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Abstract: This paper presents a) the novel hybrid learning method to train the type-1 non-singleton interval 

type-3 (IT3) fuzzy logic systems (IT3 NSFLS-1) and b) the novel method named enhanced Wagner-Hagras 

(EWH) IT3 NSFLS-1 fuzzy systems which includes the level alpha 0 output to calculate the output y alpha using 

the average of the outputs y alpha k instead of their weighted average. The development of the proposed 

methodology uses the orthogonal least square (OLS) method to train the consequent parameters and the back 

propagation (BP) method to train the antecedent parameters. This proposal dynamically changes the 

parameters of only the level alpha 0 minimizing some criterion function as new information becomes available 

to each level alpha k. The antecedent sets are type-2 fuzzy sets, the consequent sets are fuzzy centroids, the 

inputs are type-1 non-singleton fuzzy numbers with uncertain standard deviations, and the secondary 

membership functions are modeled as two Gaussians with uncertain standard deviation and the same mean. 

Based on the firing set of the level alpha 0, the proposed methodology calculates each firing set of each level 

alpha k to dynamically construct and update the EWH IT3 NSFLS-1 (OLS-BP) system. The algorithm was tested 

in a hot strip mill facility to predict the transfer bar surface temperature showing its superior capability to 

obtain the industrial pyrometer’s knowledge uncertainty for tuning and its better performance when compared 

with IT2 SFLS, IT2 NSFLS-1, GT2 SFLS, GT2 NSFLS-1, IT3 SFLS, and IT3 NSFLS-1 trained with the BP-BP 

algorithm. 

Keywords: interval type-3 fuzzy logic systems; hybrid learning; backpropagation method; 

orthogonal least square method; general type-2 fuzzy logic systems.  

 

1. Introduction 

Interval type-3 (IT3) fuzzy logic systems (FLS) represent a very handy technology according to 

the state-of the-art literature [1–4], [5–40]. Nowadays, the implementation of IT3 FLS in real life 

problems is a blank field given the complications presented in this model that is analogous to the 

general type-2 (GT2) FLS based on the definition in [32]: 

Definition 1. “The type-3 FLS, is the generalization of the type-2 FLS that has more capacity to cope with 

uncertainties. In T3-FLSs, the secondary membership function (MF) is also a type-2 MF. Then the upper and 
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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lower bounds of memberships are not constant in contrast to the type-2 MFs. These features cause more levels 

of uncertainties and can be handled by type-3 MFs. [32, p. 154]”  

According to the previous definition and the analogy between the GT2 and IT3 systems, both 

adhere to the mathematical and methodological principles and to the challenges, difficulties, 

strengths, and weaknesses that authors defined as complications to face this class of systems [5].  A 

comprehensive list of challenges to be faced is presented in [41] and are shown in Table 1. 

Table 1. Difficulties of GT2 model adapted from [41]. 

Difficulties   References  

Implementation  [42]    

Use in practice [42] 

Information is non-functional  [43]    

Information is un useful [43]    

Information not needed [43]    

Complex learning process [44–48]      

Hard computation [44,47–51]        

Defuzzification very complex [44,51,52]         

Exhaustive computational time [44,47–51]      

Impractical to usage [44]   

Method iterative and algorithmic [53]   

Determination of the number of levels-𝛼௞ [49] 

A brief survey of the state-of-the-art literature shows that the found applications are only from 

the theoretical point of view of singleton (IT3 SFLS) [3,6–29,31–40] and of type-1 non-singleton (IT3 

NSFLS-1) FLS [5, 28 and 29]. This technology presents some challenges and complications in the 

design and implementation processes. i.e., in [28] the development of a new flowmeter fault detection 

approach based on optimized non-singleton type-3 (NT3) FLS with type-1 non-singleton inputs is 

presented. The introduced method is implemented on an experimental gas industry plant. The 

system is modeled as NT3 FLS system, and the faults are detected by the comparison of measured 

and estimated signals. According to the authors, the level of non-singleton fuzzification and 

membership parameters are tuned by a maximum correntropy (MC) unscented Kalman filter (KF), 

and the rule parameters are learned by correntropy KF (CKF) with fuzzy kernel size.  

In contrast to the recent developments on automata’s, drones, automated remote vehicles 

(ARV’s) among others, require adaptation, learning, tuning to get the necessary knowledge for 

adaptation to the changing environments, the applications of  IT3 are limited and their analogy with 

GT2 systems exists as it is documented in [5], e.g., the GT2 NSFLS-1 is used as a controller for control 

and balance a two-wheel mobile robot [54]. The GT2 NSFLS-1 model is used in a proportional, 

integral, and derivative (PID) controller to get effectiveness and robustness in a plan controller 

affected by external disturbances [55].  

The GT2 NSFLS-1 model is used to manage efficient and energy conserving permanent magnetic 

drive [56]. In [57] the GT2 NSFLS-1 is proposed to test and to provide a theoretical framework using 

the enhanced Karnik-Mendel Algorithm and the Nie-Tan algorithm to see their accuracy. In [58] it is 

presented an adaptive GT2 non-singleton fuzzy neural network control for motion balance adjusting 

of a power-line inspection robot. In [59] are presented GT2 NSFLS-1 classifiers for medical diagnosis. 

A medical application to regulate glucose levels is proposed in [60]. In [61] it is presented a model to 

synchronize chaotic systems affected by external disturbances.  

The difficulties presented in Table 1 happen in the GT2 and IT3 singleton fuzzy systems in both, 

Mandami and Takagi-Sugeno-Kang (TSK) models, and it is remarkable that happens in the singleton 

form that is the simplest or primitive form of fuzzy systems, in [41–45,47–51,60–90] for GT2 FLS and 
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[91–117] IT3 FLS. In contrast for the case of the IT3 type-1 non-singleton systems there are only a 

limited number of applications [19, 20, 29 and 40] and for IT3 type-2 non-singleton there is only one, 

[5]. In the state-of-the-art modern literature, the reference to IT3 NSFLS-1 and to IT3 NSFLS-2 is 

practically inexistent but in contrast the synonym (generalized type-2 non-singleton) used for this 

technology of knowledge acquisition for tuning, adaptation, updating, learning, or training shows 

that from 2021 until now there are 44 papers that include proposals with type-3 fuzzy logic systems. 

There are 39 publications named as “shadowed type-2” fuzzy systems. Using the “knowledge 

acquisition” there are 10 papers with learning, 8 papers with tuning, 11 papers for adaptation and 

only four papers for updating, as shown on Table 2. Table 3 shows the literature on IT3 FLS in their 

singleton and non-singleton versions with 52 papers of type-3 fuzzy logic systems. For knowledge 

acquisition there are 4 papers with hybrid learning, 38 papers with learning, and 33 papers with 

tuning, 30 papers for adaptation and only 5 papers for updating, one or more of these terms are 

mentioned in the same paper.  

Table 2. Survey of techniques used to train the GT2 FLS models. 

R GT2 Optimization model 

 

  

Knowledge 

acquisition  

Designation 

System designation 

S N L T A U GT2 Generalized 

type-2 

Shadowed 

type-2 

[15]  X TW, robustness analysis  X     X 

[44] X  Ordered weighted 

averaging (OWA) 

X   X X   

[45] X  Data-driven   X  X   

[47]   Kalman Filters X  X  X   

[48] X  Artificial Neural 

Networks 

  X  X   

[52] X  Recursive Least Squares 

(RLS), Gradient-based 

Method, hybrid ANN to 

optimize clustering 

X    X   

[55]  X Social spider optimization    X X   

[58]   Particle Swarm 

Optimization (PSO) 

  X  X   

[60] X  Biogeography-Based 

Optimization (BBO) 

X    X   

[64] X  Least Square Estimator 

(LSE), Teaching Learning 

Based Optimization 

(TLBO) 

  X  X   

[72]   Searching algorithms X X   X   

[73] X X Ant lion optimizer    X X  X 

[79] X  Hybrid Differential 

Evolution Algorithm 

  X  X   

[82]  X Harmony search   X   X X 
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[83]  X SVM, Decision trees, 

ANN, Bagging and 

boosting, bagging, 

boosting, GD, fuzzy 

entropy, PSO, 

X X X X   X 

[84]   X Backpropagation 

algorithms and RLS 

X  X   X  

[85]  X Lyapunov function X X X  X X  

[86]  X Kernel ridge regression 

(KRR) 

X     X  

[87]  X Hierarchically stacked 

though, gradient descent 

(GD), gaussian kernel, 

support vector machine 

(GSVM) 

X X X   X  

[88]  X Multi-objective 

optimization. 

X    X   

[90]  X Tuning laws (TW) X X X  X   

R is the reference number, GT2 is for General type 2 system, S is singleton, N is non-singleton type-1, L for 

learning, T for tuning, A for adaptation, and U for Updating. 

Table 3. IT3 FLS systems. 

Ref. 
IT3 System Learning 

  Algorithm 

Knowledge 

acquisition  

designation 

S N-1 N-2 Hybrid L A U T 

[1] X   
Classification system does not show a 

learning algorithm or does not need it 
 X X  X 

[2] X   

Theoretical proposal for modelling and 

compare the IT3 and IT2 systems do not 

show the use of learning 

X X X  X 

[4] X   Differential evolution  X X  X 

[5]   X Gradient descend X X X X X 

[7] X   
Empirical knowledge of experts combined 

with a trial-and-error approach 
 X X  X 

[8] X   Fractal dimensions  X X  X 

[9] X   

Statistical measures, fuzzy c-means 

clustering and granular computing using 

to construct the model not for learning 

   X  

[11] X   Response aggregation  X X  X 

[12] X   
Backpropagation with momentum 

learning  X X  X 
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[13] X   Specific adaptation law  X X  X 

[14] X   

Fractional-order model based on restricted 

Boltzmann machine (RBM) and deep 

learning contrastive divergence (CD) 

 X   X 

[15] X   

Pitch adjustment rate (PArate) parameter 

in the original harmony search algorithm 

(HS) 

 X   X 

[18]  X  
Upper bound of approximate  

error (AE) 
     

[19]  X  Fractional order   X   X 

[22] X   
Fuzzy c-regression model clustering 

algorithm 
  X  X 

[25] X   Deep reinforcement learning (DRL)  X   X 

[26] X   Unscented Kalman filter (CUKF) X X X X X 

[27] X   
Surge-guided line-of-sight (SGLOS) and 

auxiliary dynamics 
 X X  X 

[28]  X  
Maximum correntropy (MC)  

Unscented Kalman filter (UKF) 
 X X  X 

[33] X   Specific control law  X    

[39] X   Kalman filter (UKF)  X    

[40]  X  Lyapunov adaptation rules   X  X 

[92] X   Hybrid Learning ARIMA LSTM LSTM X X    

[93] X   

Robust adaptive command-filtered 

backstepping control scheme, adaptive 

laws 

X X    

[94] X   
This is a survey, not a theoretical paper 

and not an application or development 
 X X  X 

[96] X   Bacterial foraging optimization algorithm  X   X 

[97] X   
Do not have learning is a classification 

model 
 X   X 

[98] X   Spherical Fuzzy MARCOS MCGDM  X   X 

[99] X   Weighted least square (WLS)     X 

[100] X   

Actor-critic learning control algorithm and 

associated with Lyapunov 

stability examination 

 X X  X 

[101] X   
+Nonlinear model predictive 

control (NMPC) 
 X   X 

[102] X   +Marine predator  X X X X 

[103] X   
+Maximum power point tracking (MPPT), 

genetic algorithm 
    X 

[104] X   +Differential evolution   X  X 
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[105] X   +Harmony search  X X   

[106] X   
+Harmony search and the differential 

evolution 
 X X   

[107] X   
Not learning algorithm, the parameters are 

changed manually 
 X X   

[108] X   Terminal sliding mode controller  X X   

[109] X   

Adaptive sliding mode disturbance 

observer, adaptive laws, an output with 

continuous-time linear systems.  

X X X   

[110] X   Retained region approach (granulation)  X X   

[111] X   
Multi-objective Artificial Hummingbird 

Algorithm (MOAHA) 
 X  X  

[112] X   Enhanced Kalman filter (EKF)    X  

[113] X   *Survey of methods is not an application  X    

[114] X   
Extended state space model-based 

constrained predictive functional control 
 X    

[115] X   + Event-triggered control law  X    

[116] X   
+ Cartograms to visualize both the 

expansion and spread 
 X    

[117] X   + Non-linear time series  X    

S for singleton, N-1 for non-singleton 1, N-2 for non-singleton 2, L for learning, T for tuning, A for adaptation, 

and U for updating; + the learning algorithm is only used to obtain the information for the rule base or for 

optimization. 

The few applications found in the state-of-the-art literature, the difficulties in optimizing the 

models, the fact of multiple calculation to obtain several numbers of planes as mentioned in [83] and 

the requirement of iterative methods to train the model have led researchers to use different models 

which stand out principally in GT2 SFLS systems for acquiring knowledge, learning, and tuning in 

their different definitions.  

To the best of the authors' knowledge, studies of GT2 NSFLS-1 and IT3 NSFLS-1 that use the 

OLS-BP hybrid learning mechanism as a training method have not been found in the state-of-the-art 

literature. However, there are publications presented elsewhere referring to the IT2 Mamdani FLS 

[118–121], and to the IT2 TSK FLS [122,123] using the proposed hybrid OLS-BP mechanism. 

As mentioned earlier, the intention of this article is to present and discuss the proposed OLS-BP 

hybrid learning algorithm for antecedent and consequent parameter tuning of the novel Enhanced 

Wagner-Hagras (EWH) IT3 NSFLS-1 system and demonstrate its implementation in a real industrial 

hot strip mill (HSM) application. To enable direct comparison of the performance and functionality 

of the proposed hybrid mechanism, the same input-output data set is used as in [118–123] and it has 

been experimentally examined under the same conditions as in previous work. 

The main contributions of this proposal are:  

1. The detailed mathematical formulation of the hybrid OLS-BP training method using a) the 

partial derivatives with respect to a performance criterion to tune each parameter for only the 

antecedent section of the level-𝛼଴ and b) the orthogonal transformations of rotation or OLS method 

to tune only the consequent parameters of the level-𝛼଴ of the proposed enhanced WH system. This 

system is named as hybrid enhanced EWH IT3 NSFLS-1 (OLS-BP) fuzzy system. 

2. A more precise and economical method to estimate the final value 𝑦ఈ  using the simply 

average of the outputs 𝑦ఈೖ  of the EWH IT3 NSFLS-1 (OLS-BP) fuzzy system, which includes the 
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horizontal level-𝛼଴ or IT2𝛼଴ FLS output, 𝑦ఈబ,  calculated as 𝑦ఈ = ∑ ௬ഀೖೖಿసబேାଵ , instead of the classic WH 

method using the weighted average: 𝑦ఈ = ∑ ఈೖ௬ഀೖೖ೘ೌೣೖసభ∑ ఈೖೖ೘ೌೣೖసభ .  

3. The use of the alternative method to construct the EWH IT3 NSFLS-1 system with dynamical 

structure, where each of its 𝑁 horizontal levels-𝛼௞ has its own base of 𝑀 rules. The output 𝑦ఈೖ of 

each level-𝛼௞  is calculated using the antecedent’s firing interval ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ and the consequent’s 

centroid ቂ𝑐௟ఈೖ௜ , 𝑐௥ఈೖ௜ ቃ of each 𝑖th rule. According to the WH method for the construction of the EWH 

IT3 NSFLS-1 system, [5], each output 𝑦ఈೖ of each level-𝛼௞ is calculated using the estimation of the 𝛼௞-cuts at level-𝛼௞. The present proposal does not estimate each 𝛼௞-cut of each input 𝑥௤ᇱ  at each level-𝛼௞ , that is the ൣ𝑎௤ఈೖ௜ ൫𝑥௤ᇱ ൯, 𝑏௤ఈೖ௜ ൫𝑥௤ᇱ ൯൧ interval values, in order to calculate the firing interval values ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ of this level-𝛼௞. This proposal estimates both, the antecedent firing levels ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ  and 

the consequent centroids ቂ𝑐௟ఈೖ௜ , 𝑐௥ఈೖ௜ ቃ using a Gaussian models as a secondary membership functions. 

4. To the best knowledge of the authors, this is the first time that the hybrid EWH IT3 NSFLS-1 

(OLS-BP) fuzzy system is applied to predict the transfer bar surface temperature at the entry zone of 

the finishing scale breaker of a HSM. 

This work is organized as follows. In section 2 the foundations of the proposed EWH IT3 FLS 

systems, the BP, and the OLS training methods are exposed to let the reader contextualize the 

proposal also presented in this section. Section 3 presents the application and validation of the 

performance of the proposed methodology applied to the temperature prediction of the transfer table 

of the host strip mill facility. Section 4 presents the results analysis obtained in the application. Finally, 

section 5 provides the conclusions. 

2. Materials and Methods 

2.1. A new Construction and Calculation of the WH IT3 NSFLS-1 System 

The main foundation of IT3 systems is the uncertainty presented by the horizontal level-𝛼௞ with 

respect to its vertical location or its secondary membership value 𝜇஺෨ (𝑥, 𝑢) = 𝑓௫(𝑢) = 𝛼௞, as is shown 

in Figure 1 and Figure 2. In the IT3 systems, this additional uncertainty is represented by the interval 

value ൣ𝛼௞, 𝛼௞൧. Geometrically as in [124], it is interpreted as shown in Figure 3. This uncertainty is 

modeled to be between the horizontal levels- 𝛼௞ and 𝛼௞, as in Figure 4. 

 

Figure 1. Geometrical view of the GT2 NSFLS-1. 
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Figure 2. Levels-𝜶𝒌 and uncertain secondary values of the proposed EWH IT3 NSFLS-1 system. 

 

Figure 3. Uncertainty of secondary membership grade in EWH IT3 system. 

 

Figure 4. Uncertainty of secondary membership grade in EWH GT2 equivalent to EWH IT3 systems. 
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Based on the modeling of WH GT2 Mamdani fuzzy systems that use the type reduction center 

sets and the end-point defuzzification average, [124], Eq. (1),  the WH IT3 NSFLS-1 can be calculated 

in more economical and precise results using Eq. (2), with 𝑞 = 1, 2, … , 𝑝  the number of input 

variables, 𝑖 = 1, 2, … , 𝑀 the number of rules, and 𝑘 = 1, 2, … , 𝑁 the number of the horizontal levels-𝛼௞. 

The classic WH GT2 Mamdani model uses the weighted average of the contribution of each 

level: 𝑓ௐு ூ்ଷ ேௌி௅ௌିଵ(𝒙ᇱ) = 𝑦ௐுିଷ = 𝑦ௐு ఈ = ∑ ఈೖ௬ഀೖೖ೘ೌೣೖసభ∑ ఈೖೖ೘ೌೣೖసభ  

 (1) 
This proposal uses the average of the contribution of each level which includes the horizontal 

level-𝛼଴ or IT2𝛼଴ FLS output, 𝑦ఈబ, giving 𝑁 + 1 levels:     𝑓ாௐு ூ்ଷ ேௌி௅ௌିଵ(𝒙ᇱ) = 𝑦ாௐுିଷ = 𝑦ாௐு ఈ = 𝑦ఈ = ∑ ௬ഀೖೖಿసబேାଵ     (2) 

Remark 1. Equation (2) presents one of the novelties of this paper that represents the enhancement of the 

Wagner-Hagras model adding the level-𝛼଴ that provide the basis for the evaluation of overall IT3 system and 

determines their performance as in the case of the predecessor IT2 model. 𝑦ఈೖ = ቂ௬೗ഀೖା௬ೝഀೖଶ ቃ       (3) 

  𝑓ாௐு ூ்ଷ ேௌி௅ௌିଵ(𝒙ᇱ) = 𝑦ఈ = ∑ ቂ൬௬೗,ഀೖ೎೚ೞ  ൫௫ᇲ൯ା௬ೝ,ഀೖ೎೚ೞ  ൫௫ᇲ൯൰/ଶቃೖಿసబ ேାଵ  

 (4) 
where 𝑦௟,ఈೖ௖௢௦  and 𝑦௥,ఈೖ௖௢௦  are the left and right points of the center of sets of each 𝑦ఈೖ, and its union can 

be expressed as an expansion 𝑦ாௐுିଷ composed by 𝑁 + 1 elements 𝑦ఈೖ corresponding to the 𝑁 +1 horizontal levels-𝛼௞: 𝑦ఈ = ଵேାଵ 𝑦ఈబ + ଵேାଵ 𝑦ఈభ + ଵேାଵ 𝑦ఈమ + ⋯ + ଵேାଵ 𝑦ఈೖ + ⋯ + ଵேାଵ 𝑦ఈಿ   (5) 

Each weighted output 𝑦ఈೖ corresponding to each level-𝛼௞ can be calculated using the EWH IT3 

NFLS-1 modeling with the uncertain level-𝛼௞ ∈ ൣ𝛼௞, 𝛼௞൧. Now the proposed 𝑦ாௐுିଷ expansion is 

composed by 2𝑁 + 2 elements, (11).  𝑦ఈ = ଵேାଵ ൬ఈబ௬ഀబାఈబ௬ഀబఈబାఈబ ൰ + ଵேାଵ ൬ఈభ௬ഀభାఈభ௬ഀభఈభାఈభ ൰ + ⋯ + ଵேାଵ ൬ఈೖ௬ഀೖାఈೖ௬ഀೖఈೖାఈೖ ൰ + ⋯ +
ଵேାଵ ൬ఈಿ௬ഀಿାఈಿ௬ഀಿఈಿାఈಿ ൰ (6) 𝑦ఈ = ଵேାଵ ൬ ఈబఈబାఈబ൰ 𝑦ఈబ + ଵேାଵ ൬ ఈబఈబାఈబ൰ 𝑦ఈబ + ଵேାଵ ൬ ఈభఈభାఈభ൰ 𝑦ఈభ + ଵேାଵ ൬ ఈభఈభାఈభ൰ 𝑦ఈభ + ⋯ +

ଵேାଵ ൬ ఈೖఈೖାఈೖ൰ 𝑦ఈೖ + ଵேାଵ ൬ ఈೖఈೖାఈೖ൰ 𝑦ఈೖ + ⋯ + ଵேାଵ ൬ ఈಿఈಿାఈಿ൰ 𝑦ఈಿ + ଵேାଵ ൬ ఈಿఈಿାఈಿ൰ 𝑦ఈಿ  (7) 𝑦ఈ = 𝐾ఈబ𝑦ఈబ + 𝐾ఈబ𝑦ఈబ + 𝐾ఈభ𝑦ఈభ + 𝐾ఈభ𝑦ఈభ + ⋯ + 𝐾ఈೖ𝑦ఈೖ + 𝐾ఈೖ𝑦ఈೖ + ⋯ + 𝐾ఈಿ𝑦ఈಿ +𝐾ఈಿ𝑦ఈಿ (8) 
Now 𝑦ఈ the output of the EWH IT3 NSFLS-1 can be modeled as EWH GT2 NSFLS-1 system 

composed by 2𝑁 + 2 elements.  

where 𝐾ఈబ     = ଵேାଵ ൤ ఈబఈబାఈబ൨        

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2023                   doi:10.20944/preprints202310.2072.v1

https://doi.org/10.20944/preprints202310.2072.v1


 10 

 

𝐾ఈభ     = ଵேାଵ ൤ ఈబఈబାఈబ൨       𝐾ఈమ     = ଵேାଵ ൤ ఈభఈభାఈభ൨        𝐾ఈయ     = ଵேାଵ ൤ ఈభఈభାఈభ൨        ⋮         𝐾ఈೖ     = ଵேାଵ ൤ ఈೖఈೖାఈೖ൨        𝐾ఈೖశభ  = ଵேାଵ ൤ ఈೖఈೖାఈೖ൨        ⋮         𝐾ఈమಿశభ = ଵேାଵ ൤ ఈಿశభఈಿశభାఈಿశభ൨       𝐾ఈమಿశమ = ଵேାଵ ൤ ఈಿశభఈಿశభାఈಿశభ൨      (9) 

and: 𝑦ఈబ = 𝑦ఈబ         𝑦ఈభ = 𝑦ఈబ         ⋮         𝑦ఈೖ = 𝑦ఈೖ         𝑦ఈೖశభ = 𝑦ఈೖశభ        ⋮         𝑦ఈమಿశభ = 𝑦ఈಿశభ        𝑦ఈమಿశమ = 𝑦ఈಿశభ        (10) 
then: 𝑦ఈ = 𝐾ఈబ ቂ௬೗ഀబା௬ೝഀబଶ ቃ  + 𝐾ఈభ ቂ௬೗ഀబା௬ೝഀబଶ ቃ  +  … +𝐾ఈೖ ቂ௬೗ഀೖା௬ೝഀೖଶ ቃ  +  𝐾ఈೖశభ ቂ௬೗ഀೖశభା௬ೝഀೖశభଶ ቃ + ⋯ +𝐾ఈమಿశభ ቂ௬೗ഀಿା௬ೝഀಿଶ ቃ + 𝐾ఈమಿశమ ቂ௬೗ഀಿା௬ೝഀಿଶ ቃ   (11) 𝑦ఈ = ∑ 𝐾ఈೖ𝑦ఈೖଶேାଶ௞ୀ଴      (12) 
The centroids can be calculated with the centroid equations using the Karnik-Mendel (KM) 

algorithm for any left endpoint 𝑦௟ఈೖ: 𝑦௟ఈೖ = ∑ ௙ഀೖ೙ ∗ಽ೙సభ ௖೗ഀೖ೙ ା∑ ௙ഀ ೖ೙ ∗௖೗ഀೖ೙ಾ೙సಽశభ∑ ௙ഀೖ೙ಽ೙సభ ା∑ ௙ഀ ೖ೙ಾ೙సಽశభ      (13) 

for any right endpoint 𝑦௥ఈೖ: 
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𝑦௥ఈೖ = ∑ ௙ഀ ೖ೙ ∗ೃ೙సభ ௖ೝഀೖ೙ ା∑ ௙ഀೖ೙ ∗௖ೝഀೖ೙ಾ೙సೃశభ∑ ௙ഀ ೖ೙ೃ೙సభ ା∑ ௙ഀೖ೙ಾ೙సೃశభ      (14) 

ቂ𝑓ఈೖ௡ , 𝑓ఈೖ௡ ቃ is the estimated firing interval and ൣ𝑐௟ఈೖ௡ , 𝑐௥ఈೖ௡  ൧ is the estimated consequent centroid 

of the rule 𝑛 of the level-𝛼௞.  

2.1.1. Input Variables, Rules, and Levels-α୩ 

The designer must select 𝑞 = 1, 2, … , 𝑝 the input variables, 𝑖 = 1, 2, … , 𝑀 the number of rules, 𝑘 = 1, 2, … , 𝑁, the initial number of horizontal levels-𝛼௞  to start the construction of the EWH IT3 

NSFLS-1 system with the design and construction of the IT2𝛼଴ FLS. 

The 𝑝 inputs are type-1 non-singleton numbers modeled as a Gaussian with the mean 𝑥௤ᇱ  and 

a standard deviation 𝜎௑೜. The well-known type-1 non-singleton Gaussian model is used as primary 

MF:  𝜇௑෨೜ (𝑥௤) = 𝑒𝑥𝑝 ቈ− ଵଶ ൤௫೜ି௫೜ᇲఙ೉೜ ൨ଶ቉      

 (15) 
Each input must cover its universe of discourse (UOD) with the required number of MFs.  

2.1.2. The Membership Functions and Universe of Discourse 

The number 𝑀 of rules is determined by the array of required MFs of each input. If there are 

two inputs, and the UOD of  𝑋෨ଵ and 𝑋෨ଶ  are covered by five MFs each, then the rule base has 𝑀 = 

5x5 = 25 rules.  

Each consequent MF is modeled as Gaussian with uncertain means 𝑀௤௜ ∈ ൣ𝑀௤భ௜ , 𝑀௤మ௜ ൧  and 

common standard deviation 𝜎௤௜ :  𝜇஺෨೜೔ (𝑥௤) = 𝑒𝑥𝑝 ቈ− ଵଶ ൤௫೜ିெ೜೔ఙ೜೔ ൨ଶ቉      

 (16) 
The IT3 Mamdani fuzzy rule base model has 𝑝 inputs  𝑥ଵ ∈ 𝑋ଵ, …, 𝑥௣ ∈ 𝑋௣, one output ∈ 𝑌, 

and a rule base of size M of the form: 𝑅෨ ௜: 𝐼𝐹 𝑥ଵ 𝑖𝑠  𝐴ሚଵ௜  𝑎𝑛𝑑 …  𝑎𝑛𝑑 𝑥௣ 𝑖𝑠  𝐴ሚ௣௜  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠  𝐺෨௜  
 (17) 

where 𝑞 =  1, 2, … , 𝑝 is the number of inputs; 𝑖 =  1, 2, … , 𝑀 is the number of rules. 

2.1.3. The Rule Base 

The rule base of the horizontal level-𝛼଴, is constructed assigning the initial values of each of the 𝑝𝑀 membership functions, 𝐴ሚଵ௜ , 𝐴ሚଶ௜  …   𝐴ሚ௣௜ , and 𝑀 consequent centroids ቂ𝑐௟ఈబ௜ , 𝑐௥ఈబ௜ ቃ.  𝑅෨௜: 𝐼𝐹 𝑥ଵ 𝑖𝑠  𝐴ሚଵ௜  𝑎𝑛𝑑 … 𝑥௣ 𝑖𝑠  𝐴ሚ௣௜  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠  ቂ𝑐௟ఈబ௜ , 𝑐௥ఈబ௜ ቃ  

 (18) 

2.1.4. Alpha 𝛼௞-Cuts  

The 𝑀 firing intervals ቂ𝑓௟ఈబ௜ , 𝑓௥ఈబ௜ ቃ of the horizontal level-𝛼଴ or IT2𝛼଴ FLS are calculated based 

on (19) using the 𝛼଴-cuts or the intersection of  𝑥௤ᇱ  and the MF of each input and each rule. Only the 𝛼଴-cuts of level-𝛼଴ are calculated, not the 𝛼௞-cuts of any other level-𝛼௞. ቂ𝑓௟ఈబ௜ , 𝑓௥ఈబ௜ ቃ = ቂ∏ 𝑎௤ఈబ௜ ൫𝑥௤,௠௔௫௜ ൯,௣௤ୀଵ ∏ 𝑏௤ఈబ௜ ቀ𝑥௤,௠௔௫௜ ቁ௣௤ୀଵ ቃ  

 (19) 
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with 

 𝑎௤ఈబ௜ ൫𝑥௤,௠௔௫௜ ൯ = 𝜇௑෨೜(𝑥௤,௠௔௫௜ )𝜇஺෨೜೔ (𝑥௤,௠௔௫௜ )     (20) 

and 

 𝑏௤ఈబ௜ ቀ𝑥௤,௠௔௫௜ ቁ = 𝜇௑෨೜(𝑥௤,௠௔௫௜ )𝜇஺෨೜೔ (𝑥௤,௠௔௫௜ )     (21)  𝑥௤,௠௔௫௜  and 𝑥௤,௠௔௫௜
 are determined according to the locations of 𝑥௤ᇱ  with respect to 𝑀௤ଵ௜  and 𝑀௤ଶ௜  as it is shown in Table 4. 

Table 4. Locations of 𝑥௤ᇱ , for 𝑥௤,௠௔௫௜  and 𝑥௤,௠௔௫௜
 estimation used to calculate ቂ𝑓௟ఈబ௜ , 𝑓௥ఈబ௜ ቃ and ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ. 

  Location of 𝑥௤′  for 𝑥௤,௠௔௫௜  calculation 

Location of 𝑥௤′  
for 𝑥௤,௠௔௫௜

 

Calculation 

𝑥௤,௠௔௫௜  𝑥௤,௠௔௫௜
 

1 𝑥௤ᇱ
< 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
− ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 𝑥௤ᇱ < 𝑀௤ଵఈబ௜  

𝑥௤,௠௔௫௜
= ቀ𝜎௫೜భ௜ ቁଶ 𝑀௤ଶఈబ௜ + ൫𝜎௤௜ ൯ଶ𝑥௤ᇱ  ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ  

𝑥௤,௠௔௫௜  

= ቀ𝜎௫೜మ௜ ቁଶ 𝑀௤ଵఈబ௜ + ൫𝜎௤௜ ൯ଶ𝑥௤ᇱ  ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ  

2 𝑥௤ᇱ
< 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
− ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 𝑥௤ᇱ∈ ൣ𝑀௤ଵఈబ௜ , 𝑀௤ଶఈబ௜ ൧ 
𝑥௤,௠௔௫௜

= ቀ𝜎௫೜భ௜ ቁଶ 𝑀௤ଶఈబ௜ + ൫𝜎௤௜ ൯ଶ𝑥௤ᇱ  ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ  

𝑥௤,௠௔௫௜ = 𝑥௤ᇱ  

3 𝑥௤ᇱ
∈ ቎𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
− ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ , 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
+ ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ ቏ 

𝑥௤ᇱ∈ ൣ𝑀௤ଵఈబ௜ , 𝑀௤ଶఈబ௜ ൧ 
 

𝑥௤,௠௔௫௜ = 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2  

 

𝑥௤,௠௔௫௜ = 𝑥௤ᇱ  

 

4 

𝑥௤ᇱ
> 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
+ ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

𝑥௤ᇱ∈ ൣ𝑀௤ଵఈబ௜ , 𝑀௤ଶఈబ௜ ൧ 
𝑥௤,௠௔௫௜

= ቀ𝜎௫೜భ௜ ቁଶ 𝑀௤ଵఈబ௜ + ൫𝜎௤௜ ൯ଶ𝑥௤ᇱ  ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ  
𝑥௤,௠௔௫௜ = 𝑥௤ᇱ  

5 

 

 𝑥௤ᇱ
> 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
+ ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 

 𝑥௤ᇱ > 𝑀௤ଶ௜  

 𝑥௤,௠௔௫௜
= ቀ𝜎௫೜భ௜ ቁଶ 𝑀௤ଵఈబ௜ + ൫𝜎௤௜ ൯ଶ𝑥௤ᇱ  ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ  

 𝑥௤,௠௔௫௜
= ቀ𝜎௫೜మ௜ ቁଶ 𝑀௤ଶఈబ௜ + ൫𝜎௤௜ ൯ଶ𝑥௤ᇱ  ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ  
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2.1.5. Firing Intervals 

Each firing interval ቂ𝑓௟ఈబ௜ , 𝑓௥ఈబ௜ ቃ of the horizontal level-𝛼଴ or IT2𝛼଴ NSFLS-1 is used to estimate 

the antecedent’s firing interval of each level-𝛼௞ ∈ ൣ𝛼௞, 𝛼௞൧. As it is shown in Figure 5, the Gaussian 

model of the vertical slice at 𝑥௤,௠௔௫ᇱ  used to calculate the firing interval  ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ of each level-𝛼௞  

is: 𝜇௙ೡೞഀೖ೔ = 𝛼௞ = 𝑒𝑥𝑝 ቈ− ଵଶ ൤௫೜ᇲ ି௠೑ೡೞഀబ೔ఙ೑ೡೞഀబ೔ ൨ଶ቉    (22) 

where 𝑚௙ೡೞഀబ௜ = ௙೗ഀబ೔ ା௙ೝഀబ೔ଶ         (23) 

𝜎௙ೡೞഀబ௜ = ௙ೝഀబ೔ ି௙೗ഀబ೔௓         (24) 

ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ = ௙೗ഀబ೔ ା௙ೝഀబ೔ଶ ∓ ௙ೝഀబ೔ ି௙೗ഀబ೔௓ ඥ−2ln (𝛼௞)మ   (25) 
with 𝑧 = 1, 2, …,n being an integer number estimated by trial and error. The magnitude of the 

standard deviation of the model is a fraction of the interval of the means. 

a) 

 
b) 

 

Figure 5. Geometrical view used to calculate, a) For each level-𝜶𝒌, each 𝜶𝒌-cut point of the firing 

interval of the antecedent section of the proposed EWH IT3 NSFLS-1 systems, and b) Its equivalent 

geometrical view in GT2 systems. 

2.1.6. Consequent Centroids 

Each consequent’s centroids ቂ𝑐௟ఈబ௜ , 𝑐௥ఈబ௜ ቃ of the horizontal level-𝛼଴ are used to estimate the 𝑀 

consequents’ centroid of the level-𝛼௞ ∈ ൣ𝛼௞, 𝛼௞൧. As shown in Figure 6, the Gaussian model of the 

vertical slice at 𝑥௤,௠௔௫ᇱ  used to calculate the centroid  ቂ𝑐௟ఈೖ௜ , 𝑐௥ఈೖ௜ ቃ of each level-𝛼௞  is: 𝜇௖ೡೞഀೖ೔ = 𝛼௞ = 𝑒𝑥𝑝 ቈ− ଵଶ ൤௫೜ᇲ ି௠೎ೡೞഀబ೔ఙ೎ೡೞഀబ೔ ൨ଶ቉    (26) 

where 
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𝑚௖௩௦ఈబ௜ = ௖೗ഀబ೔ ା௖ೝഀబ೔ଶ        (27) 

𝜎௖௩௦ఈబ௜ = ௖ೝഀబ೔ ି௖೗ഀబ೔௓         (28) 

ቂ𝑐௟ఈೖ௜ , 𝑐௥ఈೖ௜ ቃ = ௖೗ഀబ೔ ା௖ೝഀబ೔ଶ ∓ ௖ೝഀబ೔ ି௖೗ഀబ೔௓ ඥ−2ln (𝛼௞)మ   

 (29) 

 

Figure 6. Geometrical view used to calculate, a) For each level-𝜶𝒌, each 𝜶𝒌-cut point of the Centroids 

of the consequent section of the proposed EWH IT3 NSFLS-1 system, and b) its equivalent geometrical 

view in GT2 systems. 

2.1.7. Expansion of the Level-α୩ 

The proposed EWH IT3 NSFLS-1 solves the processing of the uncertainty of the secondary grade 

of each level-𝛼௞, Figure 1, by replacing this level by its two levels-𝛼௞ that represent the uncertainty 

in the secondary membership: The lower level-𝛼௞  and the upper level-𝛼௞ . Now the expanded 

number of the horizontal levels-𝛼௞ is 2𝑁 + 2, transforming the EWH IT3 NSFLS-1 into a EWH GT2 

NSFLS-1 system, by applying the EWH GT2 methodology to 2𝑁 + 2 levels-𝛼௞ (8). 

2.1.8. Calculation of y஑  
For each input-output training data pair (𝒙ᇱ, 𝑦), 𝑦ఈ can be estimated using (12). The proposed 

EWH IT3 NSFLS-1 is dynamically constructed because its structure is calculated for each input vector 𝒙௤ᇱ . The horizontal level-𝛼଴ or IT2𝛼଴ NSFLS-1 is used as the base line to estimate the structure of each 

horizontal level-𝛼௞ or IT2𝛼௞. Regardless of it being either the low horizontal level-𝛼௞ or the upper 

horizontal level-𝛼௞, it requires the same procedure: In each level-𝛼௞ an IT2𝛼௞ NSFLS-1 is constructed 

with its corresponding antecedent firing interval ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ  and its corresponding consequent 

centroid ቂ𝑐௟ఈೖ௜ , 𝑐௥ఈೖ௜ ቃ. An important characteristic is that the estimated parameters of the antecedent 

and consequent sections of each rule of all the levels-𝛼௞ ∈ ൣ𝛼௞, 𝛼௞ ൧ are dynamic and temporal, and 
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only the parameters of the level-𝛼଴ or IT2𝛼଴ are permanent. Only the level-𝛼଴ has MF parameters 

of its Gaussians models, while any other level-𝛼௞ temporarily has the corresponding estimated firing 

intervals ቂ𝑓௟ఈೖ௜ , 𝑓௥ఈೖ௜ ቃ  and the estimated centroids ቂ𝑐௟ఈೖ௜ , 𝑐௥ఈೖ௜ ቃ  both required to calculate its 

contribution to the final value 𝑦ఈ . To estimate the value 𝑦ఈ  we propose the average using each 

output 𝑦ఈೖ: 𝑦ఈ = ∑ ௬ഀೖೖ೘ೌೣೖసభே . 

2.2. The BP Method for Antecedent Tunning 

An objective function 𝐸(𝜃) may have a non-linear form with respect to an adjustable parameter 𝜃. In the interactive descent methods, the next point 𝜃(𝑛𝑒𝑤) is determined by one step down from 

the current point 𝜃(𝑛𝑜𝑤) in the negative direction of the gradient of the function 𝐸(𝜃௡௢௪). The 𝐾 learning rates are selected by trial and error while meeting the selected criteria of minimizing the 

error. 𝜃(𝑛𝑒𝑤) = 𝜃(𝑛𝑜𝑤) − 𝐾𝑔        
(30) 𝜃(𝑛𝑒𝑤) = 𝜃(𝑛𝑜𝑤) − 𝐾 డாడఏ೙೚ೢ       (31) 𝐾 is the training rate, and 𝑔 is the vector of the first partial derivatives of 𝐸(𝜃) and is equivalent to డாడఏ೙೚ೢ: 𝑔(𝜃) = ቂ డாడఏభ ೙೚ೢ , డாడఏమ ೙೚ೢ , … , డாడఏ೙ ೙೚ೢቃ்

    (32) 

Each rule of the level-𝛼଴ applies equation (32) to update three 𝜃 antecedent parameters, 𝑀௤ଵఈబ௜  

, 𝑀௤ଶఈబ௜ , and σ௤ఈబ௜ . 

Equation (32) requires finding the partial derivatives used to update all the parameters of the 

antecedent section of each rule of only the IT2𝛼଴ NFLS-2 located at level-𝛼଴.  𝑀௤ଵఈబ௜ (𝑛𝑒𝑤) = 𝑀௤ଵఈబ௜ (𝑛𝑜𝑤) − 𝐾ெ೜భഀబ డாడெ೜భഀబ೔    (33) 𝑀௤ଶఈబ௜ (𝑛𝑒𝑤) = 𝑀௤ଶఈబ௜ (𝑛𝑜𝑤) − 𝐾ெ೜మഀబ డாడெ೜మഀబ೔    (34) σ௤ఈబ௜    (𝑛𝑒𝑤)  = σ௤ఈబ௜ (𝑛𝑜𝑤) − 𝐾ఙ೜ఈబ డாడఙ೜ഀబ೔    (35) 

where 𝐾ெ೜భഀబ , 𝐾ெ೜మഀబ , and 𝐾ఙ೜ఈబ , are the training rates of its corresponding parameter. 

The quadratic error function to minimize is: 𝐸 = ଵଶ (𝑦 − 𝑦ఈ )ଶ         (36) 

where: 𝑦 is the output value of the 𝐿 input-output data pairs. The error function is: 𝑒 = 𝑦 − 𝑦ఈ         (37) 
As an example, the logic sequence of the math steps to obtain the partial derivatives of the 

objective function 𝐸 with respect to the antecedent parameter 𝑀௤ଵఈబ௜  are illustrated from (38) to (40).  

  𝑀௤ଵఈబ௜ (𝑛𝑒𝑤) = 𝑀௤ଵఈబ௜ (𝑛𝑜𝑤) − 𝐾ெ೜భഀబ డாడெ೜భഀబ೔     

(38) 
then డாడெ೜భഀబ೔ = ൤ డாడ௬ഀ డ௬ഀడ௬ഀభ డ௬ഀభడெ೜భഀబ೔ + డாడ௬ഀ డ௬ഀడ௬ഀభ డ௬ഀభడெ೜భഀబ೔ + ⋯ + డாడ௬ഀ డ௬ഀడ௬ഀೖ డ௬ഀೖడெ೜భഀబ೔ + డாడ௬ഀ డ௬ഀడ௬ഀೖ

డ௬ഀೖడெ೜భഀబ೔ + ⋯ +
డாడ௬ഀ డ௬ഀడ௬ഀಿ డ௬ഀಿడெ೜భഀబ೔ + డாడ௬ഀ డ௬ഀడ௬ഀಿ

డ௬ഀಿడெ೜భഀబ೔ ൨     (39) 
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which is equivalent to: 𝜕𝐸𝜕𝑀௤ଵఈబ௜ = 

൤ డாడ௬ഀ డ௬ഀడ௬ഀభ డ௬ഀభడெ೜భഀబ೔ + డாడ௬ഀ డ௬ഀడ௬ഀమ డ௬ഀమడெ೜భഀబ೔ + ⋯ + డாడ௬ഀ డ௬ഀడ௬ഀೖ డ௬ഀೖడெ೜భഀబ೔ +⋯ + డாడ௬ഀ డ௬ഀడ௬ഀಿ డ௬ഀಿడெ೜భഀబ೔ + ⋯ డாడ௬ഀ డ௬ഀడ௬ഀమಿ డ௬ഀమಿడெ೜భഀబ೔ ൨    (40) 

Each level-𝛼௞ ∈ ൣ𝛼௞, 𝛼௞൧ previously defined during the construction process, contributes only by 

updating the parameters of the permanent level-𝛼଴. No parameters of the level-𝛼௞ have training only 

have it the level-𝛼଴ parameters. 

A similar procedure can be used to calculate the equations for training: 𝑀௤ଶఈబ௜ , and σ௤ఈబ௜  of the 

IT2𝛼଴ NSFLS-1. 

As shown in Table 4, the final equations for training the parameters of the antecedent depend 

on the relative position of  𝑥௤ᇱ  with respect to 𝑀௤ଵఈబ௜  and 𝑀௤ଶఈబ௜  positions. Table 5 shows the 

complete set of equations for parameters 𝑀௤ଵఈబ௜ , 𝑀௤ଶఈబ௜  and σ௤ఈబ௜ , with training under 𝑦௟ 
contribution. Table 6 also shows the complete set of equations for training these three antecedent 

parameters under the 𝑦௥ contribution.  

Table 5. Gradient descent equations for antecedent training under 𝑦௟ contribution. 

 Location of 𝒙𝒒ᇱ   Parameter of the antecedent membership function 

that contributes to the left-most section 

1 𝑥௤ᇱ ≤ 𝑀௤ଵఈబ௜  

 

 

𝑓௥ఈೖ௜
∈ ቀ𝑓௥ఈೖଵ … 𝑓௥ఈೖ௅ ቁ 

𝑀௤ଵఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଵఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜భഀబ 𝑒 ෍  𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௝ + ∑ 𝑓௟ఈೖ௝ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൥12ଶேାଶ

௞ୀ଴+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଵఈబ௜൫𝜎௤ఈబ௜ ൯ଶ + ቀ𝜎௫೜మ௜ ቁଶቍ 𝑓௥ఈబ௜    ቏ 

 𝜎 ௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௝ + ∑ 𝑓௟ఈೖ௝ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎡ ൫𝑥௤ᇱ − 𝑀௤ଵఈబ௜ ൯ଶ
൤൫𝜎௤ఈబ௜ ൯ଶ + ቀ𝜎௫೜మ௜ ቁଶ൨ଶ 𝑓௥ఈబ௜ ⎦⎥⎥

⎤
 

 

2 𝑥௤ᇱ ≥ 𝑀௤ଶఈబ௜  

 

𝑓௥ఈೖ௜
∈ ቀ𝑓௥ఈೖଵ … 𝑓௥ఈೖ௅ ቁ 

𝑀௤ଶఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଶఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜మഀబ 𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௜ + ∑ 𝑓௟ఈೖ௜ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൭12ଶேାଶ

௞ୀ଴+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൱ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଶఈబ௜ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶቍ 𝑓௥ఈబ௜ ቏ 
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𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௜ + ∑ 𝑓௟ఈೖ௜ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎡ ൫𝑥௤ᇱ − 𝑀௤ଶఈబ௜ ൯ଶ
൤ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ൨ଶ 𝑓௥ఈబ௜ ⎦⎥⎥

⎤
 

 

 

 

3 

𝑥௤ᇱ
≤ 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
− ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 

𝑓௟ఈೖ௜∈ ቀ𝑓௟ఈೖ௅ାଵ … 𝑓௟ఈೖெ ቁ 

𝑀௤ଶఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଶఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜మഀబ 𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௝ + ∑ 𝑓௟ఈೖ௝ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൭12ଶேାଶ

௞ୀ଴+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൱ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଶఈబ௜ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶቍ 𝑓௟ఈబ௜ ቏ 

 𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௝ + ∑ 𝑓௟ఈೖ௝ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎡ ൫𝑥௤ᇱ − 𝑀௤ଶఈబ௜ ൯ଶ
൤ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ +൨ଶ 𝑓௟ఈబ௜ ⎦⎥⎥

⎤
 

 

4 

 𝑥௤ᇱ
≥ 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
+ ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 

 𝑓௟ఈೖ௜∈ ቀ𝑓௟ఈೖ௅ାଵ … 𝑓௟ఈೖெ ቁ 

 𝑀௤ଵఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଵఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜భഀబ 𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௝ + ∑ 𝑓௟ఈೖ௝ெ௟ୀ௅ାଵ௅௝ୀଵ ቏ ൥12ଶேାଶ

௞ୀ଴+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଵ௜ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶቍ 𝑓௟ఈబ௜    ቏ 

 𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௟ఈೖ௜ − 𝑦௟ఈೖ∑ 𝑓௥ఈೖ௝ + ∑ 𝑓௟ఈೖ௝ெ௝ୀ௅ାଵ௅௝ୀଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 ln(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎡ ൫𝑥௤ᇱ − 𝑀௤ଵఈబ௜ ൯ଶ
൤ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ൨ଶ 𝑓௟ఈబ௜ ⎦⎥⎥

⎤
 

 

Table 6. Gradient descent equations for antecedent training under 𝑦௥ contribution. 
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 Location of 𝒙𝒒ᇱ   Parameter of the antecedent membership function that 

contributes to the right-most section 

1 𝑥௤ᇱ ≤ 𝑀௤ଵఈబ௜  

 

 

𝑓௥ఈೖ௜
∈ ቀ𝑓௥ఈೖோାଵ … 𝑓௥ఈೖெ ቁ 

𝑀௤ଵఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଵఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜భഀబ 𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௝ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൥12ଶேାଶ

௞ୀ଴+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଵఈబ௜ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶቍ 𝑓௥ఈబ௜   ቏ 

 𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௜ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎡ ൫𝑥௤ᇱ − 𝑀௤ଵఈబ௜ ൯ଶ
൤ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ൨ଶ 𝑓௥ఈబ௜ ⎦⎥⎥

⎤
 

 

 

2 𝑥௤ᇱ ≥ 𝑀௤ଶఈబ௜  

 

𝑓௥ఈೖ௜
∈ ቀ𝑓௥ఈೖோାଵ … 𝑓௥ఈೖெ ቁ 

𝑀௤ଶఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଶఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜మഀబ 𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௝ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൭12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൱ ൦൮ 𝑥௤ᇱ − 𝑀௤ଶఈబ௜ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ൲ 𝑓௥ఈబ௜ ൪ 

 

 𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௝ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎡ ൫𝑥௤ᇱ − 𝑀௤ଶఈబ௜ ൯ଶ
൤ቀ𝜎௫೜మ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ൨ଶ 𝑓௥ఈబ௜ ⎦⎥⎥

⎤
 

 

3 𝑥௤ᇱ
≤ 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
− ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 

𝑓௟ఈೖ௜ ∈ ቀ𝑓௟ఈೖଵ … 𝑓௟ఈೖோ ቁ 𝑀௤ଶఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଶఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜మഀబ 𝑒 ෍ 𝐾ఈೖ ൦ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௜ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௜ெ௝ୀோାଵ ൪ ൭12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൱ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଶఈబ௜ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤௜ ൯ଶቍ 𝑓௟ఈబ௜ ቏ 
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 𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௝ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎢⎡ ൫𝑥௤ᇱ − 𝑀௤ଶఈబ௜ ൯ଶ
ቈቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ቉ଶ 𝑓௟ఈబ௜

⎦⎥⎥
⎥⎤
 

 

4 𝑥௤ᇱ
≥ 𝑀௤ଵఈబ௜ + 𝑀௤ଶఈబ௜2
+ ቀ𝜎௫೜భ௜ ቁଶ ൫𝑀௤ଶఈబ௜ − 𝑀௤ଵఈబ௜ ൯2൫𝜎௤ఈబ௜ ൯ଶ  

 

𝑓௟ఈೖ௜ ∈ ቀ𝑓௟ఈೖଵ … 𝑓௟ఈೖோ ቁ 𝑀௤ଵఈబ௜ (𝑛𝑒𝑤)= 𝑀௤ଵఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ெ೜భഀబ 𝑒 ෍  𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௝ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൥12ଶேାଶ

௞ୀ଴+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ቎ቌ 𝑥௤ᇱ − 𝑀௤ଵఈబ௜ቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶቍ 𝑓௟ఈబ௜   ቏ 

 𝜎௤ఈబ௜ (𝑛𝑒𝑤)= 𝜎௤ఈబ௜ (𝑛𝑜𝑤)
+ 12 𝐾ఙ೜ఈబ𝑒 ෍ 𝐾ఈೖ ቎ 𝑐௥ఈೖ௜ − 𝑦௥ఈೖ  ∑ 𝑓௟ఈೖ௝ோ௝ୀଵ + ∑ 𝑓௥ఈೖ௝ெ௝ୀோାଵ ቏ ൥12ଶேାଶ

௞ୀ଴
+ ඥ−2 𝑙𝑛(𝛼௞)మ 𝑧 ൩ ൣ𝜎௤ఈబ௜ ൧ ⎣⎢⎢

⎢⎡ ൫𝑥௤ᇱ − 𝑀௤ଵఈబ௜ ൯ଶ
ቈቀ𝜎௫೜భ௜ ቁଶ + ൫𝜎௤ఈబ௜ ൯ଶ቉ଶ 𝑓௟ఈబ௜

⎦⎥⎥
⎥⎤
 

2.3. The OLS Method for Consequent Tunning 

Suppose that a particular system has one input 𝑢(𝑘) and one output 𝑦(𝑘) with an additive 

noise 𝑒(𝑘) measured 𝑡 times every 𝑇 period.  Then it is possible to describe its dynamic behavior 

using the next model [125]: 𝑦(𝑘) = ∑ 𝑎௝𝑦(𝑘 − 𝑗)௡௝ୀଵ + ∑ 𝑏௝𝑢(𝑘 − 𝑗)௡௝ୀ଴ + 𝑒(𝑘)  (41) 
Where 𝑘 = 1,2, … 𝑡; 𝑎௝, 𝑏௝ 𝑎௝ ∈ 𝑅, 𝑛 is the order of the system. This equation can be written in 

compact form: 𝑦(𝑘) = 𝒑்𝑧(𝑘) + 𝑒(𝑘)       (42) 
with 𝒑் = ሾ𝑏଴, 𝑎ଵ, 𝑏ଵ, … , 𝑎௡, 𝑏௡ሿ  is the parameters estimation matrix of size 2 𝑛 + 1  and 𝒛்(𝑘) =ሾ𝑢(𝑘), 𝑦(𝑘 − 1), 𝑢(𝑘 − 1), … , 𝑦(𝑘 − 𝑛), 𝑢(𝑘 − 𝑛)ሿ is the measurements vector. In the case of  𝑡 input-

output data pairs it can be expressed as:  𝒀(𝑡) = 𝑷𝑻𝒁(𝑡) + 𝐸(𝑡)       (43) 
with the output measured transpose vector of size  𝒀்(𝑡) = ሾ𝑦(1), 𝑦(2), … , 𝑦(𝑡)ሿ      (44) 

The measurements matrix can be expressed as: 

𝒁(𝑡) =
⎣⎢⎢
⎢⎢⎡

𝑢(1), 𝑢(2), ⋯ , 𝑢(𝑡)𝑦(0), 𝑦(1), ⋯ , 𝑦(𝑡 − 1)𝑢(0),⋮𝑦(1 − 𝑛),𝑢(1 − 𝑛),
𝑢(1),⋮𝑦(2 − 𝑛),𝑦(2 − 𝑛),

⋯ , 𝑢(𝑡 − 1)⋱            ⋮⋯ , 𝑦(𝑡 − 𝑛)⋯ , 𝑦(𝑡 − 𝑛)⎦⎥⎥
⎥⎥⎤ (45) 
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while the noise transpose vector as: 𝑬்(𝑡) = ሾ𝑒(1), 𝑒(2), … , 𝑒(𝑡)ሿ     (46) 
It is required to minimize the next criteria during the estimation of  𝑃: 𝑱 = (𝒀(𝑡) − 𝒁(𝑡)𝑷(𝑡))்𝑰(𝒀(𝑡) − 𝒁(𝑡)𝑷(𝑡))   (47) 

with its least-squares solution as: 𝑷෡்(𝑡) = ሾ𝒁்(𝑡)𝒁(𝑡)ሿିଵ𝒁்𝒀(𝑡)      (48) 
On the other hand, the equation system 𝑨𝒙 = 𝒃         (49) 

where 𝑨 is a matrix of size 𝑚 𝑥 𝑛, 𝒙 is a vector of size 𝑛, 𝒃 is a vector of size 𝑚, with 𝑚 >  𝑛. 

This system has a solution if 𝑏 lies in the range space of 𝐴  or equivalently 𝜌(𝐴) =  𝜌(𝐴, 𝑏). Tacking 

a decomposition of 𝑏 as 𝑏 = 𝑏ଵ + 𝑒,  then (49) can be expressed as: 𝑨𝒙 − 𝑏ଵ = 𝒆         (50) 
Let’s call  𝒆 of size 𝑚 the error. If  𝑨்𝑨 = 𝑭்𝑭        (51) 

with 𝑭 being any upper or lower triangular matrix of size 𝑛, then (49) can be written as: 𝑭்𝑭𝒙 = 𝑨்𝒃𝟏        (52) 
A least-square solution can be found using previous equation (52). The method does not require 

the explicit factorization of  𝑨்𝑨  matrix nor the inverse matrix of  𝑭். If the transformation matrix 𝑭 is defined as: 

𝑭 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

   𝑗 𝑘    1         1         ⋱         𝑐 𝑠       −𝑠 𝑐         ⋱         1         1⎦⎥⎥
⎥⎥⎥
⎥⎥⎤        (53) 

It is easy to check that if the values of 𝑐 and 𝑠 are selected in such a way that the following 

condition is fulfilled: 𝑐ଶ + 𝑠ଶ = 1         (54) 
Then the orthogonal transformation or rotational matrix can be defined as: 𝑭் = 𝑭ିଵ        (55) 

which is known as rotational matrix because its application produces a rotation of an 𝛼 angle in the 

system coordinates, with sin (𝛼) = 𝑐 and cos (𝛼) = 𝑠. 

When an arbitrary 𝑫  matrix is pre-multiplied by the 𝑭  matrix, the rows 𝑗  and 𝑘  of the 

product will have the next values:  𝑑௝ᇱ = 𝑐𝑑௝ + 𝑠𝑑௞        (56) 𝑑௞ᇱ = 𝑐𝑑௞ − 𝑠𝑑௝        (57) 
An adequate selection of 𝑐  and 𝑠 allows to override one element of the rows 𝑗 or 𝑘 . The 

successive application of  𝑚 transformations of this type allow the cancellation of 𝑚 row elements, 

finally obtaining the triangular matrix as result of successive transformations: ∆= 𝑭𝒎 … 𝑭ᇱᇱᇱ𝑭ᇱᇱ𝑭ᇱ𝑫 = 𝑭𝑫       (58) 
The rotational orthogonal transformations method is used to find the least-square solution of 

sub-determined systems of lineal equations. 

Rewriting (50) as: ሾ𝑨 𝑏ଵሿ ቂ 𝒙−1ቃ = 𝒆         (59) 
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If it is defined 𝑫 = ሾ𝑨 𝑏ଵሿ as a matrix of size 𝑚 𝑥 (𝑛 + 1), and  𝒙ᇱ = ቂ 𝒙−1ቃ as a vector of size (𝑛 + 1) and applying the orthogonal transformation matrix 𝑭 to (49), the next system is obtained: 𝑭𝑫𝒙ᇱ = 𝑭𝒆         (60) 
Then it is possible to apply the orthogonal transformation solution to the equation system (1) for 

its parameters identification. The last-square solution of (48) can be expressed as: ሾ𝒁்(𝑡)𝒁(𝑡)ሿ𝑷் = 𝒁்𝒀(𝑡)      (61) 
The new estimation of the parameters 𝑷் can be calculated by solving the triangular equivalent 

system: 𝑭(𝑡)𝑷𝑻(𝑡) = 𝒒(𝑡)        (62) 
where the upper triangular matrix 𝑭(𝑡) of size 2𝑛 + 1 is the square root of  𝒁்(𝑡)𝒁(𝑡), and 𝒒(𝑡) is 

a vector of size 2𝑛 + 1 . The composition of 𝑭(𝑡)  and 𝒒(𝑡)  produces a triangular matrix 2n+2 

represented in Figure 7.  

 

Figure 7. Schematic representation of F(t) and q(t), [125]. 

From the new measurements obtained at the time (𝑡 + 1) it is possible to create a new equation 

that has the form: 𝑦(𝑡 + 1) = 𝒛்(𝑡 + 1)𝑷(𝑡)      (63) 
with  𝒛்(𝑡 + 1) = ሾ𝑢(𝑡 + 1), 𝑦(𝑡), 𝑢(𝑡), … , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡 − 𝑛 + 1)ሿ  (64) 

 
The new system constituted by 𝑭(𝑡), 𝒒(𝑡) and 𝒛்(𝑡 + 1) as represented in Figure 8, can be 

reduced to a new triangular matrix to obtain by 𝑭(𝑡 + 1) and 𝒒(𝑡 + 1). For each period, the previous 

algorithm reduces to zero the compound vector ሾ𝒛்(𝑡 + 1), 𝑦(𝑡 + 1)ሿ, of size 2𝑛 + 2, to calculate 𝑭(𝑡 + 1)  and 𝒒(𝑡 + 1) , as represented in Figure 9. Then the parameters of 𝑷෡்(𝑡 + 1)  can be 

calculated by solving the triangular equivalent system of (1) 𝑭(𝑡 + 1)𝑷෡்(𝑡 + 1) = 𝒒(𝑡 + 1)     (65) 

 

Figure 8. T (t+1), [125]. 
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Figure 9. Schematic representation of F(t+1) and q(t+1), [125]. 𝑷෡்(𝑡 + 1) = 𝑭ି𝟏(𝑡 + 1)𝒒(𝑡 + 1)      (66) 

Considering  𝑦௟ఈೖ = ∑ ௙ഀೖ೙ ∗ಽ೙సభ ௖೗ഀೖ೙ ା∑ ௙ഀ ೖ೙ ∗௖೗ഀೖ೙ಾ೙సಽశభ∑ ௙ഀೖ೙ಽ೙సభ ା∑ ௙ഀ ೖ೙ಾ೙సಽశభ      (67) 

𝑦௥ఈೖ = ∑ ௙ഀ ೖ೙ ∗ೃ೙సభ ௖ೝഀೖ೙ ା∑ ௙ഀೖ೙ ∗௖ೝഀೖ೙ಾ೙సೃశభ∑ ௙ഀ ೖ೙ೃ೙సభ ା∑ ௙ഀೖ೙ಾ೙సೃశభ      (68) 

𝝀௟ఈೖ = ቂ𝑓ఈೖଵ , 𝑓ఈೖଶ … 𝑓ఈೖ௅ , 𝑓ఈೖ௅ାଵ, 𝑓ఈೖ௅ାଶ, … 𝑓ఈೖெቃ்
  (69) 𝝀𝒓𝜶𝒌 = ቂ𝑓ఈೖଵ , 𝑓ఈೖଶ … 𝑓ఈೖோ , 𝑓ఈೖோାଵ, 𝑓ఈೖோାଶ, … 𝑓ఈೖெ  ቃ்
  (70) 

and 𝜽௟𝜶𝒌 = ൣ 𝑐௟ఈೖଵ , 𝑐௟ఈೖଶ , … 𝑐௟ఈೖெ ൧்     (71) 𝜽𝒓𝜶𝒌 = ൣ 𝑐௥ఈೖଵ , 𝑐௥ఈೖଶ , … 𝑐௥ఈೖெ ൧்
     (72) 

Then  𝒚௟𝜶𝒌 = 𝝀𝒍𝜶𝒌𝑻 𝜽𝒍𝜶𝒌       (73) 𝒚௥𝜶𝒌 = 𝝀𝒓𝜶𝒌𝑻 𝜽𝒓𝜶𝒌       (74) 
The OLS method, [125], can be used recursively online, starting with the next initial conditions: 𝑭𝒍(0) = 𝝀𝒍𝜶𝟎 , 𝑷𝒍(0) = 𝜽𝒍𝜶𝟎 , 𝒒𝒍(0) = 𝑦, 𝑭𝒓(0) = 𝝀𝒓𝜶𝟎 , 𝑷𝒓(0) = 𝜽𝒓𝜶𝟎  and 𝒒𝒓(0) = 𝑦, where 𝑦 is the 

output value of the training input-output data pair. The pseudocode of the OLS is shown in 

Algorithm 1. 

Algorithm 

1: 

Parameter estimation using rotational orthogonal transformation 

1: Initialize  𝑛, 𝑭𝒍(0) = 𝝀𝒍𝜶𝟎, 𝑷𝒍(0) = 𝜽𝒍𝜶𝟎, 𝒒𝒍(0) = 𝑦, 𝑭𝒓(0) = 𝝀𝒓𝜶𝟎, 𝑷𝒓(0) = 𝜽𝒓𝜶𝟎 and 𝒒𝒓(0) = 𝑦 

2: Triangulate the 𝑭𝒍 and 𝑭𝒓 matrices 

3: Solve the equations system.  𝑷෡𝒍𝑻(𝑡 + 1) = 𝑭𝒍ି𝟏(𝑡 + 1)𝒒𝒍(𝑡 + 1) and  𝑷෡𝒓𝑻(𝑡 + 1) = 𝑭𝒓ି𝟏(𝑡 + 1)𝒒𝒓(𝑡 + 1) 

4: Assign estimated values. 𝜽෡𝒍𝜶𝟎 = 𝑷෡𝒍(𝑡 + 1), 𝜽෡𝒓𝜶𝟎 = 𝑷෡𝒓(𝑡 + 1) 
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3. Results and Discussion 

3.1. The Problem: Industrial Process Description 

The HSM process presents many complexities and uncertainties involved in rolling operations. 

Figure 10 shows the HSM sub-processes: The reheat furnace, the roughing mill (RM), the transfer 

tables, the scale breaker (SB), the finishing mill (FM), the round out tables, and the coiler (CLR). 

 

Figure 10. Schematic representation of HSM, [5]. 

The most critical subprocess is the FM. There are several mathematical model-based systems for 

setting up the FM, which calculate the working references required to obtain the target strip gauge, 

target strip width and target strip temperature at the exit zone of the FM. The math model takes as 

inputs the FM target strip gage, the target strip width, the target strip temperature, the slab steel 

grade, the hardness ratio from slab chemistry, the FM load distribution, the FM gauge offset, the FM 

temperature offset, the FM roll diameters, the FM load distribution, the input transfer bar gauge, the 

input transfer bar width, and the most critical variable, the input transfer bar temperature. 

The math model requires knowing accurately what the input transfer bar temperature is at the 

entry zone of the FM. A minimum entry temperature error will propagate through the entire FM and 

produce a coil out of the required quality. For the estimation of this FM entry temperature, the math 

models require knowledge of the transfer bar surface temperature, which is measured by a pyrometer 

located at the RM exit side, and knowledge of the time taken to translate the transfer bar from the 

RM exit zone to the FM SB entry zone.  

These pyrometer's measurements are affected by the noise produced by the surface scale growth, 

environment water steam, the pyrometer’s location, calibration, resolution, repeatability, and by the 

recalescence phenomenon occurring at the RM exit in the body of the transfer bar [126]. The time 

required by the transfer bar to move its head end from the RM exit to the FM entry zones, is estimated 

by the math model. This time estimation is affected by the free air radiation phenomenon occurring 

during the transfer bar translation and by the inherent uncertainty of the kinematic and dynamic 

modeling.  

The math model parameters are adjusted using both the uncertain surface temperature 

measured by pyrometers located at the FM entry zone, and the uncertain surface temperature at the 

FM entry zone estimated by the model. The proposal estimates the input transfer bar temperature at 

the entry zone of the FM and was off-line tested using real data from an industrial HSM facility 

located in Monterrey, México, which is currently using a certain type of fuzzy system for this 

estimation.  

3.2. Simulation 

This section presents the experimental testing of the proposal, the prediction of the transfer bar 

surface temperature. 

3.2.1. Input-output Data Pairs 

From an industrial HSM process, one hundred and seventy-five noisy input-output data pairs 

of three different types of coils, Table 7, were obtained and used as offline training data, (𝑥ଵᇱ , 𝑥ଶᇱ , 𝑦). 

The inputs were 𝑥ଵᇱ , the transfer bar surface temperature measured by the pyrometer is located at the 

RM exit zone, and 𝑥ଶᇱ ,  the real time to move the transfer bar end from the RM exit zone to the SB 
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entry zone. The output y was the transfer bar surface temperature measured by the pyrometers 

located at the SB entry zone and used to calculate the temperature prediction error.  

Table 7. Type of coils. 

Coil 

type 

Target gage (mm) Target width 

(mm) 

Steel grade (SAE-

AISI) 

A 1.879 1041.0 1006 

B 2.006 991.0 1006 

C 2.159 952.0 1006 

3.2.2. Antecedent Membership Functions 

The primary membership functions for each antecedent of the base IT2𝛼଴ NSFLS-2 system were 

Gaussian functions with uncertain means 𝑀௤ଵఈబ௜ , 𝑀௤ଶఈబ௜ , and with the standard deviation 𝜎௤ఈబ௜ , as 

shown in Tables 8 and 9. An array of two inputs, with five MF each, produces  𝑀 = 25 rules.  

Table 8. Parameters for MFs of 𝑥ଵᇱ . 

 𝑴𝟏𝟏𝜶𝟎𝒊  (℃) 

𝑴𝟏𝟐𝜶𝟎𝒊  (℃) 

𝝈𝟏𝜶𝟎𝒊  (℃) 

1 1010 1012 30 

2 1040 1042 30 

3 1070 1072 30 

4 1100 1102 30 

5 1130 1132 30 

Table 9. Parameters for MFs of 𝑥ଶᇱ . 

 𝑴𝟐𝟏𝜶𝟎𝒊  (𝒔) 

𝑴𝟐𝟐𝜶𝟎𝒊(𝐬) 

𝝈𝟐𝜶𝟎𝒊  (𝐬) 

1 32.16 32.66 2.72 

2 34.88 35.38 2.72 

3 37.60 38.10 2.72 

4 40.32 40.82 2.72 

5 43.04 43.54 2.72 

3.2.3. Fuzzy Rule Base 

The EWH IT3 NSFLS-1 fuzzy rule base consists of a set of IF-THEN rules that represent the 

model of the complete system. The IT2𝛼଴ NSFLS-1, that is the base of the 3D construction of the 

proposed fuzzy system, has two inputs 𝑥ଵᇱ  and 𝑥ଶᇱ  and one output 𝑦ఈ. The rule base has 𝑀 = 25 

rules of the type shown in Table 10. 

Table 10. Initial fuzzy rule base. 

Rule 𝑴𝟏𝟐𝜶𝟎𝒊  (℃) 

𝑴𝟏𝟐𝜶𝟎𝒊  (℃) 

𝝈𝟏𝜶𝟎𝒊  (℃) 

𝑴𝟐𝟏𝜶𝟎𝒊  (𝒔) 

𝑴𝟐𝟐𝜶𝟎𝒊  (𝒔) 

𝝈𝟐𝜶𝟎𝒊  (𝒔) 

𝒄𝒍𝜶𝟎𝒊  (℃) 

𝝈𝒓𝜶𝟎𝒊
 (℃) 

1 1010 1012 30 32.16 32.66 2.7 960 962 

2 1010 1012 30 34.88 35.38 2.7 958 960 
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3 1010 1012 30 37.60 38.10 2.7 956 958 

4 1010 1012 30 40.32 40.82 2.7 954 956 

5 1010 1012 30 43.04 43.54 2.7 952 954 

6 1040 1042 30 32.16 32.66 2.7 970 972 

7 1040 1042 30 34.88 35.38 2.7 968 970 

8 1040 1042 30 37.60 38.10 2.7 966 968 

9 1040 1042 30 40.32 40.82 2.7 964 966 

10 1040 1042 30 43.04 43.54 2.7 962 964 

11 1070 1072 30 32.16 32.66 2.7 980 982 

12 1070 1072 30 34.88 35.38 2.7 978 980 

13 1070 1072 30 37.60 38.10 2.7 976 978 

14 1070 1072 30 40.32 40.82 2.7 974 976 

15 1070 1072 30 43.04 43.54 2.7 972 974 

16 1100 1102 30 32.16 32.66 2.7 990 992 

17 1100 1102 30 34.88 35.38 2.7 988 990 

18 1100 1102 30 37.60 38.10 2.7 986 988 

19 1100 1102 30 40.32 40.82 2.7 984 986 

20 1100 1102 30 43.04 43.54 2.7 982 984 

21 1130 1132 30 32.16 32.66 2.7 1000 1002 

22 1130 1132 30 34.88 35.38 2.7 998 1000 

23 1130 1132 30 37.60 38.10 2.7 996 998 

24 1130 1132 30 40.32 40.82 2.7 994 996 

25 1130 1132 30 43.04 43.54 2.7 992 994 

3.3. Results and Discusion 

Three different sets of data for three different coil types were taken from a real mill. Each of these 

data sets was split into two sets: One for the initial adjustment and tuning process, and the other for 

the setup validation process. Eighty-three of type A, sixty-five of type B and twenty-seven of type C 

input-output data pairs were used for the initial offline training process, and seven input-output data 

pairs were used for testing. The production gage and width coil targets of the training data with the 

steel grade are shown in Table 7. A Dell PC i7, 16 GB RAM memory and 2.8 GHz using Win 11 OS 

was used to execute the fuzzy systems programed in MS VS 2022 C++ language. 

Seven input-output data pairs were used to test the offline SB entry temperature estimation. The 

Root Mean Square Error (RMSE) for the prediction obtained with GT2 models trained with the BP-

BP algorithm and IT2 systems used as benchmark models and the proposed EWH algorithm with 

BP-BP using only one 𝛼௞-cuts are shown in Table 11 and Figure 11. The EWH algorithm shows an 

enhancement of 0.2 % versus the classic WH model using BP-BP learning model for the GT2 SFLS 

systems. On other hand, the WH algorithm using IT3 SFLS models show an enhancement of 0.36% 

for classic WH singleton and 0.41% the EWH proposed algorithm in singleton compared with the IT2 

singleton model as shown in Table 12 and Figure 12.   

For non-singleton cases, both models, WH and EWH, present the same prediction in the case of 

the GT2 models. In contrast the IT3 models show a bigger enhancement versus the IT2 NSFLS-1 

models. In the first case the WH IT3 NSFLS-1 (BP-BP) show an enhancement of 22.5 % for the WH 

algorithm and 30.2% for the EWH proposed algorithm as shown in Table 12 and Figure 12.    

Table 11. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and GT2 models 

with BP-BP learning using the classic WH algorithm and the EWH algorithm. 
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Fuzzy System∖ 𝜶𝒌-cuts 1 

IT2 SFLS 1.4249 

IT2 NSFLS-1 1.2542 

WH GT2 SFLS (BP-BP) 1.4515 

EWH GT2 SFLS (BP-BP) 1.4497 

WH GT2 NSFLS-1 (BP-BP) 1.0383 

EWH GT2 NSFLS-1 (BP-BP) 1.0383 

 

Figure 11. RMSE of prediction of GT2 systems with BP-BP learning. 

Table 12. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and IT3 models 

with BP-BP learning using the classic WH algorithm and the EWH algorithm. 

Fuzzy System∖ 𝜶𝒌-cuts 1 2 

IT2 SFLS 1.4249  

IT2 NSFLS-1 1.2542  

WH IT3 SFLS (BP-BP)  1.4212 

EWH IT3 SFLS (BP-BP)  1.4192 

WH IT3 NSFLS-1 (BP-BP)  0.9729 

EWH IT3 NSFLS-1 (BP-BP)  0.8761 

 

Figure 12. RMSE of prediction of IT3 systems with BP-BP learning. 

The RMSE prediction of the GT2 and the proposed EWH algorithm using different levels-𝛼௞ as 

shown in Table 13 and Figure 13, show that the GT2 SFLS-1 (BP-BP) with the proposed model (EWH) 
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outperforms the WH GT2 SFLS with only 10 𝛼௞-cuts in an order of  19.1% for WH GT2 singleton 

with BP-BP learning algorithm and 19.5% for the IT3 with the EWH algorithm with BP-BP learning 

as is shown in Table 14. On other hand, with the non-singleton models the enhancement is 2.3% for 

the WH algorithm and 17% for the EWH algorithm for both with BP-BP learning. The best results are 

obtained with 100 𝛼௞-cuts with an enhancement of 12.3% for the WH algorithm and 17.5% for the 

EWH algorithm, both with BP-BP learning as shown in Table 13 and Figure 13.    

Table 13. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and GT2 models 

with BP-BP learning using the classic WH algorithm and the EWH algorithm with different number 

of 𝛼௞-cuts. 

Fuzzy System∖ 𝜶𝒌-cuts 1 10 100 1000 

IT2 SFLS 1.4249    

IT2 NSFLS-1 1.2542    

WH GT2 SFLS (BP-BP) 1.4515 1.1501 1.4912 1.5727 

EWH GT2 SFLS (BP-BP) 1.4497 1.1433 1.4852 1.5166 

WH GT2 NSFLS-1 (BP-BP) 1.0397 1.2338 1.097 1.3325 

EWH GT2 NSFLS-1 (BP-BP) 1.0383 1.1534 1.0321 1.326 

 

Figure 13. RMSE of prediction of GT2 systems with BP-BP learning. 

In contrast when the IT3 fuzzy systems are used the results show a reduction in the error rates 

in every number of 𝛼௞-cuts tested. E.g., with 202 𝛼௞-cuts the enhancement versus the IT2 SFLS using 

the WH learning is in the order of 1.4%, and for the EWH IT3 NSFLS-1 (BP-BP) is in the order of 27.9% 

as it is shown in Table 14 and Figure 14. 

Table 14. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and IT3 models 

with BP-BP learning using the classic WH algorithm and the EWH algorithm with different number 

of 𝛼௞-cuts. 

Fuzzy System∖ 𝜶𝒌-cuts 1 2 22 202 2002 

IT2 SFLS 1.4249     

IT2 NSFLS-1 1.2542     

WH IT3 SFLS (BP-BP)  1.4212 1.0573 1.4063 1.4568 

EWH IT3 SFLS (BP-BP)  1.4192 1.0528 1.4016 1.4239 

WH IT3 NSFLS-1 (BP-BP)  0.9729 1.1107 1.0547 1.2197 

EWH IT3 NSFLS-1 (BP-BP)  0.8761 1.0125 1.0275 1.168 
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Figure 14. RMSE of prediction of IT3 systems with BP-BP learning. 

The values of the RMSE of the GT2 using the proposed hybrid learning (OLS-BP) with the WH 

and the proposed EWH are presented in Table 15 for only 1 𝛼௞ -cut. Their results show an 

enhancement of 34.2 % comparing the IT2 SFLS with the WH GT2 SFLS using OLS-BP learning and 

shows an enhancement of 33.9 % when comparing the IT2 SFLS against EWH GT2 SFLS (OLS-BP) 

system (see Table 15, and Figure 15). The results show that the tested systems WH GT2 SFLS (OLS-

BP) and the EWH GT2 SLFS (OLS-BP) outperforms the IT2 SFLS with only 1 𝛼௞ -cut. In a 

complementary form the WH GT2 NSFLS-1 (OLS-BP) presents an enhancement of 28.7% for the WH 

GT2 NSFLS-1 (OLS-BP) learning and 30.5% for the EWH GT2 NSFLS-1 (OLS-BP) system. 

Table 15. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and GT2 models 

with OLS-BP learning using the classic WH algorithm and the EWH algorithm. 

Fuzzy System∖ 𝜶𝒌-cuts 1 

IT2 SFLS 1.4249 

IT2 NSFLS-1 1.2542 

WH GT2 SFLS (OLS-BP) 0.9389 

EWH GT2 SFLS (OLS-BP) 0.9424 

WH GT2 NSFLS-1 (OLS-BP) 0.8952 

EWH GT2 NSFLS-1 (OLS-BP) 0.8724 

 

Figure 15. RMSE of prediction of GT2 systems with OLS-BP learning. 
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On other hand, the RMSE for the prediction using both the WH and the EWH IT3 models with 

the OLS-BP learning algorithms, shows that the error rates are reduced significantly to 34.2% for the 

WH IT3 SFLS (OLS-BP), 33.9% for the EWH algorithm in the IT3 SFLS (OLS-BP) as shown in Table 

16 and Figure 16. For the IT3 with only two 𝛼௞-cuts the IT3 NSFLS-1 model presents continuous 

enhancements when compared with IT2 and with GT2 systems. The WH IT3 NSFLS-1 (OLS-BP) 

system presents better performance with a reduction of 28.7% and 30.5% for the EWH IT3 NSFLS-1 

(OLS-BP) model, as shown in Table 16 and Figure 16.     

Table 16. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and IT3 models 

with OLS-BP learning using the classic WH algorithm and the EWH algorithm. 

Fuzzy Systems∖ 𝜶𝒌-cuts 1 2 

IT2 SFLS 1.4249  

IT2 NSFLS-1 1.2542  

WH IT3 SFLS (OLS-BP)  0.9389 

EWH IT3 SFLS (OLS-BP)  0.9424 

WH IT3 NSFLS-1 (OLS-BP)  0.8952 

EWH IT3 NSFLS-1 (OLS-BP)  0.8724 

 

Figure 16. RMSE of prediction of IT3 systems with OLS-BP learning. 

Table 17 shows the RMSE of the GT2 systems using the OLS-BP learning algorithm with different 

number of 𝛼௞-cuts. The results show a significant reduction versus the IT2 SFLS systems presenting 

a 34.2% in the comparison against WH GT2 SFLS (OLS-BP) learning and 33.9% against IT2 SFLS and 

for 33.2% for EWH GT2 SFLS (OLS-BP) system. In contrast, when comparing the non-singleton 

models it is obtained 38.5 % and 29.5 % for the WH GT2 NSFLS-1 (OLS-BP) and EWH GT2 NSFLS1 

(OLS-BP), respectively.  In a complementary form the WH GT2 NSFLS-1 (OLS-BP) presents an 

enhancement of 28.7% for the WH GT2 NSFLS-1 (OLS-BP) learning and 30.5% for the EWH GT2 

NSFLS-1 (OLS-BP) system. Compared with the IT3 models, the RMSE showed a reduction on the 

error of prediction of 34.2% for WH IT3 SFLS (OLS-BP), 33.9% for EWH IT3 SLFS (OLS-BP) models. 

For non-singleton models a reduction of 38.7% for the IT3 NSFLS-1 (OLS-BP) and 30.15% against the 

IT2 NSFLS-1 were obtained, respectively. 

Table 17. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and GT2 models 

with OLS-BP learning using the classic WH algorithm and the EWH algorithm. 

Fuzzy System∖ 𝜶𝒌-cuts 1 10 100 1000 

IT2 SFLS 1.4249    

IT2 NSFLS-1 1.2542    
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WH GT2 SFLS (OLS-BP) 0.9424 0.9332 0.9356 0.9631 

EWH GT2 SFLS (OLS-BP) 0.9521 0.9438 0.9458 0.9658 

WH GT2 NSFLS-1 (OLS-BP) 0.8979 0.9316 0.8888 1.002 

EWH GT2 NSFLS1 (OLS-BP) 0.8851 0.9183 0.8659 0.9967 

 

Figure 17. RMSE of prediction of GT2 systems with OLS-BP learning. 

The values of RMSE prediction for the IT3 using the proposed learning OLS-BP with the WH 

algorithm and the proposed EWH algorithm are presented in Table 18 using different quantities of 𝛼௞-cuts. The results show an enhancement of 34.2 % comparing the IT2 SFLS with the WH IT3 SFLS 

algorithm using OLS-BP learning. It also showed an enhancement of 33.9 % comparing the IT2 SFLS 

to the EWH IT3 SFLS (OLS-BP) system as shown in Table 18 and Figure 18, demonstrating that the 

tested systems WH IT3 SFLS (OLS-BP) and EWH IT3 SLFS (OLS-BP) outperforms the IT2 SFLS with 

only 2 𝛼௞-cuts.  

Table 18. Comparison between the benchmark models (IT2 SFLS and IT2 NSFLS-1) and IT3 models 

with OLS-BP learning using the classic WH algorithm and the EWH algorithm. 

Fuzzy System∖ 𝜶𝒌-cuts 1 2 10 100 1000 

IT2 SFLS 1.4249     

IT2 NSFLS-1 1.2542     

WH IT3 SFLS (OLS-BP)  0.9389 0.9247 0.9177 0.9461 

EWH IT3 SFLS (OLS-BP)  0.9424 0.9184 0.9231 0.9556 

WH IT3 NSFLS-1 (OLS-BP)  0.8952 0.9127 0.8795 0.9666 

EWH IT3 NSFLS-1 (OLS-BP)  0.8724 0.8905 0.8634 0.9408 
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Figure 18. RMSE of prediction of IT3 systems with OLS-BP learning. 

For offline tuning, twenty training epochs were used with validated and bounded input-output 

data pairs, which guarantees the convergence of the proposed EWH IT3 NSFLS-1, as experimentally 

demonstrated in this research. 

With the proposed OLS-BP hybrid training method, the IT3 NSFLS-1 was the one that presented 

the best performance. The results obtained by the GT2 systems are better than the IT2 models but, 

however, not better than the IT3 systems as shown in Figure 19.  

The results show that the best estimation is obtained by the proposed EWH IT3 NSFLS-1 (OLS-

BP) model using 202 levels-𝛼 with a RMSE = 0.8634℃. The IT3 NSFLS-1 using any number of levels-𝛼 presented the values of RMSE below to 1°C as shown in Figure 20. 

 

Figure 19. RMSE of prediction of GT2 systems with OLS-BP learning. 

 

Figure 20. RMSE of prediction of IT3 systems with OLS-BP learning. 

4. Conclusions 

This work presents a novel hybrid learning method for parameter tuning of the novel EWH 

method for IT3 NSFLS-1 output estimation. The consequent parameters are tuned using the OLS 

training algorithm, while the antecedent parameters are tuned using the classic BP algorithm. The 

proposed EWH fuzzy systems use the average instead of the weighted average, to estimate the final 

output value of the fuzzy system, 𝑦ఈ, where the contribution of the horizontal level-𝛼଴ or IT2𝛼଴ FLS 

output, 𝑦ఈబ , improves the accuracy of this estimation. Each horizontal level-𝛼௞  contributes 100% 

with its estimation of its output, 𝑦ఈೖ. 

The simulation results show that the proposed EWH IT3 NSFLS-1 (OLS-BP) hybrid algorithm 

produces better performance to generate better temperature estimation when compared with the BP-

BP training. The better performance is obtained by the proposed EWH fuzzy systems when compared 
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with the classic WH fuzzy systems. Also, the comparisons between several types of fuzzy systems 

showed that the IT3 NSFLS-1 are the best among the IT3 SFLS, GT2 NSFLS-1, GT2 SFLS, and the IT2 

fuzzy systems.  

For the future work, we plan to apply the hybrid algorithm and the EWH to the GT2 fuzzy 

systems and apply this system to FM exit gage, FM exit width, and FM exit temperature estimation 

of the head strip. 
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