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Abstract: The Cantareira Water Producer System (CWPS), which supplies water to the most populous Brazilian 

region, Metropolitan Region of São Paulo (MRSP), faces significant challenges due to climate change, 

threatening its water security. Climate change affects the hydrological cycle affecting water availability. The 

CWPS is vulnerable to periods of scarcity and instability due to increased climatic variability and increasing 

water consumption. Current water resource management systems do not consider the impacts of climate 

change, making it difficult to ensure water security in the future. This study analyzes the impact of climate 

change on the availability of CWPS using hydrological modeling approach with forecast precipitation data by 

CMIP6 and assessment of existing systems. The finds will provide a comprehensive understanding of the 

challenges faced by CWPS in the context of climate change, as well as support strategies and adaptive measures 

to ensure water security for MRSP. 

Keywords: reservoir system; climate change; water security; hydrological modeling 

 

1. Introduction 

The availability of freshwater is essential for the sustainability and well-being of societies, and 

its efficient management becomes even more critical in the face of the challenges posed by climate 

change. In this context, the Cantareira Water Producer System (CWPS), which supplies the 

Metropolitan Region of São Paulo (MRSP), stands out as an important subject of study to understand 

the impacts of these changes on water security. 

The CWPS is responsible for supplying water to approximately 9 million people in the MRSP. 

Its strategic relevance is undeniable, considering the fundamental role that water plays in 

socioeconomic development and quality of life. However, in recent years, the CWPS has faced 

significant challenges due to climate change, jeopardizing the water security of the region. 

Climate change has affected the hydrological cycle and precipitation patterns worldwide, 

bringing direct consequences to water availability and quality. In the case of CWPS, an increase in 

climatic variability is observed, with extreme droughts and heavy rains becoming more frequent. 

This climatic variability, combined with increasing water consumption, puts CWPS in a vulnerable 

position, susceptible to periods of scarcity and instability in supply [1]. 

The operating rules of CWPS established by the current water resource management system do 

not consider the impacts of climate change. The hypothesis of this study was based on the idea that 

even with control over demands and land use in the watersheds, the current infrastructure and 

operating rules will not be able to ensure water security in the future, as these challenges require 

more complex management measures. 

Computational simulations are hybrid scientific tools that allow both the reproduction of a 

phenomenon and intervention in its behavior. Evaluating the impact of climate change on the 

hydrological regime has been presented by researchers as useful techniques for addressing the 

problem [2,3]. Reliable information on potential changes to future hydrological conditions require 

knowledge of the influence of heterogeneity in soil-vegetation-atmospheric relationships [4], and 

basic data related to climate, topography, land cover and soil characteristics are necessary for the 

hydrological simulation of basins [5].  
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The main objective of this paper is to analyze the impact of climate change on the water security 

of CWPS. To achieve this goal, multidisciplinary approaches will be used, including analysis of 

historical climate data, hydrological modeling, and evaluation of existing water resource 

management systems. 

2. Study Area 

The study area is in Brazil and comprises a portion of the Paraíba do Sul River Basin, which 

flows into the Atlantic Ocean, and another portion of the Tietê River Basin, which is a tributary of the 

Paraná River, ultimately forming the River Plate Basin in the context of South America (Error! 

Reference source not found.). 

 

Figure 1. Location of the study area. 

The study area shown in Error! Reference source not found.2 is a delineation of four 

hydrographic basins representing the CWPS: the Jaguari/Jacareí River, with its outlet at the 

Buenópolis fluviometric station, and the Atibaia River, with its outlet at the Valinhos Hydrometric 

Station, the both rivers are source of the Piracicaba River, the Juqueri River, the both a tributary of 

the Tietê River, with its outlet at the Paiva Castro Dam; and the Jaguari River, a tributary of the 

Paraíba do Sul River, with its outlet at the Jaguari Hydroelectric Plant. 

The study area was further analyzed using the Digital Elevation Model (DEM) developed by [6], 

employing machine learning techniques to remove buildings and forests from the Copernicus DEM 

to produce a global elevation map with a grid spacing of 1 arc second (∼30 m). For the extraction and 

analysis of hydrographic information from the DEM, the TauDEM software was utilized (available 

at https://hydrology.usu.edu/taudem). This tool, employing flow direction methods, facilitated the 

delineation of contribution areas and determination of stream networks [7,8]. 
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Figure 2. Map of the study area. 

As described in Figure 3, the Jaguari/Jacareí basin, with its outlet being the reservoir of the same 

name (JAG), discharges into the downstream Buenópolis basin with its outlet at the control point of 

the same name (BUE). The Cachoeira and Atibainha basins, with outlets at their respective reservoirs 

(CAC and ATA, respectively), flow into the Atibaia basin with a control point of the same name (ATI). 

Subsequently, the waters proceed to the Valinhos control point (VAL), incorporating the contribution 

area of the same name.  

 

Figure 1. Schematic model of the study area. 

As shown in Error! Reference source not found. and Figure 1, the reservoirs are interconnected 

by tunnels and conduits, with the main demand points being the control points, the Santa Inês 

Pumping Station (SIPS), and the Hydroelectric Power Plant (HPP). Table 1 presents the drainage area 

of the incremental basins within the study area. 
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Table 1. Basin drainage area. 

Basin Abbr. 
Drainage area 

(km2) 

UHE Jaguari JPS 1309.2 

Jaguari/Jacareí JAG 1240.6 

Valinhos VAL  982.3 

Buenópolis BUE  713.9 

Atibaia ATI  437.0 

Cachoeira CAC  392.1 

Paiva Castro PAI  337.1 

Atibainha ATA  314.3 

3. Materials and Methods 

The study's method began with information on climate change scenarios, simulated the behavior 

of the CWPS for each scenario, and generated results in terms of water security indicators. Figure 2 

shows the flowchart of the method. 

 

Figure 2. Flowchart of the method modelling process. 

Since the goal is to intervene in the behavior of the CWPS to achieve acceptable water security 

indicators, the methodology checks the sensitivity of operational variables. The chapter is divided 

into the presentation of the CWPS study area, description of the models and databases used for 

calibration and simulations. 

2.1. Data 

The observed meteorological data were extracted from [5], who generated a dataset of daily 

gridded meteorological data with a spatial resolution of 0.1° for the period from 1961 to 2020 for the 

entire Brazil. The information includes minimum and maximum temperatures, precipitation, solar 

radiation, wind speed, relative humidity, and potential evapotranspiration. Observed data from 

11,473 rain gauges and 1,252 meteorological stations were used. 

Simulated meteorological data were extracted from [9], who provided a dataset based on a set 

of 19 CMIP6 climate models with bias correction for projections over Brazilian territory, based on the 

SSP2-4.5 and SSP5-8.5 scenarios. The Quantile Delta Mapping approach was used to correct biases in 

daily time series of precipitation, maximum and minimum temperature, solar radiation, wind speed, 

and relative humidity. The bias-corrected dataset is available for both historical (1980-2013) and 

future (2015-2100) simulations at a spatial resolution of 0.25°. 

The calculation of potential evapotranspiration from the climate models was processed using 

the PyEt library [10] employing the Hargreaves methodology [11] presented in equation 1. 

EP =
𝑘𝜆 𝑅௔ ൬𝑇௠௔௫ − 𝑇௠௜௡2

− 17,8൰ඥ𝑇௠௔௫ − 𝑇௠௜௡ (1)

where k is an empirical constant, with a adopted value of 0.0135, Ra is the extraterrestrial solar 

radiation in MJ.m−2d−1, λ is the latent heat of evaporation in MJ.kg−1, Tmax is the maximum air 

temperature in °C, Tmin is the minimum air temperature in °C. The values of Ra and λ are calculated 

using the latitude grid values. 

Extraction 
meteorological 

data

Selection of 
the climate 

change model

Calculation of 
evapo-

transpiration

Calibration of 
hidrological 

model

Run SSP2-4.5 
and SSP5-8.5 

scenarios
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Discharge data from the stream gauges were obtained from the hydrological database of São 

Paulo State, and information about the inflow discharge of the reservoirs was obtained from the 

reservoir monitoring system of Brazilian National Water Agency. 

The data were collected, extracted for the area of interest, and stored in a dimensional database 

[12]. This facilitated data aggregation for generating information and statistics. The database was 

built on the PostgreSQL platform, organizing information by basin, daily time basis, parameter, 

model, and scenario. 

2.3. Evaluate climate projection models 

Multicriteria decision analysis was used to evaluate climate projection models with bias 

correction based on the proposal by [13]. The analysis is based on comparing the precipitation from 

the models with observed data in the study area. The applied criteria aim to assess the overall ability 

of models, both with and without bias correction, to replicate the main statistics of observed data 

relevant to hydrological studies. The indicators include the time series (a) daily, (b) monthly, (c) 

annual, and (d) hydrological year (from October to September). Include average seasonality (e) day 

of the year, and (f) month of the year. Wet extreme about (g) day of the year, and (h) month of the 

year. Dry extreme of (i) day of the year, and (j) month of the year. 

The performance of the ten indicators was evaluated using the modified Kling-Gupta Efficiency 

KGE’ coefficient initially proposed by [14] as an improvement over the Nash-Sutcliffe coefficient, and 

later modified by [15]. The coefficient was applied to evaluate projected precipitation in Brazil, 

showing satisfactory results [16]. Equation 2 shows KGE’. 

KGE′ = 1 −ඨሺ𝑟 − 1ሻଶ + ൬𝜇௦௜௠𝜇௢௕௦ − 1൰ଶ + ൬𝜎௦௜௠.𝜇௢௕௦𝜎௢௕௦.𝜇௦௜௠ − 1൰ଶ (2)

Where: r (dimensionless) is the correlation coefficient, μ (mm) is the mean precipitation, σ (mm) 

is the standard deviation of the precipitation series, and the indices obs and sim indicate the observed 

and simulated series, respectively. The KGE’ varies from -∞ to 1, with 1 indicating the best fit. The 

KGE’ values corresponding to the selected criteria were scored according to the categories presented 

in Table 1 [17]. 

Table 1. Score to evaluate climate projection models. 

Category Condition Score 

Low KGE’ ≤ 0 0 

Medium 0 ≥ KGE’ ≤ 0,4 1 

High KGE’ ≥ 0,4 2 

The sum of the scores for each indicator was used for ranking climate models, from highest to 

lowest. The maximum value is 20, where all 10 indicators are classified as high, and the minimum 

value is zero, where all indicators are low. 

2.4. Hydrological model 

The hydrological model used in this paper is based [18], a conceptual models based on some 

physical reasoning that represent catchment processes by several interconnected buckets, which 

mimic water storage and transfer within a homogeneous area. This model has been successfully 

applied in Brazil [19]. This deterministic model operates continuously over time and considers a daily 

time step. It employs a lumped approach at the watershed scale and adopts a conceptual framework 

incorporates linear transfer functions, considering the direct runoff, soil moisture depletion, 

unsaturated zone dynamics, groundwater recharge, and three linear reservoirs representing surface, 

soil, and aquifer retention characteristics (Figure 5). 
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Figure 3. Hydrological model scheme. 

As shown in Figure 5, a fraction of the precipitation (P in mm) is conveyed as direct runoff (DR 

in mm) using equation 3. This DR is routed through a linear reservoir reaching the basin outlet as 

routed direct runoff (RDR in mm) using equation 4. 

DR =
ሺP− IAሻଶ

P− IA + SAT− RSOIL (3)

RDR = ሺ1 − KDRሻ ൈ RSURF (4)

Where IA is initial abstraction (mm), SAT is the soil saturation capacity (mm), RSOIL is the level 

of the soil reservoir (mm), RSURF is the level of the surface reservoir (mm), and KDR is the direct 

runoff recession constant (d−1). 

The remaining water depth (P − DR) is subject to depletion at the potential evapotranspiration 

rate (PE in mm). The excess water (P – DR − PE) infiltrates into a linear reservoir that represents the 

upper soil horizon (unsaturated zone). Moisture is lost from this zone at an evapotranspiration rate 

(ER in mm) proportional to the moisture content (MC in %, shown in equation 5) and PE. The output 

from the unsaturated zone reservoir corresponds to the recharge (REC in mm) of the groundwater 

reservoir. If RSOIL exceeds the field capacity (FC in mm), REC occurs following the equation 6. 

MC =
RSOIL

SAT
 (5)

REC = ሺRSOIL− FCሻ ൈMC ൈ CREC (6)

Where CREC (%) is recharge coefficient, a parameter related to the movement of water in the 

unsaturated soil zone, the water transferred to the groundwater reservoir regulated by this 

parameter. The output of the groundwater reservoir is the base flow component (BF in mm) shown 

in equation 7. 

BF = ሺ1− KBFሻ ൈ RGR (7)

Where RGR is the level of the groundwater reservoir (mm), and KBF is the base flow recession 

constant (d−1). Runoff (RO, in m3s−1) is obtained by equation 8. 

RO = ሺRDR + BFሻ ൈ A ൈ 86.4 (8)

Where A is the drainage area in km2. Following the above procedure, the levels in each reservoir 

are continuously updated for each simulation day. This calculation applies to the headwater basins. 

To calculate the discharge for the downstream basins, an additional method is employed to routed 

upstream discharge (RUD in m3s−1), calculated by the routing model (McCarthy, 1938) describes in 

the equation 9. 

RUD୧ = ሺ1 − 2𝐾𝑋ሻUD୧ + ሺ1 + 2𝐾𝑋ሻUD୧ିଵ + ሺ2𝐾ሺ1− 𝑋ሻ − 1ሻRUD୧ିଵ
2𝐾ሺ1− 𝑋ሻ+ 1  (9)
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Where the RUD is routed upstream discharge (m3s−1), K is the parameter to represent the time 

release is delayed (d) and X is the parameter referring to the reduction of the release peak in the 

stream. Index i is about the value on a time interval and i-1 is a previous interval value. The 

downstream discharge (UD in m3s−1) is the sum of RO and RUD. To ensure calculation stability the 

channel is divided into sections to K fits within the limits shown in equation 10. 

1

2(1− 𝑋) < 𝐾 <
1

2𝑋 (10)

The hydrological model calibration was performed using data from October 2011 to September 

2019 (8 hydrological years) for the sub-basins. The choice of this period aims to cross-reference the 

available observed daily flow data with rainfall and evapotranspiration data in the watersheds. 

Unlike the traditional approach, no specific period was selected for model validation, as suggested 

by [20], who evaluated the performance of two conceptual hydrological models in 463 watersheds 

using 50 different data splitting schemes. They demonstrated that it is more robust to use the 

complete available dataset for calibration and skip model validation. 

The parameters were optimized using the minimize function from the scipy.optimize library 

[21], which provides a unified interface for finding local minima of non-linear optimization problems. 

Within a trust region, a local model of the objective function is built based on first and second 

derivative information. It approximates the best point until reaching a local minimum of the original 

objective function. The parameters varied SAT [100, 2000], FC [30, 50], IA [2.5, 5], CREC [0, 20], KDR 

[0.2, 5], KBF [30, 180], K [1, 10] and X [0.25, 0.35]. 

The objective function was based on KGE on basins headwater basins, for better representing 

the volume flowing into reservoirs and downstream basins are performed Log-NSE, for better 

representing the limit flows at control points. The indicators NSE, R2 and PBIAS were also analyzed. 

3. Results 

The simulation data from the climate models were extracted and analyzed. Figure 6 shows the 

comparison of the accumulated rainfall for the hydrological year across different climate models, 

with a focus on the observed data. 
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Figure 6. Timeseries of accumulated precipitation for the hydrological year from the climate models 

and observed data. 

The multi-criteria analysis was applied to the 38 datasets on climate models (19 bias correction 

and 19 row data). Table 3 shows the ranking. The model that best represents the CWPS region is 

GFDL-CM4 [22,23]. 

Given the comparison with the past, the time series composition of rainfall in the study area 

ranged from January 1961 to July 2020 with observed data. Starting from August 2020 until December 

2100, two scenarios, SSP2-4.5 and SSP5-8.5, from the GFDL-CM4 model will be performed. Figure 7 

displays the precipitation timeseries to hydrological year. The trend is towards an increase in the 

frequency of dry hydrological years, with two extremely dry years observed in 1968/69 (984.6 mm) 

and 2013/14 (1009.8 mm) within a span of 58 years. This trend progresses to five such events in an 81-

year period projected in the SSP 245 scenario, occurring in 2040/41, 2048/49, 2057/58, 2071/72, and 

2073/74. In the SSP 585 scenario, there are nine such events in an 81-year period, happening in 2036/37, 

2045/46, 2059/60, 2079/80, 2081/82, the biennium 2084/85/86, 2089/90, and 2099/100. 

Table 3. Ranking of climate projection models best evaluated to CWPS. 

Dataset 
Score 

∑Score∑KGE’
a b c d e f g h i j 

GFDL-CM4 1 2 1 1 2 2 1 1 2 2 15 4,58 

GFDL-ESM4 1 2 1 1 2 2 1 1 2 2 15 3,56 

GFDL-CM4* 1 2 1 1 2 2 1 0 2 2 14 3,61 

ACCESS-ESM1-5* 1 2 1 1 2 2 1 0 2 2 14 3,18 

ACCESS-ESM1-5 1 2 0 1 2 2 1 1 2 2 14 3,02 

KIOST* 1 2 1 1 2 2 1 0 2 2 14 2,91 

GFDL-ESM4* 1 2 1 1 2 2 1 0 2 2 14 2,70 
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EC-EARTH3* 1 2 1 1 2 2 1 0 2 2 14 1,45 

MPI-ESM1-2* 1 2 0 1 2 2 1 0 2 2 13 3,02 

CMCC-ESM2* 1 2 1 0 2 2 1 0 2 2 13 2,33 

CMCC-ESM2 1 2 1 0 2 2 1 0 2 2 13 0,19 

IPSL-CM6A-LR* 1 2 1 0 2 2 1 0 2 2 13 -0,14 

EC-EARTH3 1 2 1 0 2 2 1 0 2 2 13 -3,03 

NESM3 1 2 0 0 2 2 1 0 2 2 12 3,65 

IPSL-CM6A-LR 1 2 0 0 2 2 1 0 2 2 12 3,59 

MIROC6 1 2 0 0 2 2 1 0 2 2 12 3,46 

MRI-ESM2 1 2 0 0 2 2 1 0 2 2 12 3,34 

MIROC6* 1 2 0 0 2 2 1 0 2 2 12 3,19 

ACCESS-CM2* 1 2 0 0 2 2 1 0 2 2 12 2,85 

KACE* 1 2 0 0 2 2 1 0 2 2 12 2,56 

NESM3* 1 2 0 1 2 2 1 0 1 2 12 2,47 

HadGEM3-GC31-LL* 1 2 0 0 2 2 1 0 2 2 12 2,28 

TaiESM1 1 2 0 0 2 2 1 0 2 2 12 2,11 

TaiESM1* 1 2 0 0 2 2 1 0 2 2 12 2,06 

MPI-ESM1-2 1 2 0 0 2 2 1 0 2 2 12 1,48 

INM-CM5 1 2 0 0 2 2 1 0 2 2 12 0,12 

MRI-ESM2* 1 2 0 0 2 2 1 0 2 2 12 -0,40 

UKESM1-0-LL* 1 2 0 0 2 2 1 0 1 2 11 2,77 

NorESM2-MM 1 2 0 0 2 2 1 0 1 2 11 1,95 

NorESM2-MM* 1 2 0 0 2 2 1 0 1 2 11 1,27 

INM-CM5* 1 2 0 0 2 2 1 0 1 2 11 -0,31 

INM-CM4_8 1 2 0 0 2 2 1 0 1 2 11 -1,02 

UKESM1-0-LL 0 2 0 0 2 2 0 1 1 2 10 2,14 

HadGEM3-GC31-LL 0 2 0 0 2 2 0 1 1 2 10 1,42 

INM-CM4_8* 1 2 0 0 2 2 1 0 0 2 10 -0,01 

KIOST 0 1 0 1 2 2 0 0 1 2 9 1,85 

KACE 0 1 0 0 1 1 0 1 2 2 8 0,91 

ACCESS-CM2 0 1 0 0 2 2 0 0 2 1 8 -3,23 
* Dataset with bias correction. Column a daily timeseries, b monthly timeseries, c annual timeseries, d 

hydrological year timeseries (from October to September), e average precipitation for the day of the year, and f 

average precipitation for the month of the year, g maximum precipitation for the day of the year, h maximum 

precipitation for the month of the year, i minimum precipitation for the day of the year, and j minimum 

precipitation for the month of the year. 
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Figure 7. Timeseries of accumulated precipitation for the hydrological year from observed data and 

two scenarios, SSP2-4.5 and SSP5-8.5. 

Figure 8 (a) shows a trend towards a reduction in the average monthly accumulated 

precipitation in the projected scenarios for the last four months of the dry season, with a more 

pronounced change for September. The observed data indicate an average of 75.6 mm, compared to 

41.3 mm in the SSP2-4.5 scenario and 33.2 mm in the SSP5-8.5 scenario. Figure 8 (b) shows a small 

variation in the wet semester, but a trend of less rainfall in the dry period, with an average of 350.4 

mm accumulated between the months of April to September in the observed period, compared to 

269.2 mm and 268 mm accumulated in the dry semester for the projected scenarios, SSP2-4.5 and 

SPP5-8.5, respectively. In other words, a reduction of approximately 23% in rainfall during the dry 

period. 

The Standardized Precipitation Index (SPI) of the 6-month moving average precipitation and its 

respective Drought Magnitude (DM) are presented in Figure 9 calculated according to [24]. The trend 

of increased drought frequency is observed both in terms of intensity and the number of months 

classified as dry, as well as in the magnitude of the drought. Figure 10 presents the drought monitor 

(DM) exceedance curve for both observed data and simulated scenarios. Dry events in the study area 

will tend to have a higher frequency, increasing from about 30% in the analysis of observed data to 

40% and 50% in the scenarios SSP2-4.5 and SSP5-8.5. In addition, the magnitude of drought, already 

challenging in the current CWPS configuration, was at 29.01 in the month of April 2015, and it could 

reach around 40 in both scenarios. 

(a) (b) 

Figure 8. Seasonal trends for (a) average precipitation accumulated for the month of the year, and (b) 

average precipitation accumulated for the hydrologic semester from observed data and two scenarios, 

SSP2-4.5 and SSP5-8.5. 
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Figure 9. Average moving of the Standardized Precipitation Index (SPI) and Drought Magnitude 

(DM) of the observed and projected time series. 

 

Figure 10. Drought Magnitude (DM) exceedance curves for observed and projected time series. 

The Table 4 shows the performance indicators for each objective function used in the calibration 

of the hydrological model for the CWPS basins. The best results were obtained for indicators that use 

their own equations as objective functions to calibrate the model parameters. However, the highest 

values are obtained for the KGE objective function followed by Log-NSE in all basins. The correlation 

coefficients (R2) between observed and calculated series were higher for Log-NSE. The smallest 

deviations (PBIAS) occurred for the KGE objective function, with the exception of ATI and ATA 

basins. 

Log-NSE objective functions allowed a better adjustment of minimum flows in basins without 

regularization of reservoirs (VAL, BUE and ATI). In these basins, flows with a probability of non-

exceedance greater than the median are closer to observed flows, as shown in Figure 11. 
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Table 4. Performance indicators for the objective functions used to calibrate the hydrological model 

in the CWPS basins. 

Performance 

indicator 

Objective 

function 

Basin 

JPS JAG VAL BUE ATI CAC PAI ATA 

KGE 

NSE 0.81 0.57 0.86 0.76 0.38 0.39 0.50 0.29 

Log-NSE 0.39 0.20 0.53 0.53 0.11 -0.34 0.15 -0.39 

KGE 0.83 0.71 0.90 0.83 0.68 0.53 0.62 0.51 

NSE 

NSE 0.67 0.45 0.84 0.71 0.23 0.24 0.35 0.31 

Log-NSE 0.16 -0.21 0.55 0.39 -0.49 -1.99 -0.82 -2.29 

KGE 0.66 0.40 0.81 0.66 0.36 0.04 0.24 -0.02 

R2 

NSE 0.69 0.48 0.85 0.76 0.26 0.36 0.37 0.33 

Log-NSE 0.72 0.69 0.85 0.74 0.66 0.52 0.43 0.47 

KGE 0.69 0.52 0.82 0.70 0.55 0.33 0.38 0.29 

PBIAS (%) 

NSE 6.72 14.73 10.44 19.32 -8.13 32.65 9.19 4.81 

Log-NSE 10.23 18.59 8.10 9.61 18.68 28.37 8.14 31.67 

KGE 4.04 6.43 2.00 4.94 18.20 17.86 3.59 15.67 

Log-NSE 

NSE 0.53 0.11 0.74 0.51 0.19 -0.24 -0.02 -0.07 

Log-NSE 0.69 0.64 0.89 0.78 0.60 0.35 0.22 0.40 

KGE 0.57 0.43 0.80 0.64 0.33 -0.01 0.07 0.07 

 

 

 

(a) (b) 

 

(c) 

Figure 11. Frequency curves with a probability of greater than 50% of the observed and estimated 

flows in the calibration of basins: (a) BUE, (b) ATI and (c) VAL. 
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The flows estimated by the hydrological model based on precipitation projections of the GFDL-

CM4 model for the two climate scenarios (SSP2-4.5 and SSP5-8.5) are shown in Table 5. The larger 

angular coefficients of the regression equations of the SSP2-4.5 scenario indicate a greater ability to 

respond to precipitation. Higher intercept values indicate a greater contribution of the base flow and 

greater water availability in this scenario. The regression coefficients of the estimates were greater 

than 0.5 for six basins, indicating a strong correlation between variables. The estimated flows for the 

SSP5-8.5 scenario were lower for the 25%, 50% and 75% quartiers in all basins except the 75% quartile 

in the PAI basin, where there was no change. This indicates lower water availability in the SSP5-8.5 

scenario, reflecting an average reduction of 16.9%, 11.8%, and 9.2% in flows corresponding to 

quartiers Q25, Q50, and Q75. The largest impact on minimum flows (Q25) was recorded in the VAL 

basin, with a reduction of 19.6%. The CAC and PAI basins showed a higher reduction in the median 

flow (13.4%), and the BUE basin showed the largest reduction in Q75 (12.5%). 

Table 5. Daily flow(mm) predicted by precipitation (mm) by the GFDL-CM4 model in two climate 

scenarios in CWPS basins. 

Basin 
SSP2-4.5 SSP5-8.5 

Equation (Q) r Q25 Q50 Q75 Equation (Q) r Q25 Q50 Q75 

JPS 0.148P+0.990 0.67 0.88 1.14 1.52 0.141P+0.889 0.67 0.75 1.01 1.37 

JAG 0.047P+0.779 0.33 0.53 0.65 0.86 0.038P+0.649 0.32 0.43 0.58 0.76 

VAL 0.135P+0.813 0.53 0.46 0.69 1.17 0.125P+0.732 0.53 0.37 0.61 1.04 

BUE 0.125P+0.654 0.51 0.40 0.55 0.88 0.113P+0.578 0.50 0.33 0.48 0.77 

ATI 0.167P+0.866 0.58 0.48 0.67 1.35 0.155P+0.801 0.57 0.42 0.60 1.20 

CAC 0.050P+0.787 0.45 0.70 0.82 0.97 0.039P+0.691 0.46 0.58 0.73 0.89 

PAI 0.066P+0.842 0.56 0.81 0.93 1.10 0.054P+0.746 0.56 0.68 0.83 1.01 

ATA 0.129P+0.661 0.61 0.65 0.82 1.01 0.114P+0.573 0.60 0.53 0.71 0.92 

The Table 6 shows the Frequency of non-exceedance of the ratio between precipitation and flow 

(P/Q) of the average of seven consecutive days. The relationship represents the degree to which 

precipitation deficits influence flow over the continuous seven-day period. Very low ratio values (P/Q 

= 0.2) tend to occur on average during 12% and 11.6% of the simulation period (2022-2100) in the 

scenarios SSP2-4.5 and SSP5-8.5. In this case, VAL and JPS basins showed greater sensitivity to P 

deficits in the SSP2-4.5 scenario, as well as JPS, CAC, PAI, and ATA basins in the SSP5-8.5. Less 

pronounced deficits (P/Q = 0.5) are more frequent, occurring on average 20.9% (SSP2-4.5) and 21.3% 

(SSP5-8.5). The JPS, CAC, PAI, and ATA basins have greater sensitivity to this level of deficit in both 

scenarios. 

Table 6. Frequency of non-exceedance of the ratio between rainfall and flow (P/Q) of the average of 

seven consecutive days in the climate scenarios studied. 

Basin 

SSP2-4.5 SSP5-8.5 

P/Q 

0.2 0.5 0.2 0.5 

JPS 14.0 25.6 14.9 26.4 

JAG 10.3 20.3 10.7 20.2 

VAL 18.7 18.8 10.2 19.4 

BUE 8.4 17.4 9.2 17.7 

ATI 9.1 18.2 10.2 19.4 

CAC 12.2 22.7 12.7 23,0 

PAI 12.0 22.8 12.8 23.1 

ATA 11.4 21.4 12.1 21.5 

Average 12.0 20.9 11.6 21.3 
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4. Discussion 

Daily flow is greatly influenced by variations in soil moisture, infiltration and precipitation. The 

physical water characteristics of the soil influence infiltration, water storage, and aquifer recharge. 

These variables were adjusted in the calibration of the hydrological model by parameters such as the 

direct flow recession constant (KDR), the base flow recession constant (KBF), and the recharge 

coefficient (CREC). The intra-annual distribution of precipitation is an important condition for the 

performance of the hydrological model.  

We selected ten indicators for a representative climate model, four for the accumulated rainfall 

of the time series (day, month, year, hydrological year), two for the daily and monthly seasonality, 

and four for the daily and monthly extremes in wet and dry periods. Of the 19 models surveyed, the 

GFDL-CM4 presented the best performance for the study area in terms of the modified Kling-Gupta 

efficiency coefficient (KGE’). According to [23], the model appears to produce a reasonable 

multidecadal modulation of the El Niño-Southern Oscillation due to a slight weakening of the annual 

cycle, relatively small biases in seasonal spatial patterns of top-of-atmosphere fluxes, surface 

temperature, and precipitation. 

GFDL-CM4 without bias correction represents better the time series of annual and hydrological 

years as well as the maximum monthly precipitation than the other models. In the CWPS basins, the 

model represents precipitation well during the wet period (October to March) and tends to 

underestimate it by 23.3% during the dry period (April to September). SPI and DM indicate a higher 

projected drought frequency, especially for the scenario SSP5-8.5. These results are consistent with 

the study by [25], which identified the GFDL model for the Piracicaba River basin using the tool 

developed by [26]. 

Performance indicators indicated a satisfactory adjustment of the hydrological model calibrated 

to the time series observed with the objective functions KGE and log-NSE. The projected flows in the 

basins without a reservoir were estimated using parameters calibrated with an objective function 

Log-NSE, which best adjusted the minimum flows. The basins with reservoirs were simulated with 

parameters calibrated with KGE. 

The simulated flows were strongly correlated with forecast precipitation for both climate 

scenarios. The SSP5-8.5 scenario indicates the lowest water availability in all basins, and VAL is the 

one that shows the greatest reduction in minimum flows. Considering the frequency of the average 

of seven consecutive days of the P/Q ratio, JPS, CAC, PAI and ATA basins show faster reactions in 

flows to the P deficit in both climate scenarios. For a more pronounced deficit (P/Q =0.2), the VAL 

basin showed greater sensitivity in the SSP2-4.5 scenario. According to [27], basins with low P/Q 

values are subject to longer streamflow droughts, possibly due to lower subsurface storage. 

In systems with high water demand such as the CWPS, a deficit of seven consecutive days is 

enough to cause operational disruptions and ultimately supply conflicts. The expected moderate (P/Q 

= 0.5) and severe (P/Q = 0.2) deficits are high. 

5. Conclusions 

It is expected that the results of this study will provide a comprehensive and well-founded 

understanding of the challenges faced by CWPS in the context of climate change, as well as suggest 

strategies and adaptive measures to ensure water security for MRSP. Understanding these impacts 

and identifying sustainable solutions are of utmost importance to guide decision-making and 

formulate public policies aimed at efficient water resource management and adaptation to climate 

change. 
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