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Abstract: We introduce a special vector field ω on a Riemannian manifold (Nm, g), such that the Lie

derivative of the metric g with respect to ω is equal to ρRic, where Ric is the Ricci curvature of (Nm, g)

and ρ is a smooth function on Nm and call this vector field a ρ-Ricci vector field. We use ρ-Ricci

vector field on a Riemannian manifold (Nm, g) and find two characterizations of m-sphere Sm (α). In

first result, we show that an m-dimensional compact and connected Riemannian manifold (Nm, g)

with nonzero scalar curvature admits a ρ-Ricci vector field ω such that ρ is nonconstant function

and the integral of Ric (ω, ω) has a suitable lower bound is necessary and sufficient for (Nm, g) to

be isometric to m-sphere Sm (α). In second result, we show that an m-dimensional complete and

simply connected Riemannian manifold (Nm, g) of positive scalar curvature admits a ρ-Ricci vector

field ω such that ρ is a nontrivial solution of Fischer-Marsden equation and the squared length of the

covariant derivative of ω has an appropriate upper bound, if and only if, (Nm, g) to be isometric to

m-sphere Sm (α).

Keywords: ρ-Ricci vector fields; Fischer-Marsden equation; m-sphere; Ricci curvature

1. Introduction

An m-dimensional complete simply connected Riemannian manifold of constant curvature α is

isometric to one of the spaces the m-sphere Sm (α), the Euclidean space Rm or the hyperbolic space

Hm (α) according as α > 0, α = 0 or α < 0 respectively (cf. [2]). Since, this classification, there has been

an interest in obtaining necessary and sufficient conditions on complete Riemannian manifolds so that

they are isometric to one of the three model spaces Sm (α), Rm and Hm (α) respectively. In that one of

most sought questions is in obtaining different characterizations of spheres Sm (α) among complete

Riemannian manifolds. In obtaining these characterizations most of the times conformal and Killing

vector fields are used on an m-dimensional complete Riemannian manifold (Nm, g) (cf. [1], [4]-[11],

[14], [15]). A vector field u on m-Riemannian manifold (Nm, g) is a conformal vector field if the Lie

derivative £ug has expression

£ug = 2 f g,

where f is a smooth function called the conformal factor. If f = 0 in above definition, then u is called a

Killing vector field.

In this paper, we are interested in a vector field ω on an m-dimensional Riemannian manifold

(Nm, g) that satisfies
1

2
£ωg = ρRic, (1.1)

where £ωg is the Lie-derivative of the metric g with respect to ω, ρ is a smooth function and Ric is the

Ricci tensor of (Nm, g). We call ω satisfying equation (1.1) a ρ-Ricci vector field on (Nm, g). Naturally,

if (Nm, g) is an Einstein manifold, then a ρ-Ricci vector field ω is a conformal vector field on (Nm, g)

(cf. [4]- [9]). If in the equation (1.1), we take ρ = 0, then 0-Ricci vector field ω on (Nm, g) is a Killing

vector field on (Nm, g) (cf. [10]). A ρ-Ricci vector field on (Nm, g) is also a particular form of potential

field of a generalized soliton (cf. [12]), with α = −ρ and β = γ = 0.
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We could also approach to equation (1.1) in other context (cf. [3]). On the m-dimensional

Riemannian manifold (Nm, g), take a smooth function ρ and consider 1-parameter family of metrics

g (t) satisfying generalized Ricci flow (or ρ-Ricci flow) equation

∂tg = 2ρRic, g (0) = g. (1.2)

To reach a solution of above flow, we take a 1-parameter family of diffeormorphisms ϕt : Nm → Nm

generated by the family of vector fields W (t) and σ(t) be a scale factor. Then we are interested in a

solution of flow (1.2) of the form

g (t) = σ(t)ϕ∗
t (g) .

Differentiating above equation with respect to t and substituting t = 0, while assuming σ(0) = 1,
.
σ (0) = 0, W (0) = ω and using ϕ0 = id, we get

£ωg − 2ρRic = 0,

which is equation (1.1). Thus, a ρ-Ricci vector field ω on (Nm, g) can be considered as stable solution

of the flow (1.2).

We see that as a trivial example on the Euclidean space Rm, a constant vector field a is a ρ-Ricci

vector field for any smooth function ρ on Rm. Similarly on the complex Euclidean space Cm with

complex structure J and the vector field

ξ =
m

∑
i=1

zi ∂

∂zi
,

where z1, .., , zm are Euclidean coordinates, the vector field ω = Jξ is a ρ-Ricci vector field for any

smooth function ρ on Cm.

Next, we show that on the sphere Sm(α) of constant curvature α, there are many ρ-Ricci vector

fields. With the imbedding i : Sm(α) → Rm+1 and unit normal ξ and shape operator −√
αI, on taking

a nonzero constant vector field b on the Euclidean space Rm+1, we have b = ω + f ξ, where f = 〈b, ξ〉
and ω is the tangential component of b to the sphere Sm(α). Denote the induced metric on the sphere

Sm(α) by g and the Riemannian connection by D. Then differentiating above equation with respect to

the vector field X on Sm(α), we have

DXω = −
√

α f X, ∇ f =
√

αω, (1.3)

where ∇ f is the gradient of f . Using the first equation in (1.3), it follows that

£ωg = −2
√

α f g

and the Ricci tensor of the sphere Sm(α) is given by

Ric = (m − 1)αg.

Thus, we see that the vector field ω on the sphere Sm(α) satisfies

1

2
£ωg = ρRic, ρ = − 1

(m − 1)
√

α
f , (1.4)

that is, ω is a ρ-Ricci vector field on the sphere Sm(α). Indeed. for each nonzero constant vector field

on the Euclidean space Rm+1, there is a ρ-Ricci vector field on the sphere Sm(α).
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Above example naturally leads to a question: Under what conditions a compact and connected

m-dimensional Riemannian manifold (Nm, g) admitting a ρ-Ricci vector field ω is isometric to a

m-sphere Sm(α)?

There are two well known differential equations on a Riemannian manifold (Nm, g), the first is

Obata’s differential equation namely (cf. [14], [15]),

Hess(σ) = −ασg, (1.5)

where σ is a non-constant smooth function, α is a positive constant and Hess(σ) is the Hessian of σ

defined by

Hess(σ)(X, Y) = g (DX∇σ, Y) ,

for smooth vector fields X, Y on Nm. Obata proved that a necessary and sufficient condition for

a complete and simply connected Riemannian manifold (Nm, g) to admit a nontrivial solution of

differential equation (1.5) is that (Nm, g) is isometric to the sphere Sm(α) (cf. [14], [15]). The other

differential equation on (Nm, g) is Fischer-Marsden equation (cf. [13])

(∆σ) g + σRic = Hess(σ), (1.6)

where σ is a smooth function on Nm and ∆σ = div (∇σ) is the Laplacian of σ. We shall use the

abbreviation for the above Fischer-Marsden equation as FM-equation. Taking trace in the FM-equation

(1.6), we get

∆σ = − τ

m − 1
σ, (1.7)

where τ = TrRic is the scalar curvature of the Riemannian manifold (Nm, g). It is known that if (Nm, g)

admits a nontrivial solution of FM-equation, then the scalar curvature τ is necessarily constant (cf.

[13]).

Note that by equation (1.3), the smooth function f on the sphere Sm(α) has Hessian

Hess( f ) (X, Y) = g (DX∇ f , Y) =
√

αg (DXω, Y) = −α f g (X, Y) ,

the Laplacian ∆ f = div
(√

αω
)

= −mα f and Ric = (m − 1)αg. Consequently, on Sm(α), we see that

(∆ f ) g + f Ric = Hess( f ), (1.7)

that is, f is a solution of FM-equation on the sphere Sm(α). If we combine the two, namely a Riemannian

manifold (Nm, g) admits a ρ-Ricci vector field ω such that ρ is a nontrivial solution of the FM-equation

on (Nm, g) and seek additional condition under which (Nm, g) is isometric to Sm(α)? Notice that the

ρ-Ricci vector field ω on the sphere Sm(α) is a closed vector field. Therefore, in this paper, we use the

closed ρ-Ricci vector field ω on a Riemannian manifold (Nm, g) and answer these two question in

section-3, where we find two characterizations of the sphere Sm(α).

2. Preliminaries

Let ω be a closed ρ-Ricci vector field on an m-dimensional Riemannian manifold (Nm, g). If β is

the 1-form dual to ω, that is,

β (X) = g (ω, X) , X ∈ Θ (TNm) , (2.1)
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where Θ (TNm) is the space of smooth sections of the tangent bundle TNm, then we have dβ = 0. We

denote by ∇X the covariant derivative operator with respect to the Riemannian connection on (Nm, g)

and notice that for the closed ρ-Ricci vector field ω, we have

2g (∇Xω, Y) = g (∇Xω, Y) + g (∇Yω, X) + g (∇Xω, Y)− g (∇Yω, X)

= (£ωg) (X, Y) + dβ (X, Y) = 2ρRic (X, Y) .

Thus, for a closed ρ-Ricci vector field ω, we have

∇Xω = ρTX, X ∈ Θ (TNm) , (2.2)

where T is a symmetric operator called Ricci operator given by

Ric (X, Y) = g (TX, Y) .

Using the expression for the curvature tensor field R of (Nm, g)

R (X, Y) Z = [∇X ,∇Y] Z −∇[X.Y]Z, X, Y, Z ∈ Θ (TNm) ,

and equation (2.2), we get

R (X, Y)ω = X (ρ) TY − Y (ρ) TX + ρ ((∇XT) (Y)− (∇YT) (X)) , (2.3)

X, Y ∈ Θ (TNm), where (∇XT) (Y) = ∇XTY − T (∇XY). The scalar curvature τ of (Nm, g) is given

by τ = TrT, where TrT is the trace of the symmetric operator T. Choosing a local frame {F1, .., Fm}
and using the definition of the Ricci tensor Ric

Ric (X, Y) =
m

∑
j=1

g
(

R
(

Fj, X
)

Y, Fj

)

,

together with equation (1.3), we conclude that

Ric (Y, ω) = Ric (Y,∇ρ)− τY (ρ) + ρg

(

Y,
m

∑
j=1

(

∇Fj
T
)

(Fj)

)

− ρY (τ) , (2.4)

where ∇ρ is the gradient of ρ. It is known that the gradient of scalar curvature τ satisfies (cf. [2])

1

2
∇τ =

m

∑
j=1

(

∇Fj
T
)

(Fj). (2.5)

Consequently, equation (2.4) takes the form

Ric (Y, ω) = Ric (Y,∇ρ)− τY (ρ)− 1

2
ρY (τ) (2.6)

and we have

T (ω) = T (∇ρ)− τ∇ρ − 1

2
ρ∇τ. (2.7)

3. Characterizing spheres via æ-Ricci fields

Let ω be a closed ρ-Ricci vector field on an m-dimensional Riemannian manifold (Nm, g). We

shall use ρ-Ricci vector field and find two characterizations of m-sphere Sm(α). In our first result, we

prove the following result:
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Theorem 1. A closed ρ-Ricci vector field ω on an m-dimensional compact and connected Riemannian manifold

(Nm, g), m > 2 with scalar curvature τ 6= 0 and nonzero nonconstant function ρ satisfies

∫

M
Ric (ω, ω) ≥ m − 1

m

∫

M
(divω)2 ,

if and only if, τ is a positive constant m(m − 1)α, and (Nm, g) is isometric to Sm(α).

Proof. Let (Nm, g) be an m-dimensional compact and connected Riemannian manifold, m > 2 with

scalar scalar curvature τ 6= 0 and ! be a closed ρ-Ricci vector field defined on (Nm, g) with nonzero

and nonconstant function ρ satisfying

∫

M
Ric (ω, ω) ≥ m − 1

m

∫

M
(divω)2 . (3.1)

Then using equation (2.2), we have

divω = ρτ. (3.2)

Choosing a local orthonormal frame {F1, .., Fm} and using

‖T‖2 =
m

∑
j=1

g
(

TFj, TFj

)

and an outcome of equation (2.2) as

(£ωg) (X, Y) = 2ρg (TX, Y) , X, Y ∈ Θ (TNm) ,

we conclude
1

2
|£ωg|2 = 2ρ2 ‖T‖2 . (3.3)

Note that, we have

∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=

m

∑
j=1

g
((

TEj −
τ

m
Ej

)

,
(

TEj −
τ

m
Ej

))

= ‖T‖2 +
1

m
τ2 − 2

m

∑
j=1

g
(

TEj,
τ

m
Ej

)

,

that is,
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
= ‖T‖2 − 1

m
τ2. (3.4)

Now, using equation (2.2), we have

ρ
(

TX − τ

m
X
)

=
(

∇Xω − τ

m
ρX
)

,

which in view of a local frame {F1, .., Fm} on (Nm, g) implies

ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=

m

∑
j=1

g
(

ρ
(

TEj −
τ

m
Ej

)

, ρ
(

TEj −
τ

m
Ej

))

=
m

∑
j=1

g
(

∇Ej
ω − τ

m
ρEj,∇Ej

ω − τ

m
ρEj

)

= ‖∇ω‖2 +
1

m
τ2ρ2 − 2

m
τρdivω.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2023                   doi:10.20944/preprints202310.1798.v1

https://doi.org/10.20944/preprints202310.1798.v1


6 of 11

Using (3.2), in above equation, yields

ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
= ‖∇ω‖2 − 1

m
τ2ρ2,

which on integration gives

∫

Nm
ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=
∫

Nm

(

‖∇ω‖2 − 1

m
τ2ρ2

)

. (3.5)

Next, we recall the following integral formula (cf. [16])

∫

Nm

(

Ric (ω, ω) +
1

2
|£ωg|2 − ‖∇ω‖2 − (divω)2

)

= 0,

and employing it in equation (3.5), we conclude

∫

Nm
ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=
∫

Nm

(

Ric (ω, ω) +
1

2
|£ωg|2 − (divω)2 − 1

m
τ2ρ2

)

.

Using equations (3.2) and (3.3) in above equation, yields

∫

Nm
ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=
∫

Nm

(

Ric (ω, ω) + 2ρ2 ‖T‖2 − τ2ρ2 − 1

m
τ2ρ2

)

,

that is,

∫

Nm
ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=
∫

Nm

(

Ric (ω, ω) + 2ρ2

(

‖T‖2 − 1

m
τ2ρ2

)

− τ2ρ2 +
1

m
τ2ρ2

)

.

In view of equation (3.4), above equation implies

∫

Nm
ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=
∫

Nm

(

m − 1

m
τ2ρ2 − Ric (ω, ω)

)

and substituting from equation (3.2), it yields

∫

Nm
ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
=

m − 1

m

∫

Nm
(divω)2 −

∫

Nm
Ric (ω, ω) .

Employing inequality (3.1) in above equation, we conclude

ρ2
∥

∥

∥
T − τ

m
I
∥

∥

∥

2
= 0.

However, ρ 6= 0 on connected Nm, gives

T =
τ

m
I. (3.6)

Taking covariant derivative in above equation, we have

(∇XT) (Y) =
1

m
X (τ)Y

and using a frame {F1, .., Fm} on (Nm, g) in above equation, we get

m

∑
j=1

(

∇Ej
T
)

(Ej) =
1

m
∇τ.
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Using equation (2.5) in this equation, we arrive at

1

2
∇τ =

1

m
∇τ

and as m > 2, we conclude ∇τ = 0. Hence, the scalar curvature τ is a constant and it is a nonzero

constant. Now, equations (2.7) and (3.6) imply

τ

m
ω =

τ

m
∇ρ − τ∇ρ,

that is,

ω = −(m − 1)∇ρ (3.7)

and it gives divω = −(m − 1)∆ρ, which in view of equation (3.2) implies τρ = −(m − 1)∆ρ, that is,

−(m − 1)ρ∆ρ = τρ2.

Integrating above equation by parts, we arrive at

(m − 1)
∫

Nm
‖∇ρ‖2 = τ

∫

Nm
ρ2.

Since, ρ is a nonconstant, from above equation, we conclude the constant τ > 0. We put τ = m(m − 1)α

for a positive constant α. Now, differentiating equation (3.7) and using equations (2.2) and (3.6), we

conclude

∇X∇ρ = −αρX, X ∈ Θ (TNm) ,

where ρ is nonconstant function and α > 0 is a constant. Hence, Hess(ρ) = −αρg, that is, (Nm, g) is

isometric to the sphere Sm (α) (cf. [14], [15]).

Conversely, suppose that (Nm, g) is isometric to the sphere Sm (α). Then, we know that a nonzero

constant vector field b on the ambient Euclidean space Rm+1 induces a vector field ω on the sphere

Sm (α), which by equation (1.4) is a ρ-Ricci vector field. Clearly, the scalar curvature of Sm (α) is given

by τ = m(m − 1)α 6= 0. We claim that the function ρ is nonzero and nonconstant. If ρ = 0, then by

equation (1.4), we have f = 0, which in view of equation (1.3) implies ω = 0, and this in turn will

imply that the constant vector field b = 0. This is a contrary to the assumption that b is a nonzero

constant vector field. Hence, ρ 6= 0. Now, suppose ρ is a constant, then by equation (1.4), f is a constant

and by equation (1.3), we have divω = −m
√

α f , which by Stokes’s Theorem on compact Sm (α), would

imply f = 0. This in turn by virtue of equation (1.4) implies ρ = 0, which is a contradiction as seen

above. Hence, the function ρ is nonzero and nonconstant.

Next, using equations (1.3) and (1.4), we have

divω = m(m − 1)αρ (3.8)

and it gives
∫

Sm(α)
(divω)2 = m2(m − 1)2α2

∫

Sm(α)
ρ2. (3.9)

Now, using equation (1.4), we have

∇ρ = − 1

(m − 1)
√

α
∇ f , (3.10)

which on using equation (1.3), gives

∇ρ = − 1

m − 1
ω.
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Taking divergence in above equation and using equation (3.8), we conclude ∆ρ = −mαρ, that is,

ρ∆ρ = −mαρ2 integrating this equation by parts, we conclude

∫

Sm(α)
‖∇ρ‖2 = mα

∫

Sm(α)
ρ2.

Treating this equation with equation (3.9), we conclude

∫

Sm(α)
(divω)2 = m(m − 1)2α

∫

Sm(α)
‖∇ρ‖2 . (3.11)

Also, using equations (1.3) and (3.10), we have

ω = −(m − 1)∇ρ

and it changes the equation (3.11) to

∫

Sm(α)
(divω)2 = mα

∫

Sm(α)
‖ω‖2 .

Finally, using Ric (ω, ω) = (m − 1) ‖ω‖2 in above equation, we conclude

∫

Sm(α)
Ric (ω, ω) =

m − 1

m

∫

Sm(α)
(divω)2

and this finishes the proof.

Next, we consider a closed ρ-Ricci vector field on a compact and connected Riemannian manifold

(Nm, g) such that the smooth function ρ is a nontrivial solution of the FM-equation and find yet another

characterization of the sphere Sm (α). Indeed we prove the following:

Theorem 2. An m-dimensional complete and simply connected Riemannian manifold (Nm, g) with scalar

curvature τ > 0 admits a closed ρ-Ricci vector field ω such that the function ρ is a nontrivial solution of the

FM-equation and the length of covariant derivative of ω satisfies

‖∇ω‖2 ≤ 1

m
τ2ρ2,

if and only if, τ is a positive constant τ = m(m − 1)α and (Nm, g) is isometric to Sm (α).

Proof. Suppose (Nm, g) is an m-dimensional complete and simply connected Riemannian manifold

with scalar curvature τ > 0, and it admits a closed ρ-Ricci vector field ω, where ρ is nontrivial solution

of the FM-equation (1.6) and the length of covariant derivative of ω satisfies

‖∇ω‖2 ≤ 1

m
τ2ρ2. (3.12)

For ρ, we define the operator Bρ by

BρX = ∇X∇ρ, X ∈ Θ (TNm) ,

then Bρ is a symmetric operator related to Hess(ρ) by

Hess(ρ) (X, Y) = g
(

BρX, Y
)

, X, Y ∈ Θ (TNm) . (3.13)
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As, ρ is a nontrivial solution of the FM-equation, using equations (3.13) and (1.6), we have

ρTX = BρX − (∆ρ) X,

which in view of equation (1.7) becomes

BρX = ρTX − τ

m − 1
ρX. (3.14)

Note that owing to the fact that ρ is a nontrivial solution of the FM-equation on (Nm, g), the scalar

curvature τ is a constant and we put τ = m(m − 1)α for a constant α. Using equation (3.14), we have

BρX + αρX = ρTX − (m − 1)αρX, X ∈ Θ (TNm) .

Now, using equation (2.2) in above equation, we get

BρX + αρX = ∇Xω − (m − 1)αρX, X ∈ Θ (TNm) .

Taking a local frame {F1, .., Fm} on (Nm, g), by above equation, we conclude

∥

∥Bρ + αρI
∥

∥

2
=

m

∑
j=1

g
(

BρFj + αρFj, BρFj + αρFj

)

=
m

∑
j=1

g
(

∇Fj
ω − (m − 1)αρFj,∇Fj

ω − (m − 1)αρFj

)

= ‖∇ω‖2 + m(m − 1)2α2ρ2 − 2(m − 1)αρ (divω) .

Now, using equating (2.2), we have divω = τρ = m(m − 1)αρ and inserting it in above equation, we

arrive at
∥

∥Bρ + αρI
∥

∥

2
= ‖∇ω‖2 − m(m − 1)2α2ρ2,

that is,
∥

∥Bρ + αρI
∥

∥

2
= ‖∇ω‖2 − 1

m
τ2ρ2.

Using inequality (3.12) in above equation results in

Bρ = −αρI,

that is,

Hess(ρ) = −αρg. (3.15)

Note that as τ > 0, the constant α > 0 and ρ being a nontrivial solution, ρ is a nonconstant function.

Hence, by equation (3.15), the complete and simply connected Riemannian manifold (Nm, g) is

isometric to the sphere Sm(α) (cf. [14], [15]).

Conversely, suppose that (Nm, g) is isometric to the sphere Sm(α). Then, by equation (1.7), the

function f is a solution of FM-equation on the sphere Sm(α), which has a closed ρ-Ricci vector field ω.

The solution f of FM-equation is related to ρ by equation (1.4), that is,

f = −(m − 1)
√

αρ. (3.16)

In the proof of Theorem-1, we have seen that ρ is a nonconstant function on Sm(α). Moreover, using

equation (3.16), we have

∆ f = −(m − 1)
√

α∆ρ, Hess( f ) = −(m − 1)
√

αHess(ρ)
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and the equation (1.7) takes the form

−(m − 1)
√

α (∆ρ) g + f Ric = −(m − 1)
√

αHess(ρ),

which in view of equation (3.16) changes to

(∆ρ) g + ρRic = Hess(ρ).

Hence, ρ is a nontrivial solution of the FM-equation on the sphere Sm(α). Now, the Ricci operator T of

the sphere Sm(α) is given by T = (m − 1)αI and therefore equation (2.2) on Sm(α) is

∇Xω = (m − 1)αρX, X ∈ Θ (TSm(α)) .

Using the expression for the scalar curvature τ = m(m − 1)α for the sphere Sm(α), we have

∇Xω =
τ

m
ρX, X ∈ Θ (TSm(α)) .

This proves

‖∇ω‖2 =
1

m
τ2ρ2

and completes the proof.

4. Conclusions

In previous section, we have used a closed ρ-Ricci vector field ω on an m-dimensional Riemannian

manifold (Nm, g) to find two different characterizations of a m-sphere Sm (α). The scope of studying

ρ-Ricci vector fields on a Riemannian manifold is quite modest. We observe that, in previous section,

we restricted the ρ-Ricci vector field ω to be closed that simplified the expression for the covariant

derivative of ω. It will be interesting to investigate whether, we could get similar results after removing

the restriction that the ρ-Ricci vector field ω is closed. It will be interesting future topic to study

the geometry of an m-dimensional Riemannian manifold (Nm, g) that admits a ρ-Ricci vector field

ω, which need not be closed. In order to simplify the findings on an m-dimensional Riemannian

manifold (Nm, g) admitting a ρ-Ricci vector field ω, which is not necessarily closed, we could impose

the restriction on the Ricci operator T of (Nm, g) to be Codazzi type tensor, namely it satisfies

(∇XT) (Y) = (∇YT) (X) , X, Y ∈ Θ (TNm) .

Note that above restriction on (Nm, g) is slightly stronger than demanding the scalar curvature is a

constant.
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