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Abstract: Attack investigation is an important research field in forensics analysis. Many existing supervised
attack investigation methods rely on well-labeled data for effective training. While the unsupervised approach
based on BERT can mitigate the issues, the high degree of similarity between certain real-world attack and
normal behaviors makes it challenging to accurately identify disguised attacks. This paper proposes ConLBS,
an attack investigation approach that combines the contrastive learning framework and multi-layer
Transformer network to realize the classification of behavior sequences. Specifically, ConLBS constructs
behavior sequences describing behavior patterns from audit logs, and a novel lemmatization strategy is
proposed to map the semantics to the attack pattern layer. Four different augmentation strategies are explored
to enhance the differentiation between attack and normal behavior sequences. Moreover, ConLBS can perform
unsupervised representation learning on unlabeled sequences, and can be trained either supervised or
unsupervised depending on the availability of labeled data. The performance of ConLBS is evaluated in two
public datasets. The results show that ConLBS can effectively identify at-tack behavior sequences in the cases
of unlabeled data or less labeled data to realize attack investigation, and achieve the superior effectiveness
compared to existing methods and models.

Keywords: attack investigation; contrastive learning; behavior sequence; audit logs

1. Introduction

Enterprises face threats from covert and persistent multi-step attacks, such as Advanced
Persistent Threats (APT). To counter such attacks, attack investigation approaches have been
extensively researched for identifying and tracing attack behaviors within information systems,
which is an important research field of forensic analysis [1-4]. These methods conduct comprehensive
causality analysis of a large volume of audit logs collected from ubiquitous system monitoring to
identify attack patterns that imply the tactics and objectives of attackers [5-8]. However, traditional
methods rely heavily on feature engineering and require extensive manual work [9-12]. In contrast,
deep learning (DL) techniques have the capacity to learn irregular patterns from massive amounts of
data that may elude human observation, thereby facilitating the automation of data analysis
processes.

Previous researches have introduced DL-based methods to advance attack investigation
[5,13,14], yielding remarkable results. ATLAS [5] and AIRTAG [14] are state-of-the-art DL-based
attack investigation approaches. However, these efforts still suffer certain limitations. ATLAS is a
supervised learning method that requires labeled data for training. Unlike general domain DL tasks
with publicly available datasets, the realm of attack investigation lacks well-labeled datasets. The
reason is that the audit logs contain detailed confidential information from within enterprises, and
precisely labeling extensive audit logs necessitates expertise in both log and network security [15]. In
response to these limitations, AIRTAG leverages unlabeled log text data for BERT [16] model pre-
training and employs a one-class support vector machine (OC-SVM) as a downstream classifier for
unsupervised attack investigation. The essence of this unsupervised downstream task is to discover
attack behaviors through similarity. However, the data representations learned by the BERT model
are to some extent collapsing [17], meaning that almost all log text data are mapped to a small space
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and therefore produce high similarity. Furthermore, attackers frequently disguise their activities as
normal or share processes with legitimate users, causing certain attack behaviors to closely resemble
normal user behaviors. These two issues hinder AIRTAG from effectively identifying some attack
behaviors in the downstream attack investigation task.

To address the above-mentioned limitations, this paper employs the contrastive learning (CL)
framework and sequence representation techniques for capturing irregular behavior patterns present
in audit logs. This model can perform representation learning on a large amount of unlabeled data
and capture token-level and sequence-level features based on the training objective tasks.
Furthermore, The CL framework encourages two augmented sequences from the same behavior to
be closer while keeping sequences from different behaviors far apart [18]. Thus, it can improve the
accuracy of unsupervised classifier in identifying disguised attack behavior, and it can realize
supervised fine-tuning by using pre-trained models and embedded representations to learn both
attack and normal behavior sequences with a small number of labeled samples.

This paper proposes ConLBS, an attack investigation approach by contrastive learning with
behavior sequence. Behavior sequences are introduced to describe the behavior patterns of high-level
behaviors, which contain contextual information about system events and represents the execution
flow of various behaviors at the system level. ConLBS combines the contrastive learning framework
with a multi-layer Transformer network to acquire embedded representations of unlabeled behavior
sequences, and then it trains a classifier for identifying attack behavior sequences. The overall
workflow of ConLBS is depicted in Figure 1. In the initial phase, ConLBS creates platform-
independent provenance graphs from audit logs and optimizes these graphs to reduce their
complexity before proceeding to construct behavior sequences. Then, ConLBS employs Depth-First-
Search (DFS) to gather context information about system events and generate behavior sequences.
Additionally, a novel lemmatization strategy is introduced to extract the semantics of behavior
sequences. Second, building upon the SimCLR framework [19], ConLBS has devised a contrastive
learning model that facilitates the acquisition of embedded representations for unlabeled behavior
sequences at both the entity-level and sequence-level. Four sequence augmentation strategies are
proposed for contrastive learning. Finally, ConLBS proves versatile in its application, as it can be
utilized for both unsupervised single-class task training and fine-tuning for supervised single-
sentence classification tasks, depending on the availability of labeled data. The performance of
ConLBS in identifying attack events is evaluated with 13 attack scenarios in two public datasets. The
results show that ConLBS can effectively identify attack behavior sequences in the cases of unlabeled
data or less labeled data to realize attack investigation. And compared with existing methods and
models, our method achieves superior results.
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Figure 1. The overall of ConLBS workflow.
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2. Related Work

2.1. Attack Investigation

Audit logs are collected by system monitoring tools from different operating systems. An audit
log encapsulates a specific system event or system call that includes system entities, relationships,
timestamps, and other essential system-related information. The concept of constructing provenance
graphs from OS-level audit logs was proposed by King et al. [20]. Some investigations in the area of
attack analysis utilize rule-based or Indicator of Compromises (IOCs) matching methods to identify
possible threat behaviors. Nevertheless, the precision and comprehensiveness of the rule database
and IOCs are crucial factors that impact the effectiveness of these techniques [2,10]. Holmes [2] maps
low-level audit logs to tactics, techniques, and procedures (TTPs) and advanced persistent threat
(APT) stages through rule-based matching within the knowledge base. Other techniques propose
investigation strategies based on statistical analysis, leveraging the comparatively lower frequency
of threat events in contrast to normal events to determine the authenticity of the alerts [21]. However,
such methods may mistakenly categorize low-frequency normal events as high-threat occurrences.
Omegalog [6] combines application event logs and system logs to create a Universal Provenance
Graph (UPG) that portrays multi-layer semantic data. In contrast, WATSON [3] infers log semantics
from contextual indications and consolidates event semantics to depict behaviors. This technique
greatly decreases the effort required for investigating attacks. However, aforementioned traditional
methods rely heavily on feature engineering and require extensive manual work.

Deep learning-based approaches enable the creation of attack investigation models by
identifying unique features of normal or malicious behaviors [5,13,14]. ATLAS [5] applies Long Short-
Term Memory (LSTM) networks for supervised sequence learning. AIRTAG [14] parses log files,
utilizing BERT to train a pre-trained model, and subsequently train a downstream classifier. However,
these methods are constrained by the availability of high-quality labeled data and model performance,
making them less effective in addressing certain specific scenarios in real-world environments. These
scenarios may include situations where the number of attack behaviors is significantly lower than
that of normal behaviors, leading to sample imbalance, or cases in which attackers' disguises result
in high similarity between attack sequences and normal sequences.

2.2. Contrastive Learning Framework

Recently, the use of contrastive learning in natural language processing (NLP) tasks has
increased significantly [22-25]. Some of these methods draw inspiration from the SimCLR
architecture, such as DeCLUTR [25] and CLEAR [18]. DeCLUTR takes a holistic training approach by
amalgamating both contrastive and masked language model objectives. However, their primary
focus lies in utilizing spans for contrastive learning, which may potentially result in fragmented
semantic comprehension. CLEAR closely aligns with DeCLUTR in terms of architecture and
objectives. Both approaches place a central emphasis on pre-training language models, albeit
requiring substantial corpora and resource investments.

The SimCLR architecture consists of four components: (1) The data augmentation strategies (t ~
T) is used to independently generate different input samples; (2) A base encoder network f(-); (3) A
projection head g(-); (4) A contrastive loss function that maximizes the agreement. Figure 2.
illustrates the fundamental framework for contrastive learning of data representations. Depending
on the data characteristics, data augmentation strategies can be explored to enhance downstream
tasks. An appropriate encoding network can be chosen for f(-), such as GNN or BERT, based on the
specific task requirements.
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Figure 2. The SimCLR architecture [19].
3. Methodology

3.1. Provenance graphs construction and optimization

Provenance graphs construction. ConLBS extracts the system event as a quadruple event =<
sub, oper, obj, Time >, where oper denotes the operation action from a subject sub to anobject obj,
and Time represents the timestamp. For example, a log recording the reading of a code file could be
represented as < code.exe_43200, read, \%Path% \main.py, 2023/7/229:31:32 > . Then,
ConLBS performs causal correlation on the extracted system events to construct platform-
independent provenance graphs. These graphs signify the behavior processes and information flows
in the OS-level. The nodes stand for subjects and objects, while the directed edges signify subject
operations on objects. ConLBS can gather comprehensive contextual information of system events
from the provenance graphs, resulting in a more accurate portrayal of behavioral patterns. As shown
in Figure 3., step A demonstrates the process of constructing provenance graphs from audit logs.

Provenance graphs optimization. Audit logs record coarse-grained system operations and a lot of
redundant information, leading to large and complex provenance graphs. ConLBS eliminates
erroneous dependencies and decreases graph complexity while retaining crucial behavioral data for
attack investigation.

First, ConLBS splits provenance graphs into subgraphs that describe different high-level
behaviors. An intuition is that system events belonging to the same behavior occur at shorter intervals
and have the similar patten. The formula is designed to model this intuition:

SIM(eventi, event]-) =60x(1- )

N sim_tok(e;, e;) L
%
Tona — Tsmrt) H max_len (1)

6 and p are the weight coefficient. In this formula, sim_tok(e; e;) represents the similarity

~T;

between entities e; and e; in two events. The formula is as fellow:

0 if ei.type * ej.type
same_name(e;, ej) else if  eype = process
sim_tok(ej.e;) same_bit+same_port
_— = — — [ = 2
max_len 33 else if Ctype Ip ( )

same_tok(ee;)
max(len(ei),len(ej))
where type denotes the types of the entities in system events. same_name(e;, ¢;) is set 1 if the

elseif eype = file or url

process name and PID both are same, otherwise the value is 0. same_bit counts the number of the
same initial bits of IP address. Each directory name of file or url is treated as a token.
same_tok(e;, e;) represents the number of the same tokens. We group system events based on
whether the siM(event;, event;) exceeds specified threshold, which is set to 0.7. According to the
above formula, the entity is divided into several partitions.
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Second, the redundant and behavior-unrelated system events are identified and removed.
Among the audit logs, only one or a few logs are directly related to the behavior, while other logs
record the system calls triggered by the behaviors. These behavior-unrelated system events appear
repeatedly in different behaviors, and even if removed do not affect the flow of information and
evidence related to the attack. Therefore, the above clustered system events are merged and
renamed with semantic descriptions.

Third, ConLBS merges multiple directed edges with the same operation between a subject and
an object. The timestamps are modified to a time range for determining the sequence of system
events.
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Figure 3. The process of constructing behavior sequences from audit logs.

3.2. Behavior Sequences

ConLBS extracts behavior sequences from the optimized graphs (step C in Figure 3), can
describe the behavior patterns of high-level behaviors at the system level. Subsequently, the
original semantic of behavior sequences is extracted by using lemmatization (step D in Figure 3).
Compared with ATLAS, ConLBS does not rely on labeled attack entities in the process of
constructing sequences, and the lemmatization strategy proposed by ConLBS is more suitable for
describing behavior semantics.

Behavior sequence construction. The system events are taken as the root, such as <
regedit. exe_54284 write C:\Windows\System32\config\SOFTWARE (HKEY) > , and DFS with
specific termination conditions are used to traverse forward and backward to obtain the context
information. Specifically, during backward traversal of the graph, the constraint is enforced to
ensure that the timestamp of each subsequent edge must be monotonically increasing compared
to all preceding edges. In contrast, during the forward traversal of the graph, another constraint is
enforced, requiring that the timestamp of each preceding edge must maintain a monotonically
decreasing order in relation to all other edges.
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Lemmatization. ConLBS employs lemmatization to eliminate noise, such as hostnames in file
paths, and to extract the original semantics of the entities within the sequences. Previous efforts
have also considered noise removal and semantic extraction, many of them have resulted in the
loss of some semantics [2]. This study utilizes dedicated mapping rules tailored to various types of
nodes to ensure a more comprehensive semantic representation. Table 1 illustrates a partial
representation of the semantic mapping rules for the three types of nodes. For process entities,
semantic description is derived from the process name, which serves as the primary source of
semantic information for these nodes. For network entities, IP addresses are categorized as either
'internal’ or 'external'. Additionally, websites are referred to as 'URLs'. For file entities, specific rules
are applied based on the file types. Firstly, the content of the file description is used to extract
semantic information. For example, a picture file (Desktop \ moon.jpg) is mapped to “picture file’.
Secondly, semantic information can be extracted from the file path. For example, files located at
C:\Windows\system32 are represented as 'system file'. Thirdly, for files that do not meet the
aforementioned mapping rules, the file type or suffix is utilized to convey semantics.

Table 1. The partial rules of the semantic extraction.

Type Node Name Semantic
process name_PID name
network IP-Port, website IP address, url

jpg, -png, .py, java picture file, code file
file \system32\, \ Program files\ system file, app file
*.html, *.Ist html file, Ist file

3.3. Behavior sequence augmentation

In this paper four different augmentation strategies are explored based on common situations
in attack investigation to enhance the differentiation between attack and normal behaviors, shown
in Figure 4.

(a) Sequence truncation randomly remove events from the head and tail of the behavior
sequences and preserve the continuous sequence in the middle. The maximum length of the
removed event is set to max_len = 0.2 * k, where k is the total length of the sequence. The
truncation enables the model to learn the intermediate process of the behaviors.

(b) Event deletion randomly selects events in the behavior sequence and replaces them with a
special token [DEL]. Percentage of events deleted was 20%. This strategy simulates scenarios where
some system events were not recorded by the monitor tools or were lost.

(c) Noise addition inserts random events into the behavior sequences. The inserted position is
random. The addition of noise simulates scenarios in which the behavior sequence may include
system events that do not belong to that particular behavior. Events of 5% length are randomly
added at four selected locations, ensuring a total length of around 20%.

(d) Substitution is a strategy used to enhance the robustness of the model. It involves randomly
selecting certain events and replacing them with other events that share same entity. The number
of replaced events does not exceed 20%.
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Figure 4. Four different basic behavior sequence augmentation strategies. The system events are
smallest unit of action.

3.4. Behavior sequence representation

The four main components of our CL framework are shown in the Figure 1. Data
augmentation strategies (BS ~ S) are used to generate two related augmented behavior sequences
Sén; and Sén; from the initial behavior sequence.

Multilayer Transformer encoder. We utilize the multilayer Transformer to learn the
representation of the input behavior sequences Sén; and Sén;. The pre-training task is the same
as BERT MLM, we randomly mask 15% tokens of the input behaviors, and among the selected
tokens, 80% probability is replaced by [MASK], 10% probability is randomly replaced by other
tokens, and 10% probability is left unchanged. The loss function for the masked tokens is defined
as:

Ly = — Xitilog (p(t?ﬁci = tok;|6, 91)),t0ki ev] 3)
where M is the number of masked entities, 6 is the parameters of the Transformer Encoder, 6,
is the parameter of the output layer connected to the Encoder in the Masked Entity task. Probability
function p depends on the parameters 8 and 8;, tok; represents a token masked at the i — th
position in the tokenized behavior sequence.

Projection head. A small neural network projection head g(-) that maps representations to the
space where contrastive loss is applied. A MLP is used with one hidden layer to obtain z; =
g(h) = WA gW®h?, where o is a ReLU non-linearity. Previous work has proved it beneficial to
define the contrastive loss on z; rather than hf.

The Loss for Training. The contrastive learning loss has been tremendously used in previous
work [17,19]. Following these works, we use the contrastive learning loss function for a contrastive
prediction task, that is, trying to predict positive augmentation pair §én; and Sén; in the
augmented set {Sén} (the sample size is 2N). The two variants from the same behavior sequence
form the positive pair, while the other 2(N-1) augmented samples in the set are treated as negative
examples. The loss function for a positive pair is defined as:

.. exp(sim(z;,5)/T)
l(i,j) =-1 4
2 °g RN k=i exp(sim(z;,z))/T) )

Where T is a temperature parameter, sim(z;,z;) denotes the cosine similarity of two vector
3; and zj, and lj;,;; is an indicator function to judge whether k # i. Finally, we average all 2N

in-batch classification losses to obtain the final contrastive loss:
Loony = 5= X2 T, b(0,)) 1)) (5)
When i and j is a positive pair, b(i,j) returns 1, otherwise 0.
The overall loss function is obtained by combining the loss function of multilayer Transformer
encoder (token-level) and the loss function of contrastive learning (sequence-level):
Liotat = Luim + Leons, (6)
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3.5. Sequence classification training

Supervised learning. In real enterprise environments, Intrusion Detection Systems (IDS) and
security analysts label logs related to discovered attacks. We can utilize these labeled data to fine-
tune the model to learn both attack and normal behavior patterns. Since the behavior sequence
representation phase has already enabled the model to learn features of behavior sequences, only
a small amount of data is needed for fine-tuning. This paper abstracts behavior sequence
classification as a single-sentence binary classification task and employs linear classifier MLP for
downstream task training. The experiments demonstrate that using 500 labeled samples can
achieve comparable results with ATLAS training on the entire dataset.

Unsupervised learning. Unsupervised methods can effectively address challenges arising from
data imbalances during training for downstream tasks. This paper uses OC-SVM for training the
downstream task, which has been proven effective in previous work [14]. Unlabeled datasets that
do not contain attacks are employed for training to learn normal behavior patterns. During testing,
attack behavior sequences are identified by detecting outliers, which are sequences positioned
outside the classifier's boundary.

4. Experiment

4.1. Datasets and setups

Datasets. The performance of ConLBS is evaluated using two publicly available datasets,
including ATLAS dataset [5] and DAPRA CADETS dataset [26]. Both datasets contain multiple
simulated attack scenarios. Throughout the attack behaviors, normal behaviors such as SSH login
may also occur on the hosts. The size of these two datasets is comparable to real-world data.

Setups. For the Model configuration, like the previous method [16], our Transformer is set to
12 layers, 12 heads, and 768 hidden layers. The minibatches contains 256 behavior sequences of
maximum length 512 tokens. We adopt Adam optimizer and set the learning rate to 5e-7 and we
use 0.1 for dropout on all layers and in attention. The temperature T of the loss is set to 0.1. A MLP
with one hidden layer are used to obtain z; = g(h'). After train ing is completed, we throw away
the projection head g(-) and use encoder f(-) and representation h;' for categorizing behavioral
sequences.

4.2. Attack Investigation Results

When evaluating the performance of ConLBS, we employ labeled data from the datasets for
fine-tuning, simulating the scenario in which logs are labeled by security analysts in real enterprise
environments. Table 2 reports the results of ConLBS at predicting attack events in each attack
scenario. As seen, ConLBS correctly predicts both attack and normal events with an average F1-
score of 99.786% and 99.823% across both datasets. It can be seen from the results that the quantity
of FP and FN is very small compared with that of TP and TN, so we can obtain high Precision and
Recall values. By comparing FP and FN, our method incorrectly predicts normal events as attacks
more frequently. This outcome is acceptable in real attack investigation, because the risk of
underreporting attacks outweighs that of falsely reporting them.
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Table 2. Attack investigation results on two datasets.

Attack Investigation Results

TP TN FP FN Precision  Recall Fl-score
ATLAS. 5-1 4536 7885 28 13 99.387%  99.714%  99.550%
ATLAS.S-2 13,584 331,051 47 10 99.655%  99.926%  99.791%
ATLAS. S-3 4975 109,285 22 23 99.560%  99.540%  99.550%
ATLAS.S4 13,199 88576 21 4 99.841%  99.970%  99.905%
ATLAS. M-1 6,331 171,131 13 9 99.795%  99.858%  99.827%
ATLAS. M-2 28914 180,326 51 17 99.824%  99.941%  99.883%
ATLAS. M-3 24,728 140,347 94 7 99.621%  99.972%  99.796%
ATLAS.M-4 5945 137,167 24 22 99.598%  99.631%  99.615%
ATLAS.M-5 23526 452354 86 37 99.636%  99.843%  99.739%
ATLAS.M-6 6,372 201,569 17 22 99.734%  99.656%  99.695%
ATLAS. Avg. 13211 189,066 40 16 99.696%  99.876%  99.786%
CADETS. case-1 87,658 436,957 218 76 99.752%  99.913%  99.833%
CADETS. case-2 53,631 472,913 175 49 99.675%  99.909%  99.792%
CADETS. case-3 34,097 209,681 58 47 99.830%  99.862%  99.846%
CADETS. Avg. 58462 373,184 150 57 99.744%  99.902%  99.823%

Attack Scenarios

Figure 5 show the ROC curve of ConLBS on two datasets. The ROC curve demonstrates that
our classification model achieves excellent results in both datasets, which shows that ConLBS can
effectively identify attack events and realize attack investigation. In fact, attack investigation results
shows that there is a large difference between the attack behavior sequences and the normal
behavior sequences. Attack behaviors typically involve intricate steps and numerous operations,
often leading to longer behavior sequences that encompass more entities. In contrast, normal user
behavior mostly performs simple and repetitive actions, which results in a large number of shorter,
similar sequences.

ROC curve for attack investigation model

1.0

0.8

0.64

0.4 1

FNR (False Negatice Rate)

0.2 4

L ROC curve on ATLAS dataset
0.0 4 - = ROC curve on DAPRA CADETS dataset

0.0 0.2 0.4 0.6 0.8 1.0
FPR (False Positice Rate)

Figure 5. ROC curve of ConLBS on two datasets.

The results in Table 3 illustrate the effect of different lemmatization strategies and sequence
representation models on the classification results. The model's performance is weak when using
raw unprocessed semantics. And the results reveal that ConLBS's lemmatization strategy
outperforms ATLAS's lemmatization strategy. The experimental results show that appropriate
semantic information can improve the classification effect of the model. Using BERTre-train, a pre-
trained sequence representation model obtained by using behavior sequences in our contrastive
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learning model, achieves better results (F1-score +0.606%) compared to directly using the public
BERTsase model. This is because the generic model lacks a significant number of unknown words
in the behavioral sequences.

Table 3. Performance comparison of ConLBS using different semantic granularity and pre-trained
models.RS indicates the use of raw unprocessed semantics, and Lem indicate the use of semantics
obtained using lemmatization techniques.

Method Precision Recall F1-score
RS +BERThase 87.782% 84.333% 86.023%
Lem atLas+BER Thase 97.102% 92.184% 94.579%
Lem conss+BER Trase 99.532% 98.831% 99.180%
RS +BERTre-train 93.850% 89.700% 91.728%
Lem a1.As+BER Tre-train 99.132% 99.365% 99.248%
Lem cones+BER Tre-train 99.696% 99.876% 99.786%

4.3. Comparison Analysis

This paper compares ConLBS with to state-of-the-art supervised and unsupervised attack
investigation methods. Figure 6. illustrates the number of FN and FP for ConLBS and AIRTAG in
various attack scenarios. ConLBS exhibits a lower average number of FN compared to AIRTAG,
while its average number of FP is slightly higher than that of AIRTAG. These results indicate that
CL model of ConLBS effectively increases the separation between attack and normal sequences.
Figure 7. shows the performance of ATLAS and ConLBS (Fine-tune) trained with different
numbers of labeled samples. When using 500 labeled samples, ConLBS achieves comparable
results with ATLAS and ConLBS trained with full (30721) labeled samples. This result signifies that
ConLBS can efficiently conduct attack investigations even when there is a scarcity of attack samples.

1
B AIRTAG

50 1 = ConlBS

40
30 1
20 1

104

Number of the False Negatives(FN)

S-1 S-2 S-3 S-4 M-1 M-2 M-3 M-4 M-5 M-6

1
mm AIRTAG
s ConlBS

Number of the False Positives(FP)
H
o

Figure 6. The number of False Negatives (FN) and False Positives (FP) of the AIRTAG and ConLBS.


https://doi.org/10.20944/preprints202311.0019.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2023

doi:10.20944/preprints202311.0019.v1

11

1.01

0.8

0.6

0.2 4

~=
_)(_
-
——

ATLAS_Recall
ATLAS_Precision
ATLAS_F-score
ConLBS_Recall

P —- ConLBS_Precision
¢ —— ConLBS_F-score
10 sarlnples 100 salmples 300 saimples 500 sa{mples 1000 s‘amples 30721 slamples

Number of labeled samples for training

Figure 7. Performance of ATLAS and ConLBS (Fine-tune) trained with different numbers of labeled

samples.

This paper also compares ConLBS with several typical deep learning models, as presented in
Table 4. In comparison to CNN [28] and LSTM [29], the behavior sequences are sampled to achieve
a balance between positive and negative samples. Word2vec [30] is employed to sequences and
convert them into fixed-dimensional feature vectors. The results show that the performance of
CNN is much lower than other methods, because the convolution kernel and window size limit
the effective learning of long sequences. LSTM solves this problem, but is limited by word2vec
embeddings. BERT [16] and RoBERTa [31] have demonstrated good results, but encountering
attacks that masquerade as normal behavior is challenging. Certain segments of these attack
behavior sequences are similar to normal behaviors.

Table 4. Comparison of ConLBS with deep learning models.

Base models/method Recall Precision F1-score
Word2vec+CNN [27] 87.425% 89.379% 88.391%
Word2vec+LSTM[28] 95.854% 96.412% 96.132%
BERT [16] 98.460% 98.891% 98.675%
RoBERTa [29] 99.601% 99.829% 99.715%
ConLBS 99.902% 99.744% 99.823%

4.4. Runtime Performance of ConLBS

The time consumption of ConLBS is measured on two publicly available datasets. The size of
these two datasets is comparable to real-world data. Table 5 reports the runtime performance of
attack investigation methods. During the data preprocessing phase, the average processing speed
of constructing dependency graphs from the datasets is 358MB/min. The total time cost of reading
log data, constructing graphs, and extracting behavior sequences by ConLBS is 23 minutes and 48
seconds. The training process is offline, and once completed, the model does not need to re-learn
previously learned behavior sequences. The training time consumption of ConLBS exceeds that of
ATLAS due to ConLBS having a larger number of learned samples. Ultimately, the model's average
time to identify a sequence as an attack is 2.53 s.
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Table 5. Runtime performance of attack investigation approaches.

Logs size ( Graph/Sequence Train  Investigation Time
Method . . .
/min) construction Time (Avg.)
POIROT[1] 114.5MB 1:54:35 - 7.72s
ATLAS 169MB 0:30:23 0:28:26 5.0s
ConLBS 358MB 0:23:48 0:36:35 2.53s

5. Conclusion

Existing supervised attack investigation approaches require labeled and balanced data for
training. While unsupervised methods can mitigate the issues mentioned above, the high degree of
similarity between certain real-world attack behaviors and normal behaviors in the sequences makes
it challenging for current unsupervised methods based on BERT to accurately identify disguised
attacks. Thus, this paper introduces ConLBS, which does not rely on labeled data to learn embedded
representation of behavior sequences, and can be trained either supervised or unsupervised
depending on the availability of labeled data. This paper introduces behavior sequences to describe
high-level behavior patterns and explores several sequence augmentation strategies for enhancing
contrastive learning. The results show that ConLBS can effectively identify attack behavior sequences
in the cases of unlabeled data or less labeled data to realize attack investigation.

In future work, we plan to explore new representations of behavior patterns, such as using a
topological approach to represent the execution flow of behavior at the system level. In addition to
this, exploring data-enhancement strategies that can facilitate downstream tasks and improving
contrastive learning models will also be part of the future work.

Acknowledgments: This work is supported in part by the National Natural Science Foundation of
China under Grant U21B2020 and Grant U1936216.

References

1.  Milajerdi S M, Eshete B, Gjomemo R, et al. Poirot: Aligning attack behavior with kernel audit records for
cyber threat hunt-ing[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. London, UK, 2019: 1795-1812.

2. Milajerdi SM, Gjomemo R, Eshete B, et al. Holmes: real-time apt detection through correlation of suspicious
information flows[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP). SAN
FRANCISCO, USA,2019: 1137-1152.

3. Zeng ], Chua Z L, Chen Y, et al. Watson: Abstracting behaviors from audit logs via aggregation of
contextual seman-tics[C]//Proceedings of the 28th Annual Network and Distributed System Security
Symposium, NDSS. 2021.

4. Gao P, Shao F, Liu X, et al. Enabling efficient cyber threat hunting with cyber threat intelligence[C]//2021
IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021: 193-204.

5. Alsaheel et al., “ATLAS: A Sequence-based Learning Approach for Attack Investigation”, in Proc. of 30th
USENIX Security Sym-posium, [Online], 2021, pp. 3005-3022.

6. W.U. Hassan, M. A. Noureddine, P. Datta, A. Bates, “Omegalog: High-Fidelity Attack Investigation via
Transparent Multi-layer Log Analysis”, in Proceedings of Network and Distributed System Se-curity
Symposium 2020, [Online], 2020.

7. P.Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni and P. Mittal, “AIQL: Enabling Efficient Attack Investigation
from System Monitoring Data,” in Proceedings of 2018 USENIX Annual Technical Confer-ence (USENIX
ATC 18), Boston, USA, 2018, pp. 113-126.

8. K. Yonghwi, et al. "MCI: Modeling-based Causality Inference in Audit Logging for Attack Investigation,"
in Proceedings of Net-work and Distributed System Security Symposium, vol. 2, pp. 4, 2018.

9. Zhao ], Yan Q, Liu X, et al. Cyber Threat Intelligence Modeling Based on Heterogeneous Graph
Convolutional Network[C]//23rd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2020). 2020: 241-256.

10. M. N. Hossain, S. Sheikhi, and R. Sekar. "Combating dependence explosion in forensic analysis using
alternative tag propagation semantics," in 2020 IEEE Symposium on Security and Privacy (SP), pp. 1139-
1155, 2020.


https://doi.org/10.20944/preprints202311.0019.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 November 2023 doi:10.20944/preprints202311.0019.v1

13

11. ZhuT, Wang ], Ruan L, et al. General, Efficient, and Real-time Data Compaction Strategy for APT Forensic
Analysis[]]. IEEE Transactions on Information Forensics and Security, 2021.

12. R. Yang et al. RATScope: Recording and Reconstructing Missing RAT Semantic Behaviors for Forensic
Analysis on Windows][J]. IEEE Trans. Dependable and Secure Computer. 2020: 1-1.

13.  Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and diagnosis from
system logs through deep learning. In ACM SIGSAC Conference on Computer and Commu-nications
Security, 2017.

14. Ding H, Zhai ], Nan Y, et al. {AIRTAG}: Towards Automated Attack Investigation by Unsupervised
Learning with Log Texts[C]//32nd USENIX Security Symposium (USENIX Security 23). 2023: 373-390.

15. Liu, Fucheng, et al. "Log2vec: A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise." Pro-ceedings of the 2019 ACM SIGSAC conference on computer and
communications security. 2019.

16. J. Devlin, M. Chang, K. Lee, and K. Toutanova. "Bert: Pre-training of deep bidirectional transformers for
language understanding," in Proceedings of NAACL-HLT, 2019, pp.4171-4186.

17. Yan Y, Li R, Wang S, et al. Consert: A contrastive framework for self-supervised sentence representation
transfer([J]. arXiv preprint arXiv:2105.11741, 2021.

18. Wu Z, Wang S, Gu J, et al. Clear: Contrastive learning for sentence representation[J]. arXiv preprint
arXiv:2012.15466, 2020.

19. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual
representations[C]//International con-ference on machine learning. PMLR, 2020: 1597-1607.

20. King, Samuel T., and Peter M. Chen. "Backtracking intrusions." in Proc. ACM Symp. Oper. Syst. Princ, pp.
223-236. 2003.

21. W. U. Hassan, et al.,, "Nodoze: Combatting threat alert fatigue with automated provenance triage." in
Proceedings of Network and Dis-tributed System Security Symposium 2019, USA, 2019.

22. Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, and Lidong Bing. 2020. An unsupervised sentence
embedding method by mu-tual information maximization. In Proceedings of the 2020 Confer-ence on
Empirical Methods in Natural Language Processing (EMNLP), pages 1601-1610.

23. Hongchao Fang and Pengtao Xie. 2020. Cert: Contrastive self-supervised learning for language
understanding. arXiv preprint arXiv:2005.12766.

24. Fredrik Carlsson, Magnus Sahlgren, Evangelia Gogoulou, Amaru Cuba Gyllensten, and Erik Ylipa'a”
Hellqvist. 2021. Semantic re-tuning with contrastive tension. In International Conference on Learning
Representations.

25.  John M Giorgi, Osvald Nitski, Gary D Bader, and Bo Wang. 2020. Declutr: Deep contrastive learning for
unsupervised textual repre-sentations. arXiv preprint arXiv:2006.03659.

26. ]J. Torrey, “Transparent Computing Engagement 3 Data Release,” 2020, [Online]. Available:
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md.

27. Wang Q, Hassan W U, Li D, et al. You Are What You Do: Hunting Stealthy Malware via Data Provenance
Analysis[C]//NDSS. 2020.

28. Y. Zhang, and B. C. Wallace. "A Sensitivity Analysis of (and Prac-titioners’ Guide to) Convolutional Neural
Networks for Sentence Classification," in Proc. Int. Jt. Conf. Nat. Lang. Process., vol. 1, pp. 253-263, 2017.

29. S.Hochreiter, and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-
1780, 1997.

30. M. Tomas, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Dis-tributed representations of words and
phrases and their composi-tionality." in Adv. Neural inf. Process. Syst., -vol. 2, pp. 3111-3119, 2013.

31. Y. Liu et al., "RoBERTa: A robustly optimized BERT pretraining approach,” in Proc. Int. Conf. Learn.
Represent., 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202311.0019.v1

