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Abstract: The gas molecules Oz, NO, H:2S, CO, CHs, have been increasingly used for medical purposes. Beside
these gas molecules, H, the smallest diatomic molecule in nature, has become a rising star in gas medicine in
the past few decades. As a non-toxic and easily accessible gas, H2 has shown preventive and therapeutic effects
on various diseases of the respiratory, cardiovascular, central nervous and other systems, but the mechanisms
are still unclear and even controversial, especially the mechanism of H as a selective radical scavenger.
Mitochondria are the main organelles regulating energy metabolism in living organisms, as well as the main
organelle of reactive oxygen species generation and target. We propose that the protective role of H2 may be
mainly dependent on its unique penetrating ability to everywhere of the cells to regulate mitochondrial
homeostasis by activating the Keapl-Nrf2 phase II antioxidant system, rather than its direct free radical
scavenging activity. In this review, we summarize the protective effects and focus on the mechanism of Hz as
a mitochondria-targeting nutrient by activating the Keap1-Nrf2 system in different disease models, and wish
to provide a more rational theoretical support for the medical applications of hydrogen.
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1. Introduction

Gas molecules are increasingly being used for medical purposes and have developed into a
separate field of medicine. The gases most widely used in medicine include oxygen (O2), nitric oxide
(NO), methane (CHs). carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen (Hz). As shown
in Figure 1, the number of articles related to medical gas molecules has grown substantially from
1998 to 2022, especially Oz and Ho.

Oz and NO are the first two medical gas molecules that attract the researchers’ attention, with
tens of thousands of studies focus on these two gases as early as the 1990s. O: is the most crucial gas
for all living organisms on earth which accounts for around 1/5 of the volume of air. As an important
gas to maintain human respiration, Oz is mainly used to provide supplemental respiration for the
sick, astronauts traveling in space, and mountaineers, etc. In addition, it has the function of
destroying bacteria. Due to the importance of Oz, the 2019 Nobel Prize in Physiology or Medicine was
awarded to Willianm G. Kaelin Jr., Sir Peter J. Ratcliffe and Gregg L. Semenza who discovered how
cells sense and adapt to the availability of Oz[1]. NO, a free-radical gas named "laughing gas". At the
end of the last century, NO was found to work as a mediator of cell-to-cell communication in
vasodilatation, inflammation, and neurotransmission. Robert F. Furchgott, Louis J. Ignarro, and Ferid
Murad et al. demonstrated that NO is an important signaling molecule in the cardiovascular system,
and this discovery won the 1998 Nobel Prize in Physics or Medicine[2].

CHa is the simplest of the organic compounds. For decades, CHs was thought to have almost no
physiological role, while in the last few years, scientists have realized that CH4 can play important
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biological roles such as anti-inflammatory, antioxidant, and anti-apoptotic. As a result, CHs has been
used as a gastric decontaminant in emergency clinical settings of poisoning or drug overdose, and
also serves as a passive indicator of colonic function[3].

CO and H:S have long been known as hazardous factors. Long-term exposure to environments
which rich with CO may be fatal. However, a growing amount of research suggests that CO is an
important gaseous mediator along with NO and H:S. Endogenously produced or inhaled CO has
important physiological functions in regulating vascular function, inflammation, apoptosis, cell
proliferation, and signaling pathways. Studies have shown that inhaled CO suppresses chronic
inflammation in patients with stable chronic obstructive pulmonary disease (COPD)[4]. Same as CO,
Scientists simply regard HaS as a harmful gas initially since exposure to HaS may irritate the eyes and
respiratory system. However, scientists have now shown that H:S is an essential physiological factor
as it is produced by bacteria in the human oral cavity and gastrointestinal tract. Being the least
appreciated of the three gaseous mediators (gas transport mediators), it is now considered to be an
important gas transport mediator after NO and CO. H:S has been shown to modulate many
physiological processes such as vasodilation, anti-inflammation, resistance to oxidative stress, and
protection against ischemia-reperfusion injury, etc.[5]

Gas medicine-related papers published from 1998 to 2022
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Figure 1. The papers on the most widely used gases (Hz, CO, NO, O2,CH4,H:S) for medicine published
from 1998 to 2022.

As the smallest of all molecules, the functions of Hz have also caught the eye of scientists in the
field of biomedicine. As early as the beginning of the last century, H2 was first tested as a diving gas,
proving that it is the best breathing medium for medium and deep diving, and is safe for the organism,
with no toxic side effects found. Up to now, H: biomedicine has investigated the effect and
mechanism by which H2 molecules, including H: positive and negative ions and heavy Hz (deuterium
and tritium), act in various diseases[6].

2. History of H> medicine

H:z is known to be a colorless, odorless, and tasteless gas with chemically stable[7]. In general,
around 35 mL to 321 mL of Hzis produced and released through bacterial fermentation by the human
digestive system per day[8]. Several ways are used to ingest or consume Hy, such as drinking or
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injecting H2 water (HW), inhalation of H>, bathing in HW, dropping H: saline into the eyes, etc. Hz
plays an anti-inflammatory and anti-apoptotic effect through its selective antioxidant properties and
has become a unique cytoprotective agent[9].

H: used to be considered an inert gas, not involved in any life activity. It was not until 1975 that
Dole et al. found significant regression of mouse skin tumors in squamous cell carcinoma mice
exposed for a fortnight into a mixture of 97.5% Hz and 2.5% O at a total pressure of eight atmospheres,
confirming the medical usefulness of H: firstly[10]. Unfortunately, this study has not attracted
academic attention due to the technical difficulties of applying hyperbaric Hz therapy in a clinical
application.

Until 1996, Chinese scientist Yuanwei Du noticed the significance of H: for life[11]. Dr. Du
believes that excessive accumulation of peroxides produced in the metabolic process is the root cause
of various diseases and aging, the organism must have a certain mechanism to fight against these
peroxides. Hz is a reducing agent, which can eliminate peroxides naturally without side effects,
making creatures achieve a balance in the sense of redox balance. In Du's experiment, tritium gas was
produced by electrolysis of tritium water, the tritium gas was then fed instead of H into the mouse
living environment. He found that tritium was present in all tissues and organs of mice, which means
that tritium gas is involved in the life activities of living organisms by transforming into tritium ions
prevalent in living organisms, indirectly proving that the air Hz is both a constituent substance and
an energetic substance of life. This experiment also proves the basic mechanism of H2 metabolism. A
number of H2 medicine-related papers published by Yuanwei Du at the end of the 20t century further
confirmed that Hz produced by water electrolysis has a pronounced effect on the vital activities of
plants (lilac branches), animals (mice), as well as humans[12]. Du’s work creatively combines the
physiological effects of Ha with the free radical aging theory, explains the antioxidant activity of H
molecules, as well as confirms that H> may have an immeasurable effect on a wide range of diseases.

In 2007, Ohsawa et al. from the Nippon Medical School published an important article on Ha
medicine in the journal Nature Medicine[13]. This study used a low concentration of Hz (1-4%) for
inhalation over a short period (35 minutes) to mice and found positive effects in the treatment of the
cerebral ischemia-reperfusion injury, showing that short-term inhalation of a low concentration of Hz
for the treatment of the disease is feasible. They proposed a mechanism that H2 could act as a
therapeutic antioxidant, selectively reducing cytotoxic oxygen radicals (*OH and ONOQO:), leading
to inhibition of cerebral ischemia-reperfusion injury. Because this study was published in the top
journal of Nature Medicine, it provides a broad prospect for both basic and clinical research on Hz
and has brought H> medicine to the attention of a wide range of academic cycles. Since then, more
and more scholars have joined the research on Hz> medicine to explore its effects on various diseases
such as inflammation, drug toxicity, and obesity. More than a thousand peer-reviewed research
papers have been published to date.

In the beginning, scientists focused mainly on acute and chronic organ injuries related to
oxidative stress, such as the animal experiment of drug toxic injury or ischemia-reperfusion injury in
vital organs such as the heart and liver. During this period, researchers mostly used diverse injury
models to validate the therapeutical effects of Hz inhalation. Between 2009 and 2012, more research
began to appear on drinking Hz-enrich water (HRW)[14] and injecting Hz-enrich saline (HRS)[15], as
well as studies on boosting Hz replenishment through gut bacteria[16]. Meanwhile, a number of
clinical studies have used HRW in the treatment of diseases including metabolic syndrome,
Parkinson's disease, hemodialysis, sports injuries, and rheumatoid arthritis[9]. For the past few years,
on the foundation of previous studies, H2 medicine research has studied the molecular mechanisms,
especially focusing on the molecular pathways of inflammation and oxidative stress mediated by Ha.
However, regarding the molecular mechanism of Hz, most scholars have followed the view of
Ohsawa et al. in Nature Medicine paper that H: is a selective hydroxyl radical (¢ OH) scavenger, and
focused on the antioxidant mechanisms of H2 mainly based on it[17,18]. Nevertheless, some scholars
have proposed that Hz plays a signaling role that may be involved in metabolic processes and may
even provide energy for cells, which is subversive to the development of Hz research[19,20].
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A number of Chinese researchers have devoted themselves to developing Hz medicine, which
has received more than 80 grants from the National Natural Science Foundation of China and has
published hundreds of basic and clinical academic papers. Prof. Xuejun Sun of the Second Military
Medical University is one of the leading figures in H2 medicine in China. Prof. Sun's group engaged
in the research of diving hyperbaric medicine for a long time, the most important research object of
diving hyperbaric medicine is all kinds of gases that can be breathed by human beings, with Hz being
one of the key types of gases in the field of diving hyperbaric medicine. Sun’s group focuses on the
biological effects of Hz and its application in medicine for the first time revealing the value of Hz in
medicine in China. Moreover, Prof. Sun participated in organizing several international symposiums
on Hz medicine, inviting experts from all over the world to discuss the future of Hz2 medicine. His
team collaborates with medical organizations around the world to carry out research on the
application of H2 medicine and to expand the scope of Hz applications in the medical field.

Prof. Shucun Qin of Shandong First Medical University is another key promoter of H2 molecular
medicine in China. Prof. Qin established the first H> Biomedical Research Institute at the university
in 2015, training a number of key researchers in H> medicine. He established the standardized
laboratory for H> molecular biology that has published multiple placebo-controlled population trials,
providing important clinical evidence for the translation of Hz into medicine. Qin's recent review
summarizes 51 clinical trials involving 1,213 subjects in four areas of Hz biomedicine: basic research,
exercise, dermatology and healthcare[21]. The results showed that H2 can reduce oxidative stress
damage caused by strenuous exercise, reduce lactic acid build-up after exercise, prevent exercise
acidosis, and reduce exercise fatigue. In addition, Hz intervention can play a positive role in skin
beauty, and improve cardiovascular health.

Prof. Xuemei Ma's team at the Beijing Institute of Technology is also an early group of Ho
medicine researchers in China. Prof. Ma is committed to elucidating the biological basis of H2
medicine at the molecular, cellular and holistic levels, conducting in-depth basic research and clinical
translational research, especially in the mechanism of H2 molecules on tumor prevention. Her team
has verified that H2 can inhibit the proliferation of gliomas (Gliomas) by inducing glial stem cell
differentiation in vitro and in vivo experiments[22].

Besides these key researchers, there are hundreds of scientists are doing work on H2 medicine,
including the Chinese academicians of Prof. Nanshan Zhong, Zhaofen Xia, Hongyang Wang, and
young scientists like Prof. Qianjun He who proposed the concept of H2 nanomedicine to address the
issues of H2 medicine by using functional micro/nanomaterials for augmented Hz therapy in cancer,
and Wenbiao Shen who is devoted in the application of Hz in agriculture. An academic association
of H2 medicine with more than 400 members has been formed. As of today, current clinical studies
on H: are still continuously emerging and the scale of the studies is gradually expanding. With its
favorable biosafety and the convenience of safe low-dose use, the Hz inhalation device has been
included in the Chinese Food and Drug Administration's new medical device development process.
Moreover, in Japan, Hz has been approved as a food supplement.

3. Hz: a mitochondria-targeting molecule/nutrient, rather than a selective * OH scavenger

Sustained oxidative stress leads to the onset and progression of many common diseases. Up to
now, little achievement has been gained, although a large number of studies have attempted to
develop an effective antioxidant without side effects. Mitochondria, as a major source of oxidative
stress, is considered a new therapeutic target for small molecule interventions[23]. H2 suppresses
reactive oxygen species (ROS) accumulation, inhibits the cell death program, maintains the
mitochondrial structure and function[24,25]. Preliminary clinical trials suggest that drinking Ho-
dissolved water appears to improve the pathology of mitochondrial disease[26,27].

Mitochondria have a double membrane structure that forms the difference in potentials between
the inner and outer membranes and controls the movement of diverse molecules and factors (e.g.,
ions) in and out of the organelle while affecting mitochondrial stability. Although the outer
membrane is comparatively permeable to the small molecules and large proteins (which are
transported by diffusion or transposases), the inner mitochondrial membrane is highly impermeable
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to most molecules[28]. Nearly special membrane transport proteins (e.g., TIM-TOM (preprotein
translocase of the inner membrane of mitochondria-preprotein translocase of the outer membrane of
mitochondria) complex, etc.) are needed for all ions and molecules to enter or leave the mitochondrial
matrix. This makes most antioxidants cannot enter the mitochondria to effectively scavenge
*OH][29,30]. The difference with other antioxidants is as the smallest molecule in nature, Hz can easily
spread and penetrate into the cell membrane to react with organelles such as mitochondria and the
nucleus[31].

While the idea that H is a selective antioxidant is popularized[7], it is still not known whether
the effects of Ha are from the direct reaction with ¢OH or from the inhibition of ¢OH production.
Let’s first give a little basic information on free radicals.

As we know, *OH is generated by the Haber-Weiss reaction:

O2*-+H20:— 02+ OH+OH-

This reaction is thermodynamically feasible but kinetically too slow. So, *OH is mainly
generated by the Fenton reaction:

Fe?+H20,—Fe*+eOH+OH-

The three main properties of *OH are below: 1. SHORT LIFE: ¢OH has a very short half-life
(10-9 s, or 1 ns whereas the half-life of superoxide is 15 sec), no time to diffuse (no more than 50
molecular diameters from the site of formation), so the reaction is local with antioxidant at where
*OH is produced; 2. HIGH REACTIVITY: ¢OH is the most ROS with high reduction potential,
compared to other oxygen species, it reacts with extremely high rate constants (high reactivity) that
approach diffusion-limited, with rate constants of 10910 M-1 s-1. So, ®*OH is the strongest (most
powerful) oxidant of the oxyradicals; 3. UNSELECTIVE and INDISCRIMINATE: eOH reacts
unselectively and indiscriminately with almost every type of molecule found in living cells, including
lipids, proteins, amino acids, DNA, RNA and sugars. Therefore, the best antioxidant is not a *«OH
scavenger, but rather an iron chelate to prevent the generation of *OH.

The reaction with many substances in the body at a rate that exceeds that of Hz, which means Ho
is difficult to compete with these molecules effectively in the body, especially when H: is at a
relatively lower concentration than other endogenous substances. Biokinetic analyses of the
intracellular reactions of *OH /ONOO- show that intracellular molecules, such as nucleic acids and
amino acids, react with ®OH more readily at a significantly faster rate than H2[32,33], which implies
that Hz can hardly act as an *OH scavenger or barely direct react with ¢OH.

In 2005, we first proposed the new concept of "mitochondrial nutrient". The so-called
"Mitochondrial nutrients" refer to any compound that can protect mitochondria from damage, repair
mitochondria injury, and promote mitochondrial function. Their mechanisms of action may include
(1) protect mitochondrial enzymes and / or stimulate enzyme activity by increasing the levels of
substrate and cofactors; (2) induce the activation of endogenous antioxidant systems such as phase II
enzymes to enhance antioxidant defense; (3) prevent mitochondria from producing ROS and
removing ROS in mitochondria, and (4) protect and repair mitochondrial damage, including energy
promoters[34-36].

Researchers in our lab reported that in the LPS-induced lung injury mouse model, hyperoxic
HRS effectively reduced mitochondrial swelling and cristae breaks, as well as reversed the reduction
of mitochondrial complex I, IV, and V activities significantly[37,38]. Not coincidentally, in the high-
fat diet (HFD)-induced liver injury model, coral calcium hydride (CCH, a solid form of molecular Hz
carrier made from coral calcium) treatment improved glucose and lipid metabolism, ameliorated
hepatic mitochondria abnormalities, restored the protein expression and the activity of complex II,
while also activated phase II enzymes[37,38]. These studies imply that H: is able to target
mitochondria, as a highly promising mitochondrial nutrient.

Ohsawa et al.[13] used antimycin A (an inhibitor of mitochondrial respiratory complex III) to
induce excess Oz*- production. In this model, Oz*- rapidly converted to H202, which was further
converted to ®*OH. Their result showed that H> treatment prevented the decrease in mitochondrial
membrane potential caused by antimycin A treatment, believing that Hz protects mitochondria from
*OH damage. The researchers hypothesized that H2 enters the mitochondria and acts on the
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mitochondrial respiratory chain, weakening the Fenton reaction by inhibiting transition metal
activity and ultimately inhibiting *OH production but not scavenging *OH directly[39]. Accordingly,
H: is considered as a potential and promising mitochondria-targeting molecule or nutrient that acts
as a redox homeostasis regulator[40].

As is well known, H: is a moderate/mild reducing agent (The standard reduction potential of
H*/Hz at PH7 is -0.42, stronger than NAD*/NADH -0.32 but weaker than acetate/acetaldehyde -0.60),
barely able to scavenge ®OH directly in a living body (Fig 2). Because mitochondria are the main sites
of ROS generation and the targets of ROS, we suggest that the more important mechanism of H:
molecule maybe that can easily enter cells and subcellular organelles, including mitochondria, to play
a protective role through their strong penetration ability, then activating the Keap1-Nrf2 (Kelch-1like
ECH-associated protein 1, NF-E2-related factor 2) antioxidant defense system, to inhibit oxidative
damage and improve the mitochondrial function, finally prevent and improve a various of disease.
H: has been shown to significantly activate the Keapl-Nrf2 system, regulate the activities of
endogenous antioxidants, and enhance the ability of cells to fight against damage[41].

= + s T
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Figure 2. Mechanisms of mitochondria-targeting by molecular Hz: 1) Barely reacting with *OH and

ONOO- directly; 2) Mainly activating Keap1-Nrf2 antioxidant systems indirectly.

4. The mechanisms of H: as an Nrf2 activator

Nrf2 is a key factor in the regulation of oxidative stress which belongs to the CNC-BZIP
transcription factor family. Upon normal physiological conditions, Nrf2 binds to Keap1 to form a
complex present in the cytoplasm in a low-activity state[42]. When the organism is stimulated by
oxidative stress or other pathological conditions, the cysteine residue of Keap1 is modified or Nrf2 is
phosphorylated, then, Nrf2 is released from the complex and translocated to the nucleus where it
binds to the antioxidant response elements (AREs) sequence in the nucleus, initiating NRF2-mediated
transcriptional processes to activate a series of phase Il antioxidant enzymes to generate antioxidants
to scavenge ROS and other harmful substances.

It is reported that various ways can activate Nrf2, among which the Keap1-Nrf2 pathway is the
most classical Nrf2 activation pathway. Keapl contains multiple oxidative stress response sensor
proteins which have different physiological functions in response to different forms of stress. Up to
now, several studies have demonstrated that H: activated Nrf2 through the Keapl-Nrf2
system[43,44], but the clear mechanism of the activation is not known.

Nrf2 inducers are diverse, of which most are electrophilic and readily react with Keapl by the
cysteine thiol groups. Among them, Cys151/Cys273/Cys288 plays a fundamental role in the
perception of electrophilic Nrf2-inducing chemicals. Therefore, the Nrf2 inducer has been divided
into different categories based on the different cysteine residues of Keapl they react with (Table 1).
The first class specifically targets the Cys151 sensor, such as medically relevant bardoxolone methyl.
Bardoxolone methyl acts as an electrophilic inducer of Nrf2 that forms a covalent interaction with the
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Cys151 residue of Keapl, thereby inhibiting Nrf2 ubiquitination. In mice, the Cys151 point mutation
in Keapl eliminated Nrf2 signaling and hepatoprotective effect of bardoxolone methyl in vivo[45].
The second class of inducer targets Cys288, and 15-deoxy-prostaglandin J2 (15d-PGJ2) has been
identified in this group. 15d-PGJ2, one of the endogenous Nrf2 inducers synthesized from
arachidonic acid, forms a covalent compound with Keapl to compete for the Keap1-Nrf2 binding.
Class III targets Cys151/Cys273/Cys288, such as 4-hydroxynonenal (4-HNE). Mass spectrometry
analysis revealed that 4-HNE directly modifies cysteine residues on Keapl and deregulates its
inhibition of Nrf2 by inhibiting Keap1, further increasing the expression levels of Nrf2 target genes
(e.g. TXNRD1, thioredoxin reductase-1)[46]. Indeed, Nrf2 activation was significantly reduced when
Cys151 was mutated, whereas Nrf2-induced target gene activation was only slightly affected when
Cys273 and Cys288 residues were mutated[47,48].

Table 1. Classification of Nrf2 inducers targeting Keap1-Nrf2.

Mechanism Example
Bardoxolone methyl
Class I Cys151-dependent compounds Sulforaphane, Dimethyl-fumarate
lass II Target Cys2 15d-P
Class Elec-trophilic . arget Cys288 5d-PGJ2
Class III React with any of the three sensor 4-HNE, NaAsQOz,
cysteines Cys151/Cys273/Cys288 9-nitro-octadec-9-enoic acid
Class IV Target cysteines Cys77/ Cys434 Pubescenoside A
Class V Target H202, Cadmium chloride, Zinc
Non- Cys226/Cys613/Cys622/Cys624 chloride, Prostaglandin A2
El hili — . ;
Class VI ectrophilic Protein-protein interaction CPUY192018

inhibitors (PPI)

In addition, the electrophilic compound that activated Nrf2 on the cysteine residues other than
Cys151/Cys273/Cys288, we classify as Class IV. The compounds of this group include, for example,
Pubescenoside A, which acts on Cys77/ Cys434.

Moreover, several inducers activate Nrf2 in a more complex way than previously identified
electrophilic sensors that bind to Cys226, Cys613, Cys622, and Cys624. We classify them as Class V.
Hydrogen peroxide (H202), a key ROS molecule important in cellular physiology, is representative
of this classification. Suzuki et al. revealed that Keapl uses cysteine residues to create a special
mechanism to make a disulfide bond between any combination of Cys226, Cys613, Cys622 and
Cys624 to sense H202[49]. This sensing mechanism is different from that used by the electrophilic
Nrf2 inducer.

There is also a kind of inducers that do not act through the cysteine of Keapl which have been
classified as a Class VI, they directly inhibit the interaction between Keapl and Nrf2, such as non-
electrophilic protein-protein interaction inhibitors (PPIs)[50]. Horie et al. suggested that Keapl
binding to Nrf2 is a ‘hinge and latch model’, with PPIs actively using a hinge-locking mechanism,
whereas electrophilic Nrf2 activators do not use this mechanism when activating Nrf2[51].

As the smallest and one of the simplest molecules, H> molecules have the capacity to pass
through the Keapl and Nrf2 binding structure and play the role of an activator, the mechanism of
Nrf2 activation by Hz seems different from the mechanism of perception of electrophilic Nrf2
inducers but may be closer to the mechanism of class V and VI to inhibit the interaction between
Keapl and Nrf2 (Fig.3)[49]. Up to now, the activation of Nrf2 and its mediated antioxidant enzyme
system by Hz has been reported in a variety of tissue-associated diseases, including brain, lung, liver,
heart, ovary and kidney[43,52,53].

A result in neuroblastoma cells showed that exposure of SH-SY5Y cells to H: increased the
production of mitochondrial superoxide. This process was accompanied by Nrf2 nucleus
translocation, as well as increased expression of Nrf2-regulated antioxidant enzymes, suggesting that
H: alleviates mitochondrial oxidative stress through activating Nrf2[54]. Inhaled H: also reduces
neuroinflammation in memory-related regions through increasing Nrf2 protein expression in a

doi:10.20944/preprints202310.1953.v1


https://doi.org/10.20944/preprints202310.1953.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2023 doi:10.20944/preprints202310.1953.v1

8

sepsis-induced blood-brain barrier impairment and memory dysfunction[55,56]. Interestingly, one of
the studies we were involved in reported that H: (2%-4%) protected against delayed
encephalopathy after acute carbon monoxide poisoning and this protective effect was related to the
involvement of Nrf2 and its mediated phase II enzyme system[57].

Similar results were obtained in the lung from seawater instillation-induced acute lung injury
rabbit or cecal ligation and puncture-induced sepsis mice, which proved that H> could regulate the
expression of heme oxygenase-1 (HO-1), the Nrf2 downstream antioxidant protein[58,59]. Inhaled H:
significantly alleviated the drop in blood Oz during hyperoxic exposure, remitted lung inflammation,
and upregulated the HO-1 expression. However, Hz could not attenuate hyperoxic lung injury or
induce HO-1 in Nrf2-KO mice, suggesting that Hz could improve the hyperoxic lung injury through
the Nrf2-HO-1 pathway[60]. In the sepsis-induced acute lung injury model, H2 molecules inhibited
high mobility group proteinl (HMGB1) expression by activating the Nrf2-HO-1 pathway [61,62]. The
latest research has revealed that Hz also affected COVID-19-induced lung injury via Nrf2[63].

Sun et al.[44] demonstrated that H2 administration reduced oxidative stress in the LPS-treated
mice livers through activation of the Keap1-Nrf2 system. Moreover, Liu et al.[52] reported that H
improved lipid accumulation by modulating the miR-136/MEG3 /Nrf2 pathway in non-alcoholic fatty
liver disease.

In the ischemia model induced in the H9C2 cell line, the H2 gas-rich medium reduced the
production of *OH, promoted Nrf2 nuclear translocation and regulated the Nrf2-HO-1 pathway,
suggesting that H2 can preserve ischemic cardiomyocytes by stimulating the Nrf2 pathway[64]. Hz
amelioration of LPS-injured HUVECs injured and inflammatory responses through Nrf2 and its
downstream protein HO-1[65].

In the long-term cyclosporine A (CsA) induced nephrotoxicity model, HRW reduced the ROS
and MDA levels, increased the activities of GSH and SOD, then improved the vascular and renal
functions of rats with renal damage. Meanwhile, HRW significantly decreased the level of Keapl
while increasing the expression of Nrf2, NADPH dehydrogenase quinonel, and HO-1. Suggesting
that HRW restored the balance of the redox state and improved CsA-induced renal function
suggesting that HRW restored the balance of the redox state and improved CsA-induced renal
function by activating the Keap1-Nrf2 signaling pathway[43].

In the ovarian injury rat model induced by cisplatin, HRS recovered the activity of SOD and
catalase, reduced MDA levels in serum and ovarian tissues, as well as increased ovarian Nrf2
expression[66]. Inhalation of 2% H2 also attenuated severe sepsis-induced intestinal injury by
modulating HO-1 and HMGB1 release mice[67].
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Figure 3. H2 may activate Nrf2 and its mediated phase II enzyme system via non-electrophilic protein-
protein interactions.
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5. The Medical effects of Hz: Focus on the effect on mitochondria

A great number of basic and clinical studies have found that Hz is an important physiological
regulator that protects against tissue-related diseases such as lung, heart, central nervous system,
renal, pancreas, etc., through protective effects such as antioxidant, anti-inflammatory, and anti-
apoptotic effects. Mitochondrial dysfunction is closely related to disease development[35]. In this
section, we focus on the effects of H> on mitochondrial function in different diseases.

5.1. Effects of H2 on Respiratory System Diseases

To date, molecular Hz has been reported to have positive effects in the prevention and treatment
of acute lung injury, chronic obstructive pulmonary disease, asthma, and pulmonary
hypertension[63]. Of interest, the National Health Commission of China (NHC 7t Edition Trial:
Beijing, 2020) and the Chinese Centre for Disease Control and Prevention (CDCP 6% Edition Trial:
Beijing, 2020) recommend effective O2 therapy as one of the modalities for the general treatment of
patients with COVID-19. They also noted that inhalation of a mixture of molecular Hz and Oz (66.6%
Hz - 33.3% O2) is more effective than inhalation of Oz alone[68]. The research in our lab showed that
Hz-enriched and oxygenated saline inhibited LPS-induced lung injury in C57BL/6 mice through the
NF-kB/NLRP3 signaling pathway. Hz performed a more significant effect in inflammatory and anti-
apoptotic mechanisms, while Oz enhanced the hypoxic of the organism, with the combined protective
effect of the two gases being better than their respective effects[69].

2% H: inhalation improves mitochondria function through increased mitochondrial-membrane
potential and ATP levels, as well as promotes the activity of mitochondrial-respiration complex I and
complex II. Hz also regulates mitochondria dynamics which decreases the expression of mitochondria
fission protein Drpl but increases the expression of mitochondria fusion protein mitofusin-2
(MFN2)[70].

Post-transplant morbidities such as graft ischemia-reperfusion damage and graft-versus-host
disease are key challenges in transplantation. Hz acts as a prophylactic agent against post-transplant
complications in several animal models of organ transplantation[71]. In the rat lung transplantation
model, the combination of mechanical ventilation and prolonged cold ischemia resulted in a
significant reduction of gas exchange in rat lung tissue (treatment with 98% O: plus 2% nitrogen),
while treatment with 98% O: plus 2% H: inhibited the increased tendency of pro-inflammatory
cytokines and apoptotic molecules, upregulate the expression of HO-1 in the lung grafts[72]. Not only
that, H2 molecules inhibited the levels of pro-apoptotic proteins caspase-3 and caspase-8 in lung
grafts, activated the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL, and stabilized the
mitochondrial outer membrane, prevented the cytochrome c release into the cytosol[73]. In addition,
advanced treatment of rat lung donors with Hz induces the gene expression of stress response and
ATP synthesis[74].

H: is considered as a potential radioprotective agent[75]. In radiation-injured lung epithelial cell
line A549, H. down-regulates the gene expression of pro-apoptotic Bax and inhibits its translocation
to mitochondria through an unknown mechanism|[76].

5.2. Effects of Hz2 on Cardiovascular System Diseases

Molecular H2 has shown many benefits in cardiovascular disease (CVD) applications and can be
used to treat a wide range of CVD that cover ischemia-reperfusion injury, atherosclerosis, cardiac
hypertrophy, radiation-induced cardiac damage, chemotherapy-induced cardiotoxicity[77-79]. We
evaluated the influence of inhaled H: on heart and nerve function after cardiopulmonary
resuscitation by comparing the effects of Hz inhalation in the rat cardiac arrest asphyxiation model.
The results showed that compared with Oz, serum troponin T and S100B were significantly reduced
after inhaling Hz. In the meanwhile, left ventricular ejection fraction, cardiac function and
neurological function were significantly improved after Hz inhalation[79].

H: increases autophagy by promoting autophagic flow thereby alleviating harmful stress[80].
HRS was found to promote PINK1/Parkin-mediated autophagy, activate mitochondrial autophagy,
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cause damaged mitochondria to be engaged by lysosomes, further ameliorate the inflammatory
response and apoptosis induced by myocardial Ischemia/reperfusion (MI/R)[81]. Feng et al. reported
that HRS combined with early aerobic exercise enhances acute myocardial infarction-induced
superoxide dismutase levels and total antioxidant capacity, promotes mitochondrial and DNA repair
by partially regulating the expression of antioxidant-associated proteins and mitochondria-
associated proteins and protects against myocardial injury after MI[82].

HRW protects cardiac and aortic graft recipients from inflammation-related deterioration and
improves allograft survival by decreasing endothelial cell proliferation, inhibiting T-cell
proliferation, and reducing oxidative stress, in the heterotopic heart transplantation rat model[83].
This protection mechanism also correlates with ATP levels, increases enzyme activity of complex II,
III, and V on the mitochondprial respiratory chain.

Sepsis is associated with systemic infections and inflammatory responses induced by the
cardiovascular system[84]. In the sepsis-induced myocardial injury mice model, molecules H:
promote protein increase of HO-1, MFN2, and PGCl-1a expression, inhibited sepsis-induced
mitochondrial dysfunction, and remodeled fatty acid oxidation of the heart in the sepsis model by
increasing myocardial energy[85,86].

Oxidative stress is a major risk factor for worsening LV hypertrophy. Yu et al. found that H
saline water improves mitochondria function by restoring electron transport chain enzyme activity,
inhibiting ROS formation, and increasing ATP production in spontaneously hypertensive rats with
LV hypertrophy. H: saline water also inhibits oxidative stress, inflammatory processes, and
angiotensin II[87].

Zhang et al. found that HRS treatment ameliorates vascular functional abnormalities such as
aortic hypertrophy and endothelial dysfunction in spontaneously hypertensive rats by alleviating
oxidative stress, restoring pressure receptor function, preserving mitochondrial function and
increasing NO bioavailability[88].

5.3. Effects of H2 on Nervous System Diseases

H:is engaged in the restoration of neurodegenerative diseases[89,90]. Research in our laboratory
administered HRW to Alzheimer’s Disease (AD) mice for 3 consecutive months to study its effect on
cognitive function. The result showed that HRW significantly improved cognitive behaviors, also
ameliorated oxidative stress and inflammatory responses in the brains of female AD mice. Moreover,
estrogen levels are closely related to mitochondrial function, such as 17(3-estradiol enhances
mitochondrial signaling clusters. Our results suggest that the effects of molecular Hz in female AD
mice were most likely attributable to estrogen ERf3 signaling[91].

Chen et al. reported that Hz treatment blocks the opening of the mitochondrial permeability
transition pore in neurons. 75% H: inhalation ameliorates mechanical damage to spinal cord neurons
in a dose-dependent manner, significantly inhibits the production of ROS and oxidative stress
markers, inhibits neuronal apoptosis, restores mitochondrial function[24].

The results of a clinical trial on Parkinson's disease showed that H: significantly improved
neurodegenerative symptoms with a therapeutic effect comparable to non-ergot dopamine
treatment. Researchers hypothesized that this may be achieved by H: improving cellular energy
metabolism by targeting mitochondria[92]. In another experiment, Hz treatment significantly
increased the levels of ATP and A{m in neuroblastoma[53], further confirming the role of Hz in
activating oxidative phospho-rylation and mitochondrial energy.

HRS improves neuronal ischemia-reperfusion by improving mitochondrial function and
reducing oxidative stress[93]. Earlier studies have found that H2 restores mitochondrial structural
damage while reducing microRNA-210 in hypoxia-reperfusion neural model[94]. HRS also
ameliorated the activation of caspase-3, attenuated ROS accumulation, closed mitochondrial
permeability transition pores and restored mitochondrial membrane potential in isoflurane-induced
cognitive impairment mice. This suggests that HRS has the potential to attenuate anesthetic
neurotoxicity[95].
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5.4. Effects of Hz2 on Digestive System Diseases

Majority of gastrointestinal microbial species show a genetic ability to metabolize Hz, which
means that H2 may influence the composition of gut bacteria and modulate digestive-related
diseases[96,97]. It was found that HW inhibited rat intestinal I/R-induced oxidative stress, apoptosis
and inflammation[98].

Clinical data suggest that H2 may improve glucose metabolism by interfering with the gut
microbiota of impaired fasting glucose patients[99]. Another study in patients with clinical stage IV
colorectal cancer found that Hz inhalation activated PGC-1a expression and enhanced mitochondrial
activity, thereby reducing the proportion of PD-1 and CD8* T cells. The reduction of these cells was
associated with improved cancer prognosis[100].

5.5. Effects of H2 on Metabolic Syndrome

Mitochondrial dysfunction results in reduced mitochondrial biogenesis and increased ROS,
which has been involved in the pathogenesis of a number of metabolic diseases including diabetes
and obesity. It has been widely demonstrated that H> can scavenge ROS directly by inhibiting ROS
production or indirectly by enhancing antioxidant enzyme activity, suggesting that this may be
contributing to the improved mitochondrial function in metabolic disorders. Numerous studies have
proven the protective effects of H2 on metabolic syndrome, which include lowering total cholesterol,
total triglycerides (TG) and low-density lipoprotein (LDL)[101], reducing serum glucose and insulin
levels in mice[102], as well as modifying adiposity and body weight in db/db obese mice[103]. The
protective effect of H2 on diabetes and its complications may be associated with the inhibition of
oxidative stress, inflammation, apoptosis, activation of the mitochondrial ATP-sensitive potassium
(Mito-K-ATP) pathway etc[104].

Ma et al. proved that H: promotes fatty acid oxidation by transporting fatty acids to
mitochondria and subsequent catabolism to ketone bodies in rats[105]. A clinical study evaluated the
effects of H> supplementation in ten middle-aged overweight women on the indicators such as
hormonal status and mitochondrial function. The results showed a significant decrease in body fat,
arm fat index, serum TG and insulin levels after 4 weeks of oral administration of Hz-generating
minerals. Fasting blood lactate accumulation reflects mitochondrial dysfunction, which in turn affects
the risk of metabolic diseases. After Hzintervention 4 weeks, blood lactate levels were significantly
lower than those in the placebo group, implying that the improvement in mitochondrial function
may be related to the anti-obesity effect of H2[106]. However, due to the small number of subjects in
this study, the reliability of this result is limited, a long-term large-scale trial is needed to further
verify the improvement of Hz on obesity.

Another clinical research in our lab suggests that H> may have a potentially beneficial effect on
glucose metabolism by interfering with the gut microbiota of individuals with impaired fasting
glucose. Not only that, HRW may play an important role in reducing body fat and reducing fatty
liver. This suggests its potential as a therapeutic intervention to improve lipid metabolism and liver
health[99].

5.6. The Others

H: restores mitochondrial oxidoreductase activity while preventing the downward trend of
mitochondrial membrane potential. It ameliorated tertbutyl hydroperoxide-induced THP-1 (human
acute monocytic leukemia cell line) cytotoxicity by inhibiting fatty acid peroxidation and
mitochondrial dysfunction[107]

Mikako et al. reported a 12-week double-blind trial of five patients with progressive muscular
dystrophy (PMD), four patients with polymyositis/dermatomyositis (PM/DM), and five patients with
mitochondrial myopathy (MM), in which the patients consumed 1.0 liters of HRW per day, and 18
serum markers were measured every four weeks. The results showed a significant improvement in
lactate levels in the MM patients after drinking HRW. The lactate-to-pyruvate ratio in patients with
DM also showed a favorable response[108].
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4. Conclusions and perspectives

In conclusion, H2 medicine has risen as a bright star in gas medicine, but it faces a few problems.
Firstly, in Hz basic research area, although a large number of H2 medicine-related studies have been
carried out, the mechanisms of H: effects are quite controversial. People do not have a high level of
awareness of Hz, doubts still exist about the efficacy and safety of Hz. Therefore, more specific and
clear mechanisms need to be clarified. This requires more outstanding scientists to join and make
more efforts. This review attempts to challenge the view that H: is a selective ®*OH scavenger by
proposing that Hz is a mitochondria-targeting molecule/nutrient via activating the Keapl-Nrf2
antioxidant system. Of course, this is a quite premature idea and needs more and further
investigations to test and challenge.

Secondly, in Hz industry, the market demand for H> health products is insufficient. There are
still many technical bottlenecks in the H2 medicine industry, such as low efficiency of Hz preparation,
high storage and transport costs. In addition, the industrial chain of H2 medicine is incomplete, as
well as lacks the development of relevant standards. The Hz health industry involves a number of
links, such as Hz preparation, storage and transport, H2 generators, Hz testing, and so on. At present,
these links have not formed a complete industrial chain, the connection between the links is not
smooth enough. Due to the lack of complete and well-defined standards, the Hz industry chain is
difficult to regulate with high quality.

Thirdly, insufficient policy support for H> medicine. While the Ha health industry has a great
potential for development, the current government support for the Hz health industry is insufficient
and there are some deficiencies in the policy support, in terms of there is a lack of clear policy
planning and support measures. Therefore, the market prospect of the H2 medicine industry is
promising, which urgently needs to be promoted.
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