

Article

Not peer-reviewed version

Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions

[Wen-Xiu Ma](#) *

Posted Date: 30 October 2023

doi: [10.20944/preprints202310.1833.v1](https://doi.org/10.20944/preprints202310.1833.v1)

Keywords: Lump wave; Hirota bilinear form; Soliton; Symbolic computation; Nonlinearity; Dispersion

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions

Wen-Xiu Ma *

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA

Material Science Innovation and Modelling, Department of Mathematical Sciences, North-West University,

Mafikeng Campus, Mmabatho 2735, South Africa

* Correspondence: mawx@cas.usf.edu

Abstract: This paper aims to search for lump waves in a spatial symmetric (2+1)-dimensional dispersive wave model. Through an ansatz on positive quadratic functions, we conduct symbolic computations with Maple to generate lump waves for the proposed nonlinear model. A line of critical points of the lump waves is computed, whose two spatial coordinates travel at constant speeds. The corresponding maximum and minimum values are evaluated in terms of the wave numbers, and interestingly, all those extreme values do not change with time, either. The last section is the conclusion.

Keywords: lump wave; hirota bilinear form; soliton; symbolic computation; nonlinearity; dispersion

PACS: 05.45.Yv; 02.30.Ik

MSC: 35Q51; 35Q53; 37K40

1. Introduction

Applied sciences rely heavily on closed-form mathematical theories. Much of such studies represents mathematical intuitions and skills of high order, challenging even for advanced researchers of today. A kind of multiple wave solutions, called soliton solutions, are examples of closed-form solutions to integrable models of nonlinear dispersive waves. The nonlinearity and the dispersion play together in generating such nonlinear dispersive wave solutions.

In soliton theory, there are two powerful techniques, the inverse scattering transform [1] and the Hirota bilinear method [2], to soliton solutions. The inverse scattering transform was developed initially for solving Cauchy problems of nonlinear model equations, generated from Lax pairs of matrix spectral problems [3,4]. It is a nonlinear version of the Fourier transform.

The Hirota bilinear method is the other direct but powerful technique to soliton waves. Hirota bilinear forms are the starting point to generate closed-form solutions [7,8]. In the (2+1)-dimensional case, take a polynomial R in time t and two space variables x, y . A (2+1)-dimensional Hirota bilinear differential equation is defined by

$$R(D_t, D_x, D_y)f \cdot f = 0, \quad (1.1)$$

where D_t, D_x and D_y are three Hirota bilinear derivatives given as follows [2]:

$$D_t^m D_x^n D_y^k f \cdot f = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'} \right)^m \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right)^n \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial y'} \right)^k f(t, x, y) f(t', x', y') \Big|_{t'=t, x'=x, y'=y'} \quad (1.2)$$

in which m, n, k are nonnegative integers. Associated with a Hirota bilinear equation, a nonlinear partial differential equation

$$X(u, u_t, u_x, u_y, \dots) = 0 \quad (1.3)$$

with a dependent variable u is usually presented by the logarithmic derivative transformations

$$u = 2(\ln f)_{xx}, \quad u = 2(\ln f)_{yy} \text{ or } u = 2(\ln f)_{xy}. \quad (1.4)$$

For multi-component integrable models (see, e.g., [5,6]), other kinds of transformations need to be introduced and implemented. Within the Hirota bilinear theory, an N -soliton solution to a nonlinear equation can be presented by solving its corresponding Hirota bilinear equation (see, e.g., [7]-[11]).

Remarkably similar to solitons, lump waves (and rogue waves) are another kind of closed-form solutions to nonlinear integrable models [12]. Lump waves are expressed in terms of analytic rational functions, which are localized in all directions in the spatial space (see, e.g., [12,13]):

$$\lim_{x^2+y^2 \rightarrow \infty, ax+by+c=0} u(x, y, t) = 0, \quad t \in \mathbb{R}, \quad (1.5)$$

where a, b, c are arbitrary constants and $a^2 + b^2 \neq 0$. The KPI equation possesses abundant lump waves (see, e.g., [8]), and taking long wave limits of its soliton solutions can yield particular lump waves [14]. Lump waves can exist in nonlinear nonintegrable models as well, and illustrative examples include generalized KP, BKP, Jimbo-Miwa and Bogoyavlensky-Konopelchenko equations [15]-[19]. There also exist lump waves in linear models in higher dimensions (see, e.g., [20]).

Quadratic functions are used to present exact solutions to Hirota bilinear equations and formulate lump wave solutions to nonlinear model equations [8,12]. The logarithmic derivative transformations are taken to link nonlinear model equations to bilinear equations. In this paper, we would like to search for lump waves in a spatial symmetric (2+1)-dimensional nonlinear dispersive wave model via such an ansatz using quadratic functions. The proposed spatial symmetric (2+1)-dimensional dispersive wave model contains three nonlinear terms. We will conduct symbolic computations with Maple to determine its lump waves. Characteristic properties, such as critical points and extreme values, will be analyzed for the resulting lump waves. Concluding remarks will be given in the last section.

2. A spatial symmetric nonlinear model and its Hirota bilinear form

Let α and β be real constants. We introduce a spatial symmetric (2+1)-dimensional nonlinear dispersive wave model equation:

$$\begin{aligned} X(u) = & \alpha(3u_{xx}p_y + 3u_xp_{xy} + 3u_{xy}v + 3u_yv_x + u_{xxx}y + u_{tx} - u_{yy} \\ & + 3u_{yy}q_x + 3u_yq_{xy} + 3u_{xy}w + 3u_xw_y + u_{xyyy} + u_{ty} - u_{xx}) \\ & + \beta(4uu_{xy} + 5u_xu_y + u_{yy}v + u_{xx}w + v_xw_y + u_{xxyy}) = 0, \end{aligned} \quad (2.1)$$

with $v_y = u_x, w_x = u_y, p_x = v, q_y = w$, and search for its lump waves via the indicated ansatz using quadratic functions. The example with $\alpha = 1$ and $\beta = 0$ of this nonlinear model gives the special spatial symmetric (2+1)-dimensional model equation

$$\begin{aligned} & 3u_{xx}p_y + 3u_xp_{xy} + 3u_{xy}v + 3u_yv_x + u_{xxx}y + u_{tx} - u_{yy} \\ & + 3u_{yy}q_x + 3u_yq_{xy} + 3u_{xy}w + 3u_xw_y + u_{xyyy} + u_{ty} - u_{xx} = 0. \end{aligned} \quad (2.2)$$

Under the help of Maple, through the logarithmic derivative transformations

$$u = 2(\ln f)_{xy}, \quad v = 2(\ln f)_{xx}, \quad w = 2(\ln f)_{yy}, \quad p = 2(\ln f)_x, \quad q = 2(\ln f)_y, \quad (2.3)$$

the above spatial symmetric (2+1)-dimensional model equation (2.1) is put into the Hirota bilinear form:

$$\begin{aligned} R(f) &= [\alpha(D_x^3 D_y + D_y^3 D_x + D_t D_x + D_t D_y - D_x^2 - D_y^2) + \beta D_x^2 D_y^2] f \cdot f \\ &= 2\alpha(f_{xxx} f - 3f_{xxy} f_x + 3f_{xy} f_{xx} - f_y f_{xx} + f_{tx} f - f_t f_x - f_{yy} f + f_y^2 \\ &\quad + f_{xyy} f - 3f_{xyy} f_y + 3f_{xy} f_{yy} - f_x f_{yy} + f_{ty} f - f_t f_y - f_{xx} f + f_x^2) \\ &\quad + 2\beta(f_{xxyy} f - 2f_{xxy} f_y - 2f_{xyy} f_x + f_{xx} f_{yy} + 2f_{xy}^2) = 0, \end{aligned} \quad (2.4)$$

where D_t, D_x and D_y are the standard Hirota bilinear derivatives [2] (see also, (1.2)). By symbolic computation, a precise relation between the nonlinear model equation and the bilinear model equation can be explored to be

$$X(u) = \left[\frac{R(f)}{f^2} \right]_{xy}, \quad (2.5)$$

where the involved functions u, v, w, p, q are determined through the logarithmic derivative transformations of f in (2.3).

The same link also exists in a spatial symmetric KP model [21] and a spatial symmetric HSI model [22]. It is now evident that if f is a solution to the bilinear model equation (2.4), then u, v, w, p, q determined by (2.3) solve the spatial symmetric (2+1)-dimensional dispersive wave model equation (2.1). In the following section, we would like to look for a class of lump waves in this spatial symmetric nonlinear dispersive wave model.

3. Lump wave solutions

We would now like to compute lump wave solutions to the spatial symmetric (2+1)-dimensional dispersive wave model equation (2.1), through conducting symbolic computations. A direct computation can show that the above general nonlinear model equation does not pass the three-soliton test (see, e.g., [9,11] for the three-soliton test) and thus it doesn't possess an N -soliton solution..

Applying a general ansatz on lump waves in (2+1)-dimensions [8], we start looking for positive quadratic function solutions

$$f = \zeta_1^2 + \eta_2^2 + a_9, \quad \zeta_1 = a_1 x + a_2 y + a_3 t + a_4, \quad \zeta_2 = a_5 x + a_6 y + a_7 t + a_8, \quad (3.1)$$

to the corresponding Hirota bilinear equation (2.4), and the task will be to determine the real constant parameters a_i , $1 \leq i \leq 9$ (see, e.g., [12,15,17] for illustrative examples). It is known that this is a general ansatz for lump wave solutions of lower order in (2+1)-dimensions [12].

We substitute f by (3.1) into the Hirota bilinear equation (2.4) and obtain a system of algebraic equations on the involved parameters. A direct Maple computation to solve this system for a_3, a_7 and a_9 yields a set of solutions for the parameters:

$$\left\{ \begin{array}{l} a_3 = \frac{(a_1 + a_2)[a_1^2 + a_2^2 + (a_5 + a_6)^2] - 2a_1 a_6^2 - 2a_2 a_5^2}{(a_1 + a_2)^2 + (a_5 + a_6)^2}, \\ a_7 = \frac{(a_5 + a_6)[(a_1 + a_2)^2 + a_5^2 + a_6^2] - 2a_2^2 a_5 - 2a_1^2 a_6}{(a_1 + a_2)^2 + (a_5 + a_6)^2}, \\ a_9 = \frac{3(a_1 a_2 + a_5 a_6)(a_1^2 + a_2^2 + a_5^2 + a_6^2)[(a_1 + a_2)^2 + (a_5 + a_6)^2]}{2(a_1 a_6 - a_2 a_5)^2} \\ \quad + \frac{\beta[(a_1 a_2 - a_5 a_6)^2 + 2(a_1 a_2 + a_5 a_6)^2 + (a_1 a_6 + a_2 a_5)^2][(a_1 + a_2)^2 + (a_5 + a_6)^2]}{2\alpha(a_1 a_6 - a_2 a_5)^2}, \end{array} \right. \quad (3.2)$$

and all other parameters are arbitrary.

The above two frequency parameters, a_3 and a_7 , exhibit a class of dispersion relations in (2+1)-dimensional nonlinear dispersive waves, and the constant term parameter, a_9 , tells a complicated expression of the wave numbers, which is crucial in formulating lump waves within the Hirota bilinear theory. Interestingly, there also exists a kind of higher-order dispersion relations appearing in lump waves of the second model equation of the integrable KP hierarchy [23].

Let us analyze the analyticity of the lump waves by observing the above simplified expressions for the wave frequencies and the constant term in (3.2). Obviously, if

$$a_1 + a_2 = a_5 + a_6 = 0 \quad (3.3)$$

then

$$a_1 a_6 - a_2 a_5 = 0. \quad (3.4)$$

This implies that if $a_1 a_6 - a_2 a_5 \neq 0$, then we have

$$(a_1 + a_2)^2 + (a_5 + a_6)^2 > 0, \quad a_1^2 + a_2^2 + a_5^2 + a_6^2 > 0.$$

Therefore, to generate lump wave solutions through the logarithmic derivative transformations, we require two basic conditions:

$$a_1 a_6 - a_2 a_5 \neq 0, \quad (3.5)$$

and

$$3(a_1 a_2 + a_5 a_6) + \frac{\beta[(a_1 a_2 - a_5 a_6)^2 + 2(a_1 a_2 + a_5 a_6)^2 + (a_1 a_6 + a_2 a_5)^2]}{\alpha(a_1^2 + a_2^2 + a_5^2 + a_6^2)} > 0. \quad (3.6)$$

Those two necessary and sufficient conditions really guarantee the fundamental properties of lump waves. First, the resulting solutions of u, v, w are localized in all spatial directions, under (3.5). Second, they are analytic in the whole spatial and temporal space, under (3.5) and (3.6), which lead equivalently to that $a_9 > 0$. We will show in the next section that $a_9 > 0$ is also necessary for u, v, w to be analytic in \mathbb{R}^3 .

The second condition defined by (3.6) contains the two coefficients, α and β . Clearly, if

$$a_1 a_2 + a_5 a_6 \geq 0, \quad \alpha \beta \geq 0, \quad (a_1 a_2 + a_5 a_6)^2 + (\alpha \beta)^2 > 0, \quad (3.7)$$

then we have $a_9 > 0$. Therefore, the nonlinearity affects the analyticity of the lump waves in the model equation (2.1), but it does not affect the speeds of the two single waves in the lumps, in view of (3.2).

One reduced case can be worked out. When $\alpha = 1$ and $\beta = 0$, we obtain

$$a_9 = \frac{3(a_1 a_2 + a_5 a_6)(a_1^2 + a_2^2 + a_5^2 + a_6^2)[(a_1 + a_2)^2 + (a_5 + a_6)^2]}{2(a_1 a_6 - a_2 a_5)^2}. \quad (3.8)$$

Then, the conditions for the existence of lump waves in this reduced case simply become

$$(a_1 a_5 - a_2 a_6) \neq 0, \quad a_1 a_2 + a_5 a_6 > 0. \quad (3.9)$$

4. Characteristics of the lump waves

In this section, we would like to consider the characteristic behaviors of the resultant lump waves presented previously.

4.1. Line of critical points

Let us first compute critical points of f defined by (3.1) as a function of x and y . To this end, we need to determine solutions to the system

$$f_x(x(t), y(t), t) = 0, \quad f_y(x(t), y(t), t) = 0. \quad (4.1)$$

Since f is a quadratic polynomial in x and y , this system just requires

$$a_1\zeta_1 + a_5\zeta_2 = 0, a_2\zeta_1 + a_6\zeta_2 = 0.$$

Accordingly, based on the condition (3.5), we have $\zeta_1 = \zeta_2 = 0$, i.e.,

$$a_1x + a_2y + a_3t + a_4 = 0, a_5x + a_6y + a_7t + a_8 = 0, \quad (4.2)$$

This is a linear system of x and y , and all solutions are critical points of the quadratic function f :

$$\begin{cases} x(t) = -\frac{(a_1 + a_2)^2 + (a_5 + a_6)^2 - 2a_2^2 - 2a_6^2}{(a_1 + a_2)^2 + (a_5 + a_6)^2}t + \frac{a_2a_8 - a_4a_6}{a_1a_6 - a_2a_5}, \\ y(t) = \frac{(a_1 - a_2)^2 + (a_5 - a_6)^2 - 2a_2^2 - 2a_6^2}{(a_1 + a_2)^2 + (a_5 + a_6)^2}t - \frac{a_1a_8 - a_4a_5}{a_1a_6 - a_2a_5}, \end{cases} \quad (4.3)$$

at an arbitrary time t .

Evidently, those critical points form a straight line, whose two spatial coordinates travel at constant speeds. Now, a further straightforward computation can verify that all those points $(x(t), y(t))$ determined above are also critical points of the three solution functions u, v and w defined by (2.3).

4.2. Analyticity condition

Taking advantage of (4.2), we see that the sum of two squares, i.e., the function $f - a_9 = \zeta_1^2 + \zeta_2^2$ becomes zero at all critical points defined by (4.3). Accordingly, the quadratic function $f > 0$ in \mathbb{R}^3 if and only if the constant term $a_9 > 0$. The sufficiency is clear, as analyzed earlier. The necessity is true, because we have that f vanishes at the critical points if $a_9 = 0$, and f vanishes at all points on the circle $\zeta_1^2 + \zeta_2^2 = -a_9$ if $a_9 < 0$.

Consequently, the three solutions u, v, w defined by (2.3) are analytic in \mathbb{R}^3 if and only if the constant parameter a_9 must be positive. Further, in view of the analysis on the positiveness of a_9 made in the previous section, the necessary and sufficient conditions for u, v, w to be analytic are the two conditions in (3.5) and (3.6) on the wave numbers a_1, a_2, a_5, a_6 and the coefficients α and β .

4.3. Extreme values

Applying the second partial derivative test, we can see that the both lump waves, v and w , have a peak at the critical points $(x(t), y(t))$. This is because we have

$$\begin{cases} v_{xx} = -\frac{32\alpha^2(a_1^2 + a_5^2)^2(a_1a_6 - a_2a_5)^4}{3[(a_1 + a_2)^2 + (a_5 + a_6)^2]^2a_{10}^2} < 0, \\ v_{xx}v_{yy} - v_{xy}^2 = \frac{1024\alpha^4(a_1^2 + a_5^2)^2(a_1a_6 - a_2a_5)^{10}}{27[(a_1 + a_2)^2 + (a_5 + a_6)^2]^4a_{10}^4} > 0, \end{cases} \quad (4.4)$$

and

$$\begin{cases} w_{yy} = -\frac{32\alpha^2(a_2^2 + a_6^2)^2(a_1a_6 - a_2a_5)^4}{3[(a_1 + a_2)^2 + (a_5 + a_6)^2]^2a_{10}^2} < 0, \\ w_{xx}w_{yy} - w_{xy}^2 = \frac{1024\alpha^4(a_2^2 + a_6^2)^2(a_1a_6 - a_2a_5)^{10}}{27[(a_1 + a_2)^2 + (a_5 + a_6)^2]^4a_{10}^4} > 0, \end{cases} \quad (4.5)$$

where a_{10} is defined by

$$a_{10} = \alpha(a_1a_2 + a_5a_6)(a_1^2 + a_2^2 + a_5^2 + a_6^2) + \frac{1}{3}\beta[(a_1a_2 + a_5a_6)^2 + (a_1a_6 + a_2a_5)^2 + 2a_1^2a_2^2 + 2a_5^2a_6^2]. \quad (4.6)$$

In a similar way, we can work out that

$$\begin{cases} u_{xx} = -\frac{32\alpha^2(a_1a_2 + a_5a_6)(a_1^2 + a_5^2)(a_1a_6 - a_2a_5)^4}{3[(a_1 + a_2)^2 + (a_5 + a_6)^2]^2a_{10}^2}, \\ u_{xx}u_{yy} - u_{xy}^2 \\ = \frac{1024\alpha^4[3(a_1a_2 + a_5a_6)^2 - (a_1a_6 - a_2a_5)^2](a_1a_6 - a_2a_5)^{10}}{81[(a_1 + a_2)^2 + (a_5 + a_6)^2]^4a_{10}^4}, \end{cases} \quad (4.7)$$

where a_{10} is given by (4.6). Accordingly, the lump wave u has the maximum (or minimum) points $(x(t), y(t))$, when $a_1a_2 + a_5a_6 > 0$ (or $a_1a_2 + a_5a_6 < 0$) and

$$3(a_1a_2 + a_5a_6)^2 - (a_1a_6 - a_2a_5)^2 > 0;$$

the lump wave u has the saddle points $(x(t), y(t))$, when

$$3(a_1a_2 + a_5a_6)^2 - (a_1a_6 - a_2a_5)^2 < 0;$$

and the second partial derivative test is inconclusive, when

$$3(a_1a_2 + a_5a_6)^2 - (a_1a_6 - a_2a_5)^2 = 0.$$

A direct computation can generate the extreme values of v, w and u , achieved at the critical points $(x(t), y(t))$, as follows:

$$v_{maximum} = \frac{8\alpha(a_1^2 + a_5^2)(a_1a_6 - a_2a_5)^2}{3[(a_1 + a_2)^2 + (a_5 + a_6)^2]a_{10}}, \quad (4.8)$$

$$w_{maximum} = \frac{8\alpha(a_2^2 + a_6^2)(a_1a_6 - a_2a_5)^2}{3[(a_1 + a_2)^2 + (a_5 + a_6)^2]a_{10}}, \quad (4.9)$$

$$u_{extremum} = \frac{8\alpha(a_1a_2 + a_5a_6)(a_1a_6 - a_2a_5)^2}{3[(a_1 + a_2)^2 + (a_5 + a_6)^2]a_{10}}, \quad (4.10)$$

where a_{10} is defined by (4.6). Upon observing those expressions for the extreme values, we find that all extreme values do not depend on time t ; they are all constants on the characteristic line of critical points (see also, [21,22] for other examples). Furthermore, when $a_1a_6 - a_2a_5$ goes to zero, i.e., the two spatial directions (a_1, a_2) and (a_5, a_6) tends to be parallel to each other, the lump waves of u, v, w may not decay in all cases of the wave numbers a_1, a_2, a_5 and a_6 .

5. Conclusion

Through conducting symbolic computations with Maple, we have explored lump waves in a spatial symmetric (2+1)-dimensional dispersive wave model. The resulting lump waves have a line of critical points, whose spatial coordinates travel with constant velocities. The frequencies a_3, a_7 and the constant term a_9 of the lump waves were computed in terms of the wave numbers in the quadratic function f . Characteristic properties of the lump waves, such as critical points and extreme values, were worked out, and the effects of the nonlinear terms and the wave numbers were analyzed.

Interestingly, abundant lump waves also exist in linear wave model equations [20], besides nonlinear (2+1)-dimensional models (see, e.g., [24]-[27]) and (3+1)-dimension models (see, e.g., [28, 29]). The Hirota bilinear forms and the generalized bilinear forms are the starting points [12,30], exhibiting a great convenience in determining lump waves. Interaction solutions between lump waves and other interesting waves, including homoclinic and heteroclinic solutions, can be explored for (2+1)-dimensional integrable model equations (see, e.g., [16,31,32]).

It is also known that N -soliton solutions have been systematically studied by the Riemann-Hilbert technique for local and nonlocal integrable equations generated from groups reductions of matrix spectral problems (see, e.g., [33]-[36]). It is intriguing to analyze the existence of lump waves in reduced integrable equations (see, e.g., [37,38]), both local and nonlocal. It is expected that studies of lump waves could advance our understanding of nonlinear wave phenomena and their integrability theory [39].

Acknowledgments: The work was supported in part by NSFC under the grants 12271488, 11975145, 11972291 and 51771083, the Ministry of Science and Technology of China (G2021016032L), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020).

Data Availability Statement: All data generated or analyzed during this study are included in this published article.

Conflicts of Interest: The author declares that there is no known competing interest that could have appeared to influence this work.

References

1. Ablowitz, M.J.; Segur, H. *Solitons and the Inverse Scattering Transform*; SIAM: Philadelphia, PA, USA, 1981.
2. Hirota, R. *The Direct Method in Soliton Theory*; Cambridge University Press: New York, NY, USA, 2004.
3. Ablowitz, M.J.; Newell, A.C. The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. *J. Math. Phys.* **1973**, *14*, 1277–1284.
4. Zakharov, V.E.; Shabat, A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. *Funct. Anal. Appl.* **1974**, *8*, 226–235.
5. Ma, W.X. A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure. *Rom. Rep. Phys.* **2023**, *75*, 115.
6. Ma, W.X. A six-component integrable hierarchy and its Hamiltonian formulation. *Mod. Phys. Lett. B* **2023**, *37*, 2350143.
7. Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. *Phys. Rev. Lett.* **1971**, *27*, 1192–1194.
8. Ma, W.X. Lump solutions to the Kadomtsev-Petviashvili equation. *Phys. Lett. A* **2015**, *379*, 1975–1978.
9. Ma, W.X. N -soliton solutions and the Hirota conditions in (2+1)-dimensions. *Opt. Quantum Electron.* **2020**, *52*, 511.
10. Ma, W.X.; Yong, X.L.; Lü, X. Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. *Wave Motion* **2021**, *103*, 102719.
11. Ma, W.X. N -soliton solutions and the Hirota conditions in (1+1)-dimensions. *Int. J. Nonlinear Sci. Numer. Simul.* **2022**, *11*, 111.
12. Ma, W.X.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. *J. Differ. Equ.* **2018**, *264*, 2633–2659.
13. Tan, W.; Dai, H.P.; Dai, Z.D.; Zhong, W.Y. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. *Pramana – J. Phys.* **2017**, *89*, 77.
14. Manakov, S.V.; Zakharov, V.E.; Bordag, L.A.; Matveev, V.B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. *Phys. Lett. A* **1977**, *63*, 205–206.
15. Ma, W.X.; Qin, Z.Y.; Lü, X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. *Nonlinear Dyn.* **2016**, *84*, 923–931.
16. Ma, W.X.; Yong, X.L.; Zhang, H.Q. Diversity of interaction solutions to the (2+1)-dimensional Ito equation. *Comput. Math. Appl.* **2018**, *75*, 289–295.
17. Ma, W.X. A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions. *J. Appl. Anal. Comput.* **2019**, *9*, 1319–1332.
18. Wang, X.M.; Bilige S.D. Novel interaction phenomena of the (3+1)-dimensional Jimbo-Miwa equation. *Commun. Theor. Phys.* **2020**, *72*, 045001.
19. Chen, S.J.; Lü, X.; Yin, Y.H. Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model. *Commun. Theor. Phys.* **2023**, *75*, 055005.

20. Ma, W.X. Lump and interaction solutions to linear PDEs in (2+1)-dimensions via symbolic computation. *Mod. Phys. Lett. B* **2019**, *33*, 1950457.
21. Ma, W.X.; Batwa, S.; Manukure, S. Dispersion-managed lump waves in a spatial symmetric KP model. *East Asian J. Appl. Math.* **2023**, *13*, 246–256.
22. Ma, W.X.; Bai, Y.S.; Adjiri, A. Nonlinearity-managed lump waves in a spatial symmetric HSI model. *Eur. Phys. J. Plus* **2021**, *136*, 240.
23. Ma, W.X.; Zhang, L.Q. Lump solutions with higher-order rational dispersion relations. *Pramana – J. Phys.* **2020**, *94*, 43.
24. Manukure, S.; Zhou, Y.; Ma, W.X. Lump solutions to a (2+1)-dimensional extended KP equation. *Comput. Math. Appl.* **2018**, *75*, 2414–2419.
25. Ren, B.; Ma, W.X.; Yu, J. Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation. *Nonlinear Dyn.* **2019**, *96*, 717–727.
26. Yu, J.P.; Sun, Y.L. Study of lump solutions to dimensionally reduced generalized KP equations. *Nonlinear Dyn.* **2017**, *87*, 2755–2763.
27. Ma, W.X.; Zhang, Y.; Tang, Y.N. Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. *East Asian J. Appl. Math.* **2020**, *10*, 732–745.
28. Ma, W.X. Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. *Int. J. Nonlinear Sci. Numer. Simulat.* **2016**, *17*, 355–359.
29. Sun, Y.; Tian, B.; Xie, X.Y.; Chai, J.; Yin, H.M. Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. *Wave Random Complex.* **2018**, *28*, 544–552.
30. Batwa, S.; Ma, W.X. A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo-Miwa-like equation. *Comput. Math. Appl.* **2018**, *76*, 1576–1582.
31. Kofane, T.C.; Fokou, M.; Mohamadou, A.; Yomba, E. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. *Eur. Phys. J. Plus* **2017**, *132*, 465.
32. Ma, W.X. Interaction solutions to the Hirota-Satsuma-Ito equation in (2+1)-dimensions. *Front. Math. China* **2019**, *14*, 619–629.
33. Ma, W.X. Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type $(-\lambda, \lambda)$. *Int. J. Geom. Methods Mod. Phys.* **2023**, *20*, 2350098.
34. Ma, W.X. Integrable nonlocal nonlinear Schrödinger hierarchies of type $(-\lambda^*, \lambda)$ and soliton solutions. *Rep. Math. Phys.* **2023**, *92*, 19–36.
35. Ye, R.S.; Zhang, Y. General soliton solutions to a reverse-time nonlocal nonlinear Schrödinger equation. *Stud. Appl. Math.* **2020**, *145*, 197–216.
36. Li, J.; Xia, T.C.; Guo, H.D. Long-time asymptotics for the nonlocal Kundu-nonlinear-Schrödinger equation by the nonlinear steepest descent method. *Theor. Math. Phys.* **2022**, *213*, 1706–1726.
37. Ma, W.X. AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials. *Appl. Math. Lett.* **2023**, *145*, 108775.
38. Ma, W.X. Four-component integrable hierarchies of Hamiltonian equations with $(m + n + 2)$ th-order Lax pairs. *Theor. Math. Phys.* **203**, *216*, 1180–1188.
39. Ma, W.X. Integrability. In: *Encyclopedia of Nonlinear Science*; ed. A. Scott. Taylor & Francis: New York, NY, USA, 2005. pp. 250–253.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.