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Abstract: The future of intelligent manufacturing machines involves autonomous selection of process
parameters to maximize productivity while maintaining quality within specified constraints. To
effectively optimize process parameters, these machines need to adapt to existing uncertainties in the
physical system. This paper proposes a novel framework and methodology for feedrate optimization
that is based on a physics-informed data-driven digital twin with quantified uncertainty. The
servo dynamics are modeled using a digital twin, which incorporates the known uncertainty in the
physics-based models and predicts the distribution of contour error using a data-driven model that
learns the unknown uncertainty on-the-fly by sensor measurements. Using the quantified uncertainty,
the proposed feedrate optimization maximizes productivity while maintaining quality under desired
servo error constraints and stringency (i.e., the tolerance for constraint violation under uncertainty)
using a model predictive control framework. Experimental results obtained using a 3-axis desktop
CNC machine tool and a desktop 3D printer demonstrate significant cycle time reductions of up
to 38% and 17% respectively, while staying close to the error tolerances compared to the existing
methods.

Keywords: smart manufacturing; feedrate optimization; digital twin; CNC milling; 3D printing

1. Introduction

Quality and productivity are two important and frequently competing factors in manufacturing.
As a result, manufacturers strive to maximize productivity while adhering to quality constraints.
In practice, achieving this goal has involved a trial-and-error approach. However, there is a
growing demand for self-optimizing intelligent manufacturing machines that have the capability
to autonomously optimize their speed while ensuring desired quality levels, eliminating the need for
extensive trial-and-error [14].

Motion-induced servo error, which is one of the major sources of quality degradation in
manufacturing machines, can result from the limited bandwidth of feedback controllers, flexible
structures, nonlinear friction, and backlash. Another source of servo error is process force, such as
cutting force. Given that motion- and process-force-induced servo errors tend to increase with higher
speeds, there is a keen interest in maximizing the speed of motion while respecting the tolerances on
motion- and/or process-induced servo errors.

Extensive research has been conducted in the field of feedrate optimization with the objective of
maximizing the feedrate while respecting servo error constraints. The majority of feedrate optimization
or feedrate scheduling techniques primarily focus on maximizing the feedrate while considering
kinematic limits such as speed, acceleration, and jerk [1,25,31,34,35,39]. However, the existing studies
in [1,25,31,34,35,39] do not incorporate dynamic constraints such as servo error and cutting force,
resulting in the need for a cautious selection of kinematic limits to indirectly meet the requirements
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on dynamic constraints. This indirect approach is necessary due to the complex relationship between
kinematics and dynamic constraints, which often leads to sub-optimal feedrates.

In order to directly enforce dynamic constraints, certain feedrate optimization methods
incorporate limits on the servo error, in addition to kinematics, by using steady-state [28] or
static [20,40] approximations of servo models associated with motion velocity and acceleration.
However, their limited ability to directly incorporate dynamic aspects of servo error, such as dynamic
servo error pre-compensation, hinders their accuracy and effectiveness in optimizing feedrate.

To directly incorporate dynamic components via physics-based models, numerous
feedrate scheduling methods for CNC machines maximize feedrate in each NC block while
keeping cutting force under desired levels via mechanistic force models [9,10,15,16,27,29,38,42].
Some feedrate scheduling techniques maximize feedrate while regulating machining error
due to tool deflection [2,4,18,24,30,37,43] or force-induced servo error [21,41] under desired
tolerance in CNC machine tools. A few works in feedrate optimization [12,13] constrain
motion-induced error via linear physics-based models of servo dynamics. However, the works
in[2,4,9,10,12,13,15,16,18,21,24,27,29,30,37,38,41-43] are unable to effectively constrain actual cutting
force or servo error in situations where uncertainties arise from nonlinear dynamics or disturbances
that are not incorporated in the physics-based models. As a result, their capability to maximize feedrate
while adhering to dynamic constraints is severely restricted.

There is increasing interest in the utilization of digital twins in manufacturing. A digital twin is a
virtual representation, parallel to a physical system, built on a bi-directional link between simulation
and actual data collection [14]. To effectively optimize feedrate with existence of uncertainties, digital
twins can be used to provide more-accurate predictions of process or servo dynamics for feedrate
optimization using data-driven models updated via sensor measurements. Model predictive control
(MPC) is a framework often used for optimizing feedrate using digital twins. In MPC [23], predictions
made using physics-based and data acquired from sensors are used to optimize an objective in a
receding horizon fashion. In the context of feedrate optimization, a linear hybrid model was augmented
with a periodic internal model in a MPC framework [11] to effectively predict and constrain servo
errors due to motion and cutting forces. Luenberger state observers [44] were used in feedrate
optimization to correct the initial system states of servo dynamic models in real-time for accurate
contour error constraint enforcement, where the objective function was based on a tunable index of
how far away an unattainable target position is from the current position. Similarly, a two-stage MPC
approach was proposed in [33], where the first stage performed feedrate optimization with contour
error constraints using a linear data-driven model, and the second stage further pre-compensated the
contour error using artificial neural networks (ANNSs). However, the data-driven models in [33] were
trained offline through numerous experiments, which is time-consuming and may not be effective in
predicting contour error in the presence of in-situ uncertainties that are not included in the training
data. Moreover, the two-stage optimizations in [33] and the mixed objective functions used to balance
quality and productivity in [33,44] require trial-and-error to tune the objective function weights to
determine an acceptable quality level. Therefore, it is better to enforce quality requirements as contour
error constraints that must be met, as is often the case in practice. Furthermore, the existing MPC
methods in [11,33,44] do not quantify or exploit the uncertainty of the prediction in their feedrate
optimization. Hence, they may not effectively adhere to constraints in the presence of high uncertainty
due to a lack of training data, system variability and sudden changes in operating conditions.

To quantify uncertainties and impose robustness, studies exist on maximizing feedrate while
regulating spindle power, where the spindle power is modeled using Gaussian process regression
(GPR) [26]. The spindle power constraint is derived from a stochastic constraint with a fixed confidence
level to safely optimize feedrate in uncertain environments. However, GPR in [26] is updated
cycle-by-cycle, where the first cycle is initialized with a conservative feedrate profile followed by
numerous sequential cycles for convergence. This requires optimizing a highly non-linear GPR
objective [32] to estimate hyperparameters, which renders the process less adaptable to real-time
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control. Moreover, it does not constrain the servo error nor account for the propagation of model
uncertainties to the servo error. This oversight is critical in achieving desired part accuracy in feedrate
optimization, especially for toolpaths with high curvatures that can create significant structural
vibration.

To address the shortcomings of the existing works, this paper proposes an intelligent feedrate
optimization with contour error constraints using an uncertainty-aware digital twin, by making the
following original contributions:

1. It uses a novel physics-informed data-driven digital twin to predict the contour error and its
uncertainty, where the digital twin incorporates the known uncertainty in the physics-based
models and learns the unknown uncertainty by correcting the data-driven model on-the-fly

using sensor feedback.

2. It formulates an intelligent feedrate optimization framework capable of maximizing feedrate
while accurately constraining contour error under desired tolerance and stringency, based on the
uncertainty estimation from the digital twin using a model predictive control framework.

3. It demonstrates the effectiveness of the proposed method by validating its performance in
simulations and experiments using a desktop CNC machine tool and 3D printer.

The outline of the paper is as follows: Section 2 introduces our framework for intelligent feedrate
optimization using an uncertainty-aware digital twin. Section 3 describes the methodology of the
proposed digital twin for predicting the contour error distribution. Section 4 provides a formulation of
the feedrate optimization with contour error and stringency constraints (i.e., the tolerance for constraint
violation under uncertainty). Section 5 numerically validates the proposed method via a desktop CNC
machine tol. Section 6 experimentally validates the proposed method via a desktop CNC machine tool
and 3D printer. Finally, Section 7 concludes the paper and discusses future work.

2. Framework for Feedrate Optimization with Uncertainty-Aware Digital Twin

The framework for the proposed intelligent feedrate optimization with an uncertainty-aware
digital twin is depicted in Figure 1. First, a manufacturer submits a part together with the desired
dimensions and contour error tolerance to an intelligent manufacturing machine. Then, the goal of
the machine is to autonomously produce the part as quickly as possible while respecting the given
error tolerance. The machine is equipped with a digital twin that predicts the contour error, which the
machine can exploit for feedrate optimization with contour error constraints. Hence, the proposed
framework is based on model predictive control.

< Dimension + tolerance
@ XX * XXX
4474 Sensor ics-
O BBB [] Stringency 7% Sensor output Phy51cs
based
Manufacturer ; ,V:
Max product1v1ty Intelligent optimization i

T . Data-driven
at specified quality manufacturing Optlmlzed Quanti ﬁe q N Y
and stringency machine feedrate Uncertainty

uncertainty in _aware

contour error digital twin

Figure 1. Diagram of intelligent feedrate optimization using an uncertainty-aware digital twin. A
manufacturer provides a part tolerance and stringency (i.e., the tolerance for quality constraint violation
under uncertainty). The intelligent machine leverages an uncertainty-aware digital twin to optimize
feedrate while satisfying the tolerance and stringency requirements.

However, several uncertainties exist in the physical system. Some portions are known from
available data or expert knowledge, while others, such as nonlinear dynamics, may be unknown. If
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not considered, the known and unknown uncertainties cause a violation in the contour error tolerance,
hence the part quality, as illustrated in Figure 2a.

However, given that uncertainty exists in enforcing tolerance constraints, manufacturers have
different levels of stringency in enforcing constraints. For example, a manufacturer may want at least
99% of the produced parts to satisfy the constraints. Therefore, stringency reflects a manufacturer’s
tolerance for quality constraint violations under uncertainty. In this paper, we propose that, instead of
relying on trial-and-error, manufacturers can impose a desired stringency #% on the given tolerance
by incorporating the uncertainty of the contour error prediction as shown in Figure 2b. Imposing the
stringency represents constraining the worst case out of 7% of the entire variation of contour error, so
that #% of the manufactured parts adhere to the imposed kinematic and tolerance constraints under
the given uncertainty.

To do so, the digital twin uses the known uncertainty from the physics-based models and trains
a data-driven model using the machine’s sensor measurements to learn the unknown uncertainty.
The digital twin then predicts and quantifies the uncertainty of the contour error, which is used in
feedrate optimization with desired tolerance and stringency on the contour error. Together with the
uncertainty-aware digital twin, the feedrate optimization determines the fastest feedrate to run the
machine while respecting the limits for the contour errors (and the kinematic limits of the machine) in
a robust way. The measured sensor output is compared with the predicted output and used to adjust
the digital twin and optimization algorithm in the next iteration of feedrate optimization.

(a). (b).

Possible Constrain the

violation  Tolerance range worst-case out of
n% of possible

[ T 'z\/()riginal/'/'i variations
}_ '\tolerance //&

: Uncertaint
Predicted range Y n% stringency

SCrvo error

Figure 2. (a) Need for a tolerance range due to violation of error tolerance in the presence of
uncertainties, (b) Proposed method of feedrate optimization with desired tolerance stringency using
quantified uncertainty.

3. Contour Error Prediction with a Real-Time Uncertainty-Aware Digital Twin

This section first describes the methodology of the contour error prediction using a deterministic
digital twin in Section 3.1, and extends it to prediction of contour error and its distribution using an
uncertainty-aware digital twin in Section 3.2.

3.1. Overview of Contour Error Prediction Using a Deterministic Digital Twin

A flowchart of the intelligent feedrate optimization using a deterministic digital twin based on
the previous work in [11] is depicted in Figure 3. Note that the internal model in [11] is removed. Also
note that Figure 3, as well as the discussions that follow in this section, focus on only the x-axis for the
sake of brevity. However, the exact same process can be applied to the y-axis and other independent
axes of a Cartesian configured manufacturing machine. Small batches (i.e., look-ahead windows) x{i of
a desired position trajectory x; are fed into an intelligent feedrate optimizer to produce the optimized
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motion command, xﬁ, where the superscript j € {0,1,2, - - - } represents the batch index. Here, each
batch has a window length of 7, and is defined on the time domain t € {0, Ts,2T,,3Ts, - - - } which
represents discrete time at sampling interval T, as illustrated in Figure 4. The optimized motion
commands are sent to the servo system H to produce the actual position x/. The servo system is
composed of a servo error pre-compensation C, followed by machine dynamics Gy, i.e., Hy = GxCx.

Deterministic digital twin

xfz Feedrate xé: Physics-based [x Data- |!
—_— Il —~ . I
optimizer : model H, driven :

: model ||

|| Physical system
H,

Figure 3. Flowchart of intelligent feedrate optimization using a deterministic digital twin with
physics-based and data-driven servo models (y-axis omitted for simplicity).

Batchj—1 Batchj

e

(]. o l)nw 7; (fnw - 1)1; jnwz—; ((] + l)nw_ 1)7;

Figure 4. Batches j — 1 and j defined on a discrete-time domain.

A key requirement for the intelligent feedrate optimization is accurate prediction of the servo error,
which is achieved using linear regression built upon the hybrid model presented in [3]. The hybrid
model takes input x/. and predicts the actual position &/ using a stable, nominal (or representative)
physics-based model H. The predictions # do not capture the effects of unmodeled dynamics and
external disturbances. Therefore, the prediction error of H, (delayed by one batch) is computed as
ei_l = /"1 — %71 and combined with &/ and 2/~ to be fed into a data driven model to generate an
improved prediction # which is used for constraining contour errors in the feedrate optimization.

Each element X(t) of & is modeled as

f(t) = .BTl/’t )

where 1, is the deterministic feature vector and g is the weight vector that is learned using linear
regression. Note that the superscript j, i.e., batch index, has been removed from %(t) in Equation (1) to
directly define ¥ in time domain. The sub elements of 1, are given by

1IJt = [\1// f(t_nsz), /xA(t>/
=Pn =t

ex(t - n?)TS)r ce rex(t - Ts)]T
=Y

@
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The sub-elements #,,, ¥,, and ,; were contained in the hybrid model of [3]. They respectively
represent a bias term, the past 71 and current time steps of &, and the past n3 time steps of ey, where 1,
and n3 are user defined.

The weight B is updated recursively in each timestep within a given window, where the final
weight is carried over to the next window for prediction, i.e., # is predicted based on weight  from
the previous batch j — 1. The algorithm for learning f is described as follows. For t = 0, B and its
covariance matrix P are initialized using ridge regression with a regularization factor A as

B=Al+,9)) 'px(t)

3
P= (L4l ®

For the rest of the timesteps t € {T;, 2T, ...}, a recursive least-squares is used to correct f and P
using a forgetting factor fj as

B B+k(x(t)— By,

P+ l(P —ky!P) 4)
fo

where k = Py, (fo + ¢ Pp,)

Using the final weight in batch j — 1 to substitute for §, ¥/ can be predicted using the feature
vector t, formulated by Equation (2). Since the past sensor data x/~! is provided up to t = (jn, —1)Ts,
for entries in batch j that have unavailable terms in 5, ey for all batches is approximated using the
predicted values of %, i.e.,

ey =x—X~X¥—2% 5)

The same procedure is applied to the y-axis to predict §j. Lastly, the contour error & can be
estimated from the predicted axis tracking errors & = x; — X and &, = y,; — 7, using a linear
approximation [5] as

& = —sin(0)&, + cos(0)E, (6)

where 0 is inclination angle of the curve (x4, y,).

3.2. Prediction and Uncertainty Quantification of Contour Error Using Uncertainty-Aware Digital Twin

The accuracy of the predictions of the physics-based and data-driven servo models in Section 3.1
can be improved by incorporating the known uncertainty from the physics-based models. To do so,
a digital twin that uses physics-informed data-driven servo model is proposed, which is updated
on-the-fly via Bayesian approach that is capable of considering uncertainty in the feature vector ,. A
flowchart of the proposed intelligent feedrate optimization using the uncertainty-aware digital twin is
given in Figure 5. The key difference between Figures 3 and 5 is that known uncertainty is included in
H,, and unknown uncertainty embedded in ¥/ is learned using the data-driven model and used to
predict #/ with quantified uncertainty.
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Uncertainty-aware digital twin
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[ |

Initialize B ~ N >
B (Hp0. Zgo) Weight uncertainty }—> Data-driven

’ del
i Feat taint }—> mo
Physics-based 2N (Il,ei' Ef,-) | 612\1 ure uncertainty

7yi \N. =i
ot B | o] ¥ ]

Physical system |x/J
H,

ontains
known
uncertain

X4’ | Feedrate |X
RN e
optimizer

ontains
unknown
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Figure 5. Flowchart of intelligent feedrate optimization using an uncertainty-aware digital twin (with
physics-based and data-driven servo models, y-axis omitted).

Each element %(t) of the digital twin’s prediction of the output position & is modeled as

#(t) = BTy, +e %

where ¢, ~ N (”l[]t’ Ly, ) is the feature vector defined as an uncorrelated Gaussian random variable
with mean g, and variance Zy, derived from the uncertainty distribution of ¢, previously defined in
Equation (2). B ~ N(u pr = p) is the weight vector defined as a correlated Gaussian random variable
learned via Bayesian linear regression, and € ~ N(0,02) is the unobserved Gaussian noise. Unlike the
deterministic point-estimation of # from Section 3.1, a distribution # ~ N(p;, L.;) is estimated in
this section based on the uncertainties of the features and the weights.

This paper proposes that the known uncertainties of the physics-based models are embedded
into the feature vector ¢, in Equation (7) to enable efficient training of . To do so, a set of Ny stable
physics-based models {H ;}f\i’il is obtained, where each model H ; fori € {1,2,..., Ny} is identified
in the form of the complex-valued frequency response function (FRF) of the physical system H, at
discrete frequencies wy via experiments as

Ayl

H (wy) = a'(wp) + b (wi)j ®)
where wy = kAw, of which Aw is the increment of frequencies, k € {1,2, ..., No 1} where N, is
the number of discrete negative and positive frequencies at which FRF is identified, and j is the
unit imaginary number (which should not be confused with the batch index j used as a superscript
elsewhere).

Then, the uncertainty in H is propagated to the finite impulse response f, as follows. The
discrete sets { H’, (wy) }fiﬁ for each k will introduce discrete sets of their real and imaginary coefficients,
namely {a'(wy) f\i“l and {bi(wk)}f\iﬁ. For computational efficiency, it is assumed that {ai(wk)}il\i”l
and {b' (wy) f\iHl are sampled from Gaussian distributions of a(wy) and b(wy), of which 99.73%, i.e.,
the 3-sigma range, lie within the minimum and maximum of the identified discrete sets. Then,
a(wy) ~ N(yﬂ(wk),(rg(wk)) can be approximated as

max {a(wy)} +min {a(wy)}

.ua(wk) = 2 (9)
~ max{a(wi)} — paw,)
Oa(wy) = 3

and b(wi) ~ N(pp(c,)s Ug(wk)) can be approximated using the same procedure as Equation (9).
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Then, the impulse response f, (i.e., fiy[n] for n € {1,2,...,N},}) of the physics-based model with
sampling time Ts can be formulated using discrete inverse Fourier transform as

N 1 i L 2mi(n=1)(k=1)
hin] = 5~ Y. (a(wp) +b(wg)j)e Mo (10)
W g =Nw

2

where Nj, = Tsﬁ is the maximum estimable length of the impulse response. Then, due to the linearity
of Equation (10), fi[n] follows a Gaussian distribution /i[n] ~ N (Vﬁ[n]' (7}%[”]) as

1 Ny 2= (k=1)
i) = 7 2 (Ha(wp) F Poqwplle ™
W k=1
(11)
) 1 N ) 2Dk

Nw

i) = N s aten) ™ ) )°

Next, the uncertainty in /1[n] can be propagated to £(t) ~ N(pss), (T%(t)) as

Ny
() = Z Vﬁ[i]xd(t —iTy)
(12)

2 zTS

Finally, the feature vector follows an uncorrelated multivariate normal distribution @, ~
N(py,, Ly, ), where

My =l L Meont), " Het)

g
Thyy Sy,
x(t—n3Ts) = Po(—nyry)r o X(E—Ts) — H;z(ths)]T
Py (13)
Zp =diag( 0 Tipmm) Ty
=Eon =Zyy,

The prior over B ~ N(u pr & p) is initialized using the nominal physics-based model #j,, from
Equation (11), as described in Appendix A. Now given B ~ N(u gz p) and the feature uncertainty
P, ~ N (ylpt, Ly, ) from Equation (13), we propose to take a Bayesian route to obtain the posterior over
B as more data is collected in real time.

Mathematically, the posterior is given as:

(BIx(8), 1y, ) o p( (D) By, ) - p(B)
/P ) 41, By ,Zy,)dp, - p(B)

/ p(x(t) 9 BYP (1, Zg ), (14)
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where x(t) is the actual position on the x-axis at timestep ¢ defined in Section 3.1. Here, p(x(t)|B) and
p(p) are given as as

px(0)1B) = exp( ~3(x(8) = By )T (BTEp+2) "
(x(0) - By, ) (15)
p(B) = exp (5 (B =y "E5 (B —1y))

As shown above, a central feature of our approach is that it accounts for input uncertainty through
P, ~ N (V¢tf):l/1t)' Unfortunately, the price to pay is the lack of a closed form solution due to the
quadratic term in the variance. While monte carlo (MC) sampling approach such as Markov chain MC
(i.e., MCMC) or Hamiltonian MC can be used, our goal is to obtain the posterior on the fly to enable
real-time control.

To this end, we take a Gaussian Laplacian approximation [8] where we write log of p(x(t)|B) as a
quadratic function of B. This is shown below:

Inp(x(1)|B) = Inp(x(]B)|

SN——
=0

n dinp(x(t)|B) ‘T B
dg B=B (16)

1, o dinp(x()]B) i
8- BT EESUE ()

where the local point B is u p from the previous batch, i.e., the prior mean. A detailed derivation of the
coefficients ¢y, ¢; and C, in Equation (16) is provided in Appendix B. Given that 1(x(#)|B) ~ N(u B Lg),
now Equation (14) can re-written in a closed-form solution as

1
pBIx(0), g, ) = exp (BT (3C2 -~ 5258
(17)
+ (cf + y};Z Hp+ Constant>
Thus, the updated variance and mean of the Gaussian posterior p(B|x(t), py,, Ly, ) are
1,1 1o g1
Zp ¢ VON[BIx(t) py, Zg] = =5 (5C2 = 5Z47) (18)

g < E[Blx(t), py, Zy] = (cf +74/5 B NZp

where the posteriors 1z and Ly are used as priors for the next batch.
Note that, if the feature 1, is assumed to be deterministic (i.e., zero feature uncertainty), no known
uncertainties will be included in the Bayesian regression, of which the case will be compared with the
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proposed method using normally distributed ¢, in the following Section 5. In the case of deterministic
1,, the posterior B ~ N(u pr T p) can be estimated as a closed-form solution using Bayes rule as

p(Blug Zp)
= exp (—iﬂT((rgzzp?wt +Z;)B

+ (029 Tx(0) + 25 "B ) (19)

e e e T
Bp < Zp(oe i x(t) + Zlglﬂg)

Lastly, using the trained weight distribution from Equation (18), the posterior predictive
distribution %(t) ~ N(pz (), 0)%( t)) can be written as

Hxt) = P‘E‘Pt

(20)
Ua%(t) = ‘/’?Zﬁl/’t +07

The same procedures are applied to learn g, ~ N (],lﬁy, Zg,) and predict () ~ N (yg(t),ayg( t))
based on y-axis feature vector #,, and unobserved noise €. Using Equation (6), the contour error
distribution (t) ~ N (pg (), ng( t)) can be predicted as

(
+cos(0(6)) (vat) — b, )

02y = sin(0(0)2($TEs, +02)
(6(6)* (WL Zp, 9y +02)

(21)

4. Methodology for Intelligent Feedrate Optimization with Contour Error Constraints

The feedrate optimization with contour error constraints using the quantified uncertainty from
the digital twin is formulated in accordance with authors’ previous work [12] using a model predictive
control framework. Taking the x-axis, for example, a desired trajectory X; = f(p) is parametrized
with respect to a normalized, monotonically increasing path variable p, which is a vectorized form of
p. Then, X;(t) is linearized as x;(t) with respect to p(t) using an estimated linearization point () as

xalt) == LI (o) - () + £(p(1) @2)
0P lp—p(r)

The procedure for computing the optimal p/ (corresponding to the optimal feedrate) using the
uncertainty-aware digital twin is as follows. The path variable p/ is maximized under monotonicity,
maximum feedrate, and axis-acceleration constraints as

maxlij
st. p(t—1)<p(t) <1
D[Pj] < VinaxTs (23)

D2[)]| < AparT?
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where 1 is a ones-vector, D is a difference operator, and Vy,;x and Ay are the vectorized
representations of feedrate and acceleration limits, respectively. In addition, kinematic and dynamic
continuity between adjacent windows is enforced. The process described above for the x-axis can be
applied to the y-axis.

The feedrate optimization constrains the contour error under a given tolerance and stringency,
using the posterior predictive distribution from Section 3.2. To do so, we show that js(;) and oy are

linear in terms of xii, by showing that the only alterable feature in 4, which is the last term in ¢, (i.e.,

. - o
%(t)), is linear in x.

Let @, € R be the matrix (lifted domain) representation of u; truncated by length 7j,. The
last 11, rows in @, can further be decomposed into two parts: its first nj, — 1,y columns ®, , and its

last 11,y columns @, . as
D, = [ : : ] (24)
q’x,p q)x,c

If x. , represents the last 1, — 1, elements of the x. at past timesteps, %(t) can be re-written as

& = @y oxl, + By pxcp

L R(F) = M@y X, + M@y pxcy (25)
.7T T
Al =1Lox

where M; is a selection matrix that picks the entry at timestep f. Similarly, for y-axis, the alterable
term in IIJty can be derived to be linear in terms of y{i, by using a similar notation as Equation (25), i.e.,
]}(t) = Tyy{;z + TOy-

Then, the worst-case out of the 1 [%] variations of distribution of the contour error (t), where 7
is a user-defined stringency, is bounded by the tolerance E,;y as a stochastic constraint by

p(€<t) < Emax) > n (26)

For the sake of brevity, the negative stochastic contour error constraint p(&(t) > —Epax) > 77 is
omitted. Then, inversion the both sides of Equation (26) becomes

He(t) < Emax — q’_l(ﬂ)%(t) (27)

where ® is the cumulative density function of the distribution of &(t), which is invertible because &(t)
follows a Gaussian distribution as was shown in Equation (21).
Equation (27) can be rearranged as a linear constraint in terms of x{i and y{i using Equation (21),
written as ' ,
U.x, + Uyy), < U (28)

where the derivation of coefficients Uy, U, and Uy is described in Appendix C. Finally, the contour error
constraint is also linear with respect to the decision variable p/ using the relationship in Equation (22).

The methodology of feedrate optimization described in this section can be broadly considered as
model predictive control [22], because it: (1) optimizes manipulatable inputs, e.g., desired trajectory,
over a finite, receding horizon using (2) predictions of the dynamical system’s behavior through a
model that is updated via feedback.
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5. Numerical Validation of the Intelligent Feedrate Optimization Using Uncertainty-Aware
Digital Twin

This section validates the importance of the uncertainty quantification of the proposed
physics-informed data-driven (PIDD) uncertainty-aware digital twin in feedrate optimization, by
comparing the method with the following approaches:

1. Conservative method, which is defined as the benchmark generated using a trapezoidal
acceleration profile [7] with kinematic limits tuned by trial-and-error to achieve the contour error
tolerance with 1% stringency, by allowing up to (100 — #7)% RMS violation normalized by E
defined in Section 4

2. Physics-based (PB) method, which predicts the output position and its uncertainty using only
the known uncertainty obtained from the set of physics-based models { i }lI\iHl and {I:I;}fi”l

3. Data-driven (DD) method, which predicts the output position and its uncertainty by learning the
unknown uncertainty without incorporating any known uncertainties, i.e., the prior pg , X,
P50 and g, o are initialized as zero at the 0-th batch, and § and B, are learned via Bayesian linear
regression for deterministic features in Equation (19). Note that both the PB and DD methods are
subsets of the proposed uncertainty-aware digital twin. However, we have separated them out
to highlight the effect of introducing uncertainty in both the PB and the DD models through the
PIDD method used in the uncertainty aware digital twin

A Nomad 3 three-axis desktop CNC machine tool is chosen as the simulated system, where
its setup is shown in Figure 6. To analyze its known uncertainties, the position commands are
generated and commanded by dSPACE DS1007 real-time control board running at 500 Hz sampling
rate, connected to DRV8825 stepper motor drivers for the x-, y- and z-axes stepper motors. ADXL335
accelerometers are attached on the x- and y-axis gantries to measure the x and y-axes acceleration. The
known uncertainties are identified by measuring FRFs, of which the input is a swept sine acceleration
command to the stepper motors, and the output is the relative acceleration between the x- and y-axis
using the accelerometers. The operating condition under which the FRFs are measured is varied by
modifying the input acceleration amplitude at discrete values: 2 m/ s2,3m/s? and 4 m/s?, and 3 FRFs
are measured per each acceleration amplitude to collect a total of Ny = 9 FRFs per axes.

The set of FRFs {H ;}?:1 of the x- and y-axis of the printer are shown in Figures 7 and 8§,
respectively. The uncertainties in H, are then propagated to ft, ~ N (w5, Ly, ) to initialize p pand Xg
and construct p,, and Ly, in the physics-informed data-driven digital twin. To validate the hypothesis
that the FRF coefficients of { Hy}?_; and {H,}?_, belong to Gaussian distributions, Lilliefors test [17] is
performed on every frequency wy for k € {1,2, ..., Ny} of a(wy) and b(wy) in x- and y-axis to compute
the test decisions at the 5% significance level and p-values. Figures 9 and 10 show the FRF coefficients
a(wy) and b(wy) for x- and y-axis, respectively, in the upper plots. The lower plots of Figures 9 and 10
show p-values and Lilliefors test results, where 0 and 1 represent acceptance and rejection of the
hypothesis, respectively. The figures imply that Gaussian hypothesis for both a(wy) and b(wy) is
accepted at 90% and 88% of the frequencies for the x- and y-axis, respectively. One way to improve
the reliability of Lillifors test result is to gather more data of FRFs. However, for the sake of simplicity
and computational efficiency, the Gaussian hypothesis will be assumed valid for all frequencies in the
following sections.
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Figure 6. Experimental setup for Sections 5 and 6.2.
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Figure 7. Frequency response functions of the Nomad 3’s x-axis showing the known uncertainty
obtained under different input acceleration amplitudes.
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Figure 8. Frequency response functions of the Nomad 3’s y-axis showing the known uncertainty

obtained under different input acceleration amplitudes.
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Figure 9. Upper plot: FRF coefficients a(wy) and b(wy) of Nomad 3 x-axis; lower plot: p-value and

accept/reject results of Lilliefors test of FRF coefficients.
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Figure 10. Upper plot: FRF coefficients a(wy) and b(wy) of Nomad 3 y-axis; lower plot: p-value and
accept/reject results of Lilliefors test of FRF coefficients.

The output position x is simulated as the sum of motion-induced position x;; and force-induced
position xy, as

x:xm+xf :fzx*xc—l—xf
where f1, ~ N (mj,, Xj,) is sampled at every ¢ (29)
and x¢(t) = Arsinwyt

where A¢ = 0.2 and wy =733 rad/s (7000 rpm) are chosen.

The butterfly trajectory [36] with its contour of the toolpath on the x- and y-axis shown in Figure 11
is selected. For the DD and PIDD methods, 1y, = 10, np = 3, n3 = 10 and o = 0.01 are selected. For
the DD and PIDD methods, stringency 1 = 95% is selected. Vj;ax = 30 mm/s, Ayax =5 m/ s, and
contour error limit of E;;;;x = 0.4 mm are selected for the feedrate optimization. The tolerance violation
v, which will be analyzed for each method, is defined as

(30)

le(t)| — Emax if |€(t)] > Emax
() = .
0 otherwise

doi:10.20944/preprints202311.0041.v1
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Figure 11. Desired toolpath.

Figure 12 shows the optimized feedrate, acceleration, contour error, tolerance violation and
prediction error of all methods. The cycle times and RMS of tolerance violation -y are summarized
in Table 1. The PB method is the worst in prediction performance because it is not aware of the
unknown uncertainties caused by the force-induced servo error, and hence results in the highest RMS
tolerance violation. The DD method improves adherence to the tolerance by learning the unknown
uncertainties over time. However, DD method initially suffers from significant prediction error due to
its unawareness of known uncertainties. The proposed PIDD method with # = 95% enables restriction
of the contour error under the desired stringency by incorporating known uncertainties and learning
unknown uncertainties the quickest, which enables it to conservatively stay below the error limit
most of the time. Overall, the PIDD method is able to reduce cycle time by 19.3% compared to the
conservative approach while maintaining a similar tolerance violation level. To demonstrate the effect
of the selection of stringency, Figure 13 compares the commanded feedrate, acceleration, contour error,
tolerance violation and prediction error of the PIDD methods using 77 = 95% and 98%. It is observed
that tuning 7 to a higher level has the effect of making the optimized feedrate more conservative and
reducing the error violation.

Note that the proposed PIDD method is not perfect in satisfying the contour error constraints. One
reason is that the prediction error is not perfectly zero, and the stringency constraints can only ensure
that the worst-case out of #% of contour error distribution is within the tolerance. This issue can be
mitigated by increasing #, which will entail more conservative feedrate. Another reason might be due
to the nonlinear effects neglected by linearization of the contour error constraint in Equation (A3) and
sub-optimal learning in § introduced by Laplace’s approximation in Equation (16). These problems
can be addressed by applying nonlinear optimization and non-Gaussian Bayesian regression, at the
price of higher computational cost.
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Figure 12. Feedrate, acceleration, contour error, tolerance violation, and prediction error using
conservative (Cons.) physics-based (PB), data-driven (DD) and proposed (PIDD) methods with 1 =

95% for numerical validation.


https://doi.org/10.20944/preprints202311.0041.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2023 doi:10.20944/preprints202311.0041.v1

18 of 30

——PIDD (77=95%) ===+ PIDD (1=98%)

e o

aw
L el

Feedrate
[mm/s]

—_ R W

cood

Accel
[mm/ sz]

Contour

>

—_— D

>

error [mm] Violation error [mm]
=
o
n

Prediction Tolerance

5 0 5
Time [s] Time [s]

S

Figure 13. Feedrate, acceleration, contour error, tolerance violation, and prediction error using the
proposed (PIDD) methods with # = 95% (from Figure 12 and 1 = 98% for numerical validation.

Table 1. Cycle times and RMS of tolerance violation v for conservative (Cons.), physics-based (PB),
data-driven (DD) and proposed (PIDD) methods in Figures 12 and 13.

Cons. PB DD PIDD (y=95%) PIDD (=98%)
RMSofy[um] 22 66 30 17 0.8
Cycle time [s] 8.89 449 5.17 6.47 7.17

6. Experimental Validation

For validation of the proposed approach, two experimental setups are used. The first set of
experiments, described in Section 6.1, is carried out on an Ender 3 Pro desktop 3D printer, and the
second set of experiments, described in Section 6.2, is carried out on a Nomad 3 desktop CNC machine
tool used in Section 5. Demonstration of the proposed method on two experimental setups helps to

show its versatility.
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6.1. Desktop 3D Printer

6.1.1. Experimental Setup

The experimental setup using an Ender 3 Pro desktop 3D printer is shown in Figure 14. The
optimization algorithm is implemented on dSPACE 1007 real-time control board running at 500Hz
sampling rate, connected to DRV8825 stepper motor drivers for x, y, z and e- axes stepper motors.
The measured x and y- axes accelerations from ADXL335 accelerometers are fed back to dSPACE
1007. To deduce the x and y axes displacement from acceleration measurements, a Luenberger state
observer [6] is used. The observer gains are chosen such that the dynamics of the observer error (i.e.,
discrepancy between estimated position using the nominal physics-based model y;, and observed
position) obtains global asymptotic convergence with an observer frequency f, = 15 Hz.

6.1.2. Experimental Results

This section validates the proposed approach experimentally using the desktop 3D printer, by
comparing its performance with conservative, PB and DD methods. The butterfly toolpath in Figure 11
is used to optimize the feedrate for air-printing (i.e., no material extrusion) and actual printing of the
3D printer. The known uncertainties of x- and y-axis of the printer are incorporated from FRFs in
Figures 15 and 16. Similar to Section 5, Lilliefors test is performed on a(wy) and b(wy) of the FRFs in
the x- and y-axis to validate the Gaussian assumption at the 5% significance level and p-values, where
the hypothesis acceptance rates are computed as 92% and 91% out of all frequencies for the x- and
y-axis, respectively. For the DD and PIDD methods, 1y, = 30, np = 10, n3 = 30 and o, = 0.01 are used.
For the PIDD method, the desired stringency is selected as # = 95%. For feedrate optimization, Vi =
70 mm/s, Amax =3 m/s% and E,ar = 0.1 mm are chosen.

, @* Stepper

LI % motor
dSPACE DS1007 commands §¥ .,
real-time control 4 DRV8825 = ' ¥

board stepper Ende.r 3 Pro ADXL335
T drivers printer accelerometers
|
Feedback

Figure 14. Experimental setup for Section 6.1.
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Figure 15. Frequency response functions of the Ender 3 Pro’s x-axis showing the known uncertainty
obtained under different input acceleration amplitudes.
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Figure 16. Frequency response functions of the Ender 3 Pro’s y-axis showing the known uncertainty

obtained under different input acceleration amplitudes.

Figure 17 shows the profiles of the optimized feedrate, acceleration, contour error and prediction
error of x- and y— axis using the conservative, PB, DD and PIDD methods. The RMS prediction errors,
cycle times and RMS tolerance violation of all methods are reported in Table 2. The PB approach cannot
predict the unknown uncertainties, and hence shows the most significant violation in the contour error.
The DD method mitigates the violation by learning the unknown uncertainties, and the PIDD method
further improves the accuracy by staying the closest to the tolerance with the desired stringency. As a
result, the PIDD method completes the motion 17.8% faster than, while yielding similar contour error
tolerance satisfaction as the conservative one.
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Figure 17. Commanded feedrate, acceleration, contour error, tolerance violation and prediction error
using conservative (Cons.), physics-based, data-driven and proposed approaches in air-printing.

Table 2. Comparison of RMS prediction errors, cycle times and RMS of tolerance violation v
using conservative (Cons.), physics-based (Physics.), data-driven (Data.) and proposed methods
in air-printing.

Cons. Physics. Data. Proposed

x Pred. Error [um] N/A 37.4 22.1 18.1
y Pred. Error [um] N/A 31.7 23.9 19.3
Cycle time [s] 4.70 1.97 2.73 3.86
RMS of  [pum] 1.8 55 39 1.9

To further validate our findings, a 3D-augmentation of the trajectory in Figure 11 with z-height 8
mm is printed using the same printer. Conservative, PB, DD and PIDD methods are applied at each
layer of the print. Figure 18 shows the top and side views of the printed butterflies using the four
methods, as well as their print times. The physics-based and data-driven prints show vibration marks
in the side view, while the proposed and conservative prints are able to achieve vibration-free surface
quality. Overall, the proposed method is able to achieve 15.51% print time reduction compared to the
conservative approach while achieving similar print quality.
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Figure 18. Top and side views of 3D-printed butterfly models using conservative, physics-based,
data-driven and proposed approaches and their print times.

6.2. CNC Machine Tool

6.2.1. Experimental Setup

For experimental validation, the same experimental setup with the machine tool in Figure 6 in
used. The optimization algorithm is implemented on dSPACE 1007 real-time control board running at
500Hz sampling rate, connected to DRV8825 stepper motor drivers for x, y, and z- axes stepper motors.
Renishaw RKLC20-S optical linear encoders are attached to the x and y- axes gantries to measure x
and y- axes positions that are fed back to dSPACE 1007.

6.2.2. Experimental Results

This section validates proposed feedrate optimization using the same set of methods for command
generation, which are conservative, PB, DD and the proposed PIDD methods. The same desired
butterfly trajectory in Figure 11 is used for air cutting and machining an aluminum workpiece with a
3.175 mm diameter flat-end mill and spindle speed of 7000 rpm. Kinematic limits are set as Vj;;5x =
20 mm/s and Ay = 0.5 m/s?, and contour error bound is chosen as E,ar = 0.1 mm in the feedrate
optimization; 1y, = 30, 2 =2, n3 = 30 and o = 0.01 are used in the DD and PIDD methods. The desired
stringency is chosen as # = 95% in the DD and PIDD method.

Figure 19 shows the profiles of optimized feedrate, acceleration, contour error, tolerance violation,
and prediction error of x- and y-axis in air-cutting using the conservative, PB, DD and PIDD approaches.
The PB method frequently violates the tolerance due to unmodeled dynamics, which is caused by the
significant prediction error. The DD method slightly improves prediction accuracy, which is further
improved in the PIDD method where the contour error is able to be constrained close to the limit using
the desired stringency, similar to conservative approach. The proposed PIDD approach completes
the motion 38.06% faster than the conservative method, while maintaining a similar level of tolerance
adherence. The RMS prediction errors in x- and y-axis, cycle times and RMS tolerance violations of
each method are summarized in Table 3.
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Figure 19. Commanded feedrate, acceleration, contour error, tolerance violation, and prediction error
(with its zoomed-in images) of conservative, physics-based (PB), data-driven (DD) and proposed

(PIDD) approaches in air-cutting.
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Figure 20 shows the profiles of optimized feedrate, acceleration, contour error, tolerance violation,
and prediction error of x- and y-axis in actual cutting using the conservative, PB, DD and PIDD
approaches. Similar to air-cutting, the PB method is worst in constraining the contour error due to
unmodeled dynamics and/or cutting force. The DD and PIDD methods reduce the prediction error
compared to the PB method and are able to constrain the contour error close to the limit using the
desired stringency. However, occasionally, PIDD shows worse performance than DD, which may
be due to the difference between measured FRFs when the machine tool is not cutting (shown in
Figures 7 and 8) and the FRFs while it is cutting. Research has shown that there can be significant


https://doi.org/10.20944/preprints202311.0041.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2023 doi:10.20944/preprints202311.0041.v1

24 of 30

differences between FRFs measured without cutting and those measured while cutting [19]. A possible
solution solve this issue is to measure the FRFs and compute known uncertainties during cutting using
operational modal analysis, which may be complicated because of FRF’s variability on the operating
condition of the cutting tool. Another solution is to discard the known uncertainties when they are
inaccurate, i.e., use DD only when PIDD may have errors. Overall, the proposed PIDD approach
completes the motion 29.02% faster than the conservative method while maintaining a similar level
of tolerance adherence. The RMS prediction errors in x- and y-axis, cycle times and RMS tolerance
violations of each method are summarized in Table 3.

Table 3. Comparison of RMS prediction errors, cycle times and RMS of tolerance violation -y using
conservative (Cons.), physics-based (PB), data-driven (DD) and proposed (PIDD) methods.

Cons. PB DD PIDD
Air-cutting  x Pred. Error [um] N/A 178 175 102
y Pred. Error [um] N/A 254 157 72
Cycle time [s] 40.2 20.0 21.1 249
RMS of  [um] 5.0 16.7 165 2.3
Cutting x Pred. Error [um] N/A 472 173 167
y Pred. Error [um] N/A 342 177 181
Cycle time [s] 394 200 23.0 272
RMS of  [um] 6.8 222 37 74
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Figure 20. Commanded feedrate, acceleration, contour error, tolerance violation, and prediction error

(with its zoomed-in images) of conservative, physics-based (PB), data-driven (DD) and proposed
(PIDD) approaches in actual cutting.

Figure 21 shows the machined surfaces and their zoomed-in images of upper left wing using the
trajectories from Figure 20. The surface machined using PB method shows vibration marks, while

the DD and PIDD methods mitigate the vibration and achieve similar quality to that of conservative
approach.
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Figure 21. Machined parts and the zoomed-in images of upper left wing using conservative,
physics-based (PB), data-driven (DD) and proposed (PIDD) approaches.

7. Conclusions and Future Work

This paper presents an MPC framework and methodology for the intelligent feedrate optimization
using an uncertainty-aware digital twin. Its key contributions are summarized as follows.

* A novel uncertainty-aware digital twin that predicts contour error is proposed. The digital
twin is able to incorporate known uncertainty from physics-based models and learn unknown
uncertainty using an online data-driven model to predict contour error’s distribution.

e For the first time, a feedrate optimization with constraints on kinematics and contour error using
quantified uncertainty is introduced. The contour error’s uncertainty using digital twin enables
the manufacturer to impose stringency constraints, which can replace trial-and-error approach of
tuning the tolerance used in practice.

* We have demonstrated the effectiveness of the intelligent feedrate optimization using
uncertainty-aware digital twin, to show up to 38% and 17% cycle time reduction using a desktop
CNC machine tool and a desktop 3D printer, respectively, while achieving similar stringency of
tolerance to that of the a conservative trial-and-error approach similar to those used in practice.

* The proposed intelligent feedrate optimization is expected to bring impact in achieving desired
quality with higher productivity, using less trial-and-error. It is applicable to any machines that
use feed drives, such as coordinate measurement machines (CMMs), and precision machine
tools.

As a limitation, the proposed method has made several assumptions in the methodology to enable
efficient computation, such as Gaussian distribution of frequency response function for computing
the known uncertainty and the linearization of contour error constraints for solving the feedrate
optimization as a sequential linear programming problem. The future work will explore more
sophisticated (non-Gaussian) uncertainty distributions and nonlinear contour error constraints to
improve the accuracy of the digital twin, at the expense of higher computational cost and non-closed
form solutions. Furthermore, additional forms of learning to the uncertainty-aware digital twin, such
as part-to-part or machine-to-machine learning, will be investigated to improve prediction accuracy.

Acknowledgments: This work is partially funded by the National Science Foundation grants #1931950 and
#2054715.


https://doi.org/10.20944/preprints202311.0041.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2023 doi:10.20944/preprints202311.0041.v1

27 of 30

Appendix A. Initialization of yig and X in Section 3.2

The distribution of the weight B can be initialized and learned more accurately using the feature
uncertainty from Equation (13), where the procedure is described as follows. First, yz and Xy are
initialized as the priors g4, and g in the 0-th batch using the nominal physics-based model y;, from
Equation (11). To estimate p4, and X gy, maximum likelihood estimation (MLE) method is applied on a
dataset created offline using a trial desired trajectory x ,i,; with length N, that traverses a pre-defined
path with conservative kinematics used in practice. The nominal physics-based model p; is used
to filter x4 4,4, and formulate %,i,;. Then, Section 3.1’s framework on deterministic feature vector is
borrowed to create multiple datasets consisting of feature vectors and corresponding predictions, i.e.,
(¥o, Xtria1 (0)), (¥1,, Xtriat (Ts)), s (W, 1. Xtriat (Nx T5) ), assuming ¢, is deterministic and ;3 = 0 for
all t. Finally, p, and Zg can be optimized using MLE as

Hpor B0

B N 1 T — T T

_argmmz z(xtrml(l 5) .”ﬁ‘l’iTs) (A1)
yﬁ):/g i=0

(I Zptr; + 02) " (xpriar (iT5) — ﬂE‘PiTS))
where x4, () is approximated as %4 (f).

Appendix B. Derivation of Coefficients ¢y, c; and C, in Equation (16) in Section 3.2

The coefficients cg, c; and C, in Equation (16) can be derived using 0-th, 1-st and 2-nd derivatives
of vector-valued function In p(x(#)|B) in Equation (15) with respect to B, respectively, as

o =~ (x(0) = BTy T (BTZ B+ ) (x(0) — By,
€= _% (ZZTuulPtx(t)BTB + (zﬁullﬂtﬂito—g - 22¢tx(t)2)T'B

. =T = _
—2p,,x(t)07 ) - diag(B Ly, B+02)”!
(A2)

1 ST 55T gt
Cr = —2<—4Z$m¢tx(t)ﬁ BB + 6%y, x(t)Bp
+ 122¢ty¢tx(t)¢7€2ﬁT — 621/;,5]4@]4;‘73)

. oTCT g -

-diag(B Zy,B+02)

where the local point f is taken as the prior u p from the previous window.
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Appendix C. Linearization of Contour Error Constraint in Equation (27) in Terms of JZQ and g{i

The contour error constraint in Equation (27) is linearized in terms of 5c£l and f/{i by linearizing the
standard deviation term 03 (;) in Equation (21) with respect to ¢, and ¢, using linearization points P,
and ¢, as

Ox(r) = Sxpy + Sytpy, + Soo + Son
where Spp = sin(G(t))z(t])tTZﬁt])t + 02)
+ cos(0(0)2 (P Zg, By +2)

So1 = —2sin(0(t))*Zpp, — 2cos(0(t)) Ly, (A3)
S, = \/;R sin(6())°Z

1
S, = NG cos(G(t))ZZﬁy

where 1, is formulated via generating the terms £(t — n,T) - - - £(¢) in ,, by filtering the linearization
point f(p) with p;, . Likewise, ¢, is formulated using Piv,:

Finally, let the alterable features in ¢, be ,,, and the weights corresponding to the alterable
feature in 9, i.e., £(¢), be denoted as B, and that to the unalterable features 9, as B,. The same
notations Yiyur 'BW and ,Byu will be held for y-axis. Then, by substituting Equation (21), (25) and (A3)
into Equation (27), the contour error constraint be re-written as

—sin(6(t)) (Mex) — pg, ¥y, — #g, (Tax) + Tox))
+os(0(0) (Miy) — ul, iy — L, (Ty) + Toy)
_ i A4
< Epax — @ 1(77) (leptu + Sx(Txxél + TOx) ( )
+ Sy + Sy(Tyy{i + Toy) + Soo + 501>

which can be rearranged as linear in terms of x{j and yii as

Uxxil + uyyil < Uy
where Uy = —sin(6(t)) (M — :”Ea Ty) +® 1(5)S, Ty
u,= cos(0(t))(M; — ”Eya Ty) — bel(U)SyTy
Uo = sin(6(t)) (—pg, ¥, — g, Tox) (A5)
— cos(OE)) (—1h,, Pry — 13,0 Toy)
+ Emax — ©71 (1) (Sxy,, + SxTox
+ Syuyu + SyToy + Soo + Sor)

Finally, the contour error constraint in Equation (A5) is also linear with respect to the decision
variable p/ using the relationship in Equation (22).
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