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Abstract: Mesenchymal stromal cells (MSCs) are a subset of heterogeneous non-hematopoietic fibroblast-like 
cells which play important roles in tissue repair, inflammation, and immune modulation. MSCs residing in the 
bone marrow microenvironment (BMME) functionally interact with hematopoietic stem progenitor cells 
regulating hematopoiesis. However, MSCs have also emerged in the last years as key regulator of tumor 
microenvironment. Indeed, they are now considered as active players in the pathophysiology of hematologic 
malignancies rather than passive by-standers in hematopoietic microenvironment. Once the malignant event 
occurs, the BMME acquires cellular, molecular, and epigenetic abnormalities affecting tumor growth and 
progression. In this context, MSC behavior is affected by signals coming from cancer cells. Furthermore, it has 
been showed that stromal cells themselves play a major role in several hematological malignancies’ pathogenesis. 
This bidirectional crosstalk creates a functional tumor niche unit wherein tumor cells acquire a selective 
advantage over their normal counterpart and are protected from drug treatment. It is therefore of critical 
importance to unveil the underlying mechanisms which activate a protumor phenotype of MSCs for defining 
unmasked vulnerabilities of hematological cancer cells which could be pharmacologically exploited to disrupt 
the tumor/MSCs coupling. The present review will focus on the current knowledge about MSC dysfunction 
mechanisms in the BMME of hematological cancers, sustaining tumor growth, immune escape, and cancer 
progression. 
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1. Introduction 
Mesenchymal stromal cells (MSCs) are a critical component of bone marrow (BMME) 

microenvironment whereby they provide newly formed osteoblasts and tightly regulate the 
homeostasis of hematopoietic stem and progenitor cells (HSPCs) [1]. In this context, MSCs are the 
major contributor of many key niche factors and maintain the dynamic balance between HSPCs self-
renewal, quiescence, proliferation, and differentiation [2, 3]. MSCs are located in the sites of 
hematopoiesis starting from embryonic developmental stages [4]. Importantly, MSCs and their 
progeny such as osteoblasts, chondrocytes and adipocytes, are structural components of both 
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endosteal and perivascular niches [5]. Within these compartments, MSCs interact with both 
hematopoietic stem cells and more differentiated hematopoietic progenitors, thus regulating their 
quiescence, proliferation, and differentiation [6-8] (Figure 1).  

 
Figure 1. Schematic representation showing dynamic activity of HSPC and MSC when BMME is at 
homeostasis. The continuous interplay between HSCPs and stromal cells is essential for ensuring normal 
hematopoiesis. In the hematological cancer scenario, this complex interplay is deeply dysregulated favoring 
trafficking and infiltration of cancer cells into a protective BM niche. 

Different MSC subtypes interact with HSPCs in specific regions of the niche [9]: CD271+ MSCs 
are bone-lining cells sustaining long-term HSPCs in low oxygen area, whereas CD146+ and 
CD271+CD146+ MSCs are located in BM sinusoids with activating and fast-proliferating HSPCs [10, 
11]. A plethora of supporting factors regulating HSPCs self-renewal and trafficking are provided by 
MSCs in the BM niche, such as CXCL12 and stem cells factor [12, 13]. Notably, alteration of HSPC 
and BM-MSC interactions can alter normal hematopoiesis causing hematological malignancies [14-
17].  

MSC behavior is dynamically regulated both by intrinsic mechanisms and microenvironment 
factors, highlighting the high plasticity of these cells in adapting to tissue homeostasis and 
regenerative needs [18]. In this context, the therapeutic use of MSCs in the field of regenerative 
medicine relies on their ability to migrate to injured tissues and to promote endogenous regeneration 
sustaining the growth and differentiation of stem resident cells [19, 20]. In details, MSC therapeutic 
potential for the treatment of immunological diseases result from their ability to suppress or control 
intensive immune activation by inhibiting immune cell proliferation and inducing 
immunosuppressive subsets though the secretion of anti-inflammatory factors or direct cell-to-cell 
contact [20-22]. However, MSCs also take part to tumorigenesis process contributing to BMME 
malignant transformation and maintenance, finally promoting tumor cell growth, survival, 
progression, and therapy resistance. Similar to HSPCs, the interactions between cancer cells and BM-
MSCs can determinate tumor cell dormancy or proliferation. For example, leukemic stem cells (LSCs) 
co-localize with CXCL12-secreting MSCs in BM, inducing their quiescence [22]. Furthermore, 
accumulation of senescent MSCs in BM niche might promote the progression from premalignant to 
over hematological malignancy [23],[24]. Senescence of MSCs is accompanied by several phenotypic 
changes, including enlarged cell morphology, decreased proliferative capacity and impaired 
differentiation ability [25]. Evidence suggests that the presence of increased numbers of senescent 
MSCs is a characteristic feature of several hematological cancers [26]. When functional and 
regenerative capacities of aging MSCs are diminished, they enter in a replicative senescence status 
which promotes BM inflammation and the dysregulation of hematopoiesis [27] (Figure 1). It is well 
known that senescent cells release pro-inflammatory factors, generally known as Senescence-
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Associated Secretory Phenotype (SASP) which contributes to tumor immunosuppressive 
microenvironment [28]. Furthermore, it has been shown that SASP factors such as IL-6, CXCL8 and 
GDF15 can alter HSPC homeostasis in vitro [29]. In detail, IL-6 secreted by aged BM-MSCs induces 
rapid HSPC expansion, thereby leading to depletion of HSPC pool and increased risk of genomic 
instability in these cells [23, 30]. MSCs are subject to genetic alterations and chromosomal aberrations 
contributing to age-and disease-associated MSC dysfunctions [31, 32]. Interestingly, it has been 
demonstrated that these alterations differ from ones observed in the hematopoietic tumor cells of the 
same patient, corroborating the idea that unstable MSCs might facilitate the expansion of malignant 
cells [33]. However, no recurring genetic mutations or cytogenetic aberrations have been found in 
MSCs from BMME of hematological cancers [33-36], unveiling that epigenetic modifications underlie 
the activation of their pro-tumor phenotype. In this context, cellular epigenetic architecture is 
modeled based on the environmental insults and physiological changes to maintain MSC functions, 
including their self-renewal, differentiation, and niche modulation abilities [37]. Notably, 
dysfunctions of MSC phenotype persist also after their expansion ex vivo, suggesting a heritable 
epigenetic dysregulation which persist despite the removal of disease associated BMME. In 
agreement, the methylome of MSC from hematological cancers was found to be distinct from healthy 
stromal cells [38-41]. 

Data from previous studies revealed that a cancer-associated fibroblast (CAF)-like phenotype is 
activated in MSCs from patients with hematological cancers [42-44]. Indeed, these cells express 
tumorigenic markers such as alpha smooth muscle actin (αSMA) and fibroblast activation protein 
(FAP) as consequence of the soluble factors produced by cancer cells [45-47]. In agreement, CAFs 
might derive from MSCs working as a subset of “specialized” stromal cells [48, 49]. Paunescu and 
colleagues previously showed that MSCs and CAF have many similarities including their phenotype 
and the only difference is the secreted cytokines [50]. In their study, CAFs have been demonstrated 
to derive from a specialization process which converts MSCs inside the tumor structure for beĴer 
serving tumor cells [50]. A mounting number of studies indicated that growth and survival of 
leukemic clone is promoted by inflammation-driven changes in the BM-MSCs [51]. In particular, 
naïve MSCs are able to exert bidirectional effect on tumor cells favoring or inhibiting its growth [52], 
while tumor “educated” MSCs promote tumor progression, in relation to the inflammatory 
microenvironment [53].  Compared to the healthy counterpart, MSCs from BM tumor milieu show 
a distinct transcriptional landscape characterized by cellular stress and upregulation of inflammatory 
molecules which sustain malignant over healthy clonal hematopoietic cell expansion [34, 54, 55]. The 
pro-leukemic role of MSCs can also be achieved indirectly by shaping the BMME immune infiltrate 
[56, 57]. Indeed, the immunomodulatory effect of MSCs on innate and adaptive immunity is a major 
mechanism by which these cells can affect tumor initiation and progression [58-61]. This feature 
depends on the type and intensity of inflammatory signals into the BMME. A high inflammatory state 
causes MSCs to produce T cell suppression, while a low inflammatory state leads to MSC-induced T 
cell activation [62].  In hematological malignancies, senescent MSCs release more inflammatory 
signals feeding an inflammatory milieu able to scramble the delicate balance of pathways involved 
in tissue-specific regeneration and remodeling [63]. Although MSC immunomodulatory activity is 
primed by cytokines into BMME, it is also dependent on stimulation of toll like receptors (TLRs). In 
detail, MSCs can be polarized into two distinct phenotypes similar to macrophages, resulting in 
different immune-modulatory activity and secretome [64]. The TLR4-primed MSCs exhibit a 
proinflammatory phenotype (MSC1), while the TLR3-primed MSCs activate a more anti-
inflammatory profile (MSC2). This concept of MSC polarization could explain the apparently 
contradictory roles of MSC in inflammation and immunomodulation [20].  Notably, the regulation 
of the functional profile of MSCs depends not only on the secretion of soluble factors but also on the 
communication and contact of MSCs with neighboring BM cells. MSCs can communicate with nearby 
cells through secretion of soluble factors, cell to cell contact, release of extracellular vesicles (EVs) and, 
as more recently evidenced, through tunneling nanotubes [65-68]. Evidence is arising that altered 
MSCs help leukemic cell growth and prompt drug resistance by providing nutrients, cytokines, pro-
survivals signals and exchanging organelles [44, 69, 70]. Several recent studies have identified stroma-
derived metabolites such as lactate, glutamine, and acetate to feed the tricarboxylic acid cycle (TCA) 
and lipid biosynthesis into hematopoietic cancer cells [71-73].  Of note, metabolism is adjusted 
during the development of drug resistance [73, 74]. The complexity of this scenario is increased by a 
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metabolic heterogeneity and dynamics of BMME which is mainly dependent on different access to 
oxygen and glucose and on different cell population co-existing in the BM milieu [75, 76]. As result, 
cancer and stromal cells can compete and/or cooperate for nutrients. In recent years, the role of 
exosomes as mediators between cancer cells and tumor BMME ha gained increasing aĴention. For 
example, leukemia-derived exosomes induced a downregulation of HSPC-supporting factors in 
MSCs and reduced their capacity to support normal hematopoiesis [77].  Furthermore, while 
microvesicles (MVs) from healthy MSCs show anticancer action, MM-MSCs release MVs enriched in 
VLA-4, which facilitated MM cell uptake, enhance tumor cell phenotype and PCs growth [78, 79]. 

In this review, we will highlight the role of MSCs in tumor microenvironment of hematological 
cancers, aiming to elucidate the mechanisms involved in the activation of their pro-tumor phenotype 
contributing to tumor growth and progression.2. Materials and  

2.1. Role of MSCs in myelodysplastic syndromes 
Myelodysplastic syndromes (MDS) is generally referred as a heterogenous group of clonal 

hematopoietic diseases characterized by ineffective hematopoiesis resulting in peripheral blood 
cytopenia potentially shifting to acute myeloid leukemia (AML) [80]. MDS patients display different 
degrees of cytopenia and dysplasia, therefore constituting the basis for Word health organization 
MDS classification criteria [81]. To date, no clinically effective treatment is available for preventing 
progression to AML. Half of patients show cytogenetic alteration, while nearly 90% of them harbor 
at least one somatic mutation affecting specific genes involved in spliceosome, transcription factors 
and epigenetics. Despite the clonal dominance, these mutations don’t provide a determined 
advantage for malignant cell growth, as suggested by their coexistence alongside normal HSPCs [82]. 
Therefore, MDS cells get an extrinsic support from BMME important for malignant cell cloning. 
Notably, support from BM milieu is essential to maintain MDS cells ex vivo. Concerning MSCs, MDS 
stromal cells are reprogramed to support uniquely MDS clones at the expense of normal HSPCs [35]. 
MDS-MSCs are characterized by a slower proliferation rate, which is independent by cell cycle 
distribution and apoptotic events [83]. Therefore, the reason characterizing this phenotype might 
involve cytogenetic aberrations, which have been difficult to characterize due to the lack of a specific 
isolation protocol allowing the comparison between different MSCs subpopulations. This goal has 
been achieved upon Aanei and colleagues published a robust immunoselection-based isolation 
protocol through two specific mesenchymal-associated markers, STRO-1 and CD73 [84]. Therefore, 
MDS-MSC cytological characterization highlighted genomic gains involving genes taking part in cell-
cell adhesion processes and tumor development. In addition, MSCs isolated from patients harboring 
5q- cytogenetic shared common traits including the overexpression of some genomic regions as 
7p22.3, 19p13.3, and 19p13.11 [83]. Despite a cytogenetic signature characterizing MDS-MSCs is still 
missing, it is widely reported how these cells display all the typical marker related to cell senescence 
[85]. In this context, Fei et al. reported that isolated MDS-MSCs display a profound change in 
cytoskeletal architecture, in turn showing an increased size, longer podia and a disordered 
distribution of F-actin [86]. Moreover, MDS-MSCs also display an increased DNA damage level [87]. 
Coherently with this outcome, an hyperactivation of p53 signaling cascade has been detected in MDS-
MSCs, therefore providing a further mechanism leading to MSC senescence [86]. Despite the efforts 
showing the essential role covered by BMME in MDS, the question asking who the first cell 
population is to impair the basal crosstalk, therefore triggering MDS pathogenesis, is still standing. 
A partial answer has been given by the studies describing that, in patients showing a complete 
hematological remission, the treatment was able to restore a MSC functionality comparable to healthy 
donors [88]. However, this study has the intrinsic assumption that the treatment has the HSC 
compartment as only target, excluding a direct effect on MSCs themselves. In this context, it has been 
recently demonstrated that the antileukemic activity of azacytidine in part depend on its direct effect 
on the hematopoietic supportive capacity of MDS-MSCs favoring expansion of healthy over 
malignant hematopoiesis [89]. These data highlighted the crucial role of an epigenetic treatment of 
dysfunctional MSCs. Other studies corroborate the hypothesis involving the crosstalk between 
stromal and hematopoietic compartments as driver of MDS pathogenesis, in turn rearranging the 
surrounding microenvironment to support the expansion of the malignant clone. Indeed, murine 
models depleted for Dicer or Sbds gene expression exclusively in stromal compartment have shown 
to develop an MDS-like phenotype characterized by ineffective hematopoiesis, marked dysplasia and 
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leukemic progression, despite having no mutation in their HSPCs [90, 91].  Medyouf and colleagues 
described a scenario in which MSCs are instructed by malignant HSCs to acquire MDS-MSC-like 
properties, eventually promoting the progression of the malignant clone over the healthy one [35]. 
This data introduced the “hematopoietic niche unit”, sustaining MDS progression also by the 
establishment of an altered secretome profile, where abundant levels of TNF-α, IFN-γ, IL-1α, IL-6, 
IL-17 and TGF-β have been detected [92]. These factors account for the establishment of an 
inflammatory BMME, in turn triggering genetic and epigenetics modifications on BM resident cell 
populations. Corroborating this, MDS-MSCs show several differentially methylated genes associated 
to alterations of their phenotype [36]. For instance, HHIP (Hh-interacting protein) gene is 
hypermethylated in MDS-MSCs [93]. Its downregulation accompanied by activation of the Hedgehog 
pathway in stromal cells sustain survival of MDS cells. Recently, our group have shown the relevance 
of an epigenetic-inflammatory interplay in MDS-MSCs supported by macroH2A1/TLR4 axis, 
prompting a replicative senescent phenotype, hypermethylation and metabolic rewiring which 
contribute to ineffective hematopoiesis [94]. In agreement, cellular stress and upregulation of 
inflammatory molecules with inhibitory effects on normal hematopoiesis has been described in MDS-
MSCs [95]. In particular, activation of NFkB signaling in MSCs from patients with lower risk MDS 
(LR-MDS) aĴenuates normal hematopoiesis in accordance with cytopenia observed in these patients 
[96]. Moreover, overexpression of the alarmins S100A8/9 in stromal cell compartment has been shown 
to activate NFkB and a genotoxic stress in HSPCs associated to leukemic evolution in a subset of LR-
MDS patients [91]. Supporting the crucial role played by the BM niche in MDS evolution, it has been 
proposed that the overexpression of CXCL12, in synergy with its receptor CXCR4, keep the 
myelodysplastic anchored inside the BM niche, in turn providing them with protection and support 
[97]. In this scenario an in vitro study highlighted the overproduction of IL-6, an interleukin possibly 
linked to the mechanism promoting MSCs senescence and chronic inflammation [98]. The crosstalk 
between MDS cells and MSCs is also orchestrated by a plethora of factors, as part of the two 
populations’ secretome. Releasing alarmins such as S100A9 and S100A8, tumor cells activate the 
inflammasome in stromal cells which results in higher secretion of pro-inflammatory cytokine [99]. 
Also, EVs secreted by MDS cells have been demonstrated to reduce the hematopoietic supportive 
capacity of MSCs inhibiting osteolineage differentiation of MSCs [100]. This perturbation of bone 
metabolism enables MDS clones to outcompete normal HSPCs. In turn, MDS-MSCs have been 
described to release EVs carrying miRNA, such as miR10a and miR15a, which increase the viability 
and clonogenicity of MDS cells [101]. Therefore, the multifaced aspects accounting for MSCs 
significancy need to be further dissected to provide more efficient strategies counteracting MDS 
progression. 

2.2. Role of MSCs in acute leukemia 
Acute leukemias are rapidly progressing malignant clonal disorders characterized by 

uncontrolled proliferation of immature and undifferentiated hematopoietic cells, associated to poor 
prognosis, and reduced overall survival. They are commonly divided, according to malignant cells 
lineage in acute myeloid or lymphoid leukemia (AML or ALL). Blast cells have been known to modify 
the BMME and disrupt non-malignant hematopoiesis [102, 103]. The complex interactions within the 
tumor BMME significantly influence leukemia survival, disease progression and therapeutic 
response, with hematopoietic stem cell transplantation often being the only curative option for 
patients with refractory disease [104]. Several studies showed that the interaction of leukemic cells 
with MSCs resulted in a functionally disrupted niche specifically supporting tumor cells over healthy 
HSPCs and therefore establishing a self-reinforcing unit for the repopulation of leukemic cells [105, 
106]. In this context, blast cells might exploit physiological mechanisms regulating hematopoiesis as 
a strategy for gaining competitive advantages [107]. It has been recently described, using mouse 
models of leukemia, that both ALL and AML blasts express lymphotoxin α1β2 after colonizing the 
BM. Therefore, blasts trigger lymphotoxin beta receptor (LTβR) signaling in MSCs, turning off IL7 
production and preventing non-malignant lymphopoiesis [107]. Among the changes in cytokine 
profile of AML-MSCs, the overproduction of CCL2 inhibits normal progenitors but not leukemic cells 
improving cancer survival [108, 109]. Similarly, MSCs from T-ALL patients show reduced ability to 
support healthy HSCs blocking their differentiation in HPCs, without a direct leukemic MSC-induced 
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damage [110]. This finding is consistent with the paradigm that, despite the exhaustion of HPCs in 
the leukemic milieu, HSCs remain functional upon relocation into non-leukemic BMME [110].   

Hematopoietic insufficiency is the hallmark of AML with cytopenia-related complications such 
as bleeding and infections representing the major causes of death. In AML-MSCs, the downregulation 
of FOXM1, a member of the fork-head transcription factor family, impairs the hematopoietic MSCs 
support capacity [111]. Corroborating this, the silencing of this protein in healthy stromal cells affects 
the growth of CD34+ progenitor cells, mirroring the effects observed when using AML-derived MSCs 
[111]. Moreover, AML-MSCs displayed alterations in the expression of key hematopoiesis-regulating 
factors such as JAGGED1 and KITL corroborating that hematopoietic insufficiency in AML patients 
is at least in part mediated by BMME [112]. More recent studies provided evidence that, when acute 
leukemia occurs, blast cells remodel the resident MSCs establishing a physical connection and 
mediating a reprogrammed transcriptome [106, 113]. Of note, healthy MSCs changed their gene 
expression profile after coculture with AML blasts displaying deregulation of genes matched with 
AML-MSCs [113]. This transcriptomic behavior, characterized by inflammatory factors and cytokine 
production pathways, correlate to AML suggesting a dynamic changes in MSCs occurring at 
leukemia onset as consequence of an instructive role of leukemic cells [112, 113]. As a result, 
“reprogrammed” MSCs reset the niche crosstalk processes selectively suppressing normal 
hematopoiesis and favoring the clonal dominance of leukemic cells [106, 114]. The heterogeneity of 
MSC subpopulation exhibit different BMME for leukemic cells contributing to the heterogeneous 
kinetics of leukemia relapse. In this context, Kim and colleagues evaluated whether differences in BM 
stromal cell partners at diagnosis can identify patients with a high risk of relapse [106]. They found 
that BMME of relapsed patients showed higher numbers of MSCs, osteoblasts and primitive nestin+ 
MSCs than AML patients who achieved complete remission (CR). Early relapsed patients have a 
greater primitive MSC content, while late relapsed ones exhibited more MSCs or osteoblasts than CR 
patients, corroborating a distinct BMME associated with early or late relapse [106]. This evidence 
suggests that leukemia-induced remodeling of BMME may be responsible for the heterogeneity of 
the AML clinical course. MSC lineage differentiated cells, including osteoblasts and adipocytes, are 
essential components of BMME contributing to hematopoiesis [115, 116]. Increasing evidence 
suggests that the differentiation ability of AML-MSCs is altered [117, 118]; however, the results are 
controversial. Indeed, some work report that AML cells induce an osteoblast-rich niche in the BM 
which in turn enhances AML expansion and favors disease relapse [106, 119]. On the contrary, 
alterations of MSC osteoblastic plasticity resulted in selective promotion of leukemic cells in murine 
models [14, 120]. Moreover, other researchers reported that leukemia educated MSCs are highly 
prone to adipocytes differentiation [118]. These conflicting results may be due to the heterogeneity of 
leukemia. For instance, AML cells of AML-M4 subtype induce MSCs towards adipogenic 
differentiation propensity [121]. The alterations of osteogenic differentiation capacity of AML-MSCs 
were also confirmed by specific methylation changes affecting genes regulating cell differentiation 
and skeletal development [112].  

As MDS stromal cells, both AML and ALL-MSCs show accelerated cellular senescence 
contribute to their impairment in function associated with HSPC support and stemness properties 
[28, 110]. MSCs exposed to leukemic blasts exhibit common characteristics to MSCs subjected to a 
physiological aging process, including overexpression of markers related to DNA damage and cell-
cycle arrest [122]. Furthermore, leukemia-induced oxidative stress works as driver of pro-tumoral 
senescence in stromal cells [123]. Targeting senescent MSCs directly inhibits AML cell growth and 
improves survival of mice with leukemia, revealing the importance of a senescent milieu for the 
pathophysiology of leukemia [123]. Heterochromatin disorganization is a driver of MSC senescence 
[124]. AML-MSCs downregulate chromatin remodeling complex CHD1 (modulating chromatin 
condensation) whose reduction is associated with the decrease of HSPC supportive capacity [125]. 
Using an integrative approach of a multilevel molecular profiling combining genome-wide 
expression and DNA methylation high-throughput platforms, AML-MSCs exhibit selective 
transcriptional alterations associated to epigenetic ones, including adhesions molecules, endocytosis, 
and metabolic pathways [34]. In this context, accumulating evidence shows a complex metabolic 
coupling between leukemic cells and MSCs which allows tumors to respond to variations in nutrient 
availability to maximize cellular proliferation and to acquire survival advantages [126, 127]. In 
leukemia patients, cancer stem cells or chemoresistant cells rely on mitochondrial oxidative 
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phosphorylation (OXPHOS) [128, 129]. MSCs directly provide the increased bioenergetic demand of 
AML cells, increasing OXPHOS and GSH-related ROS detoxifying tools which contribute to AML 
growth and chemoresistance [130]. Of note, MSCs supply mitochondria to leukemia cells [44, 131-
133], thus providing them with additional energy. In T-ALL, leukemic cells transfer their damaged 
mitochondria to MSCs through cell adhesion mechanisms, reducing intracellular ROS and promoting 
chemotherapy-induced apoptosis resistance [134]. Recently, it has been reported that AML-induced 
MSCs adipogenic differentiation propensity is associated to a switch from glycolysis to OXPHOS 
[121]. In this context, AML blasts modulate intracellular metabolism of adipocytes into a lipolytic 
state, resulting in the release of faĴy acids (FAs) into the BMME [135]. Ultimately, free FAs are 
transferred to AML blasts fueling a FA oxidation signature beneficial to the leukemia counterpart 
[135]. Indeed, blocking lipolysis or inhibiting CPT1A (carnitine palmitoyltransferase 1a), essential for 
the transfer of FAs to the inner mitochondrial membrane and β-oxidation [136], reduced AML 
mitochondrial activity and survival [135]. Like AML blasts, ALL cells induce adipocytes to activate 
lipolysis to support their metabolism [137]. ALL blasts also release EVs which activate a metabolic 
switch from PXPHOS to aerobic glycolysis in MSCs leading to increased lactate into BMME which 
can be used by tumor cells [138]. 

2.3. Role of MSCs in Myeloproliferative Neoplasms 
Myeloproliferative Neoplasms (MPNs) are characterized by the clonal proliferation of one or 

more hematopoietic cell lineages, predominantly in the BMME. MPNs mainly include chronic 
myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary 
myelofibrosis (PMF). CML is the BCR-ABL1 oncoprotein-positive MPN characterized by the 
Philadelphia (Ph) chromosome’s presence. Ph- MPNs include PV, ET and PMF, in which clonal 
proliferation is driven by somatically acquired driver mutations in JAK2, CALR and MPL genes [139]. 
Nevertheless, Ph- MPNs show a different clinical presentation and outcome [140]. PMF is defined by 
unique clinical features such as BM fibrosis, osteosclerosis, neo-angiogenesis and extramedullary 
hematopoiesis which characterize the natural history of PMF patients, significantly affecting quality 
of life and life expectancy [141]. Similar to MDS-MSCs, stromal cells from CML and higher fibrosis 
PMF patients display functional alterations, including low proliferative potential and precocious 
senescence [142, 143]. Changes in MSC behavior are strongly associated with the dysfunction of T 
cells and the proliferation of Tregs in CML microenvironment [144]. Moreover, CML-MSCs directly 
orchestrate immunosuppression by also driving activation of myeloid cells in MDSCs [56]. Immune 
suppression of stromal cells can also be enhanced by CML cell secreted exosomes [145]. For instance, 
leukemic-derived exosome miR-130a/b has been demonstrated to promote the immunosuppressive 
properties of stromal cells through inhibition of connexin-43 [146]. In CML patients, CXCL12-
expressing MSCs are crucial for maintaining quiescent leukemic stem cells and thus they represent a 
potential target to overcome drug resistance [147]. Indeed, analysis of gene expression profile reveal 
that abnormal alterations observed in CML-MSCs compared to normal counterpart persist in patients 
in deep molecular response after therapy with tyrosine kinase inhibitors [148], corroborating their 
role in leukemia relapse and drug resistance.  

Neoplastic clone development in PMF is deeply influenced by alteration within BBME, 
highlighted by BM fibrosis, neo-angiogenesis and osteosclerosis [149, 150]. In this context, it may be 
hypothesized that the progressive stromal cell alterations during myelofibrosis evolution affect the 
disease course [141]. These cells display an increased expression and deposition of fibronectin 
correlating with the fibrosis grades [151]. This outcome is further enhanced by megakaryocytes (Mks), 
aberrantly proliferating, and releasing several growth factors mitogenic for MSCs/fibroblasts and 
endothelial cells, such as TGF1 [152, 153]. Corroborating this, in MPN biopsies, MSCs localize with 
Mks displaying an activated fibronectin-secretory phenotype [154]. This interaction is crucial for the 
priming of stromal cells in PMF. Compared to healthy or low fibrosis grade MSCs, stromal cells from 
high fibrosis grade PMF patients show higher capacity to support differentiation of Mks by 
fibronectin secretion [151], highlighting their key role in supporting Mks hyperproliferation observed 
in PMF BM biopsies [155]. In agreement with this, MSCs isolated from spleen of MF patients show 
higher expression of fibronectin to sustain extramedullary hematopoiesis and megakaryocytopoiesis 
[156]. In addition to this, other inflammatory molecules generated by malignant clones contribute to 
the microenvironment abnormalities of myelofibrosis niche. For instance, lipocalain-2 (LCN2) primes 
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MSCs to differentiate into osteoblasts prompting matrix proteins deposition [157].  Moreover, Mk-
derived PDGF activate MSCs and in particular, expression of its receptor strongly correlate with the 
intensity of MCS reaction and fibrosis grade [158]. We recently demonstrate the involvement of 
IGFBP6 (Insulin-like growth factor-binding protein 6) in the activation of a CAF-like phenotype of 
stromal cells controlling the fibrotic process through the activation of sonic hedgehog/TLR4 axis [159]. 
Using murine MPN models, Schneider and colleagues demonstrated a critical role for Gli1+ MSCs in 
the pathogenesis of BM fibrosis [160]. After their activation, dependent on Mk-produced Cxcl4, these 
cells are metabolically reprogrammed, particularly in faĴy acid, and differentiate into matrix-
producing myofibroblasts. The authors also demonstrated that genetic ablation of Gli1+ MSCs 
abolished BM fibrosis rescuing BM failure [160]. Of note, increased number of MSCs can be detected 
in the blood of PMF patients suggesting their involvement in the abnormal HSPC trafficking/homing 
leading to extramedullary hematopoiesis [161]. Analyzing the whole transcriptomic profile of MPN-
MSCs, Martinaud and colleagues revealed a specific pro-fibrotic and inflammatory signature in PMF-
MSCs, not observed in TE or PV patients, and characterized by increased osteogenic potential and 
endogenous production of TGFB1 [162]. Leimkuhler et found that MSCs transcriptionally 
downregulated niche support and decreased MSC multipotent progenitor status, but upregulated 
Mk-derived TGFB1 pathway and extracellular matrix proteins, specifically collagens [163]. MSCs 
from ET patients have also previously reported to decrease hematopoietic supportive capacity and 
increase ECM remodeling, suggesting an intrinsic defect of stromal cells already in pre-fibrotic MPN 
[154]. 

2.4. Role of MSCs in in Chronic lymphocytic leukemia 
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder characterized by 

relentless accumulation of monoclonal mature B-lymphocytes in the peripheral blood, bone marrow 
and lymphoid tissue [164]. A plethora of molecular prognostic factors have been identified in CLL 
patients and among them, VLA-4, an exclusive member of the α4 integrin subfamily, represents a 
CLL negative prognostic marker [165]. VLA-4 plays a prominent role in the homing of high-risk CLL 
cells within BMME. Notably, MSC-CXCL12 triggers the activation of VLA-4, therefore highlighting 
a crucial role played by MSCs in CLL cells homing [166]. Furthermore, MSCs might also promote 
CLL B-cells resting by increasing their CD38 and CD71 expression therefore reflecting an activated 
phenotype that could be related to disease progression [167].  

In agreement with this, CLL cells highly rely on the abundance of supporting stimuli generated 
by the neighboring cells in the microenvironment, including MSCs. In agreement with this, the 
resistance of CLL cells to normal apoptotic regulation has been reported to be mediated by direct 
contact with stromal cells, requiring the simultaneous engagement of β1 and β2 integrins [168, 169]. 
Therefore, while CLL cells undergo rapid apoptosis when cultured alone, once cocultured with 
stromal cells they are easily propagated. This outcome is probably a consequence of MSC-EVs which 
have been recently reported to give to leukemic cells a survival advantage protecting them from 
spontaneous and drug-induced apoptosis [170]. In this scenario, CLL-derived exosomes establish a 
feedback loop by activating a CAF-like phenotype in MSCs, therefore improving the secretion of 
soluble factors promoting CLL cell survival [171]. Corroborating this scenario, CLL cells isolated from 
blood samples are non-dividing, despite their metabolism is still active [172]. In this context, Jitschin 
and colleagues reported that CLL cells acquire an increased glucose dependency upon contact with 
stromal cells [173], in turn promoting glucose uptake in CLL cells by decreasing mitochondrial stress 
and apoptosis [174]. However, this outcome is still debated. As recently reported, CLL cocultured 
with MSCs enhance their mitochondrial metabolism, sustaining ATP production along with a 
nucleotide pool without any change in their proliferation [175]. In agreement with this, it has been 
reported that CLL cells rely on OXPHOS, and this metabolic process has been associated with poor 
prognostic outcomes such as IGHV unmutated disease, ZAP70 positivity, increased Rai stage, and 
higher β2 microglobulin [175, 176]. Therefore, as also described, is possible that leukemic cells modify 
MSCs metabolism to satisfy their energy demand. Recently, it has been reported that, after contact 
with CLL cells, MSCs switch their metabolism towards OXPHOS whit consequent lower glucose 
usage which might be an advantage for CLL survival [174]. 

As things stand, it might be speculated that MSCs in the CLL context have a crucial role in 
supporting the malignant clone. In agreement with this, Dig and colleagues demonstrated that 
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platelet-derived growth factor (PDGF) secreted by CLL cells activate its receptor PDGFR on MSC 
membrane [177]. PDGF/PDGFR interaction enhances MSC proliferation, therefore enhancing the 
production of VEGF and promoting the neovascularization known to be related to disease 
progression [178, 179]. 

Moreover, MSCs uptake cystine by overexpressing the cystine transporter [180]. Upon 
conversion to cysteine, it is released into microenvironment, and it is internalized by leukemic cells 
for glutathione synthesis and maintenance of the redox balance [180]. 

2.5. Role of MSCs in in Multiple myeloma 
Multiple myeloma (MM) is a hematological disease characterized by uncontrolled proliferation 

and expansion of monoclonal plasma cells (PCs) in the BMME that leads to the overproduction of 
abnormal monoclonal protein and immunoglobulin free light chain. MM evolves from an 
asymptomatic pre-malignant stage termed monoclonal gammopathy of undetermined clinical 
significance (MGUS), eventually progressing to an intermediate but more advanced pre-malignant 
stage defined as smoldering myeloma (SMM) and, finally, to overt myeloma [1]. Although the 
initiation of malignant transformation is based on genetic and epigenetic alterations occurring in MM 
cells, the BMME plays a key role in mediating survival, proliferation, drug resistance, and 
progression of the disease [2]. In particular, the interactions of the malignant PCs with other cells in 
the BM niche, including MSCs, adipocytes, endothelial cells, osteoclasts, osteoblasts and immune 
cells lead to a host of problems including hypercalcemia, anemia, kidney failure, or bone lesions (i.e., 
CRAB criteria) [3]. Specifically, mutual modulation of phenotype and functions are observed between 
PCs and MSCs as a consequence of their bidirectional cross-talking. Bone disease is one of the most 
prominent clinical symptoms of MM patients, affecting the 80% of MM patients, and seriously impact 
the quality of life of patients [4]. As MSCs are osteoblasts progenitors, MM-MSCs actively contribute 
to the pathogenesis of myeloma bone disease. The adhesion of myeloma PCs to the stroma promotes 
the tumor cell secretion of several proteins, such as DKK1, which prevents the differentiation of MSCs 
into osteoblasts [5,6]. Importantly, MSCs not only contribute to bone disease because of their reduced 
osteogenic potential, but also because they ultimately promote activation of osteoclasts. Interacting 
with tumor cells, MSCs upregulate RANKL and reduce its soluble receptor OPG, thus prompting 
osteoclastogenesis through activation of RANKL-RANK signaling in osteoclasts [7].   

MM-MSCs exhibit a distinct gene expression profile when compared to MSCs from healthy 
donors [8-11]. Particularly, Fernando and colleagues showed that the main downregulated networks 
in MM-MSCs are related to cell cycle progression, immune activation and bone metabolism, which 
might contribute to MM physiopathology [10].  In addition, the expression of specific genes 
differentiate MGUS-, SMM- and MM-MSCs and, interestingly, gene expression profile of MSCs from 
patients with PCs dyscrasias have an independent prognostic impact on clinical outcome [9]. In detail, 
Schinke et al. identified a prognostic MSC three-gene score, including collagen type IV alpha 1 
(COL4A1), natriuretic peptide receptor 3 (NPR3) and integrin beta like 1 (ITGBL1), which is able to 
predict progression-free survival in MM patients and progression of MGUS/SMM to MM [9].  Of 
note, as MSC from patients which underwent completed treatment show a transcriptome essentially 
identical to that of patients at diagnosis, a persistent printing could maintain a niche prone to relapse 
[12]. Single cell sequencing also confirmed that current antitumor therapy fails to counteract MSC 
inflammation, highlighting their role in disease persistence [13]. MM-MSCs have an early senescent 
profile characterized by higher cell size, β-galactosidase increased activity, a Senescence-Associated 
Secretory Phenotype (SASP) and reduced proliferation due to the accumulation of cells in S phase 
[193, 194]. This phenotypic change is primed by tumor PCs because healthy MSCs showed a 
phenotype similar with MM-MSCs after exposure to tumor cells [195]. The senescence of MM-MSCs 
also impairs their differentiation potential and enhances their tumor-supporting capacity [194].  

Interestingly, the mechanism behind the establishment of such a phenotype is still unkown. 
Dicer1, an RNAse III endonuclease essential for miRNA biogenesis, has been demonstrated to be one 
of the key promoters of cellular senescence in MSCs [17, 194]. Specifically, upregulation of Dicer1 in 
MM-MSCs reversed cellular senescence and promoted cell differentiation [194]. More recently, Cao 
et al. provided evidence for a link between MSC senescence and MM progression investigating genes 
coexpressed by tumor PCs and MM-MSCs [63]. The authors identified a set of signatures of fourteen 
genes linked to MSC senescence which is essential in predicting MM progression [63]. 
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Immunosuppression is a common feature of MM associated with disease evolution [196]. 
Concerning this, our group previously demonstrated that MM-MSCs promote immunosuppressive 
abilities of surrounding myeloid cells by promoting the expansion of granulocyte-like myeloid 
derived suppressor cells (G-MDSCs) [197] and immunosuppressive neutrophils [61], leading to 
cancer cell immune evasion. As the immunological dysfunction of MSCs was observed already in 
SMM stromal cells but not in MGUS ones, the activation of a MSC-induced immunosuppressive 
microenvironment might contribute to the transition from MGUS to MM as an evolutionary 
advantage acquired during the multistep development of MM. Of note, MSC from relapsed patients 
have an increased immunosuppressive ability compared to those from patients in remission [191]. 
The support of malignant clone proliferation by MM-MSCs is mediated by stromal activation of 
PD1/PDL-1 axis disrupting T cell immune response [198, 199]. Similarly, MM-MSCs are able to induce 
NK cell exhaustion by activation of CD155/TIGT signaling [200]. Furthermore, the tumorigenic 
behavior of MM-MSCs is directly mediated by tumor PCs through the activation of a TLR4-primed 
inflammatory phenotype [61]. Using a single-cell transcriptomic approach, De Jong et al. identified 
specific inflammatory MSCs in MM milieu [192]. As successful antimyeloma therapy is unable to 
revert MSC inflammatory status, not even in patients whose are undetectable by flow cytometry [192], 
inflammatory-primed MSCs could be also epigenetically reprogrammed maintaining their 
dysfunction also in absence of tumor cells. In agreement, epigenetic alterations of stromal cells have 
been recently associated to the impairment of bone formation in MM patients [39, 201]. Furthermore, 
members of the Homeobox family, known as key drivers of osteogenic differentiation, result 
epigenetically and transcriptionally deregulated in MM-MSCs [39]. Of note, epigenetic alterations in 
stromal compartment already occur in the asymptomatic phases of myeloma and most of these 
changes are specific to each stage [39]. This phenomenon could be associated to the expansion of 
MSCs subpopulations which promote tumor progression just as in MM cells [202].  

The activation of an immunosuppressive and pro-inflammatory phenotype has been associated 
to a metabolic rewire of MSCs towards a more glycolytic metabolism, in turn required to sustain the 
secretion of immunosuppressive factors [203]. In agreement, we recently showed that MM-MSCs are 
more glycolytic than the normal counterpart [70]. Their relatively independence on mitochondrial 
metabolism impact MM cell energy making MM-MSCs inclined to transfer more mitochondria to 
tumor cells [70]. The uptake of functional mitochondria from MM-MSCs occur through several 
mechanisms, including tunneling nanotubes and CD38 [204], EVs as well as cell-to-cell contact and 
CXCL12/CXCR4 axis [70]. This mitochondrial trafficking supports the oxidative metabolism of tumor 
PCs favoring cancer growth and drug resistance [70, 205-208]. 

3.1. Concluding Remarks and future perspectives 
MSCs are key component of the BMME, wherein they exert multiple functions for supporting 

hematopoietic niche, tissue homeostasis, and immune system modulation. The interest in dissecting 
the role of MSCs in hematopoietic malignancies has vastly grown over the past years. As we discussed, 
the BM milieu leukemic transformation causes profound modifications of MSC phenotype, including 
their morphology and functions with the acquisition of the SASP, which strongly contributes to the 
development of a proinflammatory microenvironment. Evidence suggests that SASP-related 
secretome of MSCs might contribute to the progression from benign states to over malignancies [24]. 
Indeed, the progression of hematological cancers towards a more aggressive phenotype does not 
solely rely on intrinsic leukemic cell factors but are independently impacted by the biology of the 
surrounding microenvironment, including MSCs (Figure 2). 
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Figure 2. The role of MSCs in different hematological malignancies. The illustration shows how dynamic 
interactions between malignant cells and MSCs eventually inducing transcriptomic and epigenetic 
alterations affect stromal secretome and multipotency. A common hallmark of MSCs in hematological 
cancer is the acquisition of a senescent phenotype associated to a pro-inflammatory profile. Moreover, the 
interplay between cancer and stromal cells supports a complex metabolic coupling sustaining immune 
suppressive activity, tumor growth and drug resistance. 

Reprogrammed stromal cells provide a nurturing niche that sustain tumor growth, clonal 
evolution, and drug resistance. Although it has been reported that MSCs from AML patients at time 
of disease remission recover healthy activities [113], inheritance of epigenetic alterations associated 
to MSC imprinting could lead to an autonomous status of stromal cells from neoplastic clone. In 
“absence/decrease” of clonal cells after targeted therapies, the persistence of this pathologic inflamed 
phenotype of MSCs might be a key component partially explaining disease relapse [209]. Moreover, 
the importance of BMME is highlighted by the prolonged time to stabilize engraftment after 
autologous HSPC transplantation. In this case, the prerequisite for transplant success is the rebuilding 
of the interplay between BMME and HSPCs.  

For this reason, targeting the BM niche might represent a valuable novel strategy counteracting 
blood malignancy. Among the emerging targets the CXCL12/CXCR4 axis disrupts leukemic cell 
adhesion to MSCs mobilizing tumor cells into circulation and increasing drug-induced apoptosis 
[210-212]. In our own previous research, the inhibition of this axis also affects tumor/MSC metabolic 
coupling inhibiting mitochondria trafficking [70]. In this context, it is becoming increasingly clear the 
importance of the metabolic interplay between stromal and leukemic cells for promoting disease 
establishment and progression. The mitochondrial transfer support leukemic cell bioenergetics and 
antioxidant defenses, sparing them from high energetic cost of mitochondrial biogenesis. To 
understand which metabolic vulnerabilities can be targeted in the leukemic BMME might open new 
avenues to improve cancer therapy. Recently, niche-calcium homeostasis has been found to be 
involved in the reprogramming of MSCs into leukemic niche [113]. Compounds blocking the inward 
movement of calcium modify the transcriptomic and secretome profile of AML-MSCs restoring 
healthy functions [113]. Furthermore, the current focus has also been on age-related changes of MSCs 
which characterize the development of hematological cancers. For this reason, pharmacological 
approaches to eliminate senescent cells have been investigated [213]. Concerning MSCs, targeting 
senescent MSCs it has been demonstrated a possible strategy to recover hematopoietic supportive 
capacity of stromal cells improving metabolic fitness of HSPCs [214]. Therefore, the utility of senolytic 
agents as a potential intervention in the context of hematological cancer might be a promising new 
strategy to both inhibit pro-tumorigenic effects of inflamed MSCs and improve their hematopoietic 
supportive capacity. 
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In the framework of BMME, the complex interplay between leukemic cells and MSCs include 
dynamic cell–cell interactions and organization, release of soluble factors and EVs, 
immunoregulatory properties which hide unrecognized leukemogenic events with innovative 
treatment opportunities. Therefore, extended investigations of relationship occurring in the leukemic 
niche may revolutionize treatment strategies to disadvantage cancer cells using niche-directed 
therapies. 
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