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Abstract: Attack investigation is an important research field in forensics analysis. Many existing supervised 

attack investigation methods rely on well-labeled data for effective training. While the unsupervised approach 

based on BERT can mitigate the issues, the high degree of similarity between certain real-world attack and 

normal behaviors makes it challenging to accurately identify disguised attacks. This paper proposes ConLBS, 

an attack investigation approach that combines the contrastive learning framework and multi-layer 

Transformer network to realize the classification of behavior sequences. Specifically, ConLBS constructs 

behavior sequences describing behavior patterns from audit logs, and a novel lemmatization strategy is 

proposed to map the semantics to the attack pattern layer. Four different augmentation strategies are explored 

to enhance the differentiation between attack and normal behavior sequences. Moreover, ConLBS can perform 

unsupervised representation learning on unlabeled sequences, and can be trained either supervised or 

unsupervised depending on the availability of labeled data. The performance of ConLBS is evaluated in two 

public datasets. The results show that ConLBS can effectively identify at-tack behavior sequences in the cases 

of unlabeled data or less labeled data to realize attack investigation, and achieve the superior effectiveness 

compared to existing methods and models. 

Keywords: attack investigation; contrastive learning; behavior sequence; audit logs 

 

1. Introduction 

Enterprises face threats from covert and persistent multi-step attacks, such as Advanced 

Persistent Threats (APT). To counter such attacks, attack investigation approaches have been 

extensively researched for identifying and tracing attack behaviors within information systems, 

which is an important research field of forensic analysis [1–4]. These methods conduct comprehensive 

causality analysis of a large volume of audit logs collected from ubiquitous system monitoring to 

identify attack patterns that imply the tactics and objectives of attackers [5–8]. However, traditional 

methods rely heavily on feature engineering and require extensive manual work [9–12]. In contrast, 

deep learning (DL) techniques have the capacity to learn irregular patterns from massive amounts of 

data that may elude human observation, thereby facilitating the automation of data analysis 

processes. 

Previous researches have introduced DL-based methods to advance attack investigation 

[5,13,14], yielding remarkable results. ATLAS [5] and AIRTAG [14] are state-of-the-art DL-based 

attack investigation approaches. However, these efforts still suffer certain limitations. ATLAS is a 

supervised learning method that requires labeled data for training. Unlike general domain DL tasks 

with publicly available datasets, the realm of attack investigation lacks well-labeled datasets. The 

reason is that the audit logs contain detailed confidential information from within enterprises, and 

precisely labeling extensive audit logs necessitates expertise in both log and network security [15]. In 

response to these limitations, AIRTAG leverages unlabeled log text data for BERT [16] model pre-

training and employs a one-class support vector machine (OC-SVM) as a downstream classifier for 

unsupervised attack investigation. The essence of this unsupervised downstream task is to discover 

attack behaviors through similarity. However, the data representations learned by the BERT model 

are to some extent collapsing [17], meaning that almost all log text data are mapped to a small space 
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and therefore produce high similarity. Furthermore, attackers frequently disguise their activities as 

normal or share processes with legitimate users, causing certain attack behaviors to closely resemble 

normal user behaviors. These two issues hinder AIRTAG from effectively identifying some attack 

behaviors in the downstream attack investigation task. 

To address the above-mentioned limitations, this paper employs the contrastive learning (CL) 

framework and sequence representation techniques for capturing irregular behavior patterns present 

in audit logs. This model can perform representation learning on a large amount of unlabeled data 

and capture token-level and sequence-level features based on the training objective tasks. 

Furthermore, The CL framework encourages two augmented sequences from the same behavior to 

be closer while keeping sequences from different behaviors far apart [18]. Thus, it can improve the 

accuracy of unsupervised classifier in identifying disguised attack behavior, and it can realize 

supervised fine-tuning by using pre-trained models and embedded representations to learn both 

attack and normal behavior sequences with a small number of labeled samples. 

This paper proposes ConLBS, an attack investigation approach by contrastive learning with 

behavior sequence. Behavior sequences are introduced to describe the behavior patterns of high-level 

behaviors, which contain contextual information about system events and represents the execution 

flow of various behaviors at the system level. ConLBS combines the contrastive learning framework 

with a multi-layer Transformer network to acquire embedded representations of unlabeled behavior 

sequences, and then it trains a classifier for identifying attack behavior sequences. The overall 

workflow of ConLBS is depicted in Figure 1. In the initial phase, ConLBS creates platform-

independent provenance graphs from audit logs and optimizes these graphs to reduce their 

complexity before proceeding to construct behavior sequences. Then, ConLBS employs Depth-First-

Search (DFS) to gather context information about system events and generate behavior sequences. 

Additionally, a novel lemmatization strategy is introduced to extract the semantics of behavior 

sequences. Second, building upon the SimCLR framework [19], ConLBS has devised a contrastive 

learning model that facilitates the acquisition of embedded representations for unlabeled behavior 

sequences at both the entity-level and sequence-level. Four sequence augmentation strategies are 

proposed for contrastive learning. Finally, ConLBS proves versatile in its application, as it can be 

utilized for both unsupervised single-class task training and fine-tuning for supervised single-

sentence classification tasks, depending on the availability of labeled data. The performance of 

ConLBS in identifying attack events is evaluated with 13 attack scenarios in two public datasets. The 

results show that ConLBS can effectively identify attack behavior sequences in the cases of unlabeled 

data or less labeled data to realize attack investigation. And compared with existing methods and 

models, our method achieves superior results. 

 

Figure 1. The overall of ConLBS workflow. 
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2. Related Work 

2.1. Attack Investigation 

Audit logs are collected by system monitoring tools from different operating systems. An audit 

log encapsulates a specific system event or system call that includes system entities, relationships, 

timestamps, and other essential system-related information. The concept of constructing provenance 

graphs from OS-level audit logs was proposed by King et al. [20]. Some investigations in the area of 

attack analysis utilize rule-based or Indicator of Compromises (IOCs) matching methods to identify 

possible threat behaviors. Nevertheless, the precision and comprehensiveness of the rule database 

and IOCs are crucial factors that impact the effectiveness of these techniques [2,10]. Holmes [2] maps 

low-level audit logs to tactics, techniques, and procedures (TTPs) and advanced persistent threat 

(APT) stages through rule-based matching within the knowledge base.  Other techniques propose 

investigation strategies based on statistical analysis, leveraging the comparatively lower frequency 

of threat events in contrast to normal events to determine the authenticity of the alerts [21]. However, 

such methods may mistakenly categorize low-frequency normal events as high-threat occurrences. 

OmegaLog [6] combines application event logs and system logs to create a Universal Provenance 

Graph (UPG) that portrays multi-layer semantic data. In contrast, WATSON [3] infers log semantics 

from contextual indications and consolidates event semantics to depict behaviors. This technique 

greatly decreases the effort required for investigating attacks. However, aforementioned traditional 

methods rely heavily on feature engineering and require extensive manual work. 

Deep learning-based approaches enable the creation of attack investigation models by 

identifying unique features of normal or malicious behaviors [5,13,14]. ATLAS [5] applies Long Short-

Term Memory (LSTM) networks for supervised sequence learning. AIRTAG [14] parses log files, 

utilizing BERT to train a pre-trained model, and subsequently train a downstream classifier. However, 

these methods are constrained by the availability of high-quality labeled data and model performance, 

making them less effective in addressing certain specific scenarios in real-world environments. These 

scenarios may include situations where the number of attack behaviors is significantly lower than 

that of normal behaviors, leading to sample imbalance, or cases in which attackers' disguises result 

in high similarity between attack sequences and normal sequences. 

2.2. Contrastive Learning Framework 

Recently, the use of contrastive learning in natural language processing (NLP) tasks has 

increased significantly [22–25]. Some of these methods draw inspiration from the SimCLR 

architecture, such as DeCLUTR [25] and CLEAR [18]. DeCLUTR takes a holistic training approach by 

amalgamating both contrastive and masked language model objectives. However, their primary 

focus lies in utilizing spans for contrastive learning, which may potentially result in fragmented 

semantic comprehension. CLEAR closely aligns with DeCLUTR in terms of architecture and 

objectives. Both approaches place a central emphasis on pre-training language models, albeit 

requiring substantial corpora and resource investments.  

The SimCLR architecture consists of four components: (1) The data augmentation strategies (t ~ 

T ) is used to independently generate different input samples; (2) A base encoder network 𝑓(·); (3) A 

projection head 𝑔(·) ; (4) A contrastive loss function that maximizes the agreement. Figure 2. 

illustrates the fundamental framework for contrastive learning of data representations. Depending 

on the data characteristics, data augmentation strategies can be explored to enhance downstream 

tasks. An appropriate encoding network can be chosen for 𝑓(·), such as GNN or BERT, based on the 

specific task requirements. 
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Figure 2. The SimCLR architecture [19]. 

3. Methodology 

3.1. Provenance graphs construction and optimization 

Provenance graphs construction. ConLBS extracts the system event as a quadruple 𝑒𝑣𝑒𝑛𝑡 =<𝑠𝑢𝑏, 𝑜𝑝𝑒𝑟, 𝑜𝑏𝑗, 𝑇𝑖𝑚𝑒 >, where 𝑜𝑝𝑒𝑟 denotes the operation action from a subject 𝑠𝑢𝑏  to an object 𝑜𝑏𝑗, 

and 𝑇𝑖𝑚𝑒 represents the timestamp. For example, a log recording the reading of a code file could be 

represented as < 𝑐𝑜𝑑𝑒. 𝑒𝑥𝑒_43200,  𝑟𝑒𝑎𝑑, \%𝑃𝑎𝑡ℎ% \𝑚𝑎𝑖𝑛. 𝑝𝑦,  2023/7/22 9: 31: 32 > . Then, 

ConLBS performs causal correlation on the extracted system events to construct platform-

independent provenance graphs. These graphs signify the behavior processes and information flows 

in the OS-level. The nodes stand for subjects and objects, while the directed edges signify subject 

operations on objects. ConLBS can gather comprehensive contextual information of system events 

from the provenance graphs, resulting in a more accurate portrayal of behavioral patterns. As shown 

in Figure 3., step A demonstrates the process of constructing provenance graphs from audit logs. 

Provenance graphs optimization. Audit logs record coarse-grained system operations and a lot of 

redundant information, leading to large and complex provenance graphs. ConLBS eliminates 

erroneous dependencies and decreases graph complexity while retaining crucial behavioral data for 

attack investigation. 

First, ConLBS splits provenance graphs into subgraphs that describe different high-level 

behaviors. An intuition is that system events belonging to the same behavior occur at shorter intervals 

and have the similar patten. The formula is designed to model this intuition: 𝑆𝐼𝑀൫𝑒𝑣𝑒𝑛𝑡௜ , 𝑒𝑣𝑒𝑛𝑡௝൯ = 𝜃 ∗ (1 − 𝑇௝−𝑇௜ 𝑇௘௡ௗ − 𝑇௦௧௔௥௧) + 𝜇 ∗ 𝑠𝑖𝑚_𝑡𝑜𝑘(𝑒௜ , 𝑒௝)𝑚𝑎𝑥_𝑙𝑒𝑛                              (1) 𝜃  and 𝜇 are the weight coefficient. In this formula, 𝑠𝑖𝑚_𝑡𝑜𝑘(𝑒௜ , 𝑒௝) represents the similarity 

between entities 𝑒௜ and 𝑒௝ in two events. The formula is as fellow: 

௦௜௠_௧௢௞൫௘೔,௘ೕ൯௠௔௫_௟௘௡ =
⎩⎪⎨
⎪⎧               0                                𝑖𝑓         𝑒௜.௧௬௣௘ ≠ 𝑒௝.௧௬௣௘   𝑠𝑎𝑚𝑒_𝑛𝑎𝑚𝑒൫𝑒௜ , 𝑒௝൯        else 𝑖𝑓     𝑒௧௬௣௘ = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ௦௔௠௘_௕௜௧ା௦௔௠௘_௣௢௥௧ଷଷ           else 𝑖𝑓            𝑒௧௬௣௘ = 𝐼𝑃  

  
௦௔௠௘_௧௢௞൫௘೔,௘ೕ൯௠௔௫ቀ௟௘௡(௘೔),௟௘௡൫௘ೕ൯ቁ              else 𝑖𝑓   𝑒௧௬௣௘ = 𝑓𝑖𝑙𝑒 𝑜𝑟 𝑢𝑟𝑙 (2) 

where type denotes the types of the entities in system events. 𝑠𝑎𝑚𝑒_𝑛𝑎𝑚𝑒(𝑒௜ , 𝑒௝) is set 1 if the 

process name and PID both are same, otherwise the value is 0. 𝑠𝑎𝑚𝑒_𝑏𝑖𝑡 counts the number of the 

same initial bits of IP address. Each directory name of file or url is treated as a token. 𝑠𝑎𝑚𝑒_𝑡𝑜𝑘(𝑒௜ , 𝑒௝) represents the number of the same tokens. We group system events based on 

whether the 𝑆𝐼𝑀൫𝑒𝑣𝑒𝑛𝑡௜ , 𝑒𝑣𝑒𝑛𝑡௝൯ exceeds specified threshold, which is set to 0.7. According to the 

above formula, the entity is divided into several partitions. 
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Second, the redundant and behavior-unrelated system events are identified and removed. 

Among the audit logs, only one or a few logs are directly related to the behavior, while other logs 

record the system calls triggered by the behaviors. These behavior-unrelated system events appear 

repeatedly in different behaviors, and even if removed do not affect the flow of information and 

evidence related to the attack. Therefore, the above clustered system events are merged and 

renamed with semantic descriptions. 

Third, ConLBS merges multiple directed edges with the same operation between a subject and 

an object. The timestamps are modified to a time range for determining the sequence of system 

events. 

 

Figure 3. The process of constructing behavior sequences from audit logs. 

3.2. Behavior Sequences 

ConLBS extracts behavior sequences from the optimized graphs (step C in Figure 3), can 

describe the behavior patterns of high-level behaviors at the system level. Subsequently, the 

original semantic of behavior sequences is extracted by using lemmatization (step D in Figure 3). 

Compared with ATLAS, ConLBS does not rely on labeled attack entities in the process of 

constructing sequences, and the lemmatization strategy proposed by ConLBS is more suitable for 

describing behavior semantics. 

Behavior sequence construction. The system events are taken as the root, such as <regedit. exe_54284 write C:\Windows\System32\config\SOFTWARE (HKEY) > , and DFS with 

specific termination conditions are used to traverse forward and backward to obtain the context 

information. Specifically, during backward traversal of the graph, the constraint is enforced to 

ensure that the timestamp of each subsequent edge must be monotonically increasing compared 

to all preceding edges. In contrast, during the forward traversal of the graph, another constraint is 

enforced, requiring that the timestamp of each preceding edge must maintain a monotonically 

decreasing order in relation to all other edges. 
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Lemmatization. ConLBS employs lemmatization to eliminate noise, such as hostnames in file 

paths, and to extract the original semantics of the entities within the sequences. Previous efforts 

have also considered noise removal and semantic extraction, many of them have resulted in the 

loss of some semantics [2]. This study utilizes dedicated mapping rules tailored to various types of 

nodes to ensure a more comprehensive semantic representation. Table 1 illustrates a partial 

representation of the semantic mapping rules for the three types of nodes. For process entities, 

semantic description is derived from the process name, which serves as the primary source of 

semantic information for these nodes. For network entities, IP addresses are categorized as either 

'internal' or 'external'. Additionally, websites are referred to as 'URLs'. For file entities, specific rules 

are applied based on the file types. Firstly, the content of the file description is used to extract 

semantic information. For example, a picture file (Desktop\moon.jpg) is mapped to ‘picture file’. 

Secondly, semantic information can be extracted from the file path. For example, files located at 

C:\Windows\system32 are represented as 'system file'. Thirdly, for files that do not meet the 

aforementioned mapping rules, the file type or suffix is utilized to convey semantics. 

Table 1. The partial rules of the semantic extraction. 

Type Node Name Semantic 

process name_PID name 

network IP-Port, website IP address, url 

file 

.jpg, .png, .py, .java picture file, code file 

\system32\, \Program files\ system file, app file 

*.html, *.lst html file, lst file 

3.3. Behavior sequence augmentation 

In this paper four different augmentation strategies are explored based on common situations 

in attack investigation to enhance the differentiation between attack and normal behaviors, shown 

in Figure 4. 

(a) Sequence truncation randomly remove events from the head and tail of the behavior 

sequences and preserve the continuous sequence in the middle. The maximum length of the 

removed event is set to 𝑚𝑎𝑥_𝑙𝑒𝑛 = 0.2 ∗ 𝑘 , where k is the total length of the sequence. The 

truncation enables the model to learn the intermediate process of the behaviors. 

(b) Event deletion randomly selects events in the behavior sequence and replaces them with a 

special token [DEL]. Percentage of events deleted was 20%. This strategy simulates scenarios where 

some system events were not recorded by the monitor tools or were lost. 

(c) Noise addition inserts random events into the behavior sequences. The inserted position is 

random. The addition of noise simulates scenarios in which the behavior sequence may include 

system events that do not belong to that particular behavior. Events of 5% length are randomly 

added at four selected locations, ensuring a total length of around 20%. 

(d) Substitution is a strategy used to enhance the robustness of the model. It involves randomly 

selecting certain events and replacing them with other events that share same entity. The number 

of replaced events does not exceed 20%. 
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Figure 4. Four different basic behavior sequence augmentation strategies. The system events are 

smallest unit of action. 

3.4. Behavior sequence representation 

The four main components of our CL framework are shown in the Figure 1. Data 

augmentation strategies (BS ~ S) are used to generate two related augmented behavior sequences 𝒮ℯ෤𝑛௜ and 𝒮ℯ෤𝑛௝ from the initial behavior sequence. 

Multilayer Transformer encoder. We utilize the multilayer Transformer to learn the 

representation of the input behavior sequences 𝒮ℯ෤𝑛௜ and 𝒮ℯ෤𝑛௝. The pre-training task is the same 

as BERT MLM, we randomly mask 15% tokens of the input behaviors, and among the selected 

tokens, 80% probability is replaced by [𝑀𝐴𝑆𝐾], 10% probability is randomly replaced by other 

tokens, and 10% probability is left unchanged. The loss function for the masked tokens is defined 

as: ℒெ௅ெ = − ∑ 𝑙𝑜𝑔 ቀ𝑝൫𝑡𝑜𝑘෪ ௜ = 𝑡𝑜𝑘௜ห𝜃, 𝜃ଵ൯ቁெ௜ୀଵ , 𝑡𝑜𝑘௜ ∈ 𝑉] (3) 

where 𝑀 is the number of masked entities, 𝜃 is the parameters of the Transformer Encoder,  𝜃ଵ 

is the parameter of the output layer connected to the Encoder in the Masked Entity task. Probability 

function 𝑝 depends on the parameters 𝜃 and 𝜃ଵ, 𝑡𝑜𝑘෪ ௜ represents a token masked at the 𝑖 − 𝑡ℎ 

position in the tokenized behavior sequence.  

Projection head. A small neural network projection head 𝑔(·) that maps representations to the 

space where contrastive loss is applied. A MLP is used with one hidden layer to obtain 𝓏௜ =𝑔(ℎ௜௡) = W(ଶ)𝜎W(ଵ)ℎ௜௡, where σ is a ReLU non-linearity. Previous work has proved it beneficial to 

define the contrastive loss on 𝓏௜ rather than ℎ௜௡. 

The Loss for Training. The contrastive learning loss has been tremendously used in previous 

work [17,19]. Following these works, we use the contrastive learning loss function for a contrastive 

prediction task, that is, trying to predict positive augmentation pair 𝒮ℯ෤𝑛௜  and 𝒮ℯ෤𝑛௝  in the 

augmented set {𝑆𝑒̃𝑛} (the sample size is 2N). The two variants from the same behavior sequence 

form the positive pair, while the other 2(N−1) augmented samples in the set are treated as negative 

examples. The loss function for a positive pair is defined as: 𝑙(𝑖, 𝑗) = −𝑙𝑜𝑔 ௘௫௣(௦௜௠(𝓏೔,𝓏ೕ)/𝒯)∑ 𝕝[ೖಯ೔]మಿೖసభ ௘௫௣(௦௜௠(𝓏೔,𝓏ೕ)/𝒯) (4) 

Where 𝒯 is a temperature parameter,  𝑠𝑖𝑚(𝓏௜ , 𝓏௝) denotes the cosine similarity of two vector 𝓏௜ and 𝓏௝, and 𝕝[௞ஷ௜] is an indicator function to judge whether 𝑘 ≠ 𝑖. Finally, we average all 2N 

in-batch classification losses to obtain the final contrastive loss: ℒ஼௢௡௅ = ଵଶே ∑ ∑ 𝑏(𝑖, 𝑗)ଶே௝ୀଵଶே௜ୀଵ  𝑙(𝑖, 𝑗) (5) 

When 𝑖 and 𝑗 is a positive pair, 𝑏(𝑖, 𝑗) returns 1, otherwise 0. 

The overall loss function is obtained by combining the loss function of multilayer Transformer 

encoder (token-level) and the loss function of contrastive learning (sequence-level): ℒ௧௢௧௔௟ =  ℒெ௅ெ + ℒ஼௢௡௅ (6) 
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3.5. Sequence classification training 

Supervised learning. In real enterprise environments, Intrusion Detection Systems (IDS) and 

security analysts label logs related to discovered attacks. We can utilize these labeled data to fine-

tune the model to learn both attack and normal behavior patterns. Since the behavior sequence 

representation phase has already enabled the model to learn features of behavior sequences, only 

a small amount of data is needed for fine-tuning. This paper abstracts behavior sequence 

classification as a single-sentence binary classification task and employs linear classifier MLP for 

downstream task training. The experiments demonstrate that using 500 labeled samples can 

achieve comparable results with ATLAS training on the entire dataset. 

Unsupervised learning. Unsupervised methods can effectively address challenges arising from 

data imbalances during training for downstream tasks. This paper uses OC-SVM for training the 

downstream task, which has been proven effective in previous work [14]. Unlabeled datasets that 

do not contain attacks are employed for training to learn normal behavior patterns. During testing, 

attack behavior sequences are identified by detecting outliers, which are sequences positioned 

outside the classifier's boundary. 

4. Experiment 

4.1. Datasets and setups 

Datasets. The performance of ConLBS is evaluated using two publicly available datasets, 

including ATLAS dataset [5] and DAPRA CADETS dataset [26]. Both datasets contain multiple 

simulated attack scenarios. Throughout the attack behaviors, normal behaviors such as SSH login 

may also occur on the hosts. The size of these two datasets is comparable to real-world data. 

Setups. For the Model configuration, like the previous method [16], our Transformer is set to 

12 layers, 12 heads, and 768 hidden layers. The minibatches contains 256 behavior sequences of 

maximum length 512 tokens. We adopt Adam optimizer and set the learning rate to 5e-7 and we 

use 0.1 for dropout on all layers and in attention. The temperature 𝒯 of the loss is set to 0.1. A MLP 

with one hidden layer are used to obtain 𝓏௜ = 𝑔(ℎ௜௡). After train ing is completed, we throw away 

the projection head 𝑔(·) and use encoder 𝑓(·) and representation ℎ௜௡ for categorizing behavioral 

sequences. 

4.2. Attack Investigation Results 

When evaluating the performance of ConLBS, we employ labeled data from the datasets for 

fine-tuning, simulating the scenario in which logs are labeled by security analysts in real enterprise 

environments. Table 2 reports the results of ConLBS at predicting attack events in each attack 

scenario. As seen, ConLBS correctly predicts both attack and normal events with an average F1-

score of 99.786% and 99.823% across both datasets. It can be seen from the results that the quantity 

of FP and FN is very small compared with that of TP and TN, so we can obtain high Precision and 

Recall values. By comparing FP and FN, our method incorrectly predicts normal events as attacks 

more frequently. This outcome is acceptable in real attack investigation, because the risk of 

underreporting attacks outweighs that of falsely reporting them. 
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Table 2. Attack investigation results on two datasets. 

Attack Scenarios 
Attack Investigation Results 

TP TN FP FN Precision Recall F1-score 

ATLAS. S-1 4,536 78,856 28 13 99.387% 99.714% 99.550% 

ATLAS. S-2 13,584 331,051 47 10 99.655% 99.926% 99.791% 

ATLAS. S-3 4,975 109,285 22 23 99.560% 99.540% 99.550% 

ATLAS. S-4 13,199 88,576 21 4 99.841% 99.970% 99.905% 

ATLAS. M-1 6,331 171,131 13 9 99.795% 99.858% 99.827% 

ATLAS. M-2 28,914 180,326 51 17 99.824% 99.941% 99.883% 

ATLAS. M-3 24,728 140,347 94 7 99.621% 99.972% 99.796% 

ATLAS. M-4 5,945 137,167 24 22 99.598% 99.631% 99.615% 

ATLAS. M-5 23,526 452,354 86 37 99.636% 99.843% 99.739% 

ATLAS. M-6 6,372 201,569 17 22 99.734% 99.656% 99.695% 

ATLAS. Avg. 13,211 189,066 40 16 99.696% 99.876% 99.786% 

CADETS. case-1 87,658 436,957 218 76 99.752% 99.913% 99.833% 

CADETS. case-2 53,631 472,913 175 49 99.675% 99.909% 99.792% 

CADETS. case-3 34,097 209,681 58 47 99.830% 99.862% 99.846% 

CADETS. Avg. 58,462 373,184 150 57 99.744% 99.902% 99.823% 

Figure 5 show the ROC curve of ConLBS on two datasets. The ROC curve demonstrates that 

our classification model achieves excellent results in both datasets, which shows that ConLBS can 

effectively identify attack events and realize attack investigation. In fact, attack investigation results 

shows that there is a large difference between the attack behavior sequences and the normal 

behavior sequences. Attack behaviors typically involve intricate steps and numerous operations, 

often leading to longer behavior sequences that encompass more entities. In contrast, normal user 

behavior mostly performs simple and repetitive actions, which results in a large number of shorter, 

similar sequences. 

 

Figure 5. ROC curve of ConLBS on two datasets. 

The results in Table 3 illustrate the effect of different lemmatization strategies and sequence 

representation models on the classification results. The model's performance is weak when using 

raw unprocessed semantics. And the results reveal that ConLBS's lemmatization strategy 

outperforms ATLAS's lemmatization strategy. The experimental results show that appropriate 

semantic information can improve the classification effect of the model. Using BERTRe-train, a pre-

trained sequence representation model obtained by using behavior sequences in our contrastive 
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learning model, achieves better results (F1-score +0.606%) compared to directly using the public 

BERTBase model. This is because the generic model lacks a significant number of unknown words 

in the behavioral sequences. 

Table 3. Performance comparison of ConLBS using different semantic granularity and pre-trained 

models.RS indicates the use of raw unprocessed semantics, and Lem indicate the use of semantics 

obtained using lemmatization techniques. 

Method Precision Recall F1-score 

RS +BERTBase 87.782% 84.333% 86.023% 

Lem ATLAS+BERTBase 97.102% 92.184% 94.579% 

Lem ConLBS+BERTBase 99.532% 98.831% 99.180% 

RS +BERTRe-train 93.850% 89.700% 91.728% 

Lem ATLAS+BERTRe-train 99.132% 99.365% 99.248% 

Lem ConLBS+BERTRe-train 99.696% 99.876% 99.786% 

4.3. Comparison Analysis 

This paper compares ConLBS with to state-of-the-art supervised and unsupervised attack 

investigation methods. Figure 6. illustrates the number of FN and FP for ConLBS and AIRTAG in 

various attack scenarios. ConLBS exhibits a lower average number of FN compared to AIRTAG, 

while its average number of FP is slightly higher than that of AIRTAG. These results indicate that 

CL model of ConLBS effectively increases the separation between attack and normal sequences. 

Figure 7. shows the performance of ATLAS and ConLBS (Fine-tune) trained with different 

numbers of labeled samples. When using 500 labeled samples, ConLBS achieves comparable 

results with ATLAS and ConLBS trained with full (30721) labeled samples. This result signifies that 

ConLBS can efficiently conduct attack investigations even when there is a scarcity of attack samples. 

 

Figure 6. The number of False Negatives (FN) and False Positives (FP) of the AIRTAG and ConLBS. 
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Figure 7. Performance of ATLAS and ConLBS (Fine-tune) trained with different numbers of labeled 

samples. 

This paper also compares ConLBS with several typical deep learning models, as presented in 

Table 4. In comparison to CNN [28] and LSTM [29], the behavior sequences are sampled to achieve 

a balance between positive and negative samples. Word2vec [30] is employed to sequences and 

convert them into fixed-dimensional feature vectors. The results show that the performance of 

CNN is much lower than other methods, because the convolution kernel and window size limit 

the effective learning of long sequences. LSTM solves this problem, but is limited by word2vec 

embeddings. BERT [16] and RoBERTa [31] have demonstrated good results, but encountering 

attacks that masquerade as normal behavior is challenging. Certain segments of these attack 

behavior sequences are similar to normal behaviors. 

Table 4. Comparison of ConLBS with deep learning models. 

Base models/method Recall Precision F1-score 

Word2vec+CNN [27] 87.425% 89.379% 88.391% 

Word2vec+LSTM[28] 95.854% 96.412% 96.132% 

BERT [16] 98.460% 98.891% 98.675% 

RoBERTa [29] 99.601% 99.829% 99.715% 

ConLBS 99.902% 99.744% 99.823% 

4.4. Runtime Performance of ConLBS 

The time consumption of ConLBS is measured on two publicly available datasets. The size of 

these two datasets is comparable to real-world data. Table 5 reports the runtime performance of 

attack investigation methods. During the data preprocessing phase, the average processing speed 

of constructing dependency graphs from the datasets is 358MB/min. The total time cost of reading 

log data, constructing graphs, and extracting behavior sequences by ConLBS is 23 minutes and 48 

seconds. The training process is offline, and once completed, the model does not need to re-learn 

previously learned behavior sequences. The training time consumption of ConLBS exceeds that of 

ATLAS due to ConLBS having a larger number of learned samples. Ultimately, the model's average 

time to identify a sequence as an attack is 2.53 s. 
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Table 5. Runtime performance of attack investigation approaches. 

Method 
Logs size（

/min） 

Graph/Sequence 

construction 

Train 

Time 

Investigation Time 

(Avg.) 

POIROT[1] 114.5MB 1:54:35 -- 7.72s 

ATLAS 169MB 0:30:23 0:28:26 5.0s 

ConLBS 358MB 0:23:48 0:36:35 2.53s 

5. Conclusion 

Existing supervised attack investigation approaches require labeled and balanced data for 

training. While unsupervised methods can mitigate the issues mentioned above, the high degree of 

similarity between certain real-world attack behaviors and normal behaviors in the sequences makes 

it challenging for current unsupervised methods based on BERT to accurately identify disguised 

attacks. Thus, this paper introduces ConLBS, which does not rely on labeled data to learn embedded 

representation of behavior sequences, and can be trained either supervised or unsupervised 

depending on the availability of labeled data. This paper introduces behavior sequences to describe 

high-level behavior patterns and explores several sequence augmentation strategies for enhancing 

contrastive learning. The results show that ConLBS can effectively identify attack behavior sequences 

in the cases of unlabeled data or less labeled data to realize attack investigation. 

In future work, we plan to explore new representations of behavior patterns, such as using a 

topological approach to represent the execution flow of behavior at the system level. In addition to 

this, exploring data-enhancement strategies that can facilitate downstream tasks and improving 

contrastive learning models will also be part of the future work. 
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