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Abstract: This paper aims to search for lump waves in a spatial symmetric (2+1)-dimensional
dispersive wave model. Through an ansatz on positive quadratic functions, we conduct symbolic
computations with Maple to generate lump waves for the proposed nonlinear model. A line of critical
points of the lump waves is computed, whose two spatial coordinates travel at constant speeds.
The corresponding maximum and minimum values are evaluated in terms of the wave numbers,
and interestingly, all those extreme values do not change with time, either. The last section is the
conclusion.
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1. Introduction

Applied sciences rely heavily on closed-form mathematical theories. Much of such studies
represents mathematical intuitions and skills of high order, challenging even for advanced researchers
of today. A kind of multiple wave solutions, called soliton solutions, are examples of closed-form
solutions to integrable models of nonlinear dispersive waves. The nonlinearity and the dispersion play
together in generating such nonlinear dispersive wave solutions.

In soliton theory, there are two powerful techniques, the inverse scattering transform [1] and
the Hirota bilinear method [2], to soliton solutions. The inverse scattering transform was developed
initially for solving Cauchy problems of nonlinear model equations, genearted from Lax pairs of matrix
spectral problems [3,4], It is a nonlinear version of the Fourier transform.

The Hirota bilinear method is the other direct but powerful technique to soliton waves. Hirota
bilinear forms are the starting point to generate closed-form solutions [7,8]. In the (2+1)-dimensional
case, take a polynomial R in time f and two space variables x,y. A (2+1)-dimensional Hirota bilinear
differential equation is defined by

R(Dy, Dy, Dy)f - f =0, (L1)

where Dy, Dy and Dy are three Hirota bilinear derivatives given as follows [2]:

0 0 d d d J \k
mpynpke (2 Y \m Y Y N Y Y P
Dt DXD]/f f (at at/) (ax ax/) (ay ay/) f(t’x’y)f(t’x’y )it’:t,x/:x,y/:y’ (12)
in which m, n, k are nonnegative integers. Associated with a Hirota bilinear equation, a nonlinear
partial differential equation
X(u/ Ut, Uy, u]// e ) = 0 (13)
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with a dependent variable u is usually presented by the logarithmic derivative transformations
u=2(Inf)xx, u=2(Inf)y, or u=2(Inf)y,. (1.4)

For multi-component integrable models (see, e.g., [5,6]), other kinds of transformations need to be
introduced and implemented. Within the Hirota bilinear theory, an N-soliton solution to a nonlinear
equation can be presented by solving its corresponding Hirota bilinear equation (see, e.g., [7]-[11]).

Remarkably similar to solitons, lump waves (and rogue waves) are another kind of closed-form
solutions to nonlinear integrable models [12]. Lump waves are expressed in terms of analytic rational
functions, which are localized in all directions in the spatial space (see, e.g., [12,13]):

lim u(x,y,t) =0, teR, (1.5)
x2+y2—00, ax+by+c=0

where a, b, ¢ are arbitrary constants and a? + b? # 0. The KPI equation possesses abundant lump waves
(see, e.g., [8]), and taking long wave limits of its soliton solutions can yield particular lump waves [14].
Lump waves can exist in nonlinear nonintegrable models as well, and illustrative examples include
generalized KP, BKP, Jimbo-Miwa and Bogoyavlensky-Konopelchenko equations [15]-[19]. There also
exist lump waves in linear models in higher dimensions (see, e.g., [20]).

Quadratic functions are used to present exact solutions to Hirota bilinear equations and formulate
lump wave solutions to nonlinear model equations [8,12]. The logarithmic derivative transformations
are taken to link nonlinear model eqautions to bilinear equations. In this paper, we would like to search
for lump waves in a spatial symmetric (2+1)-dimensional nonlinear dispersive wave model via such
an ansatz using quadratic functions. The proposed spatial symmetric (2+1)-dimensional dispersive
wave model contains three nonlinear terms. We will conduct symbolic computations with Maple to
determine its lump waves. Characteristic properties, such as critical points and extreme values, will be
analyzed for the resulting lump waves. Concluding remarks will be given in the last section.

2. A spatial symmetric nonlinear model and its Hirota bilinear form
Let « and B be real constants. We introduce a spatial symmetric (2+1)-dimensional nonlinear

dispersive wave model equation:

X(u) = 0((3Uxxpy + 3uxpxy + 3uxyv + Suyvx + uxxxy + Uty — uyy
+ SMyyqx + 3uyqu + Suxyw + 31/[ny + uxyyy + uty - uxx)
+ B(dutiyy + Suiyity + Uyy0 + Uyy W + VxWy + Urryy) = 0, 2.1)

with v, = uy, wy = uy, px = v,q, = w, and search for its lump waves via the indicated ansatz using
quadratic functions. The example with « = 1 ad = 0 of this nonlinear model gives the special spatial
symmetric (2+1)-dimensional model equation

Bibyx Py + 3uxPxy + 3uhxy0 + 3y Vx + Uxxxy + Uy — Uyy
+ 3uyy gy + 3uyqxy + ibyyW + 3UxWy + Uxyyy + Uty — Uxx = 0. (2.2)

Under the help fo Maple, through the logarithmic derivative transformations

u=2(Inf)xy, v=2(Inf)xx, w=2(Inf)yy, p=2(nf)x, g =2(Inf)y, (2.3)
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the above spatial symmetric (2+1)-dimensional model equation (2.1) is put into the Hirota bilinear
form:

R(f) = [¢(D3Dy + DDy + D;Dx + DDy — D? — D) + BD2D2|f - f
= ZW(fxxxyf_3fxxyfx +3fxyfxx _fyfxxx +ftxf_ftfx _fyyf"f‘fyz

+ frywf = 3fxuufy +3fxufyy — Fefowy + fouf = fify = faxf + f2)
+ 2B(frayyf — 2fxxyfy — 2fxyyfx + faxfyy + zfzgy) =0, (24)

where D¢, Dy and Dy, are the standard Hirota bilinear derivatives [2] (see also, (1.2)). By symbolic
computation, a precise relation between the nonlinear model equation and the bilinear model equation
can be explored to be
R
x(u) = [XY)

?] xy’ (25)

where the involved functions u,v,w,p,q are determined through the logarithmic derivative
transformations of f in (2.3).

The same link also exists in a spatial symmetric KP model [21] and a spatial symmetric HSI
model [22]. It is now evident that if f is a solution to the bilinear model equation (2.4), then u, v, w, p, q
determined by (2.3) solve the spatial symmetric (2+1)-dimensional dispersive wave model equation
(2.1). In the following section, we would like to look for a class of lump waves in this spatial symmetric
nonlinear dispersive wave model.

3. Lump wave solutions

We would now like to compute lump wave solutions to the spatial symmetric (2+1)-dimensional
dispersive wave model equation (2.1), through conducting symbolic computations. A direct
computation can show that the above general nonlinear model equation does not pass the three-soliton
test (see, e.g., [9,11] for the three-soliton test) and thus it doesn’t possess an N-soliton solution..

Applying a general ansatz on lump waves in (2+1)-dimensions [8], we start looking for positive
quadratic function solutions

f= C% + 17% + a9, {1 = ayx +axy +azt +ag, (o = asx + agy + ayt + ag, (3.1)

to the corresponding Hirota bilinear equation (2.4), and the task will be to determine the real constant
parameters a;, 1 < i <9 (see, e.g., [12,15,17] for illustrative examples). It is known that this is a general
ansatz for lump wave solutions of lower order in (2+1)-dimensions [12].

We substitute f by (3.1) into the Hirota bilinear equation (2.4) and obtain a system of algebraic
equations on the involved parameters. A direct Maple computation to solve this system for a3, a7 and
a9 yields a set of solutions for the parameters:

(a1 + a)[a3 + a3 + (a5 + a)?] — 20102 — 20203
(a1 +a2)? + (a5 + a6)?

(as +ag)[(a1 + a2)? + a% + ag] — 2a5a5 — Za%aé
(al + ﬂz)z + (615 + a6)2

_ 3(611&12 + a5a6)(a% + ﬂ% + a% + 61%) [(ﬂl] + a2)2 + ([l5 + a6)2]

2(aqa6 — aras)?
B[(aras — asag)? + 2(ayan + asag)* + (a1as + azas)?][(ay + a2)* + (as + ag)?]
20(ayae — aras)?

az —

7

ay =

7

(3.2)

_|_

and all other parameters are arbitrary.
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The above two frequency parameters, a3 and ay, exhibit a class of dispersion relations in
(2+1)-dimensional nonlinear dispersive waves, and the constant term parameter, ao, tells a complicated
expresssion of the wave numbers, which is crucial in formulating lump waves within the Hirota
bilinear theory. Interestingly, there also exists a kind of higher-order dispersion relations appearing in
lump waves of the second model equation of the integrable KP hierarchy [23].

Let us anlayze the analycity of the lump waves by observing the above simplified expressions for
the wave frequencies and the constant term in (3.2). Obviously, if

ay+ay =as5+ag=0 (3.3)
then
a1a¢ — dzds — 0. (34)

This implies that if a1a¢ — aza5 # 0, then we have
(a1 +a2)* + (as +ag)* > 0, a3 + a3 + a2 +aZ > 0.

Therefore, to generate lump wave solutions through the logarithmic derivative transformations, we
require two basic conditions:

aag — axas # 0, (3.5)

and
Bl(ajazy — asag)? + 2(ayaz + asag)? + (ayag + azas)?]

w(a? + a3 + a2 + a2)

3(a1a2 + asag) + > 0. (3.6)
Those two necessary and sufficient conditions really guarantee the fundamental properties of lump
waves. First, the resulting solutions of #, v, w are localized in all spatial directions, under (3.5). Second,
they are analytic in the whole spatial and temporal space, under (3.5) and (3.6), which lead equivalently
to that ag > 0. We will show in the next section that ag > 0 is also necessary for u, v, w to be analytic in
R3.

The second condition defined by (3.6) caontains the two coefficients, « and . Clearly, if

ayay + asag > 0, ap > 0, (ayay + asag)* + (aB)* > 0, (37)

then we have ag > 0. Therefore, the nonlinearity affects the analyricity of the lump waves in the model
equation (2.1), but it does not affect the speeds of the two single waves in the lumps, in view of (3.2).
One reduced case can be worked out. When &« = 1 and 8 = 0, we obtain

e 3(a1az + asag) (a2 + a3 + a2 + a2)[(a1 + a2)? + (a5 + a¢)?] (3.8)
’ 2(aya6 — ﬂ2ﬂ5)2 ' '

Then, the conditions for the existence of lump waves in this reduced case simply become

(a1a5 - 612615) #0, ayap + asag > 0. (3.9)

4. Characteristics of the lump waves

In this section, we would like to consider the characteristic behaviors of the resultant lump waves
presented previously.

4.1. Line of critical points

Let us first compute critical points of f defined by (3.1) as a function of x and y. To this end, we
need to determine solutions to the system

fx(x(8),y(8),8) = 0, fy(x(t),y(t),£) = O. “1)
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Since f is a quadratic polynomial in x and y, this system just requires
1181 +as8r =0, a201 + a2 = 0.
Accordingly, based on the condition (3.5), we have {; = {» =0, i.e,,
ax +agy +azt +ag =0, asx +agy +ayt +ag =0, (4.2)

This is a linear system of x and y, and all solutions are critical points of the quadratic function f:

(a1 + a2)? + (a5 + ag)? — 2a3 — Za%t Apag — dydg
(a1 +a2)% + (as + ag)? a1 — aas’

x(t) = —

(a1 — a2)? + (a5 — ag)? — 2a3 — 211%  a1ag — ay4ds
(a1 +a2)% + (as + ag)? a4 — aoas’

4.3)
y(t) =

at an arbitrary time ¢.

Evidently, those critical points form a straight line, whose two spatial coordinates travel at
constant speeds. Now, a further straightforward computation can verify that all those points (x(t), y(t))
determined above are also critical points of the three solution functions u, v and w defined by (2.3).

4.2. Analyticity condition

Taking advantage of (4.2), we see that the sum of two squares, i.e., the function f — a9 = {3 + {3
becomes zero at all critical points defined by (4.3). Accordingly, the quadratic function f > 0 in R?
if and only if the constant term a9 > 0. The sufficiency is clear, as analyzed earlier. The necessity is
true, because we have that f vanishes at the critical points if a9 = 0, and f vanishes at all pointa on the
circle {3 + {3 = —aq if ag < 0.

Consequently, the three solutions u,v, w defined by (2.3) are analytic in R3 if and only if the
constant parameter a9 must be positive. Further, in view of the analysis on the positiveness of a9 made
in the previous section, the necessary and sufficient conditions for u, v, w to be analytic are the two
conditions in (3.5) and (3.6) on the wave numbers a1, a3, a5, a¢ and the coefficients & and B.

4.3. Extreme values

Applying the second partial derivative test, we can see that the both lump waves, v and w, have a
peak at the critical points (x(t),y(t)). This is because we have

_ 324%(a] + a3)*(a1a6 — aza5)*

’Z) = < 0,
T 3[(ay 4 a2)? + (as + )23,
(4.4)
sy — VB = 1024a* (a3 + a2)?(aya6 — azas) ™ 50
W 27((ay + ap)? + (as +ag)?)tafy T
and 3202 (a3 + a2)?(aas — apas)*
W — — 2 6 146 2065 <0
P 3[(a1 + a2)? + (a5 + a6) 243,
(4.5)

- W2 1024a* (a3 + a2)?(aya6 — aza5)'°
W T 07 [(ag + a2)2 + (as + ag)H4ad,

>0,

where a1 is defined by

1
ayp = a(ayap + a5a6)(a% + u% + a% + a%) + gﬁ[(alaz + asag)? + (a1a6 + azas)? + 2&1%&1% + 2a§aé]. (4.6)
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In a similar way, we can work out that
T _320&2(111112 + 115116)(11% + a%)(alaG — a2a5)4
" 3[(a1 +a2)? + (a5 + a6)?|2a7, '
Uyxllyy — uyzcy (4.7)

_ 1024a* [3(a1a2 + a5a6)* — (4186 — a2a5)%] (2106 — a2a5)"°
81[(111 + 112)2 + (115 + 116)2]4{1‘110 !

where a1 is given by (4.6). Accordingly, the lump wave u has the maximum (or minimum) points
(x(t),y(t)), when ajay + asag > 0 (or aja; + asas < 0) and

2

3(aap + a5a6)2 — (mag — azas)” > 0;

the lump wave u has the saddle points (x(t),y(t)), when

3(a1az + asae)? — (a186 — azas)* < 0;
and the second partial derivative test is inconclusive, when

3(ajay + asag)? — (ayas — azas)* = 0.

A direct computation can generate the extreme values of v, w and u, achieved at the critical points
(x(t),y(t)), as follows:

el @)t ) 48)
maximum 3[(111 + {12)2 + (a5 + 06)2}1110' .
o 8a(a3 +ag)(mas — azas)? (4.9)
maximum 3[(&1 ¥+ {12)2 + (a5 + {16)2}&10' .

8a(aray + asae ) (a1a6 — a2a5)>

3[(a1 +a2)? + (as + ag)?|aro

(4.10)

Uextremum =

where a1 is defined by (4.6). Upon observing those expressions for the extreme values, we find that
all extreme values do not depend on time ¢; they are all constants on the characteristic line of critical
points (see also, [21,22] for other examples). Furthermore, when a1a¢ — aa5 goes to zero, i.e., the two
spatial directions (a1, 4;) and (a5, a¢) tends to be parallel to each other, the lump waves of u, v, w may
not decay in all cases of the wave numbers a1, a2, a5 and 4.

5. Conclusion

Through conducting symbolic computations with Maple, we have explored lump waves in a
spatial symmetric (2+1)-dimensional dispersive wave model. The resulting lump waves have a line of
critical points, whose spatial coordinates travel with constant velocities. The frequencies a3, a7 and the
constant term ag of the lump waves were computed in terms of the wave numbers in the quadratic
function f. Characteristic properties of the lump waves, such as critical points and extreme values,
were worked out, and the effects of the nonlinear terms and the wave numbers were analyzed.

Interestingly, abundant lump waves also exist in linear wave model equations [20], besides
nonlinear (2+1)-dimensional models (see, e.g., [24]-[27]) and (3+1)-dimension models (see, e.g., [28,
29]). The Hirota bilinear forms and the generalized bilinear forms are the starting points [12,30],
exhibiting a great convenience in determining lump waves. Interaction solutions between lump waves
and other interesting waves, including homoclinic and heteroclinic solutions, can be explored for
(2+1)-dimensonal integrable model equations (see, e.g., [16,31,32]).
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It is also known that N-soliton solutions have been systematically studied by the Riemann-Hilbert
technique for local and nonlocal integrable equations generated from groups reductions of matrix
spectral problems (see, e.g., [33]-[36]). It is intriguing to analyze the existence of lump waves in reduced
integarble equations (see, e.g., [37,38]), both local and nonlocal. It is expected that studies of lump
waves could advance our understanding of nonlinear wave phenomena and their integrability theory
[39].
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