Pre prints.org

Article Not peer-reviewed version

Deep Transfer Learning for Image
Classification of Phosphorus
Nutrition States in Individual Maize
L eaves

Manuela Ramos-Ospina , Luis Gémez Déniz , Carlos Trujillo , Alejandro Marulanda-Tobdn :

Posted Date: 31 October 2023
doi: 10.20944/preprints202310.2003.v1

Keywords: Image classification; Computer vision; Transfer learning; Image database; Plant nutrition; Leaf
analysis

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3223912
https://sciprofiles.com/profile/173675
https://sciprofiles.com/profile/1213456
https://sciprofiles.com/profile/2477848

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2023 doi:10.20944/preprints202310.2003.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Deep Transfer Learning for Image Classification of
Phosphorus Nutrition States in Individual

Maize Leaves

2

Manuela Ramos-Ospina L+, Luis Gémez Déniz 2(”, Carlos Trujillo 1

and Alejandro Marulanda-Tobén 1*

1 School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia;
mramoso@eafit.edu.co (M.R.); catrujilla@eafit.edu.co (C.A.); amarula2@eafit.edu.co (A.M.)
Department of Electronic Engineering and Automatic (DIEA), University of Las Palmas de Gran Canaria,
35017 Las Palmas de Gran Canaria, Spain; luis.gomez@ulpgc.es
*  Correspondence: mramoso@eafit.edu.co (M.R.); amarula?2@eafit.edu.co (A.M.)

Abstract: Computer vision is a powerful technology that has enabled solutions in various fields
by analyzing visual attributes in images. One field that has taken advantage of computer vision is
agricultural automation, which promotes high-quality crop production. The nutritional status of
a crop is a crucial factor in determining its productivity. This status is mediated by approximately
14 chemical elements acquired by the plant, and their determination plays a pivotal role in farm
management. To address the timely identification of nutritional disorders, this study focuses on
the classification of three levels of phosphorus deficiencies through individual leaf analysis. The
methodological steps include: (1) generating a database with laboratory-grown maize plants that
were induced to total phosphorus deficiency, medium deficiency, and total nutrition, using different
capture devices; (2) processing the images with state-of-the-art transfer learning architectures (i.e.
VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2); and (3) evaluating the classification
performance of the models using the created database. The results show that the VGG16 model
achieves superior performance, with 98% classification accuracy. However, the other studied
architectures also demonstrate competitive performance and are considered state-of-the-art automatic
leaf deficiency detection tools. The proposed method can be a starting point to fine-tune machine
vision-based solutions tailored for real-time monitoring of crop nutritional status.

Keywords: image classification; computer vision; transfer learning; image database; plant nutrition;
leaf analysis

1. Introduction

Agricultural production has served as the bedrock of human cultures and civilizations, enabling
the growth of population, together with the advancement of numeracy and literacy [1]. Today, with
the support of new technologies, the focus is on addressing the increasing food demand, as well
as mitigating the consequences of the gradual reduction of the cultivated land area by enhancing
agricultural productivity. Additionally, there is a pressing need to meet the demand for effective and
safe food production methods ensuring the well-being of both human health and the planet [2].

However, generating solutions for agricultural production is a complex task that requires the
consideration of several variables. One critical variable is the nutritional status of crops, which is
determined by approximately 14 fundamental nutrients that plants require for their growth [3]. Each of
these nutrients is found in specific amounts and plays essential roles in crop metabolism. Among these
nutrients, nitrogen, phosphorus, and potassium are needed in much more significant quantities [4]. In
particular, phosphorus (P) plays a crucial role in various plant processes such as growth, reproduction,
flowering, and environmental adaptation. A plant absorbs P in the form of inorganic phosphate (Pi).
However, the concentration of Pi in the soil is typically quite low because it tends to strongly bind to
the soil surface or form insoluble complexes, rendering more than 80% of it immobile and inaccessible
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for plant uptake [5]. To maintain high productivity levels, a continuous supply of Pi in fertilizers
is required. The contribution of phosphorus, like other nutrients, needs to be carefully regulated
according to the specific growth stage of the plant. Therefore, it is crucial to assess and monitor the
nutritional status of the crop throughout its entire life cycle. Traditionally, the assessment of nutritional
status has relied on visual inspection, which has inherent limitations in terms of precision, as it is
primarily a qualitative approach. Alternatively, more accurate methods involve analyzing nutrient
concentrations in either leaves or soil. However, these techniques can be costly, as they require not
only chemical processes but also the transportation of samples and the interpretation of results.

Consequently, many types of technologies have been explored to overcome these problems. Given
that nutritional deficiencies primarily manifest through visual characteristics, several explored options
are based on automatic methods via image processing. Within these options, artificial vision stands
out as a competitive choice due to its versatility and autonomy. Specifically, deep learning techniques
employing convolutional neural networks (CNNs) have shown remarkable performance, surpassing
traditional approaches based on texture or color analysis of images [6].

The development of deep learning models typically involves a supervised process called
end-to-end learning, which relies on known training data to make predictions on unknown data [7].
However, there are several limitations in the applicability of CNN-based methods. Perhaps the most
important is the amount of data the network needs to learn the characteristics of the images. Obtaining
the required number of high-quality images with accurate labeling hold a significant challenge, even
more so in the agricultural case, where the field environment is often difficult to access, and visual
signs of interest are not always present or isolated [8,9]. To address these challenges, a commonly
employed strategy is to leverage transfer learning, which involves utilizing pre-trained networks that
have been trained on extensive datasets. This technique not only reduces the amount of data and
computational cost that is needed to train the network but also allows a model developed for one
application domain to be relatively easy to transfer to another [7].

Many works that aim to recognize pathologies on plant-leaf use transfer learning as starting
point to develop new models. These works usually propose a comparison between well-developed
models to select the one that performs best for a specific problem. Regarding the recognition of
maize diseases, Zhang et al. [10] proposed an improved model based on GoogLeNet and Cifar10
architectures to classify 8 disease types using images collected from both the PlantVillage dataset [11]
and other image search sites. Similarly, Bhatt et al. [12] classified 3 disease types with a combination
of enhanced models (VGG16, InceptionV2, ResNet50, and Mobilenet), only using PlantVillage data.
Both studies achieved a maximum classification accuracy of 98%. Furthermore, Chen et al. [13]
introduced INC-VGGN composed of a VGGNet enhanced with the Inception module. The network
was trained on a field-collected database composed with images of both maize and rice leaves. Results
are subsequently compared with other common transfer learning models trained on PlantVillage, and
it was shown that the proposed CNN performed the best. Likewise, Zeng et al. [14], classified several
diseases of maize using a database acquired with a cellphone and a digital camera. They created a
model that integrates the ResNet50 architecture with the SK unit (found in SKNet). The results of their
method are then compared with state-of-the-art multiscale network models (InceptionV3, InceptionV4,
and Inception-ResNet-V2) showing that the proposal addresses competitive results. On the other
hand, Verma and Bhowmik [15] created a new architecture named MDCNN (Maize Disease Detection
CNN) and a database composed of publicly available databases and manually acquired leaf images. In
this work, the results are also compared with several pre-trained networks with the proposed model
achieving the best results.

In the domain of maize-leaf nutrition identification using artificial vision, various studies have
explored the detection and analysis of nutritional deficiencies. For instance, Zufiiga and Bruno
[16] developed a system that relies on texture and color analysis to recognize deficiency levels of
essential nutrients such as Nitrogen (N), Phosphorus (P), Potassium (K), Magnesium (Mg), and
Sulfur (S). Similarly, Leena and Saju [3] classified macronutrient deficiency (N, P, and K) using
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optimized multi-class support vector machines. However, there are even fewer studies that specifically
concentrate on the identification of single-nutrient deficiencies, such as the work conducted by
de Fatima da Silva et al. [17], where was assessed magnesium nutrition with texture classifiers, reaching
a maximum classification accuracy of 75%. Similarly, Condori et al. [6] detected levels of nitrogen
deficiency by comparing texture and transfer learning models. The main conclusion of this work is that
the results of CNN-based models outperform those of texture methods in the majority of experiments.

Considering the existing research landscape, there is currently no work specifically dedicated to
the classification of phosphorus deficiency in maize using transfer deep learning techniques. Moreover,
a well-established and publicly available database focused on this specific topic is also lacking. Given
the aforementioned research gap, the aim of this study is to address recent advancements in deep
learning techniques applied to the classification of images obtained from controlled environments
featuring maize leaves exhibiting different levels of phosphorus deficiency. Specifically, the study
focuses on three distinct levels of phosphorus deficiency: the complete absence of the nutrient, a half
dose of the required phosphorus, and an adequate supply of phosphorus.

The structure of this work is as follows: Section 2 provides an overview of the process involved
in building the dataset and details the transfer learning approach utilized. In Section 3, the results
obtained from applying the transfer learning models to the created dataset are thoroughly reported.
The paper finishes with discussions and conclusions.

2. Materials and Methods

The workflow employed in this study, approaching the use of deep learning techniques to classify
three levels of phosphorus deficiency in maize leaves, is illustrated in Figure 1.

DATA PREPARATION MODELS STABLISHMENT

Set of pre-trained models

Image Choosing the
collection models (% Cgo
Image Implementation
labelling in MATLAB
Image J
preprocessing Select one
l [ model
Splitting FINE TUNNING
dataset
— 1 Model
training
. Trained
et J Model model
> Validation Select next
Validation model
set

| Model Nutrition status Model Comparing
Test set . . . . performance
testing classification evaluation
l of models

Figure 1. Workflow for phosphorous deficiency detection.

Firstly, a data preparation stage begins which involves the collection, labeling, preprocessing,
and splitting of data. This stage ends with the labeled samples divided into three data sets: Train,
validation, and test. In the second stage, a set of pre-trained models is chosen and implemented in
MATLAB. One is selected for a fine-tuning stage, in which the inputs are the training and validation
sets, and the output is a trained model. Hence, the fine-tuned model is used to classify new images
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from the test set. The prediction results are then evaluated with classification metrics, and the next
model is chosen from the aforementioned set to restart the second stage. Once all pre-trained models
have been tested, a comprehensive performance evaluation is conducted based on the metric scores,
thereby concluding the workflow.

The following subsections will present the procedures’ details, providing a full overview of their
specific information and methodologies.

2.1. Dataset building

The images of nutrition-deficient maize leaves (Zea mays L. improved variety ICA - V 109) used in
this study were collected from mid-June to early August 2022 in a plastic shed from the area of Natural
Systems and Sustainability of Universidad EAFIT, Medellin, Colombia (6°11°53.80" N, 75°34'43.23" W).
The experimental design followed a 3 x 10 scheme, comprising ten replications on three phosphorus
levels: P absence (-P), half dose (-P50), and complete supply (C), resulting in a total of 30 plants (See
Figure 2).

To induce the phosphorus deficiency levels, Hoagland’s complete solution [4] was modified,
taking into account only macronutrients and adjusting the net contribution of each nutrient according
to the concentration of minerals in the solution.

Figure 2. Location of experiments and treatments differentiation.

2.1.1. Image collection

A total of 3934 images were acquired. Photographs included the growth stages of seedling,
jointing, and flowering. The experiment involved natural illumination. Both sunny and cloudy days
were considered to increase diversity in the illumination conditions.

Five acquisition devices were utilized, encompassing two types of regular smartphones, a digital
camera, a single-lens reflex camera, and a compact scientific camera. In Appendix A, the specifications
of the tested cameras are presented. Nevertheless, previous experiments have determined that
images captured by the scientific camera consistently yield superior classification performance. The
outcomes of image classification using the GoogLeNet architecture for each camera type are provided
in Appendix B. Consequently, this study exclusively concentrates on the dataset comprising images
acquired solely by the scientific camera. The specifications of this device are presented in Table 1.
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Table 1. Compact scientific camera specifications [18,19].

Specification Value
Manufacturer ThorLabs
Sensor Model DCC1645C-HQ
Sensor type Color CMOS
Resolution 1280 x 1020 pixels (1.31 Megapixel)
Optical Format 1/3"
Read noise <25 e- RMS
Bit depth 10
Lens Model MVL6WA
Focal Length 6 mm
Maximum aperture f/1.4

The image collection process was conducted according to the following steps: (1) One leave per
plant exhibiting prominent visual symptoms, predominantly observed in older leaves, were selected
for sampling. Specifically, the mid-leaf area, as depicted in Figure 3, was the focal region of interest.
(2) A white background sheet was carefully positioned trying to prevent the formation of shadows
caused by the leaf and to minimize background-related noise. (3) The leaf was securely held, and a
total of five photographs were captured for each leaf. Either the capture angle or the leaf section were
adjusted between each shot, ensuring diverse perspectives. An illustration of this process is presented
in Figure 4.

Figure 3. Illustration of an image acquisition example. The camera, the background sheet, and the leaf
capture area are depicted.

The resulting images are saved and labeled according to the treatment and growth stage. Examples
of images obtained using this method are shown in Figure 4.
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(c)
Figure 4. Example of five consecutive images taken from leaves with: (a) complete nutrition (C), (b) no
phosphorus nutrition (-P), and (c) half-phosphorus nutrition (-P50).

2.1.2. Image pre-processing and data augmentation

The original images obtained with the scientific camera underwent automatic size processing
on Python code using two concurrent methods: (1) All 1280 x 1020 pixels size original images were
cropped to a central square, with sides equal to the smallest image size (n), i.e. 1020 px. Then, cropped
images were resized to 224 x 224 pixels size according to the method shown in Figure 5a. (2) All
images cropped to a central square were subsequently divided into four individual images with a size
of 510 x 510 pixels each. Similarly, these cropped images were resized to 224 x 224 pixels. The process
is shown in Figure 5b.

#2

224x 224 224x224

: #4
1 \
1280 x 1020 1020 x 1020 224x224  224x224

(a) (b)

Figure 5. Pre-processing based on cropping and resizing images using two methods, named: (a) cut to
square and (b) quadrant division.

After the above process, the number of images increased fivefold. However, the automated
cropping mechanism introduced certain issues, including producing blank images or images capturing
only a small portion of the leaf which lead to images with limited or irrelevant content. An example
of this is seen in image #2 of Figure 5b. To address this problem, an algorithm was developed for
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selecting the valid images. The algorithm involved the following steps: first, the image was split into
its RGB components. Based on the histogram analysis of the images, it was determined that the blue
(B) channel provided more contrast to distinguish the leaf from the background, so that only the B
channel was preserved. Next, a thresholding process was applied to distinguish leaf pixels (set to 255)
from the background (set to 0). The algorithm then counted the number of leaf pixels, considering a
minimum count of 15k pixels as indicative of a significant leaf presence. Finally, images with a pixel
count below this threshold were excluded from further analysis. The effectiveness of the filtering
process is illustrated in Figure 6.

Blue chanel Threshold
#1 ) #2
N
44 .8k white px 8.4k white px
#3 ‘\

28.5k white px 43.2k white px

Figure 6. Selection process for images obtained through quadrant crop division. Each image shows the
separated blue channel (left) and the result of thresholding (right). The number of white pixels at the
bottom of each image represents the leaf content. A minimum count of 15k white pixels is considered
as the threshold for determining the presence of relevant information. In this example, only image #2
would be filtered out.

Following the preprocessing and data augmentation procedures, the resulting dataset contained
the number of images indicated in Table 2.

Table 2. Dataset details.

Class Description Number of images
-P No phosphorus nutrition 656

-P50  Half of phosphorus than complete nutrition 850
C Complete nutrition 927

Finally, the training, validation, and testing image sets were composed with a ratio of 7:2:1, and
the correspondence of the total of images is detailed in Table 3.
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Table 3. Dataset division.

Image set Number of samples
Total 2433
Train (70%) 1703
Validation (20%) 487
Test (10%) 243

2.2. Transfer Learning Approach

A deep learning approach is employed to classify the three levels of phosphorus deficiencies.
Given the challenges associated with acquiring an ample supply of images and the potential scarcity of
publicly available datasets for training convolutional neural networks (CNNSs), it is common practice
to adopt transfer learning. Transfer learning is a powerful machine learning technique that involves
repurposing an existing trained model for a new problem, often related. This approach capitalizes
on the capability of the initial layers in the original model to detect general features. Subsequently,
the output of the last layer is adapted to the specific requirements of the new task. This adjustment is
achieved by replacing the last fully-connected layer with a new one representing the classes relevant
to the new problem. Additionally, it is possible to fine-tune the transfer learning process by selectively
freezing or updating specific weights in the initial layers [20].

The models used for transfer learning in this study are primarily associated with the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [21], which has produced some of the most
accurate models. These models have served as inspiration for numerous versions and improvements,
as well as being the foundation for other models. Considering the existing literature, five architectures
were selected based on their frequent utilization and high accuracy. Therefore, the following models
were included in this study.

2.2.1. VGG16

These models were introduced in 2014 by Oxford’s Visual Geometry Group [22] but are still
popular today. The VGG networks consist of multiple blocks of stacked convolutional layers with
smaller filters (i.e. 3 x 3 layers), combined with a max-pooling and another fully-connected layer.
This set of layers is used instead of a larger filter size (such as 7 x 7), which increases efficiency and
makes the decision function more discriminative [20]. The latter ultimately means that this model type
generalizes well to a wide range of tasks [22]. One of the most popular variants is VGG16, composed
of 16 layers in weight and is available as a pre-trained model on the ImageNet dataset [23].

2.2.2. ResNet50

Residual networks were first introduced in 2015 by He et al. [24] and consist of blocks with two
or three sequential convolutional layers with a parallel but separate identity layer that connects the
input of the first layer and the output of the last one [20]. These identity layers called skip connections
solve errors generated at training and testing when the model goes deeper. Furthermore, they can
mitigate the vanishing gradient problem when placed before the activation function [25]. This study
utilizes ResNet50, one of the evolved versions of ResNet. ResNet50 is chosen as it is a 50-layer deep
architecture known for its remarkable performance and effectiveness in various tasks.

2.2.3. GoogLeNet

The GoogLeNet model is a special manifestation of the Inception architecture. This type of block
splits the input into parallel and multiple pillars containing convolutional layers with a different-sized
filter and a pooling layer. Those are followed or preceded by a downsampling convolution to reduce the
output depth, which is finally concatenated. This enables saving computing resources [20]. GoogLeNet
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structure uses nine Inception modules accompanied by pooling, regularization, and fully connected
layers. For additional information, refer to the original paper [26].

2.2.4. DenseNet201

Dense Convolutional Network (DenseNet) creators [27] took some inspiration from the residual
network’s idea to introduce dense blocks. These are modules of sequential convolutional layers, where
any layer has a connection to every other layer in a feed-forward way in terms of concatenation
operation. In this way, successive layers receive information from preceding ones, including feature
maps, for better feature propagation and reuse. This process causes the number of channels to grow,
despite reducing the number of parameters as compared to conventional CNN [28]. Three versions are
highlighted: DenseNet121, DenseNet169, and DenseNet201, which are differentiated by the number of
layers. The latter is used in this study.

2.2.5. MobileNetV2

MovileNet was first introduced by Howard et al. [29] using the concept of depthwise separable
blocks, which consists of depthwise convolution, performing a single convolutional filter per input
channel, followed by pointwise convolution, computing a linear 1 x 1 convolution of the input channels.
Later, Sandler ef al. [30] improved the original version by incorporating bottleneck blocks between
input and output layers, similar to residual connections, but considerably more memory efficient [31].

2.3. Models Implementation

The transfer learning models are implemented using MATLAB’s Deep Learning Toolbox™
package (R2020a) [32]. This package provides access to the pre-trained models mentioned earlier,
which have been specifically trained on the ImageNet dataset. Some specifications of these models are
presented in Table 4.

Table 4. Parameters of pre-trained CNN models.

Model Depth (layers) Total parameters (in millions) Size (MB) Birth year
VGG16 16 138.0 515 2014
ResNet50 50 25.6 96 2015
GoogLeNet 22 7.0 27 2014
DenseNet201 201 20.0 77 2017
MobileNetV2 53 3.5 13 2018

The computer code is executed on a machine equipped with an i7-9700K 3.6 GHz processor, 64
GB RAM, and NVIDIA GeForce RTX 2080 40 GB GPU. To apply the transfer learning approach for
each model, the following process is performed (see Figure 7):

(1) Data with its ground-truth labels are read. These images are randomly chosen to form the
train set with 70% of available samples, 20% for the validation set, and the remaining 10% images
are used as a test set. (2) Each model is loaded separately and its initial layers are frozen to reuse the
already learned general features. Moreover, the last fully-connected layer is substituted to match the
three classes’ output in this study. (3) Hyperparameters are predefined with specific values as outlined
in Table 5. These hyperparameters control various aspects of the deep learning model and its training
process. The details and explanations of these hyperparameters will be provided in the following
paragraph. (4) The training process involves training each model on the train set and validating it
at each epoch using the validation set. The training continues until either the maximum number of
epochs requirement is met or the validation patience is satisfied. (5) The fine-tuned model is used
to classify new images from the testing set. Consequently, the predicted labels are obtained. (6) The
predicted labels are compared with the ground-truth labels to validate the model’s performance.
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In Table 5, the Solver represents the optimizer used for the loss function, which is stochastic
gradient descent with a momentum of 0.9. The batch size indicates the number of images processed by
the network in each batch for error computation and weight updates. The initial learning rate is used at
the beginning of training and decreases by 0.96 per epoch in a stepwise manner. To prevent overfitting,
the training process considers both a maximum number of epochs and a validation patience method.
The validation patience method monitors the validation error for a consistent behavior within a certain
number of epochs to determine when to stop training.

Load data Load model
N
I@ \v‘.
g Read labels Freeze initial layers Substitute Fully
'ﬁ' connected layer
N
=
=
-
@ @ P
l + o/
Train Val. Test o/—
l Y
N Train > Validate | Fine-tunned | Classify new | Predicted
model [« model model images labels
on | Validation
£ EF 0 ({} g performance
=
§ ﬁ ﬂ‘ j v —
7 Mir
[
> Labels comparision <
Model training Model Validation

Figure 7. Framework of transfer learning approach for each model.

Table 5. Hyperparameters specifications.

Solver SGDM
Momentum 0.9
Batch size 32
Initial learning rate 0.001
Learning rate policy Step
Learning rate decay 0.96
Decay period 1 epoch
Max epochs 20
Validation patience 6

The hyperparameters presented in Table 5 were determined based on findings reported
in the existing literature for similar studies: Zhang et al. [10], Mohanty et al. [33], Barbedo
[34], Maeda-Gutiérrez et al. [35] and Nagaoka [36]. These values have been widely used and recognized
as effective choices for achieving good performance in deep learning models.
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The proposed transfer learning approach was employed to classify three levels of phosphorus

maize-leaf deficiency using the aforementioned deep learning models (VGG16, ResNet50, GoogLeNet,

DenseNet201, and MobileNetV2). The following subsections describe the evolution of accuracy
and loss values during the training stage and present the results obtained to evaluate the overall

performance of the studied models on the dataset built specifically for this study.

3.1. Learning curves

To evaluate the training performance, accuracy and loss curves are examined for each epoch
Figures 8-12 depict the training progress with the train set, visually representing how well each model
is learning. On the other hand, the validation curves in those figures provide insight into how well the

model is generalizing.
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Figure 8. Training and validation curves for the VGG16 architecture specifying (a) accuracy and (b)

loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Figure 9. Training and validation curves for the ResNet50 architecture specifying (a) accuracy and (b)

loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Figure 10. Training and validation curves for the GoogLeNet architecture specifying (a) accuracy and

(b) loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Each model was run for 20 epochs and it was found that around five to ten epochs the models
started to converge with high accuracy. Specifically, VGG and DenseNet models achieved more than
96% in validation accuracy. Followed by MobileNet, ResNet, and GoogLeNet models that obtained an
accuracy of more than 94% on validation sets. In the same way, as is expected, losses seem to be lower
as accuracy increases. Obtaining values ranging from 0.13 to 0.23.

In addition, model behavior can be diagnosed by the shape of the learning curves. One common
dynamic that can be concluded by observing the graphs is overfitting. It refers to a model that has
learned too closely the training dataset. This causes it to be less able generalizing unseen data. Based
on Figures 9 and 12 Resnet and MobileNet loss validation curves continue to increase after a minimum
validation point. That is the reason why the training is stopped at that moment, producing a training
time of only 5 and 9 epochs, respectively.

Another consideration to be seen on learning curves is the gap between the validation and training
loss curves, meaning an insufficient dataset size. It can be observed that both Resnet and MobileNet
models have a more considerable gap distance, followed by GoogleNet and DeseNet (Figures 10 and
11).

Finally, the most consistent performance is done by the VGG model in Figure 8, since both curves
reach a point of stability with a minimal gap between the final values. In addition, the training stops
in the maximum number of epochs, indicating good learning and generalization of features in the
images.

3.2. Performance analysis

Once each model is trained, it can further be used to infer features of interest in unknown data to
test its generalization. In order to both assess the effectiveness of the studied models and to determine
the superiority of one model over others, four performance metrics were utilized, as described below:

®  Accuracy: This is the most common classification metric. This metric describes the ratio between
the number of correct predictions and the size of the data. The metric is defined in Equation 1.

Total correctly classified samples
Dataset size

Accuracy = 1)

®  Precision: This is a performance metric that measures the proportion of correct predictions for a
specific class out of all the predictions made by the model for that class. It provides insights into
the model’s ability to accurately classify instances for a particular class, regardless of the overall
accuracy. Precision focuses on the relevance of the model’s predictions compared to the actual
ground truth. This metric is defined in Equation 2.

Correctly classified samples by class

Precision = = - Iy
correctly classified samples + incorrectly classified samples

)

_ Correctly classified samples by class
B Total predictions by class

* Recall: Also known as sensitivity or true positive rate, is a performance metric that measures
the proportion of correctly predicted instances for a specific class out of all the instances that
actually belong to that class. It quantifies the model’s ability to identify and capture the positive
instances, or true positives, in relation to the actual ground truth. Recall emphasizes the model’s
capability to recognize and recall the relevant instances of a particular class, without considering
the incorrect predictions. This metric is computed as presented in Equation 3.

Correctly classified samples by class
Number of samples by class

Recall = 3)
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*  Fl-score: The Fl-score is a performance metric that combines precision and recall into a single
value by taking their harmonic mean. By incorporating both precision and recall, the Fl-score
provides a comprehensive evaluation of the model’s ability to achieve both high precision and
high recall, promoting a balanced trade-off between the two measures. The metric is defined by

Equation 4.

Precision * Recall
F1- =2 4
score ¥ Precision + Recall )

Since the metrics of precision, recall, and Fl-score are performance measures for n classes, there
are different ways to combine these scores to have an overall value. One way to do this is to calculate
the simple arithmetic mean, which is known as the macro-averaged score as defined by Equation 5.
With this technique, all classes contribute equally to the final averaged metric.

Class; score + - - - + Class,, score

Macro-averaged score =
8 Total of classes

©)

Table 6 presents a comparison of the performance metrics, including macro-averaged precision,
recall, Fl-score, and accuracy, on the testing set. It is highlited the model with the best result,
corresponding to VGG16.

In these terms, MobileNet obtained the lowest scores followed by GoogLeNet and ResNet
architectures. As was discussed observing the learning curves, those models had problems with
training, in terms of overfitting and insufficient dataset size. Both aspects would impact negatively the
model’s performance. In the same way, the more consistent training was done by DenseNet and VGG
and this is depicted on its high performance.

Table 6. Comparative performance analysis on validation macro-averaged metrics for each model.

Network model Accuracy Precision Recall F1-Score

DenseNet201 96.7 96.7 96.8 96.8
MobileNet 92.2 92.2 92.3 92.3
ResNet50 95.1 94.9 95.2 95.0
GoogleNet 92.6 92.5 92.8 92.6
VGG16 98.0 98.1 97.8 98.0

To finish the evaluation of the studied models, the confusion matrix is used. This tool records all
the predictions made on the test set, allowing the visualization of the performance for each class. On
one side of the matrix, the ground truth is arranged against predictions of the model. The confusion
matrices for all models are shown in Figure 13.

Based on the graphics, it can be seen that in almost all cases the prediction of —P50 class has
the lowest performance values, except on the VGG model (Figure 13a) which has lower recognition
rates for —P label. Concerning this architecture, the color map allows noticing a high homogeneity of
correct classifications for all classes, i.e., this model has no strong inclination to recognize one class
more than another. In the opposite case, it can be seen in Figure 13b that the ResNet model has a
classification weakness on the — P50 label (92% accuracy), although all other classes are identified with
high accuracy (both with 97%). This same behavior is traced by DenseNet in Figure 13d but with a
slightly higher accuracy rate. Finally, the most heterogeneous distribution in recognition is given by
the architectures of GoogLeNet and MobileNet (on Figures 13c and 13e, respectively).
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This difficulty in recognizing the — P50 label is observed in almost all models and is explained by
the overlap of visual characteristics between this class and the other two. This makes it as difficult for
a human as it is for a machine to recognize the differences between a leaf with sufficient nutrition or
low nutrition and a leaf with medium nutrition.

Despite nutrition evaluation is relevant to ensure good agricultural production, other issues such
as maize diseases develop the same deep learning framework, so it is possible to compare results
obtained by other studies from the literature, which are presented in Table 7. It was observed from the
analysis that this work is placed within the state-of-the-art results, and also that only a few studies
attempt to acquire own images.

Table 7. Comparison with literature-review results.

Reference Dataset Multi-classes Pre-trained Model Metric Value
VGG19 74.20
. ResNet50 .. 70.41
[13] PlantVillage 4 DenseNet201 Training accuracy 84.13
Porpoused "INC-VGGN" 97.57
VGG16 97.35
ResNet50 99.21
[15] Self-created 4 DenseNet169 Test Accuracy 99,51
Porpoused "MDCNN" 99.54
VGG16 81.4
[14] Self-created 6 ResNet50 Average F1-Score 82.5
Porpoused "SKPSNet-50" 91.9
[10] Various sources 9 Improved GoogLeNet Test accuracy 988

Improved Cifar10 97.1

4. Conclusions

The detection and identification of plant-leaf issues is a relevant task in farm management. The
care of each plant leads to a healthy plantation, which will result in high production of excellent quality.
Regardless there are many developed deep learning methods for the classification of plant diseases,
including leaf nutrition deficiency, they do not respond the same to all situations. That’s why the
behavior analysis of these deep learning models for specific tasks is crucial in the development of
automated systems to support agricultural activities.

In this study, five transfer deep learning architectures pre-trained on the ImageNet database
(i.e. VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2) were trained to classify three
phosphorus deficiency levels on a self-made database, whose images were taken by five different
acquisition devices but just one camera images were selected for this analysis. It was found that VGG16
performed the best for this specific problem, giving the most consistent training performance and
best recognition metrics, leading an overall accuracy score of 98%, as well as correct-prediction rates
equally distributed along all classes. No such remarkable results for the VGG model was found in
previous studies, so further investigations can be done focusing on the performance of this architecture
against more current models.

The second best-behaved model was DenseNet201 reaching an accuracy of 96.7%, but with better
recognition rates for —P and C labels than for those with —P50. Finally, GoogLeNet and MobileNet had
the lower overall accuracy (92.6% and 92.2% respectively). The first, probably by its huge number of
layers, it’s either not learning enough features from the database, or more data is required to correctly
adjust the network weights. The same issue is possibly happening with the second model, judging by
the shape of the loss curve which also indicates some overfitting.

Moreover, the analysis of learning curves supports this hypothesis and allows to understand
that for most architectures, the amount of training data is not sufficient for the models to make a
perfect generalization of the features in the images. Therefore, it is necessary to increase the size of the
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database in the future. In the same way, different regularization techniques can be explored to avoid
overfitting.

This study contributes to a faster and economical identification of nutritional phosphorus issues, so
that the crop’s fertilization schedule can focus efforts on specific plants, and thus make a more rational
use of resources, taking care of both the farmer’s budget, as well as the health of the environment. We
remark that the setup proposed in this research can be extended easily to real-time monitoring of other
crops types, even to analyze different kinds of leaf-issues that could be inferred from visual inspection.
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Appendix A. Original image acquisition devices

Table A1. Specifications of cameras used to acquire original images.

Smartphone Smartphone

Camera type 1: Xiaomi 2: Moto G (5) Digital Smr%lfi-;ens ggz:gla;z
Redmi 8T Plus
Manufacturer Omnivision Motorols Samsung Nikon ThorLabs
Model OV02A10 Unknown ES65 D3100 DCC1645C-HQ
Sensor type CMOS Unknown CCD CMOS Color CMOS
Numblffx‘;{sA““’e 1200 x 1200 3264 x 2448 2048 x 1536 3456 x 2304 1280 x 1020
Resolution (ppp) 96 72 96 300 144
Optical Format 0.2" 0.4" 0.24" 1.09" 0.33"
Maximum 24 17 35 3.8 14

aperture f /

Appendix B. Previous results on different camera types

Table A2. Results on classification of images using GoogLeNet architecture according to camera type.

Metric Accuracy Average precision Average recall
Smartphone 1 0.84 0.84 0.84
Smartphone 2 091 0.92 0.92

Digital 0.80 0.81 0.80

Reflex 0.92 0.92 0.92

Scientific 0.93 0.92 0.93
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