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Abstract: We introduce a special vector field w on a Riemannian manifold (N™, g), such that the Lie
derivative of the metric ¢ with respect to w is equal to pRic, where Ric is the Ricci curvature of (N™, g)
and p is a smooth function on N and call this vector field a p-Ricci vector field. We use p-Ricci
vector field on a Riemannian manifold (N, ¢) and find two characterizations of m-sphere S («). In
first result, we show that an m-dimensional compact and connected Riemannian manifold (N, g)
with nonzero scalar curvature admits a p-Ricci vector field w such that p is nonconstant function
and the integral of Ric (w, w) has a suitable lower bound is necessary and sufficient for (N™, g) to
be isometric to m-sphere S («). In second result, we show that an m-dimensional complete and
simply connected Riemannian manifold (N™, ¢) of positive scalar curvature admits a p-Ricci vector
field w such that p is a nontrivial solution of Fischer-Marsden equation and the squared length of the
covariant derivative of w has an appropriate upper bound, if and only if, (N, g) to be isometric to
m-sphere S™ ().

Keywords: p-Ricci vector fields; Fischer-Marsden equation; m-sphere; Ricci curvature

1. Introduction

An m-dimensional complete simply connected Riemannian manifold of constant curvature « is
isometric to one of the spaces the m-sphere S™ («), the Euclidean space R™ or the hyperbolic space
H™ (a) according as & > 0, & = 0 or & < 0 respectively (cf. [2]). Since, this classification, there has been
an interest in obtaining necessary and sufficient conditions on complete Riemannian manifolds so that
they are isometric to one of the three model spaces 5" («), R™ and H™ («a) respectively. In that one of
most sought questions is in obtaining different characterizations of spheres S™ (¢) among complete
Riemannian manifolds. In obtaining these characterizations most of the times conformal and Killing
vector fields are used on an m-dimensional complete Riemannian manifold (N™, g) (cf. [1], [4]-[11],
[14], [15]). A vector field u on m-Riemannian manifold (N, g) is a conformal vector field if the Lie
derivative £, has expression

£ug = 2fg,

where f is a smooth function called the conformal factor. If f = 0 in above definition, then u is called a
Killing vector field.

In this paper, we are interested in a vector field w on an m-dimensional Riemannian manifold
(N™, g) that satisfies

%Ewg = pRic, (1.1)

where £,g is the Lie-derivative of the metric ¢ with respect to w, p is a smooth function and Ric is the
Ricci tensor of (N, g). We call w satisfying equation (1.1) a p-Ricci vector field on (N™, ¢). Naturally,
if (N™, g) is an Einstein manifold, then a p-Ricci vector field w is a conformal vector field on (N™, g)
(cf. [4]- [9]). If in the equation (1.1), we take p = 0, then 0-Ricci vector field w on (N™, g) is a Killing
vector field on (N, g) (cf. [10]). A p-Ricci vector field on (N, g) is also a particular form of potential
field of a generalized soliton (cf. [12]), witha = —pand B =y = 0.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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We could also approach to equation (1.1) in other context (cf. [3]). On the m-dimensional
Riemannian manifold (N™, g), take a smooth function p and consider 1-parameter family of metrics
¢ (t) satisfying generalized Ricci flow (or p-Ricci flow) equation

d:g = 2pRic, ¢(0)=g. (1.2)

To reach a solution of above flow, we take a 1-parameter family of diffeormorphisms ¢; : N — N™
generated by the family of vector fields W (¢) and o (t) be a scale factor. Then we are interested in a
solution of flow (1.2) of the form

g(t) =o(t)gr ()
Differentiating above equation with respect to t and substituting ¢t = 0, while assuming ¢(0) = 1,
0(0) =0, W (0) = w and using ¢¢ = id, we get

£wg — 2pRic =0,

which is equation (1.1). Thus, a p-Ricci vector field w on (N, g) can be considered as stable solution
of the flow (1.2).

We see that as a trivial example on the Euclidean space R™, a constant vector field a is a p-Ricci
vector field for any smooth function p on R”. Similarly on the complex Euclidean space C" with
complex structure | and the vector field

m ia
gzl’:zlzﬁl

where z!,..,,z™ are Euclidean coordinates, the vector field w = J& is a p-Ricci vector field for any
smooth function p on C".

Next, we show that on the sphere S™(a) of constant curvature a, there are many p-Ricci vector
fields. With the imbedding i : $"(a) — R™*! and unit normal ¢ and shape operator —/«I, on taking
a nonzero constant vector field b on the Euclidean space R”*!, we have b = w + f&, where f = (b, &)
and w is the tangential component of b to the sphere 5™ («). Denote the induced metric on the sphere
§™(«) by ¢ and the Riemannian connection by D. Then differentiating above equation with respect to
the vector field X on §"(a), we have

Dxw = —vafX, Vf=+ aw, (1.3)

where V is the gradient of f. Using the first equation in (1.3), it follows that
£ug = —2Vafg

and the Ricci tensor of the sphere 5" (a) is given by
Ric = (m —1)ag.

Thus, we see that the vector field w on the sphere " (a) satisfies

1 1

~£ug = pRic, p=————F+F, 14

prwg =pRic, p=—g 7S (14)
that is, w is a p-Ricci vector field on the sphere 5" («). Indeed. for each nonzero constant vector field
on the Euclidean space R "1, there is a p-Ricci vector field on the sphere S™ (a).

doi:10.20944/preprints202310.1798.v1
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Above example naturally leads to a question: Under what conditions a compact and connected
m-dimensional Riemannian manifold (N™,¢) admitting a p-Ricci vector field w is isometric to a
m-sphere S™ («)?

There are two well known differential equations on a Riemannian manifold (N™, g), the first is
Obata’s differential equation namely (cf. [14], [15]),

Hess(o) = —aoyg, (1.5)

where ¢ is a non-constant smooth function, « is a positive constant and Hess(c) is the Hessian of o
defined by
Hess(0)(X,Y) = ¢ (DxVo,Y),

for smooth vector fields X,Y on N™. Obata proved that a necessary and sufficient condition for
a complete and simply connected Riemannian manifold (N™, g) to admit a nontrivial solution of
differential equation (1.5) is that (N™, g) is isometric to the sphere 5™ («) (cf. [14], [15]). The other
differential equation on (N, g) is Fischer-Marsden equation (cf. [13])

(Ao) g + oRic = Hess(0), (1.6)

where ¢ is a smooth function on N and Ac = div (Vo) is the Laplacian of ¢. We shall use the
abbreviation for the above Fischer-Marsden equation as FM-equation. Taking trace in the FM-equation

(1.6), we get
T

m—1

Ao = — o, (1.7)

where T = TrRic is the scalar curvature of the Riemannian manifold (N™, g). It is known that if (N™, g)
admits a nontrivial solution of FM-equation, then the scalar curvature 7 is necessarily constant (cf.
[13]).

Note that by equation (1.3), the smooth function f on the sphere 5" («x) has Hessian

Hess(f) (X,Y) = g (DxV,Y) = v/ag (Dxw,Y) = —afg (X,Y),

the Laplacian Af = div (y/aw) = —maf and Ric = (m — 1)ag. Consequently, on 5™ («), we see that

(Af) g+ fRic = Hess(f), (1.7)

that s, f is a solution of FM-equation on the sphere 5" («). If we combine the two, namely a Riemannian
manifold (N™, ¢) admits a p-Ricci vector field w such that p is a nontrivial solution of the FM-equation
on (N™, ¢) and seek additional condition under which (N, g) is isometric to S™ («)? Notice that the
p-Ricci vector field w on the sphere S (a) is a closed vector field. Therefore, in this paper, we use the
closed p-Ricci vector field w on a Riemannian manifold (N™, g) and answer these two question in
section-3, where we find two characterizations of the sphere 5" («).

2. Preliminaries

Let w be a closed p-Ricci vector field on an m-dimensional Riemannian manifold (N™, g). If B is
the 1-form dual to w, that is,
B(X)=g(w,X), Xe€O(TN™), (2.1)
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where © (TN™) is the space of smooth sections of the tangent bundle TN", then we have dp = 0. We
denote by Vx the covariant derivative operator with respect to the Riemannian connection on (N, g)
and notice that for the closed p-Ricci vector field w, we have

2¢ (Vxw,Y) = g(Vxw,Y)+g(Vyw, X)+g(Vxw,Y) —g(Vyw, X)
(Fwg) (X,Y) +dB (X,Y) = 2pRic (X,Y).

Thus, for a closed p-Ricci vector field w, we have
Vxw =pTX, Xe€©O(TN"), (22)
where T is a symmetric operator called Ricci operator given by
Ric(X,Y) =g(TX,Y).
Using the expression for the curvature tensor field R of (N, g)
R(X,Y)Z=[Vx,VY|Z-VxyZ, X, Y,Z€®(TN"),
and equation (2.2), we get
R(X,Y)w =X (o) TY =Y (p) TX + p ((VxT) (Y) = (VyT) (X)), 23)
X,Y € ©(TN™), where (VxT) (Y) = VxTY — T (VxY). The scalar curvature 7 of (N™, g) is given

by T = TrT, where TrT is the trace of the symmetric operator T. Choosing a local frame {Fj, .., F; }
and using the definition of the Ricci tensor Ric

Ric (X,Y) Zg( (F, X)Y,F),
together with equation (1.3), we conclude that
m
Ric (Y,w) = Ric (Y, Vp) — 1Y (p) + pg < Z (Vp T) ) —poY (1), (2.4)

where Vp is the gradient of p. It is known that the gradient of scalar curvature 7 satisfies (cf. [2])

1 m
SVT= 21 (vpjT) (F). 2.5)
j=
Consequently, equation (2.4) takes the form
Ric (Y,w) = Ric (Y, Vp) — 1Y (p) — %pY (1) (2.6)
and we have 1
T(w)=T(Vp)—1tVp— EPVT. (2.7)

3. Characterizing spheres via @-Ricci fields

Let w be a closed p-Ricci vector field on an m-dimensional Riemannian manifold (N™, g). We
shall use p-Ricci vector field and find two characterizations of m-sphere S («). In our first result, we
prove the following result:

doi:10.20944/preprints202310.1798.v1
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Theorem 1. A closed p-Ricci vector field w on an m-dimensional compact and connected Riemannian manifold
(N™,g), m > 2 with scalar curvature T # 0 and nonzero nonconstant function p satisfies

m

—1 . 2
- /M (divw)”,

if and only if, T is a positive constant m(m — 1), and (N™, g) is isometric to S™ («).

/M Ric (w,w) >

Proof. Let (N, g) be an m-dimensional compact and connected Riemannian manifold, m > 2 with
scalar scalar curvature T # 0 and ! be a closed p-Ricci vector field defined on (N™, ¢) with nonzero
and nonconstant function p satisfying

/M Ric (w,w) > mT—l " (divw)? . (3.1)

Then using equation (2.2), we have
divw = pT. (3.2)

Choosing a local orthonormal frame {Fj, .., F; } and using
2 m
IT|I* = )_ g (TF;, TF;)
j=1

and an outcome of equation (2.2) as
(Fwg) (X,Y) =2pg(TX,Y), X, Y€ ®(TN™),

we conclude

1
5 £wgl® =207 | T (3.3)
Note that, we have
T2 & T T
Lt Jgg((TEf‘mEf)f(TEf—mEf))
_ 2, 1o v T
= TP+~ 2]§g(TE],mE]>,
that is,
2
HT—EIH _ - L (3.4)
m m

Now, using equation (2.2), we have
T T
p(TX = %) = (Vxw = pX),

which in view of a local frame {Fj, .., F,} on (N, ¢) implies

- = ZZlg (o (7B =y 5) o (TB = ,51))
= ﬁlg (VE],(,U - %pE]‘, Vij - pr])
=
= ||Vw||2 + %szz — %Tpdivw.
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Using (3.2), in above equation, yields
2 T 2 1 59
Ll Il A R
which on integration gives
2|l TP / 21 55
/Nmp HT mIH = <||Vw|] L ) (3.5)
Next, we recall the following integral formula (cf. [16])
1
/ (Ric (@,@) + 5 |£ug? = [ Ve|? - (divw)2> —0,
Nm
and employing it in equation (3.5), we conclude
e T 2_/ , 1 2 g2 1 99
/Nmp HT mIH = J (ch(w,w)+2 |£wg|” — (divw) ST
Using equations (3.2) and (3.3) in above equation, yields
/ 02 HT - EIHZ = / Ric (w,w) + 202 ||T||* — T20% — szpZ ,
Nm m Nm m
that is,
2l T 2_/ . 2 2 1 o5\ 25, 15,
/Nmp HT mIH = J (ch(w,w)+2p (|T|| mTp) Tt TP
In view of equation (3.4), above equation implies
2 T _/ m—1,, .
/Nmp HT mIH B Nm( m . F ch(w,w))
and substituting from equation (3.2), it yields
2 _ 1 2 o m—1 . 2 / .
/Nmp HT mIH = Nm(dww) o Ric (v, w) .
Employing inequality (3.1) in above equation, we conclude
2|7 Tl =
#r- i o
However, p # 0 on connected N™, gives
T=11. (3.6)
m

Taking covariant derivative in above equation, we have

(VXT)(Y) = X (1) ¥

and using a frame {Fj, .., F;} on (N™, ¢) in above equation, we get
g 8 q g

i (Ve,T) (E) = %VT.

=1

doi:10.20944/preprints202310.1798.v1
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Using equation (2.5) in this equation, we arrive at

1 1

-Vt=-—-Vr1

2 m
and as m > 2, we conclude VT = 0. Hence, the scalar curvature 7 is a constant and it is a nonzero
constant. Now, equations (2.7) and (3.6) imply

T T
W= EVP —TVp,
that is,

w=—(m-1)Vp 3.7)

and it gives divw = —(m — 1)Ap, which in view of equation (3.2) implies Tp = —(m — 1)Ap, that is,
—(m —1)pAp = Tp>.

Integrating above equation by parts, we arrive at

—1/ v 2:/ 2,
1) [ IVpP = [ o

Since, p is a nonconstant, from above equation, we conclude the constant T > 0. We put T = m(m — 1)«
for a positive constant . Now, differentiating equation (3.7) and using equations (2.2) and (3.6), we
conclude

VxVp=—apX, Xe€O®O(TN™),

where p is nonconstant function and « > 0 is a constant. Hence, Hess(p) = —apg, that is, (N, g) is
isometric to the sphere 5™ (a) (cf. [14], [15]).

Conversely, suppose that (N™, ¢) is isometric to the sphere S™ («). Then, we know that a nonzero
constant vector field b on the ambient Euclidean space R”*! induces a vector field w on the sphere
§™ («), which by equation (1.4) is a p-Ricci vector field. Clearly, the scalar curvature of 5" () is given
by T = m(m — 1)a # 0. We claim that the function p is nonzero and nonconstant. If p = 0, then by
equation (1.4), we have f = 0, which in view of equation (1.3) implies w = 0, and this in turn will
imply that the constant vector field b = 0. This is a contrary to the assumption that b is a nonzero
constant vector field. Hence, p 7# 0. Now, suppose p is a constant, then by equation (1.4), f is a constant
and by equation (1.3), we have divw = —m+/a f, which by Stokes’s Theorem on compact 5™ (), would
imply f = 0. This in turn by virtue of equation (1.4) implies p = 0, which is a contradiction as seen
above. Hence, the function p is nonzero and nonconstant.

Next, using equations (1.3) and (1.4), we have

divw = m(m — 1)ap (3.8)
and it gives
divw)? = m2(m — 1 2a2/ 2, (3.9)
Jong iz = mm =17 [
Now, using equation (1.4), we have
1
Vp=————F7+VFf, (3.10)

which on using equation (1.3), gives

doi:10.20944/preprints202310.1798.v1
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Taking divergence in above equation and using equation (3.8), we conclude Ap = —muap, that is,
pAp = —mup? integrating this equation by parts, we conclude
Vol|? = ma / 2,
Jowi I = [ o
Treating this equation with equation (3.9), we conclude
divame—lza/ Vol?. 3.11
Jorg i = mm =17 [V 1)

Also, using equations (1.3) and (3.10), we have
w=—(m—-1)Vp

and it changes the equation (3.11) to

divwzzmtx/ w|?.
Jorg i =ma [ e

Finally, using Ric (w,w) = (m — 1) ||w]||* in above equation, we conclude

m—1

. _m—1 . w
fgm(a) Ric (w,w) = i s (divw)

and this finishes the proof. O

Next, we consider a closed p-Ricci vector field on a compact and connected Riemannian manifold
(N™, g) such that the smooth function p is a nontrivial solution of the FM-equation and find yet another
characterization of the sphere S™ («). Indeed we prove the following:

Theorem 2. An m-dimensional complete and simply connected Riemannian manifold (N™, ¢) with scalar
curvature T > 0 admits a closed p-Ricci vector field w such that the function p is a nontrivial solution of the
FM-equation and the length of covariant derivative of w satisfies

1
Vo|? < =122,
IVel? < 7%
if and only if, T is a positive constant T = m(m — 1)a and (N™, g) is isometric to S™ («).
Proof. Suppose (N, g) is an m-dimensional complete and simply connected Riemannian manifold

with scalar curvature T > 0, and it admits a closed p-Ricci vector field w, where p is nontrivial solution
of the FM-equation (1.6) and the length of covariant derivative of w satisfies

1
IVaw|? < —1%02. (3.12)
m
For p, we define the operator B'o by
ByX =VxVp, Xe®(TN"),
then B, is a symmetric operator related to Hess(p) by

Hess(p) (X,Y) =g (B,X,Y), X, Y€ ©®(TN™). (3.13)

doi:10.20944/preprints202310.1798.v1
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As, p is a nontrivial solution of the FM-equation, using equations (3.13) and (1.6), we have
pTX = B,X — (Ap) X,
which in view of equation (1.7) becomes
B,X = oTX — —oX (3.14)

Note that owing to the fact that p is a nontrivial solution of the FM-equation on (N, g), the scalar
curvature T is a constant and we put T = m(m — 1)a for a constant a. Using equation (3.14), we have

ByX +apX = pTX — (m —1)apX, X €@ (TN™).
Now, using equation (2.2) in above equation, we get
ByX 4+ apX = Vxw — (m —1)apX, X € ©(TN™).

Taking a local frame {Fj, .., F, } on (N, g), by above equation, we conclude

m

Y 8 (BoFj + apF;, ByFj + apF;)

j=1

18o + a1

m
ﬂg (Vp].w — (m —1)apF;, V5w — (m— 1)0chj)

]
IVl + m(m —1)%a%0? — 2(m — 1)ap (divw) .

Now, using equating (2.2), we have divw = tp = m(m — 1)ap and inserting it in above equation, we
arrive at
| Bp + oclez = |Vl = m(m —1)%a20?,
that is,
1Bo + apl|* = | Veo|? %szz.

Using inequality (3.12) in above equation results in
B, = —uapl,
that is,
Hess(p) = —apg. (3.15)

Note that as T > 0, the constant « > 0 and p being a nontrivial solution, p is a nonconstant function.
Hence, by equation (3.15), the complete and simply connected Riemannian manifold (N",g) is
isometric to the sphere S™ («) (cf. [14], [15]).

Conversely, suppose that (N™, g) is isometric to the sphere S («). Then, by equation (1.7), the
function f is a solution of FM-equation on the sphere S («), which has a closed p-Ricci vector field w.
The solution f of FM-equation is related to p by equation (1.4), that is,

f=—(m—=1)\ap. (3.16)

In the proof of Theorem-1, we have seen that p is a nonconstant function on S («). Moreover, using
equation (3.16), we have

Af = —(m—1)y/aAp, Hess(f) = —(m —1)\/aHess(p)

doi:10.20944/preprints202310.1798.v1
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and the equation (1.7) takes the form
—(m—1)V/a(Ap) g + fRic = —(m —1)v/xHess(p),
which in view of equation (3.16) changes to
(Ap) g + pRic = Hess(p).

Hence, p is a nontrivial solution of the FM-equation on the sphere 5™ («). Now, the Ricci operator T of
the sphere S (a) is given by T = (m — 1)al and therefore equation (2.2) on " («) is

Vxw = (m—1)apX, XeO(TS"(a)).
Using the expression for the scalar curvature T = m(m — 1)a for the sphere S™(«), we have
Vxw = %pX, XeO(TS"(a)).

This proves
2_ 1 5,
IVl = - %
and completes the proof. [

4. Conclusions

In previous section, we have used a closed p-Ricci vector field w on an m-dimensional Riemannian
manifold (N™, g) to find two different characterizations of a m-sphere S (). The scope of studying
p-Ricci vector fields on a Riemannian manifold is quite modest. We observe that, in previous section,
we restricted the p-Ricci vector field w to be closed that simplified the expression for the covariant
derivative of w. It will be interesting to investigate whether, we could get similar results after removing
the restriction that the p-Ricci vector field w is closed. It will be interesting future topic to study
the geometry of an m-dimensional Riemannian manifold (N™, ¢) that admits a p-Ricci vector field
w, which need not be closed. In order to simplify the findings on an m-dimensional Riemannian
manifold (N, g) admitting a p-Ricci vector field w, which is not necessarily closed, we could impose
the restriction on the Ricci operator T of (N, g) to be Codazzi type tensor, namely it satisfies

(VxT) (Y) = (VyT) (X), X,Y €@ (TN™).

Note that above restriction on (N, g) is slightly stronger than demanding the scalar curvature is a
constant.
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