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Abstract: This paper aims to search for lump waves in a spatial symmetric (2+1)-dimensional

dispersive wave model. Through an ansatz on positive quadratic functions, we conduct symbolic

computations with Maple to generate lump waves for the proposed nonlinear model. A line of critical

points of the lump waves is computed, whose two spatial coordinates travel at constant speeds.

The corresponding maximum and minimum values are evaluated in terms of the wave numbers,

and interestingly, all those extreme values do not change with time, either. The last section is the

conclusion.
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1. Introduction

Applied sciences rely heavily on closed-form mathematical theories. Much of such studies

represents mathematical intuitions and skills of high order, challenging even for advanced researchers

of today. A kind of multiple wave solutions, called soliton solutions, are examples of closed-form

solutions to integrable models of nonlinear dispersive waves. The nonlinearity and the dispersion play

together in generating such nonlinear dispersive wave solutions.

In soliton theory, there are two powerful techniques, the inverse scattering transform [1] and

the Hirota bilinear method [2], to soliton solutions. The inverse scattering transform was developed

initially for solving Cauchy problems of nonlinear model equations, genearted from Lax pairs of matrix

spectral problems [3,4], It is a nonlinear version of the Fourier transform.

The Hirota bilinear method is the other direct but powerful technique to soliton waves. Hirota

bilinear forms are the starting point to generate closed-form solutions [7,8]. In the (2+1)-dimensional

case, take a polynomial R in time t and two space variables x, y. A (2+1)-dimensional Hirota bilinear

differential equation is defined by

R(Dt, Dx, Dy) f · f = 0, (1.1)

where Dt, Dx and Dy are three Hirota bilinear derivatives given as follows [2]:

Dm
t Dn

x Dk
y f · f =

( ∂

∂t
−

∂

∂t′
)m( ∂

∂x
−

∂

∂x′
)n( ∂

∂y
−

∂

∂y′
)k

f (t, x, y) f (t′, x′, y′)
∣

∣

t′=t,x′=x,y′=y
, (1.2)

in which m, n, k are nonnegative integers. Associated with a Hirota bilinear equation, a nonlinear

partial differential equation

X(u, ut, ux, uy, · · · ) = 0 (1.3)
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with a dependent variable u is usually presented by the logarithmic derivative transformations

u = 2(ln f )xx, u = 2(ln f )yy or u = 2(ln f )xy. (1.4)

For multi-component integrable models (see, e.g., [5,6]), other kinds of transformations need to be

introduced and implemented. Within the Hirota bilinear theory, an N-soliton solution to a nonlinear

equation can be presented by solving its corresponding Hirota bilinear equation (see, e.g., [7]-[11]).

Remarkably similar to solitons, lump waves (and rogue waves) are another kind of closed-form

solutions to nonlinear integrable models [12]. Lump waves are expressed in terms of analytic rational

functions, which are localized in all directions in the spatial space (see, e.g., [12,13]):

lim
x2+y2→∞, ax+by+c=0

u(x, y, t) = 0, t ∈ R, (1.5)

where a, b, c are arbitrary constants and a2 + b2 6= 0. The KPI equation possesses abundant lump waves

(see, e.g., [8]), and taking long wave limits of its soliton solutions can yield particular lump waves [14].

Lump waves can exist in nonlinear nonintegrable models as well, and illustrative examples include

generalized KP, BKP, Jimbo-Miwa and Bogoyavlensky-Konopelchenko equations [15]-[19]. There also

exist lump waves in linear models in higher dimensions (see, e.g., [20]).

Quadratic functions are used to present exact solutions to Hirota bilinear equations and formulate

lump wave solutions to nonlinear model equations [8,12]. The logarithmic derivative transformations

are taken to link nonlinear model eqautions to bilinear equations. In this paper, we would like to search

for lump waves in a spatial symmetric (2+1)-dimensional nonlinear dispersive wave model via such

an ansatz using quadratic functions. The proposed spatial symmetric (2+1)-dimensional dispersive

wave model contains three nonlinear terms. We will conduct symbolic computations with Maple to

determine its lump waves. Characteristic properties, such as critical points and extreme values, will be

analyzed for the resulting lump waves. Concluding remarks will be given in the last section.

2. A spatial symmetric nonlinear model and its Hirota bilinear form

Let α and β be real constants. We introduce a spatial symmetric (2+1)-dimensional nonlinear

dispersive wave model equation:

X(u) = α(3uxx py + 3ux pxy + 3uxyv + 3uyvx + uxxxy + utx − uyy

+ 3uyyqx + 3uyqxy + 3uxyw + 3uxwy + uxyyy + uty − uxx)

+ β(4uuxy + 5uxuy + uyyv + uxxw + vxwy + uxxyy) = 0, (2.1)

with vy = ux, wx = uy, px = v, qy = w, and search for its lump waves via the indicated ansatz using

quadratic functions. The example with α = 1 ad β = 0 of this nonlinear model gives the special spatial

symmetric (2+1)-dimensional model equation

3uxx py + 3ux pxy + 3uxyv + 3uyvx + uxxxy + utx − uyy

+ 3uyyqx + 3uyqxy + 3uxyw + 3uxwy + uxyyy + uty − uxx = 0. (2.2)

Under the help fo Maple, through the logarithmic derivative transformations

u = 2(ln f )xy, v = 2(ln f )xx, w = 2(ln f )yy, p = 2(ln f )x, q = 2(ln f )y, (2.3)
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the above spatial symmetric (2+1)-dimensional model equation (2.1) is put into the Hirota bilinear

form:

R( f ) = [α(D3
xDy + D3

yDx + DtDx + DtDy − D2
x − D2

y) + βD2
xD2

y] f · f

= 2α( fxxxy f − 3 fxxy fx + 3 fxy fxx − fy fxxx + ftx f − ft fx − fyy f + f 2
y

+ fxyyy f − 3 fxyy fy + 3 fxy fyy − fx fyyy + fty f − ft fy − fxx f + f 2
x )

+ 2β( fxxyy f − 2 fxxy fy − 2 fxyy fx + fxx fyy + 2 f 2
xy) = 0, (2.4)

where Dt, Dx and Dy are the standard Hirota bilinear derivatives [2] (see also, (1.2)). By symbolic

computation, a precise relation between the nonlinear model equation and the bilinear model equation

can be explored to be

X(u) =
[R( f )

f 2

]

xy
, (2.5)

where the involved functions u, v, w, p, q are determined through the logarithmic derivative

transformations of f in (2.3).

The same link also exists in a spatial symmetric KP model [21] and a spatial symmetric HSI

model [22]. It is now evident that if f is a solution to the bilinear model equation (2.4), then u, v, w, p, q

determined by (2.3) solve the spatial symmetric (2+1)-dimensional dispersive wave model equation

(2.1). In the following section, we would like to look for a class of lump waves in this spatial symmetric

nonlinear dispersive wave model.

3. Lump wave solutions

We would now like to compute lump wave solutions to the spatial symmetric (2+1)-dimensional

dispersive wave model equation (2.1), through conducting symbolic computations. A direct

computation can show that the above general nonlinear model equation does not pass the three-soliton

test (see, e.g., [9,11] for the three-soliton test) and thus it doesn’t possess an N-soliton solution..

Applying a general ansatz on lump waves in (2+1)-dimensions [8], we start looking for positive

quadratic function solutions

f = ζ2
1 + η2

2 + a9, ζ1 = a1x + a2y + a3t + a4, ζ2 = a5x + a6y + a7t + a8, (3.1)

to the corresponding Hirota bilinear equation (2.4), and the task will be to determine the real constant

parameters ai, 1 ≤ i ≤ 9 (see, e.g., [12,15,17] for illustrative examples). It is known that this is a general

ansatz for lump wave solutions of lower order in (2+1)-dimensions [12].

We substitute f by (3.1) into the Hirota bilinear equation (2.4) and obtain a system of algebraic

equations on the involved parameters. A direct Maple computation to solve this system for a3, a7 and

a9 yields a set of solutions for the parameters:































































a3 =
(a1 + a2)[a

2
1 + a2

2 + (a5 + a6)
2]− 2a1a2

6 − 2a2a2
5

(a1 + a2)2 + (a5 + a6)2
,

a7 =
(a5 + a6)[(a1 + a2)

2 + a2
5 + a2

6]− 2a2
2a5 − 2a2

1a6

(a1 + a2)2 + (a5 + a6)2
,

a9 =
3(a1a2 + a5a6)(a2

1 + a2
2 + a2

5 + a2
6)[(a1 + a2)

2 + (a5 + a6)
2]

2(a1a6 − a2a5)2

+
β[(a1a2 − a5a6)

2 + 2(a1a2 + a5a6)
2 + (a1a6 + a2a5)

2][(a1 + a2)
2 + (a5 + a6)

2]

2α(a1a6 − a2a5)2
,

(3.2)

and all other parameters are arbitrary.
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The above two frequency parameters, a3 and a7, exhibit a class of dispersion relations in

(2+1)-dimensional nonlinear dispersive waves, and the constant term parameter, a9, tells a complicated

expresssion of the wave numbers, which is crucial in formulating lump waves within the Hirota

bilinear theory. Interestingly, there also exists a kind of higher-order dispersion relations appearing in

lump waves of the second model equation of the integrable KP hierarchy [23].

Let us anlayze the analycity of the lump waves by observing the above simplified expressions for

the wave frequencies and the constant term in (3.2). Obviously, if

a1 + a2 = a5 + a6 = 0 (3.3)

then

a1a6 − a2a5 = 0. (3.4)

This implies that if a1a6 − a2a5 6= 0, then we have

(a1 + a2)
2 + (a5 + a6)

2
> 0, a2

1 + a2
2 + a2

5 + a2
6 > 0.

Therefore, to generate lump wave solutions through the logarithmic derivative transformations, we

require two basic conditions:

a1a6 − a2a5 6= 0, (3.5)

and

3(a1a2 + a5a6) +
β[(a1a2 − a5a6)

2 + 2(a1a2 + a5a6)
2 + (a1a6 + a2a5)

2]

α(a2
1 + a2

2 + a2
5 + a2

6)
> 0. (3.6)

Those two necessary and sufficient conditions really guarantee the fundamental properties of lump

waves. First, the resulting solutions of u, v, w are localized in all spatial directions, under (3.5). Second,

they are analytic in the whole spatial and temporal space, under (3.5) and (3.6), which lead equivalently

to that a9 > 0. We will show in the next section that a9 > 0 is also necessary for u, v, w to be analytic in

R
3.

The second condition defined by (3.6) caontains the two coefficients, α and β. Clearly, if

a1a2 + a5a6 ≥ 0, αβ ≥ 0, (a1a2 + a5a6)
2 + (αβ)2

> 0, (3.7)

then we have a9 > 0. Therefore, the nonlinearity affects the analyricity of the lump waves in the model

equation (2.1), but it does not affect the speeds of the two single waves in the lumps, in view of (3.2).

One reduced case can be worked out. When α = 1 and β = 0, we obtain

a9 =
3(a1a2 + a5a6)(a2

1 + a2
2 + a2

5 + a2
6)[(a1 + a2)

2 + (a5 + a6)
2]

2(a1a6 − a2a5)2
. (3.8)

Then, the conditions for the existence of lump waves in this reduced case simply become

(a1a5 − a2a5) 6= 0, a1a2 + a5a6 > 0. (3.9)

4. Characteristics of the lump waves

In this section, we would like to consider the characteristic behaviors of the resultant lump waves

presented previously.

4.1. Line of critical points

Let us first compute critical points of f defined by (3.1) as a function of x and y. To this end, we

need to determine solutions to the system

fx(x(t), y(t), t) = 0, fy(x(t), y(t), t) = 0. (4.1)
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Since f is a quadratic polynomial in x and y, this system just requires

a1ζ1 + a5ζ2 = 0, a2ζ1 + a6ζ2 = 0.

Accordingly, based on the condition (3.5), we have ζ1 = ζ2 = 0, i.e.,

a1x + a2y + a3t + a4 = 0, a5x + a6y + a7t + a8 = 0, (4.2)

This is a linear system of x and y, and all solutions are critical points of the quadratic function f :



















x(t) = −
(a1 + a2)

2 + (a5 + a6)
2 − 2a2

2 − 2a2
6

(a1 + a2)2 + (a5 + a6)2
t +

a2a8 − a4a6

a1a6 − a2a5
,

y(t) =
(a1 − a2)

2 + (a5 − a6)
2 − 2a2

2 − 2a2
6

(a1 + a2)2 + (a5 + a6)2
t −

a1a8 − a4a5

a1a6 − a2a5
,

(4.3)

at an arbitrary time t.

Evidently, those critical points form a straight line, whose two spatial coordinates travel at

constant speeds. Now, a further straightforward computation can verify that all those points (x(t), y(t))

determined above are also critical points of the three solution functions u, v and w defined by (2.3).

4.2. Analyticity condition

Taking advantage of (4.2), we see that the sum of two squares, i.e., the function f − a9 = ζ2
1 + ζ2

2

becomes zero at all critical points defined by (4.3). Accordingly, the quadratic function f > 0 in R
3

if and only if the constant term a9 > 0. The sufficiency is clear, as analyzed earlier. The necessity is

true, because we have that f vanishes at the critical points if a9 = 0, and f vanishes at all pointa on the

circle ζ2
1 + ζ2

2 = −a9 if a9 < 0.

Consequently, the three solutions u, v, w defined by (2.3) are analytic in R
3 if and only if the

constant parameter a9 must be positive. Further, in view of the analysis on the positiveness of a9 made

in the previous section, the necessary and sufficient conditions for u, v, w to be analytic are the two

conditions in (3.5) and (3.6) on the wave numbers a1, a2, a5, a6 and the coefficients α and β.

4.3. Extreme values

Applying the second partial derivative test, we can see that the both lump waves, v and w, have a

peak at the critical points (x(t), y(t)). This is because we have























vxx = −
32α2(a2

1 + a2
5)

2(a1a6 − a2a5)
4

3[(a1 + a2)2 + (a5 + a6)2]2a2
10

< 0,

vxxvyy − v2
xy =

1024α4(a2
1 + a2

5)
2(a1a6 − a2a5)

10

27[(a1 + a2)2 + (a5 + a6)2]4a4
10

> 0,

(4.4)

and






















wyy = −
32α2(a2

2 + a2
6)

2(a1a6 − a2a5)
4

3[(a1 + a2)2 + (a5 + a6)2]2a2
10

< 0,

wxxwyy − w2
xy =

1024α4(a2
2 + a2

6)
2(a1a6 − a2a5)

10

27[(a1 + a2)2 + (a5 + a6)2]4a4
10

> 0,

(4.5)

where a10 is defined by

a10 = α(a1a2 + a5a6)(a2
1 + a2

2 + a2
5 + a2

6) +
1

3
β[(a1a2 + a5a6)

2 + (a1a6 + a2a5)
2 + 2a2

1a2
2 + 2a2

5a2
6]. (4.6)
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In a similar way, we can work out that



































uxx = −
32α2(a1a2 + a5a6)(a2

1 + a2
5)(a1a6 − a2a5)

4

3[(a1 + a2)2 + (a5 + a6)2]2a2
10

,

uxxuyy − u2
xy

=
1024α4 [3(a1a2 + a5a6)

2 − (a1a6 − a2a5)
2](a1a6 − a2a5)

10

81[(a1 + a2)2 + (a5 + a6)2]4a4
10

,

(4.7)

where a10 is given by (4.6). Accordingly, the lump wave u has the maximum (or minimum) points

(x(t), y(t)), when a1a2 + a5a6 > 0 (or a1a2 + a5a6 < 0) and

3(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2
> 0;

the lump wave u has the saddle points (x(t), y(t)), when

3(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2
< 0;

and the second partial derivative test is inconclusive, when

3(a1a2 + a5a6)
2 − (a1a6 − a2a5)

2 = 0.

A direct computation can generate the extreme values of v, w and u, achieved at the critical points

(x(t), y(t)), as follows:

vmaximum =
8α(a2

1 + a2
5)(a1a6 − a2a5)

2

3[(a1 + a2)2 + (a5 + a6)2]a10
, (4.8)

wmaximum =
8α(a2

2 + a2
6)(a1a6 − a2a5)

2

3[(a1 + a2)2 + (a5 + a6)2]a10
, (4.9)

uextremum =
8α(a1a2 + a5a6)(a1a6 − a2a5)

2

3[(a1 + a2)2 + (a5 + a6)2]a10
, (4.10)

where a10 is defined by (4.6). Upon observing those expressions for the extreme values, we find that

all extreme values do not depend on time t; they are all constants on the characteristic line of critical

points (see also, [21,22] for other examples). Furthermore, when a1a6 − a2a5 goes to zero, i.e., the two

spatial directions (a1, a2) and (a5, a6) tends to be parallel to each other, the lump waves of u, v, w may

not decay in all cases of the wave numbers a1, a2, a5 and a6.

5. Conclusion

Through conducting symbolic computations with Maple, we have explored lump waves in a

spatial symmetric (2+1)-dimensional dispersive wave model. The resulting lump waves have a line of

critical points, whose spatial coordinates travel with constant velocities. The frequencies a3, a7 and the

constant term a9 of the lump waves were computed in terms of the wave numbers in the quadratic

function f . Characteristic properties of the lump waves, such as critical points and extreme values,

were worked out, and the effects of the nonlinear terms and the wave numbers were analyzed.

Interestingly, abundant lump waves also exist in linear wave model equations [20], besides

nonlinear (2+1)-dimensional models (see, e.g., [24]-[27]) and (3+1)-dimension models (see, e.g., [28,

29]). The Hirota bilinear forms and the generalized bilinear forms are the starting points [12,30],

exhibiting a great convenience in determining lump waves. Interaction solutions between lump waves

and other interesting waves, including homoclinic and heteroclinic solutions, can be explored for

(2+1)-dimensonal integrable model equations (see, e.g., [16,31,32]).
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It is also known that N-soliton solutions have been systematically studied by the Riemann-Hilbert

technique for local and nonlocal integrable equations generated from groups reductions of matrix

spectral problems (see, e.g., [33]-[36]). It is intriguing to analyze the existence of lump waves in reduced

integarble equations (see, e.g., [37,38]), both local and nonlocal. It is expected that studies of lump

waves could advance our understanding of nonlinear wave phenomena and their integrability theory

[39].
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