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Abstract: Spatial interpolation of meteorological data can have immense implications on risk

management and climate change planning. Kriging with external drift (KED) is a spatial interpolation

variant that uses auxiliary information in the estimation of target variable at unobserved locations.

However, the traditional KED methods with linear trend functions may not be able to capture the

complex and non-linear interdependence between target and auxiliary variables, which can lead

to an inaccurate estimation. In this work, a novel KED method using least squares support vector

regression (LSSVR) is proposed. This machine learning algorithm is employed to construct trend

functions regardless of the type of variable interrelations being considered. To evaluate the efficiency

of the proposed method (KED with LSSVR) relative to the traditional method (KED with a linear trend

function), a systematic simulation study for estimating the monthly means temperature and pressure

in Thailand in 2017 was conducted. The KED with LSSVR is shown to have superior performance

over the KED with the linear trend function.

Keywords: geostatistics; spatial interpolation; kriging with external drift; least squares support

vector regression; trend function

1. Introduction

Spatial interpolation is a fundamental technique employed in spatial data analysis to estimate

the variable of interest at unobserved locations based on available data. Kriging is a geostatistical

approach for spatial interpolation that provides a best linear unbiased prediction with the minimum

estimation variance. An approximation of the kriging models relies on the assumption that a random

process can be decomposed into a trend function and a random residual component. Ordinary kriging

(OK) is a commonly used method with a constant trend, which is not suitable in the presence of a

strong trend structure. On the other hand, kriging with external drift (KED) allows for the inclusion of

auxiliary variables that have a strong spatial correlation with the target variable in order to increase

precision in estimates [1,2]. In the KED, a trend model that is fitted to both target data points and

significant auxiliary samples is first generated. The empirical variogram is thereafter derived from

residuals computed from the difference between the trend estimates and measured values. A final

prediction of the target variable is obtained as a weighted linear combination of observations, in

which the weights are calculated through the Lagrange multiplier method. The KED method has been

applied in various fields, including meteorology [3–6], geology [7–10], environmental modeling [11–13],

agronomy [14–16], and hydrology [17].

The trend term for the KED is conventionally modelled by polynomial functions of degree one

or two. However, in practice, a non-linear relationship often exists between influence factors and

response variables where the application of such a polynomial is not adequate. Despite extensive

research on the prediction using KED having been conducted, a study of non-linear trend functions

for the KED remains scarce. Snepvangers et al. [18] developed a non-linear trend represented by a

logarithmic function to interpolate soil water content using the KED technique with net-precipitation

as an auxiliary variable. Freier and Lieres [19] introduced a novel extension to universal kriging (UK),
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a specific instance of KED, aimed at handling non-linear trend patterns. They utilized a Taylor-based

linearization approach in conjunction with an iterative parameter estimation procedure to construct a

non-linear trend model. The method was applied to the Michaelis-Menten equation, which describes

an enzymatic reaction. Freier et al. [20] subsequently employed this kriging technique to interpolate

biocatalytic data with low and irregular density. Their method can be particularly of use in the presence

of an explicit expression of the non-linear trend functions. Nevertheless, an interaction between design

factors and system response in real-world applications is naturally described by diverse and complex

behaviour, which is difficult to establish in an explicit form.

Machine learning (ML) has recently been gaining attention as a computationally efficient tool for

identifying implicit relationships between variables. This allows one to generate and optimize the

complex model based on the huge amount of data available for analysis. Support vector machine (SVM)

is a kernel-based machine learning approach used for classification and regression. The particular use

of SVMs for regression problems is called support vector regression (SVR), which was first introduced

by Vapnik in 1992 [21]. The method adopts the structural risk minimization principle by minimizing

the upper bound of the generalization errors. This leads to a linear decision function, which is

essentially a convex quadratic programming (QP) problem. The core element of SVR is to search

for the optimal hyperplane that fits the learning data while maximizing the distance between the

hyperplane and the data points. In the case of non-linear problems, the SVR procedure starts by

projecting input data into high-dimensional feature space through some non-linear mapping, and the

SVR subsequently performs linear regression to obtain the optimal hyperplane. Apart from producing

high prediction accuracy for non-linear data, SVR is also suitable for applications characterized by

small datasets [22–24]. Furthermore, this SVM regression-based algorithm has the generalization

ability to reduce overfitting issues by introducing regularization term into the loss function. Due

to all these advantages, the technique has therefore been applied in diverse disciplines, including

finance [25,26], economics [27,28], climate modelling [29,30], and healthcare [31,32]. However, SVR

requires substantial computational time and significant memory usage to solve the QP problem. To

overcome these limitations, Suykens and Vandewalle [33] proposed a variant of SVR known as least

squares support vector regression (LSSVR). This method extends the traditional SVR by using a

squared loss function rather than quadratic programming. The LSSVR results yield higher accuracy

and require less computational resources compared to the reliability method relying on SVR [34].

There is a notable absence of research on the utilization of ML in geostatistical techniques. In this

work, we will present a novel interpolation method in which the LSSVR method is used to compute

non-linear trend functions within the context of KED. The proposed technique entails expressing the

trend function in a structured form through explicit feature mapping. The purpose of our technique is

to enhance the predictive capabilities of the KED model by incorporating the powerful capabilities of

LSSVR for capturing non-linear relationships between variables.

The remainder of this paper is outlined as follows. Section 2 reviews the theory regarding the KED

methodology and LSSVR technique. A detailed description of the KED using the LSSVR for modelling

the non-linear trend functions is provided in Section 3. In Section 4, we conduct a comparative

simulation study using the conventional KED model and the proposed method for temperature and

pressure estimation in Thailand. Conclusion and discussion are drawn in Section 5.

2. Mathematical Background

2.1. Kriging with External Drift

Kriging is a spatial interpolation method that uses variogram analysis to predict the variable of

interest at an unmeasured location based on the values of surrounding measured locations. It is the

best linear unbiased estimator (BLUE) for the random function, {Z(s) : s ∈ D ⊂ Rd}, where D is a
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defined spatial domain and d a positive integer representing the number of dimensions in the spatial

domain. The value of Z(s) can be obtained through

Z(s) = µ(s) + ǫ(s), (1)

where a deterministic component µ(s) indicates the underlying trend or drift and ǫ(s) is a stochastic

residual component with a mean of zero and a variogram, which is a function of lag vector [2].

In KED, the trend is modelled by a function of auxiliary variables which can be expressed as

µ(s) =
L

∑
l=0

al fl(s), (2)

where al ∈ R \ {0} is coefficient to be estimated, fl(s) is prescribed function that maps from the domain

D into the range R, and L + 1 is the number of terms used in the approximation. Additionally, the

function f0(s) is defined to be 1 for all s in D [2].

To determine the unknown coefficients in equation (2), we can use the ordinary least squares

(OLS) estimator or its extension, the generalized least squares (GLS) estimator, which accounts for the

spatial correlation between individual observations [35].

Given n observed values, Z(s1), ..., Z(sn), at sample points, s1, s2, ..., sn. The attribute Z(s0) at an

ungauged site s0 is estimated as a linear combination of observed values so that

Z∗(s0) =
n

∑
i=1

ωiZ(si), (3)

where ωi is the kriging weight assigned to Z(si). The weights ωi are computed by minimizing the

estimation error variance subject to the unbiased constraint. This results in the following optimization

problem:

minimum of Var [Z∗(s0)− Z(s0)] ,

subject to E [Z∗(s0)− Z(s0)] = 0. (4)

The optimal weights of the system (4) for the KED model can be solved by using the Lagrange

multiplier method which leads to

{

∑
n
j=1 ωjγǫ

(

si − sj

)

+ ∑
L
l=0 λl fl(si) = γǫ (si − s0) , ∀i = 1, ..., n,

∑
n
j=1 ωj fl(si) = fl(s0), ∀l = 0, 1, ..., L,

(5)

where γǫ(·) denotes the residual variogram function of Z(s) and λl ∈ R is a Lagrange multiplier.

The variogram is a fundamental and important tool that quantifies the spatial correlation structure

of the sample points. The variogram model is a smooth function that is reasonably well fitted to the

empirical variogram estimated from the data. In the present study, we use the empirical variogram

estimator introduced by Matheron [36], and the parametric variogram is represented by an exponential

model [35].

In general, both linear and quadratic functions are usually treated as a trend representation [9,17,

37,38]. However, in certain scenarios, the relationship between the target and auxiliary variables is too

complex to be captured by simple polynomial functions. In this work, least squares support vector

regression (LSSVR) is used to model a non-linear trend function within the KED framework.

2.2. Least Squares Support Vector Regression

Given a dataset {Yi, Zi}n
i=1, where Yi ∈ Rη is a η−dimensional training data point and Zi ∈ R

represents a target output. The objective of least squares support vector regression (LSSVR) is to find
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a function that minimizes the square error between the predicted values and the actual values. In

LSSVR, the input data Yi are mapped into a higher-dimensional feature space Rηh , in which a linear

model is adopted, so that a model function µ is formulated as

µ(Y) = aTφ(Y) + b, (6)

where φ(Y) is an ηh−dimensional feature mapping, a is an ηh × 1 weight vector, and b ∈ R indicates a

bias term.

In equation (6), the unknown vector a and parameter b can be calculated by solving the following

optimization problem:

minimum of
1

2
aTa +

ν

2

n

∑
i=1

ζ2
i ,

subject to Zi = aTφ(Yi) + b + ζi, i = 1, ..., n, (7)

where ν is a regularization constant that constitutes a trade-off between the model complexity and the

empirical error, and ζi is a regression error.

The problem (7) can be reformulated as an unconstrained problem through the Lagrange

multiplier method [39]. A set of linear equations corresponding to optimality conditions is consequently

obtained, which provides an expression of the weight vector a:

a =
n

∑
i=1

αiφ(Yi), (8)

where αi is a Lagrange multiplier. This system of equations can be reduced to the following form:

[

0 1T
n

1n Ω + ν−1
In

] [

b

α

]

=

[

0

Z

]

, (9)

where Ω is referred to as the kernel matrix whose element is φT(Yi)φ(Yj) for i, j = 1, ..., n and In is the

identity matrix of size n. The matrix 1n is an n × 1 unit matrix and Z = [Z1, ..., Zn]
T is the n × 1 matrix

of observed values together with the n × 1 matrix of Lagrange multipliers, α = [α1, ..., αn]T .

The solutions of equation (9) are

b =
1T

n A−1
Z

1T
n A−11n

, (10)

α = A−1(Z − b1n), (11)

where A = Ω + ν−1
In, which is a symmetric and positive semi-definite matrix, thereby ascertaining

the existence of its inverse, denoted as A−1.

By replacing equation (8) with equation (6), the model for the LSSVR function therefore becomes

µ(Y) =
n

∑
i=1

αiφ
T (Yi) φ (Y) + b,

=
n

∑
i=1

αiK (Yi, Y) + b, (12)

where K(, ) is the kernel associated with the feature mapping φ, and it is defined as [40]

K (Yi, Y) = φT (Yi) φ (Y) . (13)
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Numerous kernel functions are available for the construction of various models, such as:

Linear kernel: K (Yi, Y) = YT
i Y.

Polynomial kernel: K (Yi, Y) = (k + YT
i Y)p, k > 0 and p ∈ N.

Radial basis function kernel: K (Yi, Y) = exp(−g‖Y − Yi‖2), g > 0 and ‖ · ‖ means the Euclidean

norm.

The LSSVR regarding the KED scheme is used to characterize the underlying trend. The

notation for the dataset at the sample point si ∈ Rd is represented by {X(si), Z(si)}n
i=1, where

X(si) =
[

X1(si), ..., Xη(si)
]T ∈ Rη is the vector of η auxiliary variables and Z(si) denotes the

observation value.

3. A Novel Trend Function of KED based on LSSVR

This section introduces a method for constructing the trend function in KED using the LSSVR

method. The approach involves identifying the fundamental functions of the trend through explicit

feature mapping. Examples of explicit feature mappings derived from the corresponding kernel

functions are also demonstrated.

3.1. Construction of the Trend Function

Let φ(X(s)) be an M−dimensional feature mapping such that

φ (X(s)) = [φ1(X(s)), ..., φM(X(s))]T , (14)

where φm(X(s)) is the mth component of the feature mapping.

According to equation (13), the kernel function is in the form:

K (X(si), X(s)) = [φ1(X(si)), ..., φM(X(si))]







φ1(X(s))
...

φM(X(s))






. (15)

By substituting equation (15) into equation (12), µ(s) can be rewritten as

µ(s) = µ(X(s)) =
n

∑
i=1

αi






[φ1(X(si)), ..., φM(X(si))]







φ1(X(s))
...

φM(X(s))












+ b,

=
n

∑
i=1

αi

(

M

∑
m=1

φm(X(si))φm(X(s))

)

+ b,

=
M

∑
m=1

n

∑
i=1

αiφm(X(si))φm(X(s)) + b,

=
M

∑
m=1

(

n

∑
i=1

αiφm(X(si))

)

φm(X(s)) + b. (16)

The trend function can hence be written in the following form:

µ(s) =
M

∑
m=0

ãmφm(X(s)), (17)

where the coefficient ãm = ∑
n
i=1 αiφm(X(si)) and φm (X(s)) is the known function for m = 1, ..., M in

which ã0 = b and φ0(X(s)) = 1.
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Equation (17) possesses a similar form to equation (2) with ãm being treated as al and φm being fl .

This verifies the use of the kernel function as a non-linear trend model for the KED. The process of the

KED based on the LSSVR method is provided according to the flowchart shown in Figure 1.

Figure 1. Flowchart of interpolation using KED method with the proposed trend function

3.2. Examples of Explicitly Feature Mapping

There have been various kernels for the LSSVR method, namely linear, polynomial, and radial

basis function kernels [41–43]. This section presents the last two kernels, as they are widely used and

relatively easy to tune. They will also be applied in our model to formulate the trend component.

3.2.1. Polynomial Kernel

The polynomial kernel function is defined as

K (X(si), X(s)) = (k + XT(si)X(s))p, (18)

where k > 0 and p ∈ N is the degree of polynomial.
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The feature mapping for polynomial kernel degree−p is given by [44]

φ (X(s)) =

[√

p!

j1! · · · jη+1!
X

j1
1 (s) · · · X

jη
η (s)

√
k

jη+1
| ji ≥ 0 with

η+1

∑
i=1

ji = p

]

, (19)

where the dimensionality of φ (X(s)) is
(η+p)(η+p−1)...(η+1)

p! [45]. For example, when the degree of the

polynomial kernel and the number of auxiliary variables are both equal to 2, with k being 1, then

φ (X(s)) =
[

1,
√

2X1(s),
√

2X2(s), X2
1(s), X2

2(s),
√

2X1(s)X2(s)
]T

. (20)

Comparing with equation (14), components of the feature mapping are as follows:

φ1 (X(s)) = 1, φ2 (X(s)) =
√

2X1(s), φ3 (X(s)) =
√

2X2(s),

φ4 (X(s)) = X2
1(s), φ5 (X(s)) = X2

2(s), φ6 (X(s)) =
√

2X1(s)X2(s).

3.2.2. Radial Basis Function Kernel

The implicit kernel function, exemplified by the radial basis function (RBF) kernel, assumes the

following form:

K (X(si), X(s)) = exp(−g‖X(s)− X(si)‖2), (21)

where g > 0 is a RBF kernel parameter.

The feature mapping for RBF kernel function can be formulated as

φ (X(s)) = exp(−g‖X(s)‖2)

[
√

(2g)r

r!
ør (X(s)) | r = 0, ..., ∞

]

, (22)

where

ør (X(s)) =

[√

r!

j1! · · · jη !
X

j1
1 (s) · · · X

jη
η (s) | ji ≥ 0 with

η

∑
i=1

ji = r

]

, (23)

which is described in more detail in [46]. The RBF kernel function, which maps the auxiliary data to

an infinite−dimensional space, can be approximated by Taylor Polynomial-based Monomial feature

mapping (TPM feature mapping). In the work of [46], a finite-dimensional approximated feature

mapping of the RBF function is obtained as follows:

φ (X(s)) = exp(−g‖X(s)‖2)

[
√

(2g)r

r!
ør (X(s)) | r = 0, ..., ru

]

, (24)

where ru is a selected approximation degree and the TPM feature mapping degree−ru has
(η+ru)(η+ru−1)···(η+1)

ru ! dimensions.

Although an increase in ru leads to an improvement in estimation as φ (X(s)) approaches the true

function, it is however sufficient enough to use the TPM feature mapping with low dimensions [46].

An example of TPM feature mapping with degree−two and 2 auxiliary variables is

φ (X(s)) = exp(−g‖X(s)‖2)
[

1,
√

2gX1(s),
√

2gX2(s),
√

2gX2
1(s),

√
2gX2

2(s), 2gX1(s)X2(s)
]T

. (25)

By comparing equation (25) with equation (14), this results in

φ1 (X(s)) = exp(−g‖X(s)‖2), φ2 (X(s)) = exp(−g‖X(s)‖2)
√

2gX1(s),
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φ3 (X(s)) = exp(−g‖X(s)‖2)
√

2gX2(s), φ4 (X(s)) = exp(−g‖X(s)‖2)
√

2gX2
1(s),

φ5 (X(s)) = exp(−g‖X(s)‖2)
√

2gX2
2(s), φ6 (X(s)) = exp(−g‖X(s)‖2)2gX1(s)X2(s).

4. Case Study: Estimations of Temperature and Pressure in Thailand

4.1. Study Area

The evaluation of the efficiency and accuracy of the proposed techniques was carried out to

interpolate temperature and pressure in Thailand. The country is located between 5◦37′N and 20◦27′N
latitude and 97◦22′E and 105◦37′E longitude, with a total area of 513,115 km2 and a coastline of 3,219

km [47,48]. The data used in this study consist of monthly averages of temperature, pressure, relative

humidity, digital elevation model (DEM), and geographic locations (coordinates) spanning from

January 2017 to December 2017. These data were acquired from the National Hydroinformatics and

Climate Data Center (NHC), developed by Hydro-Informatics Institute (HII) [49]. Figure 2 displays

213 meteorological stations after data preparation and cleaning.

Figure 2. Spatial distributions of meteorological stations in the study area in 2017

4.2. Evaluation of Model Accuracy

In this study, we compare the accuracy of KED with three different trend functions: the linear

trend function estimated using the GLS estimator (KED−GLS), the non-linear trend function based

on LSSVR with polynomial feature mapping of degree one and two (KED−Poly1 and KED−Poly2),

and the non-linear trend function based on LSSVR with TPM feature mapping of degree one and two

(KED−TPM1 and KED−TPM2).

The k−fold cross-validation technique was applied to examine the performance of the models.

The data were randomly divided into 10 folds. For each iteration, each fold was used as a testing dataset
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for the model built upon the remaining nine folds. After 10 iterations in which each fold was once

selected as testing data, the overall estimation accuracy is an average of the accuracy scores calculated

from each iteration [50]. The root-mean-square error (RMSE) [51] and the mean-absolute-percentage

error (MAPE) [52] were the model performance indicators, which are formulated as follows:

RMSE =

√

√

√

√

1

N

N

∑
i=1

(Z(si)− Z∗(si))
2, (26)

MAPE =
1

N

N

∑
i=1

|Z(si)− Z∗(si)|
Z(si)

× 100, (27)

where N is the number of observations, Z(si) and Z∗(si) denote the observed data and the estimated

value at coordinate si, respectively.

4.3. Results

Before proceeding to the KED simulation, a selection of auxiliary factors is required. Table 1

presents the statistical analysis of the interdependence between each selected variable and the target

variables through the Pearson and Spearman correlation coefficients [53]. The results indicate a

significant positive correlation between temperature and pressure (correlation coefficients greater

than 0.5). While the pressure is negatively correlated to both DEM and latitude with the correlation

coefficients less than -0.5. This suggests that pressure can be chosen as an auxiliary variable for

temperature estimation and vice versa. On the other hand, both DEM and latitude are additionally

included as auxiliary factors for interpolating pressure.

Table 1. Correlation coefficients between the target and auxiliary variables

Auxiliary variables
Temperature

Pearson Spearman

Pressure

Pearson Spearman

Temperature 1.0000 1.0000 0.5537 0.5092
Pressure 0.5537 0.5092 1.0000 1.0000

Relative humidity -0.2474 -0.2389 0.1540 0.1869
Latitude -0.1322 -0.2425 -0.5338 -0.5867

Longitude 0.0198 0.0345 0.0283 -0.0399
DEM -0.4501 -0.4421 -0.7350 -0.7470

Table 2 reports the estimation efficiency of the KED model with three different trend functions

via MAPE and RMSE measures. According to the accuracy statistics, the KED with a non-linear trend

function based on LSSVR has a superior estimation performance to that of the KED with a linear trend

for both temperature and pressure. Specifically, the prediction errors for temperature generated by

the KED−TPM2 are smaller than those of all other methods, with RMSE being 0.8123 and MAPE

being 2.2888. These are respectively equivalent to 1.5633% and 2.1755% improvement compared to the

KED−GLS method. While the optimal pressure estimates are achieved by using the KED−Poly2 with

the RMSE and MAPE equal to 7.7541 and 0.5466 respectively. The KED−Poly2 reduces both MAPE

and RMSE values by over 10% with respect to the KED−GLS approach.
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Table 2. Prediction errors of kriging with external drift and three different trend functions for temperature and pressure data in 2017

Target
variables

Auxiliary
variables

Errors

KED with KED with non-linear trend based on LSSVR

linear trend Polynomial Feature Mapping TPM Feature Mapping

KED-GLS KED-Poly1 KED-Poly2 KED-TPM1 KED-TPM2

Temperature Pressure
RMSE 0.8252 0.8275 0.8232 0.8512 0.8123
MAPE 2.3397 2.3486 2.3439 2.4041 2.2888

Pressure
DEM

RMSE
MAPE

8.6212 8.6111 7.7541 9.3854 8.7372
0.6170 0.6181 0.5466 0.6698 0.6329

Latitude
Temperature
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To further compare the estimation performance of all methods, visual spatial distribution patterns

of the monthly averages of temperature and pressure in Thailand in March, July, and November 2017

are presented. These maps were created using QGIS (Quantum Geographic Information System)

software and the study area was partitioned into a grid of square cells of 0.05 degree per side.

Figure 3 shows the spatial distribution patterns of the monthly mean temperature. The panels

on the left column depict the results generated by KED−GLS, whereas panels on the right column

illustrate the results obtained from KED−TPM2. Both KED−TPM2 and KED−GLS produce a roughly

similar distribution pattern for the average July temperature. This may be due to the fact that there

is a small variation in temperature across the country during the rainy season (July-October). The

discrepancy in temperature derived from these two models is therefore not significant. On the contrary,

clear differences can be observed in March and November, in which the area of high temperature

is more broadly distributed in the central part of the country for the KED−TPM2. The model also

generates an overall lower temperature level concentrated in the northern region in November. Figure 4

displays spatial distribution maps of monthly mean pressure where the left column again corresponds

to the estimates attained from the KED−GLS while those in the right column are derived from the

KED−Poly2. The results show a distinct difference between these two methods. In particular, lower

pressure values estimated by KED−Poly2 are clearly marked in the northern and western parts of the

study area.

(a1) (a2)

Figure 3. Cont.
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(b1) (b2)

(c1) (c2)

Figure 3. Spatial distribution of temperature in Thailand in March, July, and November 2017,

interpolated using: (a1), (b1), and (c1) KED−GLS (left panels); (a2), (b2), and (c2) KED−TPM2 (right

panels)
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(a1) (a2)

(b1) (b2)

Figure 4. Cont.
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(c1) (c2)

Figure 4. Spatial distribution of pressure in Thailand in March, July, and November 2017, interpolated

using: (a1), (b1), and (c1) KED−GLS (left panels); (a2), (b2), and (c2) KED−Poly2 (right panels)

5. Conclusion and Discussion

This paper presents the novel KED method that applies the LSSVR technique to improve spatial

interpolation accuracy in the presence of non-linear trends. The method involves determining the

drift component through explicit feature mapping which is expressed in terms of kernel functions.

A comparison between our proposed method and the KED with the linear trend is demonstrated in

the case of the temperature and pressure estimation in Thailand in 2017. The results show that the

KED with LSSVR outperforms the KED approach with a linear trend function regarding estimation

accuracy.

The advantage of the KED with LSSVR can be attributed to its ability to extract implicit non-linear

relationships between the target and auxiliary variables. This gives rise to more accurate interpolation

results. Furthermore, the LSSVR is a powerful machine learning algorithm that has been proven

effective in a variety of regression tasks. This allows our method to adapt to various data types.

However, the choice of kernel function in LSSVR can have a significant impact on the estimation

accuracy. Although a higher-degree polynomial kernel or a higher-degree TPM feature mapping can

model more complex relationships in the data, it can also result in a number of equations in the kriging

system. This can lead to more time-intensive computation and an increase in the likelihood of model

overfitting issues.
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