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Abstract: Spatial interpolation of meteorological data can have immense implications on risk
management and climate change planning. Kriging with external drift (KED) is a spatial interpolation
variant that uses auxiliary information in the estimation of target variable at unobserved locations.
However, the traditional KED methods with linear trend functions may not be able to capture the
complex and non-linear interdependence between target and auxiliary variables, which can lead
to an inaccurate estimation. In this work, a novel KED method using least squares support vector
regression (LSSVR) is proposed. This machine learning algorithm is employed to construct trend
functions regardless of the type of variable interrelations being considered. To evaluate the efficiency
of the proposed method (KED with LSSVR) relative to the traditional method (KED with a linear trend
function), a systematic simulation study for estimating the monthly means temperature and pressure
in Thailand in 2017 was conducted. The KED with LSSVR is shown to have superior performance
over the KED with the linear trend function.

Keywords: geostatistics; spatial interpolation; kriging with external drift; least squares support
vector regression; trend function

1. Introduction

Spatial interpolation is a fundamental technique employed in spatial data analysis to estimate
the variable of interest at unobserved locations based on available data. Kriging is a geostatistical
approach for spatial interpolation that provides a best linear unbiased prediction with the minimum
estimation variance. An approximation of the kriging models relies on the assumption that a random
process can be decomposed into a trend function and a random residual component. Ordinary kriging
(OK) is a commonly used method with a constant trend, which is not suitable in the presence of a
strong trend structure. On the other hand, kriging with external drift (KED) allows for the inclusion of
auxiliary variables that have a strong spatial correlation with the target variable in order to increase
precision in estimates [1,2]. In the KED, a trend model that is fitted to both target data points and
significant auxiliary samples is first generated. The empirical variogram is thereafter derived from
residuals computed from the difference between the trend estimates and measured values. A final
prediction of the target variable is obtained as a weighted linear combination of observations, in
which the weights are calculated through the Lagrange multiplier method. The KED method has been
applied in various fields, including meteorology [3-6], geology [7-10], environmental modeling [11-13],
agronomy [14-16], and hydrology [17].

The trend term for the KED is conventionally modelled by polynomial functions of degree one
or two. However, in practice, a non-linear relationship often exists between influence factors and
response variables where the application of such a polynomial is not adequate. Despite extensive
research on the prediction using KED having been conducted, a study of non-linear trend functions
for the KED remains scarce. Snepvangers et al. [18] developed a non-linear trend represented by a
logarithmic function to interpolate soil water content using the KED technique with net-precipitation
as an auxiliary variable. Freier and Lieres [19] introduced a novel extension to universal kriging (UK),
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a specific instance of KED, aimed at handling non-linear trend patterns. They utilized a Taylor-based
linearization approach in conjunction with an iterative parameter estimation procedure to construct a
non-linear trend model. The method was applied to the Michaelis-Menten equation, which describes
an enzymatic reaction. Freier et al. [20] subsequently employed this kriging technique to interpolate
biocatalytic data with low and irregular density. Their method can be particularly of use in the presence
of an explicit expression of the non-linear trend functions. Nevertheless, an interaction between design
factors and system response in real-world applications is naturally described by diverse and complex
behaviour, which is difficult to establish in an explicit form.

Machine learning (ML) has recently been gaining attention as a computationally efficient tool for
identifying implicit relationships between variables. This allows one to generate and optimize the
complex model based on the huge amount of data available for analysis. Support vector machine (SVM)
is a kernel-based machine learning approach used for classification and regression. The particular use
of SVMs for regression problems is called support vector regression (SVR), which was first introduced
by Vapnik in 1992 [21]. The method adopts the structural risk minimization principle by minimizing
the upper bound of the generalization errors. This leads to a linear decision function, which is
essentially a convex quadratic programming (QP) problem. The core element of SVR is to search
for the optimal hyperplane that fits the learning data while maximizing the distance between the
hyperplane and the data points. In the case of non-linear problems, the SVR procedure starts by
projecting input data into high-dimensional feature space through some non-linear mapping, and the
SVR subsequently performs linear regression to obtain the optimal hyperplane. Apart from producing
high prediction accuracy for non-linear data, SVR is also suitable for applications characterized by
small datasets [22-24]. Furthermore, this SVM regression-based algorithm has the generalization
ability to reduce overfitting issues by introducing regularization term into the loss function. Due
to all these advantages, the technique has therefore been applied in diverse disciplines, including
finance [25,26], economics [27,28], climate modelling [29,30], and healthcare [31,32]. However, SVR
requires substantial computational time and significant memory usage to solve the QP problem. To
overcome these limitations, Suykens and Vandewalle [33] proposed a variant of SVR known as least
squares support vector regression (LSSVR). This method extends the traditional SVR by using a
squared loss function rather than quadratic programming. The LSSVR results yield higher accuracy
and require less computational resources compared to the reliability method relying on SVR [34].

There is a notable absence of research on the utilization of ML in geostatistical techniques. In this
work, we will present a novel interpolation method in which the LSSVR method is used to compute
non-linear trend functions within the context of KED. The proposed technique entails expressing the
trend function in a structured form through explicit feature mapping. The purpose of our technique is
to enhance the predictive capabilities of the KED model by incorporating the powerful capabilities of
LSSVR for capturing non-linear relationships between variables.

The remainder of this paper is outlined as follows. Section 2 reviews the theory regarding the KED
methodology and LSSVR technique. A detailed description of the KED using the LSSVR for modelling
the non-linear trend functions is provided in Section 3. In Section 4, we conduct a comparative
simulation study using the conventional KED model and the proposed method for temperature and
pressure estimation in Thailand. Conclusion and discussion are drawn in Section 5.

2. Mathematical Background

2.1. Kriging with External Drift

Kriging is a spatial interpolation method that uses variogram analysis to predict the variable of
interest at an unmeasured location based on the values of surrounding measured locations. It is the
best linear unbiased estimator (BLUE) for the random function, {Z(s) : s € D C R?}, where D is a
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defined spatial domain and d a positive integer representing the number of dimensions in the spatial
domain. The value of Z(s) can be obtained through

Z(s) = u(s) +e(s), @

where a deterministic component y(s) indicates the underlying trend or drift and €(s) is a stochastic
residual component with a mean of zero and a variogram, which is a function of lag vector [2].
In KED, the trend is modelled by a function of auxiliary variables which can be expressed as

L

u(s) =Y aifi(s), @

=0

where a; € R\ {0} is coefficient to be estimated, f;(s) is prescribed function that maps from the domain
D into the range R, and L + 1 is the number of terms used in the approximation. Additionally, the
function fy(s) is defined to be 1 for all s in D [2].

To determine the unknown coefficients in equation (2), we can use the ordinary least squares
(OLS) estimator or its extension, the generalized least squares (GLS) estimator, which accounts for the
spatial correlation between individual observations [35].

Given n observed values, Z(s1), ..., Z(s, ), at sample points, 51,5, ..., sy. The attribute Z(sp) at an
ungauged site sy is estimated as a linear combination of observed values so that

Z*(s0) = Y wiZ(s1), 3
i=1

where wj is the kriging weight assigned to Z(s;). The weights w; are computed by minimizing the
estimation error variance subject to the unbiased constraint. This results in the following optimization
problem:

minimum of Var [Z* (so) — Z(s0)],
subject to E[Z*(s9) — Z(sg)] = 0. 4)

The optimal weights of the system (4) for the KED model can be solved by using the Lagrange
multiplier method which leads to
Yy wive (si—sj) + Lig Afilsi) = ve (si—s0),  Vi=1,.,m, )
Z?:l w]-fl(sl-) = fl(SO)r VI = 0, 1, very L,

where 7¢(-) denotes the residual variogram function of Z(s) and A; € R is a Lagrange multiplier.

The variogram is a fundamental and important tool that quantifies the spatial correlation structure
of the sample points. The variogram model is a smooth function that is reasonably well fitted to the
empirical variogram estimated from the data. In the present study, we use the empirical variogram
estimator introduced by Matheron [36], and the parametric variogram is represented by an exponential
model [35].

In general, both linear and quadratic functions are usually treated as a trend representation [9,17,
37,38]. However, in certain scenarios, the relationship between the target and auxiliary variables is too
complex to be captured by simple polynomial functions. In this work, least squares support vector
regression (LSSVR) is used to model a non-linear trend function within the KED framework.

2.2. Least Squares Support Vector Regression

Given a dataset {Y;, Z;} ,, where Y; € R" is a y—dimensional training data point and Z; € R
represents a target output. The objective of least squares support vector regression (LSSVR) is to find


https://doi.org/10.20944/preprints202310.1993.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2023 doi:10.20944/preprints202310.1993.v1

40f17

a function that minimizes the square error between the predicted values and the actual values. In
LSSVR, the input data Y; are mapped into a higher-dimensional feature space R, in which a linear
model is adopted, so that a model function y is formulated as

u(Y)=alp(Y)+b, 6)

where ¢(Y) is an 7, —dimensional feature mapping, a is an 17, x 1 weight vector, and b € R indicates a
bias term.

In equation (6), the unknown vector a and parameter b can be calculated by solving the following
optimization problem:

.. 1 7 v 2
minimum of saats 1:21 i
subject to Zi=alp(Y;))+b+¢, i=1,.,n, (7)

where v is a regularization constant that constitutes a trade-off between the model complexity and the
empirical error, and ; is a regression error.

The problem (7) can be reformulated as an unconstrained problem through the Lagrange
multiplier method [39]. A set of linear equations corresponding to optimality conditions is consequently
obtained, which provides an expression of the weight vector a:

a= xai¢(Yi)/ (8)

where «; is a Lagrange multiplier. This system of equations can be reduced to the following form:

0 17 b
1, QO+v1iL| |«

where Q) is referred to as the kernel matrix whose element is (])T(Yi)gb(Yj) fori,j=1,..,nand I, is the

0
V4

, )

identity matrix of size n. The matrix 1, is an n x 1 unit matrix and Z = [Zy, ..., Z,,] Tis the n x 1 matrix
of observed values together with the n x 1 matrix of Lagrange multipliers, & = [a, ..., 5"
The solutions of equation (9) are

_1TA7'z 10)
17A7 11,
x=AYZ-b1,), (11)

where A = Q + v~ !I,,, which is a symmetric and positive semi-definite matrix, thereby ascertaining
the existence of its inverse, denoted as A~ .
By replacing equation (8) with equation (6), the model for the LSSVR function therefore becomes

u(Y) = éu‘iﬁbT (Vi) ¢ (Y)+b,

DCZ'K (Yl’, Y) + b, (12)
i=1

where K(, ) is the kernel associated with the feature mapping ¢, and it is defined as [40]

K(Y;,Y) =" (V)¢ (Y). (13)
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Numerous kernel functions are available for the construction of various models, such as:

Linear kernel: K (Y;,Y) = Y!Y.

Polynomial kernel: K (Y;,Y) = (k+ YTY)?, k> 0and p € N.

Radial basis function kernel: K (Y;,Y) = exp(—¢||Y — Y;||?), ¢ > 0 and || - || means the Euclidean
norm.

The LSSVR regarding the KED scheme is used to characterize the underlying trend. The
notation for the dataset at the sample point s; € R? is represented by {X(s;), Z(s;)}"_,, where

X(si) = [X1(si), - Xy (si)]T € R" is the vector of 1 auxiliary variables and Z(s;) denotes the
observation value.

3. A Novel Trend Function of KED based on LSSVR

This section introduces a method for constructing the trend function in KED using the LSSVR
method. The approach involves identifying the fundamental functions of the trend through explicit
feature mapping. Examples of explicit feature mappings derived from the corresponding kernel
functions are also demonstrated.

3.1. Construction of the Trend Function

Let ¢(X(s)) be an M—dimensional feature mapping such that

¢ (X(s)) = [p1(X(5)), . pm(X(s))]", (14)

where ¢,,(X(s)) is the mth component of the feature mapping.
According to equation (13), the kernel function is in the form:

$1(X(s))
K(X(si), X(s)) = [p1(X(s1)), -, pm (X (s))] : : (15)
Pm(X(s))

By substituting equation (15) into equation (12), y(s) can be rewritten as

n $1(X(s))
p(s) = p(X(s)) = i | [9r(X(51)), - aa(X(5:))] : tb,
o Pu(X(5))
n M
= ;fxi (Zlme(X(Si)Wm(X(S))) +0,
M n
= 1 (X)) (X(5) + b,
M n
= Zl (; “Z¢m(x(5i))) Pm(X(s)) +b (16)
The trend function can hence be written in the following form:
M
HE) = ) angn(X(5)), (17)

where the coefficient &,, = Y1 ; ai¢mu (X (s;)) and ¢y, (X(s)) is the known function form = 1,..., M in
which &) = b and ¢o(X(s)) = 1.
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Equation (17) possesses a similar form to equation (2) with &,, being treated as a; and ¢, being f;.
This verifies the use of the kernel function as a non-linear trend model for the KED. The process of the
KED based on the LSSVR method is provided according to the flowchart shown in Figure 1.

LSSVR for

Dataset {X(s;) Z(s;)}, i=L...n trend construction

\ 4

Kernel function K selection

A\ 4

I
I
: Feature mapping ¢(X(s))=[¢1(X(s)),.- .,(;[)M(X(s))]T
I

A 4

Parameters b,a, and

A 4

Trend function u(s)

Residuals €(s;)=Z(s;)-u(s;)

A 4

Residual variogram y, function

A 4

KED system

A 4

Kriging weights w;

A 4

KED estimation at unobserved location s

2"(s0)= ) wiZ(s})
i=1

Figure 1. Flowchart of interpolation using KED method with the proposed trend function

3.2. Examples of Explicitly Feature Mapping

There have been various kernels for the LSSVR method, namely linear, polynomial, and radial
basis function kernels [41-43]. This section presents the last two kernels, as they are widely used and
relatively easy to tune. They will also be applied in our model to formulate the trend component.

3.2.1. Polynomial Kernel

The polynomial kernel function is defined as
K (X(s1), X(5)) = (k+ X" (s1)X(s))", (18)

where k > 0 and p € Nis the degree of polynomial.
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The feature mapping for polynomial kernel degree—p is given by [44]
_ p! 1 n | e
PX6) = |\ X)X (VR i > 0with }ji=p), (19)
jite e gy i=1

(1) (g+p—1)..(y+1)
p!
polynomial kernel and the number of auxiliary variables are both equal to 2, with k being 1, then

where the dimensionality of ¢ (X(s)) is [45]. For example, when the degree of the

P X)) = [LVEXI(5), VEXals), X (5), XB(5), VEX1 (5) Xa(s)] 20)

Comparing with equation (14), components of the feature mapping are as follows:
1 (X(s)) = 1,42 (X(5)) = V2X4(5), ¢3 (X(5)) = V2Xa(s),
91 (X(s)) = X3(s), 95 (X(5)) = X3(5), g6 (X(5)) = V2X1(5) Xa(s).

3.2.2. Radial Basis Function Kernel

The implicit kernel function, exemplified by the radial basis function (RBF) kernel, assumes the
following form:

K (X(s1), X(s)) = exp(—g[X(s) — X(s:) 1), (21)

where g > 0is a RBF kernel parameter.
The feature mapping for RBF kernel function can be formulated as

(28)"
rl

¢ (X(s)) = exp(—g[X(s)[1?) l 0, (X(s)) I'r= 0,---,001 , (22)

where

r!

o, (X(s)) = l ]17])(]1( ) ~~X{7’7(s) | j; > 0 with i}l = r] , (23)

which is described in more detail in [46]. The RBF kernel function, which maps the auxiliary data to
an infinite—dimensional space, can be approximated by Taylor Polynomial-based Monomial feature
mapping (TPM feature mapping). In the work of [46], a finite-dimensional approximated feature
mapping of the RBF function is obtained as follows:

#(X(5)) = exp(~g1X(5) ) [\/@g) (X(s)) 1 7= o] , @

where 7, is a selected approximation degree and the TPM feature mapping degree—r, has

(UH")(”H” D (+1) dimensions.

Although an increase in r,, leads to an improvement in estimation as ¢ (X(s)) approaches the true
function, it is however sufficient enough to use the TPM feature mapping with low dimensions [46].
An example of TPM feature mapping with degree—two and 2 auxiliary variables is

§(X(5)) = exp(~g| X(5) ) [1, /281 (5), v/ 2%a(s), VgX3 (5), Va8 XE(s), 28X (5)Xa(s)] - (29)

By comparing equation (25) with equation (14), this results in

1 (X(s)) = exp(=glIX(s)[1*), 2 (X(5)) = exp(—glIX(s)]I*) /28 X1 (s)
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¢3 (X(s)) = exp(—g[IX(s)[*) /28 X2(s), 94 (X(5)) = exp(—glIX(s)[*) vV2gXi(s),
¢5 (X(5)) = exp(—glIX(s)*) V28 X3(s), 6 (X(5)) = exp(—g| X(5)[|*)2gX1(s) Xa(s).

4. Case Study: Estimations of Temperature and Pressure in Thailand

4.1. Study Area

The evaluation of the efficiency and accuracy of the proposed techniques was carried out to
interpolate temperature and pressure in Thailand. The country is located between 5°37'N and 20°27'N
latitude and 97°22'E and 105°37’E longitude, with a total area of 513,115 km? and a coastline of 3,219
km [47,48]. The data used in this study consist of monthly averages of temperature, pressure, relative
humidity, digital elevation model (DEM), and geographic locations (coordinates) spanning from
January 2017 to December 2017. These data were acquired from the National Hydroinformatics and
Climate Data Center (NHC), developed by Hydro-Informatics Institute (HII) [49]. Figure 2 displays
213 meteorological stations after data preparation and cleaning.

99°E 10%°E 10?°E

Map of Thailand
Study Area

19N £ R H1oon
v '. 5T W<€>>E

16°N-

13°N-

LEGEND

[ Study Area
* Meteorological
Station
DEM (m)
2534.5

10°N-

50 0 50 100km
[ . —]

99°E T07°F 05°F
Figure 2. Spatial distributions of meteorological stations in the study area in 2017

4.2. Evaluation of Model Accuracy

In this study, we compare the accuracy of KED with three different trend functions: the linear
trend function estimated using the GLS estimator (KED—GLS), the non-linear trend function based
on LSSVR with polynomial feature mapping of degree one and two (KED—Poly1 and KED—Poly2),
and the non-linear trend function based on LSSVR with TPM feature mapping of degree one and two
(KED—-TPM1 and KED—-TPM2).

The k—fold cross-validation technique was applied to examine the performance of the models.
The data were randomly divided into 10 folds. For each iteration, each fold was used as a testing dataset
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for the model built upon the remaining nine folds. After 10 iterations in which each fold was once
selected as testing data, the overall estimation accuracy is an average of the accuracy scores calculated
from each iteration [50]. The root-mean-square error (RMSE) [51] and the mean-absolute-percentage
error (MAPE) [52] were the model performance indicators, which are formulated as follows:

N

1

Z(si)

where N is the number of observations, Z(s;) and Z*(s;) denote the observed data and the estimated
value at coordinate s;, respectively.

1 N
RMSE = | l; (Z(si) — 27 (1)), (26)
MAPE — o 12(s0) — 2" (si)| x 100, (27)
=1

4.3. Results

Before proceeding to the KED simulation, a selection of auxiliary factors is required. Table 1
presents the statistical analysis of the interdependence between each selected variable and the target
variables through the Pearson and Spearman correlation coefficients [53]. The results indicate a
significant positive correlation between temperature and pressure (correlation coefficients greater
than 0.5). While the pressure is negatively correlated to both DEM and latitude with the correlation
coefficients less than -0.5. This suggests that pressure can be chosen as an auxiliary variable for
temperature estimation and vice versa. On the other hand, both DEM and latitude are additionally
included as auxiliary factors for interpolating pressure.

Table 1. Correlation coefficients between the target and auxiliary variables

Temperature Pressure
Auxiliary variables
Pearson Spearman Pearson Spearman
Temperature 1.0000 1.0000 0.5537 0.5092
Pressure 0.5537 0.5092 1.0000 1.0000
Relative humidity -0.2474 -0.2389 0.1540 0.1869
Latitude -0.1322 -0.2425 -0.5338 -0.5867
Longitude 0.0198 0.0345 0.0283 -0.0399
DEM -0.4501 -0.4421 -0.7350 -0.7470

Table 2 reports the estimation efficiency of the KED model with three different trend functions
via MAPE and RMSE measures. According to the accuracy statistics, the KED with a non-linear trend
function based on LSSVR has a superior estimation performance to that of the KED with a linear trend
for both temperature and pressure. Specifically, the prediction errors for temperature generated by
the KED—TPM2 are smaller than those of all other methods, with RMSE being 0.8123 and MAPE
being 2.2888. These are respectively equivalent to 1.5633% and 2.1755% improvement compared to the
KED—GLS method. While the optimal pressure estimates are achieved by using the KED—Poly2 with
the RMSE and MAPE equal to 7.7541 and 0.5466 respectively. The KED—Poly2 reduces both MAPE
and RMSE values by over 10% with respect to the KED—GLS approach.
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Table 2. Prediction errors of kriging with external drift and three different trend functions for temperature and pressure data in 2017

KED with non-linear trend based on LSSVR

Tarect Awili KED with
arge uxiliary . - . .
variables variables Errors linear trend Polynomial Feature Mapping TPM Feature Mapping
KED-GLS KED-Polyl KED-Poly2 KED-TPM1 KED-TPM2

Temperatur Pressur RMSE 0.8252 0.8275 0.8232 0.8512 0.8123

emperatire essure MAPE 2.3397 2.3486 2.3439 2.4041 2.2888
Pressure 55(1;:[11 de RMSE 8.6212 8.6111 7.7541 9.3854 8.7372

u MAPE 0.6170 0.6181 0.5466 0.6698 0.6329

Temperature
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To further compare the estimation performance of all methods, visual spatial distribution patterns
of the monthly averages of temperature and pressure in Thailand in March, July, and November 2017
are presented. These maps were created using QGIS (Quantum Geographic Information System)
software and the study area was partitioned into a grid of square cells of 0.05 degree per side.

Figure 3 shows the spatial distribution patterns of the monthly mean temperature. The panels
on the left column depict the results generated by KED—GLS, whereas panels on the right column
illustrate the results obtained from KED—TPM2. Both KED—TPM2 and KED—GLS produce a roughly
similar distribution pattern for the average July temperature. This may be due to the fact that there
is a small variation in temperature across the country during the rainy season (July-October). The
discrepancy in temperature derived from these two models is therefore not significant. On the contrary,
clear differences can be observed in March and November, in which the area of high temperature
is more broadly distributed in the central part of the country for the KED—TPM2. The model also
generates an overall lower temperature level concentrated in the northern region in November. Figure 4
displays spatial distribution maps of monthly mean pressure where the left column again corresponds
to the estimates attained from the KED—GLS while those in the right column are derived from the
KED—Poly2. The results show a distinct difference between these two methods. In particular, lower
pressure values estimated by KED—Poly?2 are clearly marked in the northern and western parts of the
study area.
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Figure 3. Spatial distribution of temperature in Thailand in March, July, and November 2017,
interpolated using: (al), (b1), and (c1) KED—GLS (left panels); (a2), (b2), and (c2) KED—TPM2 (right

panels)
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Figure 4. Spatial distribution of pressure in Thailand in March, July, and November 2017, interpolated

using: (al), (b1), and (c1) KED—GLS (left panels); (a2), (b2), and (c2) KED—Poly2 (right panels)

5. Conclusion and Discussion

This paper presents the novel KED method that applies the LSSVR technique to improve spatial
interpolation accuracy in the presence of non-linear trends. The method involves determining the
drift component through explicit feature mapping which is expressed in terms of kernel functions.
A comparison between our proposed method and the KED with the linear trend is demonstrated in
the case of the temperature and pressure estimation in Thailand in 2017. The results show that the
KED with LSSVR outperforms the KED approach with a linear trend function regarding estimation
accuracy.

The advantage of the KED with LSSVR can be attributed to its ability to extract implicit non-linear
relationships between the target and auxiliary variables. This gives rise to more accurate interpolation
results. Furthermore, the LSSVR is a powerful machine learning algorithm that has been proven
effective in a variety of regression tasks. This allows our method to adapt to various data types.
However, the choice of kernel function in LSSVR can have a significant impact on the estimation
accuracy. Although a higher-degree polynomial kernel or a higher-degree TPM feature mapping can
model more complex relationships in the data, it can also result in a number of equations in the kriging
system. This can lead to more time-intensive computation and an increase in the likelihood of model
overfitting issues.

Author Contributions: Conceptualization, K.B., N.C. and S.M.; methodology, K.B., N.C. and S.M.; software, K.B.
and S.M.; validation, K.B., N.C. and S.M.; formal analysis, K.B., N.C., and S.M.; investigation, K.B., N.C. and S.M.;
resources, K.B., N.C. and S.M.; data curation, K.B. and S.M.; writing-original draft preparation, K.B., N.C. and
S.M.; writing-review and editing, K.B., N.C. and S.M.; visualization, K.B.; supervision, N.C. and S.M. All authors
have read and agreed to the published version of the manuscript.

Data Availability Statement: All data were acquired from the National Hydroinformatics and Climate Data
Center (NHC), developed by Hydro-Informatics Institute (HII) [49].

Acknowledgments: This work was supported by (i) Chiang Mai University (CMU) and (ii) a Fundamental Fund
provided by Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation
Fund (NSRF).

Conflicts of Interest: The authors declare no conflict of interest.


https://doi.org/10.20944/preprints202310.1993.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2023 doi:10.20944/preprints202310.1993.v1

15 of 17

References

1. Wackernagel, H. Multivariate geostatistics: an introduction with applications; Springer Science & Business Media,
2003.

2. Webster, R.; Oliver, M.A. Geostatistics for environmental scientists; John Wiley & Sons, 2007.

3. Hudson, G.; Wackernagel, H. Mapping temperature using kriging with external drift: theory and an example
from Scotland. International journal of Climatology 1994, 14, 77-91.

4. Bostan, P; Heuvelink, G.B.; Akyurek, S. Comparison of regression and kriging techniques for mapping the
average annual precipitation of Turkey. International Journal of Applied Earth Observation and Geoinformation
2012, 19, 115-126.

5. Varentsov, M.; Esau, I.; Wolf, T. High-resolution temperature mapping by geostatistical kriging with external
drift from large-eddy simulations. Monthly Weather Review 2020, 148, 1029-1048.

6. Cantet, P. Mapping the mean monthly precipitation of a small island using kriging with external drifts.
Theoretical and Applied Climatology 2017, 127, 31-44.

7. Bourennane, H.; King, D.; Chery, P.; Bruand, A. Improving the kriging of a soil variable using slope gradient
as external drift. European Journal of Soil Science 1996, 47, 473-483.

8.  Bourennane, H.; King, D.; Couturier, A. Comparison of kriging with external drift and simple linear
regression for predicting soil horizon thickness with different sample densities. Geoderma 2000, 97, 255-271.

9.  Bourennane, H; King, D. Using multiple external drifts to estimate a soil variable. Geoderma 2003, 114, 1-18.

10. Béjar-Pizarro, M.; Guardiola-Albert, C.; Garcia-Cardenas, R.P.; Herrera, G.; Barra, A.; L6pez Molina, A.;
Tessitore, S.; Staller, A.; Ortega-Becerril, ].A.; Garcia-Garcia, R.P. Interpolation of GPS and geological data
using InNSAR deformation maps: Method and application to land subsidence in the alto guadalentin aquifer
(SE Spain). Remote Sensing 2016, 8, 965.

11. Beauchamp, M.; de Fouquet, C.; Malherbe, L. Dealing with non-stationarity through explanatory variables
in kriging-based air quality maps. Spatial statistics 2017, 22, 18—46.

12. Beauchamp, M.; Malherbe, L.; de Fouquet, C.; Létinois, L.; Tognet, F. A polynomial approximation of the
traffic contributions for kriging-based interpolation of urban air quality model. Environmental Modelling &
Software 2018, 105, 132-152.

13. Troisi, S.; Fallico, C.; Straface, S.; Migliari, E. Application of kriging with external drift to estimate
hydraulic conductivity from electrical-resistivity data in unconsolidated deposits near Montalto Uffugo,
Italy. Hydrogeology Journal 2000, 8, 356-367.

14. Garcia-Papani, F; Leiva, V,; Ruggeri, F; Uribe-Opazo, M.A. Kriging with external drift in a
Birnbaum-Saunders geostatistical model.  Stochastic Environmental Research and Risk Assessment 2018,
32, 1517-1530.

15. Cafarelli, B.; Castrignano, A. The use of geoadditive models to estimate the spatial distribution of grain
weight in an agronomic field: a comparison with kriging with external drift. Environmetrics 2011, 22, 769-780.

16. Anand, A.; Singh, P; Srivastava, PK.; Gupta, M. GIS-based analysis for soil moisture estimation via kriging
with external drift. In Agricultural water management; Elsevier, 2021; pp. 391-408.

17.  Rivest, M.; Marcotte, D.; Pasquier, P. Hydraulic head field estimation using kriging with an external drift: A
way to consider conceptual model information. Journal of Hydrology 2008, 361, 349-361.

18. Snepvangers, J.; Heuvelink, G.; Huisman, J. Soil water content interpolation using spatio-temporal kriging
with external drift. Geoderma 2003, 112, 253-271.

19. Freier, L; von Lieres, E. Kriging based iterative parameter estimation procedure for biotechnology
applications with nonlinear trend functions. IFAC-PapersOnLine 2015, 48, 574-579.

20. Freier, L.; Wiechert, W.; von Lieres, E. Kriging with trend functions nonlinear in their parameters: Theory
and application in enzyme kinetics. Engineering in life sciences 2017, 17, 916-922.

21. Mozer, M.C,; Jordan, M.L; Petsche, T. Advances in Neural Information Processing Systems 9: Proceedings of the
1996 Conference; Vol. 9, Mit Press, 1997.

22. Al-Anazi, A.F,; Gates, I.D. Support vector regression to predict porosity and permeability: Effect of sample
size. Computers & geosciences 2012, 39, 64-76.

23.  Wiering, M.A.; Van der Ree, M.H.; Embrechts, M.; Stollenga, M.; Meijster, A.; Nolte, A.; Schomaker, L. The
neural support vector machine. BNAIC 2013: Proceedings of the 25th Benelux Conference on Artificial


https://doi.org/10.20944/preprints202310.1993.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2023 doi:10.20944/preprints202310.1993.v1

16 of 17

Intelligence, Delft, The Netherlands, November 7-8, 2013. Delft University of Technology (TU Delft); under
the auspices of the Benelux ..., 2013.

24. Zhong, H.; Wang, J.; Jia, H.; Mu, Y.; Lv, S. Vector field-based support vector regression for building energy
consumption prediction. Applied Energy 2019, 242, 403—414.

25. Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Stock price prediction using support vector regression on daily
and up to the minute prices. The Journal of finance and data science 2018, 4, 183-201.

26. Zhang, J.; Teng, Y.F; Chen, W. Support vector regression with modified firefly algorithm for stock price
forecasting. Applied Intelligence 2019, 49, 1658-1674.

27. Mishra, S.; Padhy, S. An efficient portfolio construction model using stock price predicted by support vector
regression. The North American Journal of Economics and Finance 2019, 50, 101027.

28. Fan, G.F; Yu, M,; Dong, 5.Q.; Yeh, Y.H.; Hong, W.C. Forecasting short-term electricity load using hybrid
support vector regression with grey catastrophe and random forest modeling. Utilities Policy 2021, 73, 101294.

29. Arulmozhi, E.; Basak, ] K.; Sihalath, T.; Park, J.; Kim, H.T.; Moon, B.E. Machine learning-based microclimate
model for indoor air temperature and relative humidity prediction in a swine building. Animals 2021, 11, 222.

30. Quan, Q.; Hao, Z.; Xifeng, H.; Jingchun, L. Research on water temperature prediction based on improved
support vector regression. Neural Computing and Applications 2022, pp. 1-10.

31. Jaiswal, P; Gaikwad, M.; Gaikwad, N. Analysis of Al techniques for healthcare data with implementation of
a classification model using support vector machine. Journal of Physics: Conference Series. IOP Publishing,
2021, Vol. 1913, p. 012136.

32. Al-Manaseer, H.; Abualigah, L.; Alsoud, A.R; Zitar, R.A.; Ezugwu, A.E; Jia, H. A novel big data classification
technique for healthcare application using support vector machine, random forest and J48. In Classification
applications with deep learning and machine learning technologies; Springer, 2022; pp. 205-215.

33. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural processing letters 1999,
9, 293-300.

34. Guo, Z; Bai, G. Application of least squares support vector machine for regression to reliability analysis.
Chinese Journal of Aeronautics 2009, 22, 160-166.

35. Cressie, N. Statistics for spatial data; John Wiley & Sons, 2015.

36. Vallejos, R.; Osorio, F; Bevilacqua, M. Spatial relationships between two georeferenced variables: With applications
in R; Springer Nature, 2020.

37. Ly, S, Charles, C; Degre, A. Geostatistical interpolation of daily rainfall at catchment scale: the use of several
variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrology and Earth System Sciences
2011, 15, 2259-2274.

38. Amini, M.A.; Torkan, G.; Eslamian, S.; Zareian, M.].; Adamowski, ].F. Analysis of deterministic and
geostatistical interpolation techniques for mapping meteorological variables at large watershed scales. Acta
Geophysica 2019, 67, 191-203.

39. Huang, P; Yu, H,; Wang, T. A Study Using Optimized LSSVR for Real-Time Fault Detection of Liquid Rocket
Engine. Processes 2022, 10, 1643.

40. Yeh, W.C.; Zhu, W. Forecasting by Combining Chaotic PSO and Automated LSSVR. Technologies 2023, 11, 50.

41. Xie, G.; Wang, S.; Zhao, Y.; Lai, K.K. Hybrid approaches based on LSSVR model for container throughput
forecasting: A comparative study. Applied Soft Computing 2013, 13, 2232-2241.

42. Hongzhe, M.; Wei, Z.; Rongrong, W. Prediction of dissolved gases in power transformer oil based on
RBF-LSSVM regression and imperialist competition algorithm. 2017 2nd International Conference on Power
and Renewable Energy (ICPRE). IEEE, 2017, pp. 291-295.

43. Wang, X.; Wang, G.; Zhang, X. Prediction of Chlorophyll-a content using hybrid model of least squares
support vector regression and radial basis function neural networks. 2016 Sixth International Conference on
Information Science and Technology (ICIST). IEEE, 2016, pp. 366-371.

44. Shashua, A. Introduction to machine learning: Class notes 67577. arXiv preprint arXiv:0904.3664 2009.

45. Chang, YW,; Hsieh, CJ.; Chang, K.W.; Ringgaard, M.; Lin, C.J. Training and testing low-degree polynomial
data mappings via linear SVM. Journal of Machine Learning Research 2010, 11.

46. Lin, K.P,; Chen, M.S. Efficient kernel approximation for large-scale support vector machine classification.
Proceedings of the 2011 SIAM International Conference on Data Mining. SIAM, 2011, pp. 211-222.

47. Chariyaphan, R. Thailand’s country profile 2012. Department of Disaster Prevention and Mitigation, Ministry of
Interior, Thailand 2012.


https://doi.org/10.20944/preprints202310.1993.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2023 doi:10.20944/preprints202310.1993.v1

17 of 17

48. Laonamsai, J.; Ichiyanagi, K.; Kamdee, K. Geographic effects on stable isotopic composition of precipitation
across Thailand. Isotopes in Environmental and Health Studies 2020, 56, 111-121.

49. OpenData. Available online: URL https://data.hii.or.th/#/. (accessed on 14 October 2020).

50. Du, K.L.; Swamy, M.N. Neural networks and statistical learning; Springer Science & Business Media, 2013.

51. Li J.; Heap, A.D. A review of spatial interpolation methods for environmental scientists 2008.

52. Bae, B,; Kim, H,; Lim, H; Liu, Y;; Han, L.D.; Freeze, P.B. Missing data imputation for traffic flow speed using
spatio-temporal cokriging. Transportation Research Part C: Emerging Technologies 2018, 88, 124-139.

53. Akoglu, H. User’s guide to correlation coefficients. Turkish journal of emergency medicine 2018, 18, 91-93.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://data.hii.or.th/#/
https://doi.org/10.20944/preprints202310.1993.v1

	Introduction
	Mathematical Background
	Kriging with External Drift
	Least Squares Support Vector Regression

	A Novel Trend Function of KED based on LSSVR
	Construction of the Trend Function
	Examples of Explicitly Feature Mapping
	Polynomial Kernel
	Radial Basis Function Kernel


	Case Study: Estimations of Temperature and Pressure in Thailand
	Study Area
	Evaluation of Model Accuracy
	Results

	Conclusion and Discussion
	References

