 3.2

The coefficients c0, c1 and C2 in Eq. (16) can be derived using 0-th, 1-st and 2-nd derivatives of

vector-valued function ln p(x(t)|β) in Eq. (15) with respect to β, respectively, as

c0 = −1

2
(x(t)− β̄Tµψt)

T(β̄T
Σψt β̄ + σ2

ǫ )
−1(x(t)− β̄Tµψt)

c1 = −1

2

(

2Σ
T
ψt

µψt x(t)β̄Tβ̄ +
(
2µψt µ

T
ψt

σ2
ǫ − 2Σψt x(t)

2
)T

β̄

− 2µψt x(t)σ
2
ǫ

)

· diag(β̄T
Σ

T
ψt

β̄ + σ2
ǫ )
−1

C2 = −1

2

(

−4Σ
2
ψt

µψt x(t)β̄Tβ̄β̄T + 6Σ
2
ψt

x(t)2β̄β̄T

+ 12Σψt µψt x(t)σ
2
ǫ β̄T − 6Σψt µψt µ

T
ψt

σ2
ǫ

)

· diag(β̄T
Σ

T
ψt

β̄ + σ2
ǫ )
−1

(32)
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where the local point β̄ is taken as the prior µβ from the previous window.

Appendix C. Linearization of Contour Error Constraint in Eq. (27) in Terms of x̃
j
d and ỹ

j
d

The contour error constraint in Eq. (27) is linearized in terms of x̂
j
d and ŷ

j
d by linearizing the

standard deviation term σε̃(t) in Eq. (21) with respect to ψt and ψty using linearization points ψ̄t and

ψ̄ty as

σε̃(t) ≈ Sxψt + Syψty + S00 + S01

where S00 = sin(θ(t))2(ψ̄T
t Σβψ̄t + σ2

ǫ )

+ cos(θ(t))2(ψ̄T
tyΣβy

ψ̄ty + σ2
ǫy
)

S01 = −2 sin(θ(t))2
Σβψ̄t − 2 cos(θ(t))2

Σβψ̄ty

Sx =
1√
S00

sin(θ(t))2
Σβ

Sy =
1√
S00

cos(θ(t))2
Σβy

(33)

where ψ̄t is formulated via generating the terms x̂(t− n2Ts) · · · x̂(t) in ψ̄t2 by filtering the linearization

point f (p̄) with µĥx
. Likewise, ψ̄ty is formulated using µĥy

.

Finally, let the alterable features in ψt be ψta, and the weights corresponding to the alterable

feature in ψt, i.e., x̂(t), be denoted as βa and that to the unalterable features ψtu as βu. The same

notations ψtyu, βya and βyu will be held for y-axis. Then, by substituting Eq. (21), (25) and (33) into Eq.

(27), the contour error constraint be re-written as

− sin(θ(t))(Mtx
j
d − µT

βu
ψtu − µT

βa
(Txx

j
d + T0x))

+ cos(θ(t))(Mty
j
d − µT

βyu
ψtyu − µT

βya
(Tyy

j
d + T0y))

≤ Emax −Φ−1(η)

(

Sxψtu + Sx(Txx
j
d + T0x)

+ Syψtyu + Sy(Tyy
j
d + T0y) + S00 + S01

)

(34)

which can be rearranged as linear in terms of x
j
d and y

j
d as

Uxx
j
d + Uyy

j
d ≤ U0

where Ux = − sin(θ(t))(Mt − µT
βa

Tx) + Φ−1(η)SxTx

Uy = cos(θ(t))(Mt − µT
βya

Ty)−Φ−1(η)SyTy

U0 = sin(θ(t))(−µT
βu

ψtu − µT
βa

T0x)

− cos(θ(t))(−µT
βyu

ψtyu − µT
βya

T0y)

+ Emax −Φ−1(η)(Sxψtu + SxT0x

+ Syψtyu + SyT0y + S00 + S01)

(35)

Finally, the contour error constraint in Eq. (35) is also linear with respect to the decision variable

pj using the relationship in Eq. (22).
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