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Abstract: We examine a linear g—difference differential equation which is singular in complex time ¢
at the origin. Its coefficients are polynomial in time and bounded holomorphic on horizontal strips in
one complex space variable. The equation under study represents a —analog of a singular partial
differential equation, recently investigated by the author, which comprises Fuchsian operators and
entails a forcing term that combines polynomial and logarithmic type functions in time. A sectorial
holomorphic solution to the equation is constructed as a double complete Laplace transform in both
time ¢ and its complex logarithm log ¢ and Fourier inverse integral in space. For a particular choice of
the forcing term, this solution turns out to solve some specific nonlinear g—difference differential
equation with polynomial coefficients in some positive rational power of t. Asymptotic expansions of
the solution relatively to time ¢ are investigated. A Gevrey type expansion is exhibited in a logarithmic
scale. Furthermore, a formal asymptotic expansion in power scale is displayed, revealing a new fine
structure involving remainders with both Gevrey and g—Gevrey type growth.

Keywords: asymptotic expansion; Borel-Laplace transform; Fourier transform; initial value problem;
formal power series

MSC: 35C10; 35C20

1. Introduction

In this work, we draw attention to a family of singular linear g—difference differential equations

modelled as
ap

Q(3:)u(t,z) = t'00,} Rp(3:)u(t,z) + P(t,2, 04, 92)u(t, 2) + f(,2) (1)

for vanishing initial data #(0,z) = 0, where dp, k1 > 1 from the leading term of (1) are integers, Q(X),
Rp(X) represent polynomials with complex coefficients and P(t,z, V;, V) stands for a polynomial in
its arguments t, V1, V, with holomorphic coefficients relatively to the space variable z on a horizontal
strip in C designed as Hg = {z € C/|Im(z)| < B}, for some prescribed width 28 > 0. The forcing
term f(t,z) is a logarithmic type function represented as a polynomial in both complex time variable ¢
and inverse of its complex logarithm 1/ log t with coefficients that are bounded holomorphic on the
strip Hpg.

This paper is a natural sequel of the recent study [9] by the author. Indeed, in [9], we focused on
the next singularly perturbed linear partial differential equations shaped as

Q(0z)y(t,z,€) = (et)dD(tat)%RD(az)y(t,z, €)+ H(t, z,€td,9:)y(t,z,€) + h(t,z¢€) (2)

for given initial data y(0,z,€) = 0, for integers dp,k; > 1 appearing in the principal term of (2),
complex polynomials Q(X), Rp(X) as above and where H(t,z, €, Vi, V,) represents a polynomial
in t, V1, V2 whose coefficients are bounded holomorphic w.r.t z on the strip Hy and relatively to a
complex parameter € on some fixed disc D¢, centered at 0 for some radius €y > 0. The forcing term
h(t,z,€) comprises coefficients that rely polynomially on complex time ¢, analytically in € on D, and
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holomorphically in z on Hg. This term also entails logarithmic type functions stated as truncated
Laplace transforms along a fixed segment [—a,0] for some radius a > 0 that involve the inverse
complex logarithm 1/ log(et). When the radius a > 0 is taken large, the expression of the forcing term
h becomes proximate to maps that are similar to the forcing term f (¢, z) of (1) described above, namely
a polynomial in both et and 1/ log(et) with bounded holomorphic coefficients on D¢, x Hg.

Under suitable constraints set on the profile of (2), we were able to construct a set of genuine
bounded holomorphic solutions y, to (2), for p in a finite subset I; of the natural numbers N, expressed
as a complete Laplace transform of integer order k; in the monomial €¢, a truncated Laplace transform
of order 1 in the inverse 1/ log(et) and inverse Fourier integral in the space variable z,

+o0
yp(t,z,€) = kil/ / / wy (T, T, M, €)
P )12 Jig, Jia0) S0 P

(B _ Vo zm g, 472 4T
xexp( (et) log(et)Tz)e dm - 3)

where the so-called Borel-Fourier map wy (11, T, 1, €) is

- analytic near 77 = 0 and relatively to 7, € D, and € € D¢, \ {0} and has (at most) exponential
growth of order k; along some well chosen unbounded sector 54, centered at 0 and containing

the halfline L, = 0, —i—oo)eﬁdl’ for d, € R, with respect to 77.
-  continuous and subjected to exponential decay in phase m € R.

As aresult, these functions y,, (t,z,€) define bounded holomorphic maps on domains 7 x H p X Ep,
for well selected bounded sector 7 edged at 0 and where £ = {€,} yc1, is an appropriate set of bounded
sectors centered at 0. At this point, it is crucial to notice that these solutions i, cannot be represented
as complete Laplace transform in the map 1/ log(et). It turns out that the radii a, ey > 0 are related by
a rule of the form egoanl < M, for some suitable constant M > 0 and positive integers ng, 1y > 1.

Besides, asymptotic features of these solutions have been examined in [9]. It appears that the
family {y,}ye1, owns asymptotic expansions of Gevrey type in two distinguished scales of functions.
Indeed, for each p € Ij, the partial map (t,€) — y,(f,z,€) holds a generalized asymptotic formal
expansion (in a sense defined in the classical textbooks [5] and [14])

(6) = 3 G (15,0 (1 ToBLE)” W

|
>0 n:

on the domain 7 x &, in the scale of logarithmic functions {(1/log(et))"},>0 with bounded
holomorphic coefficients G}W on T x Hg x &,. These asymptotic expansions are revealed to be
of Gevrey 1 on T x &, giving rise to constants K!, M! > 0 for which the error bounds

o (1/log(et))"

IS < K (MYNHIT(N +2)[1/ log(en) V! (5)

sup |yp(t, z,€) Z G
ZGHﬁ

occur for all integers N > 0, provided thate € &, t € T, where I'(x) stands for the Gamma function
in x. On the other hand, all the partial maps € — y,(t,z,€), p € I, share a common generalized
asymptotic formal expansion

7(t,z,€) = Y Gi(t,z€) (6)

n>0

on &y, in the scale of monomial {€" },,>9 with bounded holomorphic coefficients G2onT x H g X De,
for some open domain D, containing all the sectors &y, p € I;. Moreover, these asymptotic expansions
happen to be of Gevrey order 1/kj on each sector, meaning that constants K3, M,Z, > 0 can be pinpointed
for which the error estimates
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N+1
k+ )|€|N+l
1

N
sup  |yp(tz€) Z (t,z,€ —| < K5 (Mp)NTIT (1 + 7)

tET,ZGHﬁ

hold for all integers N > 0, whenever € € £,. At last, we proved in [9] that the coefficients G,lw and
G2 of both formal expansions 3}%, and 7? solve explicit differential recursion relations with respect to
n > 0 that might be handy for effective computations.

In the present investigation of the problem (1), we plan to follow a similar roadmap as in [9].
Namely, we plan to build up genuine sectorial solutions to (1) and describe their asymptotic expansions
as time t borders the origin, instead of a perturbation parameter € which does not appear in (1). We
notice that our main problem (1) can be viewed as a g—analog of (2) where the Fuchsian operator t0; is
substituted by the discret dilation operator 0y;. This terminology stems from the plain observation
that the quotient (f(qt) — f(t))/ (gt — t) neighbors the derivative f'(t) as g tends to 1. The problem (2)
involves at first sight only powers of the basic differential operator of Fuchsian type td;. However, the
conditions imposed on (2) allows to express it also by means of powers of the basic differential operator
of so-called irregular type t¥1719;. The same fact is acknowledged for the problem (1) under study for
which g—difference operators of the form t/ (Tél;t where Iy > kql; appear, see (22). These operators are
labeled of irregular type in the literature by analogy with the differential case. We quote the classical
textbooks [2] and [3] as references for analytic aspects of differential equations wih irregular type and
the book [15] for analytic and algebraic features of g—difference equations with irregular type. This
suggests that in the building process of the solutions to (1), the classical Laplace transform of order k;
ought to be supplanted by a g—Laplace transform of order k; similarly to our earlier work [11] where
some related initial value g—difference differential problem was handled.

We now describe a little more precisely the main statements of this paper achieved in Theorem
1 and Theorem 2. Namely, under fitting restrictions on the shape of (1) listed in Subsection 2.2 and
complemented in the statement of Theorem 1 in Subsection 4.3, we can establish the existence of a
bounded holomorphic solution u(t, z) to (1) on a domain ((Ry, A, N Dg,) \ (—09,0]) x Hg, for some
small radius Ry > 0, where R, 4, stands for an open sector centered at 0 with large opening that does
not contain the halfline Ly ; , = [0, +oo)e\/jl(d1+”), see (19), for thoroughly chosen directions d; € R.
In addition, the map u(t,z) is modelled through a triple integral which entails a Fourier inverse, a
g—Laplace and a complete Laplace transforms

— kl e
) g by Lo )
exp (— (log(t)) ) eV 11 10T )

1
X N —
©,1/k (/1) L)

where the Borel-Fourier map wy, (71, 72, m) is

- analytic on a unbounded sector S;, centered at 0 containing the halfline L;, with respect to 7y

where it has (at most) g—exponential growth of order k;.
—  analytic relatively to 7, on some open halfstrip

Hy ={t € C/Re(t) <0, |Im(7)| <12}

with small width 7, > 0 and on a small disc D,.
—  continuous and submitted to exponential decay in phase m € R.

At this stage, we emphasize that the geometry of the Borel space in the variable (73, 2) for
the map wy,  differs significantly from the one of the Borel-Fourier map w) in (3). Indeed, the
map wy, (T, T2,m) is in general not analytic near 7; = 0 while w,(7, 12,1, €) possesses this
property. As we will realize later on, this will be the root of the dissemblances observed between
the asymptotic properties of the solutions v, of (2) and the solution u of (1). Besides, the partial map

doi:10.20944/preprints202310.1781.v1
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T, — wp(T1, T2, M, €) is only holomorphic on some fixed disc D, but 7 — wy, (71, T2, m) is analytic
on a full halfstrip H, which allows the solution u(t, z) to be expressed as a complete Laplace transform
in 1/ logt in direction 7t while y,(t,z, €) is represented as a truncated Laplace transform along the
segment [—a,0]. A direct by-product of this observation is that the forcing term f(¢,z) of (1) can be
presented as an exact polynomial in both time t and inverse complex logarithm 1/ logt while the
forcing term K (t, z, €) has to be only considered as proximate to such a polynomial in t and 1/ log .
Some interesting aftermath is reached when f(t, z) is chosen a mere monomial in ¢ and 1/ log ¢ since in
that case f(t,z) solves an explicit nonlinear ordinary differential equation with polynomial coefficients
in some positive rational power t*, « € Q, displayed in (34). As a result, u(t,z) turns out to be an
exact holomorphic solution to some specific nonlinear g—difference differential equation with bounded
holomorphic coefficients with respect to z on Hg and polynomial in t*, stated in (36). Contrastingly,
the equation (2) becomes close to some nonlinear partial differential equation as 2 — +co but no
information can be extracted about the existence of an exact genuine solution to the limit nonlinear
problem.

It is worthwhile noting that in the recent years much attention has been drawn on on nonlinear
g—difference equations and especially on those related to the so-called g—Painlevé equations. For a
comprehensive overview on major studies for g—Painlevé equations and more generally for integrable
discrete dynamical systems, we refer to the book [7]. In this trend of research we quote the novel
paper [6] where the authors construct convergent generalized power series with complex exponents
on sectors that are solutions to nonlinear algebraic g—difference equations. In the context of nonlinear
g—difference differential equations we mention an important result by H. Yamazawa obtained in [17].
Indeed, he considers equations with the shape

u(gt, x) = u(t,x) + F(t,x, {031} || <m) ©)

fort € C, x € C", for some integers n,m > 1, some real number g > 1, where F is a well prepared
analytic function in its arguments. Under non resonance conditions of the so-called characteristic
exponent p(x) associated to (9) at x = 0, he has constructed convergent logarithmic type solutions of

the form .
u(t,x) = Y ui(x)t + Y i j(x) ) (log £)
i=1 i>1,j>1

0<k<it+2m(j—1)

where the coefficients u;(x) and ¢; ;x(x) are holomorphic on a common disc Dg and where p;(x) =
log(1+ (g9 —1)p(x))/ log(g) stands for a g—analog of the characteristic exponent p(x).

In the second part of Theorem 1, we exhibit for the solution u(t, z) of (1) a generalized asymptotic
expansion of Gevrey type in a logarithmic scale for ¢ in the vicinity of 0. The statement is similar to the
one reached in [9] for the solutions y,(t,z,€) of (2). Indeed, the partial map t > u(t,z) is shown to
possess a generalized formal series

wgzzguﬂl¥ﬁ

n>0

(10)

with bounded holomorphic coefficients G, (t,z) on the domain (R4, a, N Dg,) x Hg as asymptotic
expansion of Gevrey order 1 with respect to t on (R4, o, N Dg,) \ (—09,0], leading to estimates of the

form N
sup |u(t,z) — Z Gn(t,z)(lﬂ#ﬂ
ZEHﬂ n=0 n:

| < KMNHIT(N +2)[1/ log N+ a1

for some constants K, M > 0, for all integers N > 0, whenever t € (R4 ,a, N Dg,) \ (—o0,0].
Furthermore, in Section 4.4, Proposition 6, we provide explicit and simple g—difference and differential
recursion relations displayed in (154) and (155) for the coefficients G, (t,z), n > 0, intended for practical
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use. The existence of such a formal expression (10) is shown in a comparable way as (4) for the partial
maps (t,€) — yy(t,z,€) in the problem (2). Namely, it is based on sharp estimates of some exponential
decay for the differences of neighboring analytic solutions {Ug, o, (11, U2, z) bo<p<c—1, disclosed in
(120), to some related g—difference differential equation which comprises an homography action, see
(116) and (118) in Proposition 4. In the process, we use a classical result known as the Ramis-Sibuya
theorem (see Theorem (R.S.) in the subsection 4.2) which ensures the existence of a common Gevrey
asymptotic expansion for families of sectorial holomorphic functions.

In the second main result of this paper, stated in Theorem 2, a generalized asymptotic expansion
of the solution u(, z) is established in the scale of monomials {#"},>¢. This statement differs notably
from the one obtained for the partial maps € — y,(t,z, €) in the problem (2). Namely, the holomorphic
solution u(t,z) to (1) can be split into a sum u(t,z) = uy(t,z) + ux(t,z) where

e the map u;(t,z) owns a formal expression

i (t,z) = ) bu(t,2)t" (12)

n>0

with bounded holomorphic coefficients b, (t,z) on the domain ((Ry, A, N Dg,) \ (—00,0]) x Hg
as generalized asymptotic expansion of so-called g—Gevrey order k;. It means that two constants
B1, B, > 0 can be found with the error bounds

N n N+1 NN ) N+1
sup |uq(t,z) — Z bu(t,z)t"| < B1(B2)" g %1 |t (13)
ZEHl; n=0

for all integers N > 0, all t € (Ry, o, N Dg,) \ (—00,0].
e the map uy(t,z) has the null formal series as asymptotic expansion of order 1 in a logarithmic
scale as f tends to 0. Indeed, two constants Bz, By > 0 can be sorted with the estimates

sup |uz(t,z)| < B3(By)NT'T(N +2)[1/ log t|N*! (14)
ZEH‘B

for all integers N > 0, provided that t € (Ry, A, N Dg,) \ (—o0,0].

At this point, we stress the fact that the generalized expansion of Gevrey type (7) obtained for the
solutions y,(t, z, €) of (2) in the monomial scale {€" },,>( are obtained by means of the Ramis-Sibuya
theorem (see Theorem (R.S.) in Subsection 4.2) through precise estimates of some exponential decay
for the differences of the consecutive maps y, 1 — yp relatively to € on the intersections £, N &,.
These estimates were achieved according to the fact that the Borel-Fourier maps 1 + wy (11, 72,1, €)
are analytic at 77 = 0 in (3). In contrast, for the problem (1) under study, as observed earlier in
this introduction, any of the partial Borel-Fourier map 7 — wy, (71, T2, m) appearing in (8) for any
admissible direction d; € R is not analytic near 7y = 0, only on sectors centered at 0. Therefore, no
bounds for differences of solutions u(f, z) to (1) for different directions d; € R can be rooted out and
the recipe using the Ramis-Sibuya theorem fails to be applied. Instead we introduce a new approach
based on a specific splitting of the triple integral (8) defining u(t,z) and on the observation that the
partial map 7y — wy, (71, T2, m) can be analytically continued near 7; = 0 provided that 7, remains
on the small disc D,, see Proposition 10. Besides, whereas explicit differential recursions could be
provided for the coefficients G%, n > 0 of the formal expansions (6), no such relations are achieved for
the coefficients by, (t,z), n > 0 of (12). However, explicit formulas (displayed in (207)) for b,, n > 0,
can be presented as double truncated g—Laplace, Laplace transforms and inverse Fourier integral of
derivatives of the partial Borel-Fourier map 71 + wy, (71, T2, m) at the origin.
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2. Setup of the main initial value problem and an associated set of g—difference-differential
problems with homography action

2.1. Accounts on q—Laplace transforms of order k and Fourier inverse maps

This concise subsection presents the basic material about g—Laplace transforms and Fourier
inverse maps that will be handled to built up the solution of our main problem under study.

Let k > 1 be an integer and set ¢ > 1 a positive real number. We present the definition of a
g—Laplace transform of order k as described in our former work [10]. In the construction of this
g—analog of the classical Laplace transform of order k, the Jacobi Theta function of order k defined as
the Laurent series )

Oun(x)=1) g F "

nez

for any x € C* plays a prominent role.

We remind that the set of zeros of this analytic function is given by {—¢"/¥/m € Z} and is
contained on the real line R. The next lower bounds for the Jacobi Theta function attesting its so-called
g—exponential growth of order k on a domain bypassing this set of zeros are essential. Let A > 0. A
constant C, ;. > 0 relying on ¢, k and independent of A can be chosen such that

klog2 |x| 1/2
[©,¢(x)] = Cprtrexp (5 oule) IET (15)

provided that x € C* with |1 + xg™/%| > A for all m € Z.

Definition 1. Let D, be a disc of some radius p > 0 centered at 0 and Sy be an open unbounded sector edged at
0 with bisecting direction d € R in C. Let us consider a holomorphic function f : D, U Sy — C assumed to be
continuous up to the closure D, and subjected to the bounds

klog?(|x| + )

£00)] < Kilexp (3 =515 +alog(lx| +9)) (16)

forall x € Dp U Sy, for some given positive constants K, > 0, 6 > 1 and some integer k > 1. We select some
direction iy € R such that eV=17 € S. The q—Laplace transform of order k of f in direction 7y is assigned as

_ Kk f(u)  du
~ log(q) J, ®q1/k(u/T> u

ﬁ;}l/k(f)(T) : (17)

where L, = [0, +oo)em7 stands for a halfline in direction .
Let A > 0 be some fixed real number. The integral transform £;’}1 /e ()(T) represents a bounded
holomorphic function on the domain R., o N Dy,, for any radius ry constrained by

0<r <qg @)/ (18)

and where
V17

R%A:{Te(c*/|1+ r| > A, forallr > 0}. (19)

In the special case f : C — C is an entire function with Taylor expansion f(x) = Y~ fux" conforming to
the bounds (16), its g—Laplace transform of order k, (17) does not depend on the direction v € R and defines a

bounded holomorphic function on D, under the restriction (18) which possesses a Taylor expansion given by the

. n(n—1)
Convergent series ZnZl fnq % T,

The next Banach space of continuous function on R with exponential decay was introduced in [4].

doi:10.20944/preprints202310.1781.v1
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Definition 2. Let B, i be real numbers. We denote E(g ) the vector space of continuous functions h : R — C
such that

[[R(m)]|(g,) = sup(1+ |m|)" exp(B|m])[h(m)|
meR
is finite. The space E g, endowed with the norm ||.||(g,) becomes a Banach space.
We recall the definition of the inverse Fourier transform acting on the space E (B1)*

Definition 3. Let f € Eg ) with p > 0, u > 1. The inverse Fourier transform of f is given by

1 +

FHAHE) = i oof(m)exp(\/—ilxm)dm

for all x € R. The function F~1(f) extends to an analytic bounded function on the strips
Hp = {z € C/[Im(z)| < p'}. (20)
forall given 0 < B/ < B.

The next lemma described how the inverse Fourier integral is transformed under the action
differential operators and products.

Lemma 1. a) Let f be an element of Eg ) for B > 0, u > 1. Define the function m — ¢(m) = /—1mf(m)
which belongs to the space E(g ,, 1. Then, the next identity

0F 1 (f)z) = FH(P)(2)

occurs for all z € Hg, forany 0 < ' < B.
b) Take g € E g, and set the convolution product of f and g

$m) = o [ flm—m)goms .

Then, ¥ belongs to E(g .y and moreover, the next equality

holds for all z € Hg, provided that 0 < B’ < B.

2.2. Layout of the main problem

Throughout this subsection, we unveil the principal initial value problem under investigation in
this work. It is shaped as follows,

ap

Q(02)u(t,z) = thUq’f} Rp(@)u(t,z)+ ) CL(z)tlﬂaél;tRL(az)u(t,z) + f(t,z) (21)
I=(lp,l)el

for vanishing data 1(0,z) = 0, where 0y stands for the g—difference operator acting on t by means of
ogtu(t, z) = u(qt, z) for some given real number q > 1.

The set I represents a finite subset of N> and dp, k; > 1 are positive integers that are subjected to
the next list of technical constraints:

doi:10.20944/preprints202310.1781.v1
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1. The inequality
lo
= >1 22
P (22)
holds for all [ = (Ip,I;) € I.
2. The restrictions
dp > kily , Iy > dp (23)
are required for all | = (lp,l;) € L.
The maps Q(X), Rp(X) and R;(X) for [ € I are polynomial required to fufill the next features:
1. The degrees of Q and of R, are constrained by the relation
deg(Q) > deg(R)) (24)
foralll € I.
2. We assume the existence of an open sectorial domain Sg r,, with inner radius rg g, (resp. outer
radius Rg r,,) given by
SQ,RD = {Z € C*/|arg(Z)| <&, rQRp < |Z| < RQ,RD}
for some opening &; > 0, which satisfies the next inclusion
L v —1m) € Sor (25)
Rp(v/—1m) P

for all m € R. Furthermore, the inner and outer radii together with the aperture of Sg r,, will be
suitably constrained later on in the work.

The coefficients ¢;(z), [ € I, are built up through the next procedure. For [ € I, we consider maps
m — C;(m) that belong to the Banach space E(g ), for given real numbers § > 0 and y > 1 constrained
to

p > deg(R;) +1 (26)

for all I € I. We introduce the constants

Cp = |[Cr(m)|[ g, (27)

for all I € I on which restrictions will be set in due course of the paper. We define the coefficient ¢;(z)
as the inverse Fourier transform
¢)(z) = F~H(m — Cy(m))(2)

foralll € I, provided that z € Hg. According to Definition 3, the maps z — ¢;(z) stand for bounded
holomorphic functions on the strips Hy for any prescribed 0 < p' < B.

The forcing term is described in term of the next construction. Let J;, J> be finite subsets of the
positive natural numbers N*. For all j; € J;, j2 € Jo, we deem some maps m +— Fj i, (m) which
appertain to E(g ;) for > 0 and p > 1 given above. We introduce the next polynomial

Flu,mm)= Y, .El,jz(m)rflféz (28)
€€

in the variables 71,7, with coefficients in E(g .. We bring in the map
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Fr(uq,up,z)

Foo 1 T\ /T T AT
— Flo,m,m—————— - = m_——=d 29
g @@ oy S [ TR Gy e (= e T @9
where L; = [O,—I—oo)e\m"l1 stands for a halfline in some given direction di € R and L, =

[0, —l—oo)eﬁ” is the negative real axis.
Owing to Definition 1 and Definition 3, this map Fy(u1, 12, z) is well defined provided that

e the variable u; belongs to R4, A, N Dy, for any fixed A; > 0 and radius r; > 0 subjected to (18)
where k = kq, for any given & > 0,

e the variable u; is not vanishing and obeys the constraint cos(arg(u,)) < —A;, for some A, > 0,

*  the variable z is kept in the strip Hy forany 0 < g’ < .

However, we can further simplify the expression of F;. Taking heed of Definition 1, we notice
that F(uy, up, z) turns out to be a polynomial in u,

aGi=b .
Fe(ur,uz,z) = Y Frj(uz,z)q %1 uff
h€h

whose coefficients Fy, j, are expressed through sums over J, of Laplace transforms in direction 7,

— ip—1 T
Faji(u2) = ¥ F 7 ms By m)(@) [ o exp (= 2)dny
)€ i

with bounded holomorphic coefficients on Hg . Besides, according to the definition of the Gamma
function and Cauchy’s theorem, we acknowledge that

j2—1 T — (i 2
/LHTZ exp ( uz)de T (o) ub

provided that u; € C* with cos(arg(uz)) < 0. On that account, it follows that Fr (i1, up,z) can be
expanded as a polynomial in both variables 1 and 1, with bounded coefficients on Hgr, for 0 < g' < B.
Namely, we get
Fr(uyupz)= Y Fyjp(@ulul (30)
1€2€]2

where we define o
n01-1)

Fijp(2) := FH(m = Fjy jy () (2)g 2 T(j2) (31)

forall j; € J; and j, € J,. Atlast, we configure the forcing term f (¢, z) as the logarithmic type function

1
log(t)

f(t,z) = Fx(t, ,2). (32)
Here log(t) stands for the principal value of logarithm, namely log(t) = In(|t|) + v/ —1larg(t) provided
that —7r < arg(t) < 7r. Furthermore, we observe that

Cos(arg(loglt))) = cos(arg(log(t))) < —A; (33)

for some A, > 0, whenever t ¢ (—oo,0] and close enough to 0.

In the particular case J; = {j1 } and ], = {j»} for some positive integers j;, j > 1, we make the
noteworthy remark that the solution u(¢, z) of the linear main equation (21) actually solves a special
nonlinear q—difference-differential equation with polynomial coefficients in some positive rational power
of time ¢ stated in (36). Indeed, let the forcing term f(t,z) have the particular shape
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Hh
) = Bl

where F;, ;. (z) is given by the expression (31). By direct computation, we check that the forcing term
fir» (t,2) satisfies the next nonlinear ordinary differential equation with polynomial coefficients in /12

" - - . et
(Fjlsz (Z))l/]zt 2 atffl,]'z(t’z) = ht]l/]z (Fh,]'z (z))l/fth,jz(t,z) _]Z(fjl,]'z(tfz)) 2 (34)

Let us recast the main equation (21) in the form
P(t,z,0;,04¢)u(t, z) = f]-l,]-z(t,z) (35)

where the g—difference-differential operator P is polynomial in ¢, with bounded holomorphic
coefficients in z on the strip Hg, for 0 < ' < B. The combination of (34) and (35) gives rise to
the next nonlinear equation

gL
(Fipin () 2E 23, (P(t, 2,02, g )u(t, 2))

. . 1
= jlth/]Z(Fjbj2 (2))V12P(t,2,9,, ogt)u(t, z) — jo(P(t, 2,02, aq;t)u(t,z))HfZ. (36)

2.3. A set of related q—difference-differential equations with an homography action

In this subsection, the main problem is embedded in a set of auxiliary problems which comprise
three independent complex variables which will be the object of study in the forthcoming sections.
We seek for solutions u(t, z) to (21) for prescribed vanishing initial data at t = 0 of the form

1
log(t)’

for some expression Uy (11, Uy, z) in the three independent variables u1, up and z.

u(t,z) = Ux(t, )

The next computations hold for any given rational number /1 > 0,

I
"log(q"t)

1

_ h
2) = UnlTt fiog ) 1+ Tog (D)’

z)

aé’;tu(t,z) = Uy (gt

1
= (‘Tfsl;m © Hiytog(g)u Ur)(t, log(t) %)

where

¢ the dilation af?m , acts on Uy relatively to u; through (04, Ur ) (U1, u2,2) = Un(qhul, Uy, z),

* the homography Hj, 146 (4),4, is applied on U with respect to the variable u, by means of

Us

1+ uxhlog(q) =2

<Hh log(g);u> un) (Lll, Up, Z) = Un(ul,

As a result, it follows that the expression u(t, z) (formally) solves the equation (21) under the condition
u(0,z) = 0 if the expression Uy (11, uy, z) fulfills the next equation

dp

Q@) Un (1,2, 2) = 130y 0By o Ry (92) U1, 12, 2)+
1

g(q);u2

I 1
Y. w0 © Hyog(g)u, €L (2)R1(92) Un (11, 112, 2) + Fr(tt1,u2,2) - (37)
I=(lo,h)el

doi:10.20944/preprints202310.1781.v1
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under the constraint U, (0,0,z) = 0. Later on, we plan to build a genuine solution to (21) and in
order to investigate its asymptotic expansion in some particular scale described in Subsection 4.3, we
are required to complement the above single equation (37) by a family of auxiliary problems stated
underneath.

For any given direction d; € R with d, # 7 (modulo 277) and given positive real radius a > 0, we
define a new forcing term

Fdz,a(ull up, Z)

ky / / /+°° 1 T\ VoI dT 4T
= T~ < 175 .FT,T,m —————— €X — —)e — —=dm 38
tog@) @07 iy oy, S TV MGy OF ()T o O9

where Ly, , = [0, a]e\m‘i2 stands for a segment of length a > 0 in direction d; and Ly, is the halfline
appearing in the formula (29). Owing to Definition 1, we notice that the map F, , does not rely on the
direction d;. However, it hinges on the direction d, and radius a > 0. We display the next problem

dp

i 2
Q(az)udz(ul, uz,Z) = ulDUqI:%ll o Hg;lTD log( RD(aZ)Ud2 (Ml, M212)+
1

g(q)t2

Ip I
Z uloaq;ll o Hl] log(q);uzq(z)Rl(az)Udz(ul, ug,Z) + Fdz,u(ul, uz,Z) (39)
l:(ll)/ll)el

for given vanishing initial data Uy, (0,0,z) = 0.

3. Analytic solutions to the associated set of j—difference and differential problems under
homography action

In this section, we intend to exhibit analytic solutions to the problems (37) and (39) we came up
with in Subsection 2.3.

3.1. Profile of the analytic solutions and joint convolution q—difference equations

We search for a solution to (37) (resp. (39) for do # 7 modulo 27) in the form of a double
g—Laplace, Laplace transform and inverse Fourier integral with the shape

udl,rt(ulluZIZ)
_ kq / / /+°°w (11, T3, m) 1 ox (_E)
~log(@)@m)V2 iy Ju S G L ) TP

(resp.

oV~ 1zm an @dm (40)
T T

Uy, d, (U1, u2,2)

kq / / /+°° 1 T\ /zm dt do
=7 T, T,M) =———F——— - = ——=d 41
log(q)(27r)1/2 Lgy JLiy,q /=00 @iy (71,2 m>®q1/k1 (1 /uq) exp ( uz)e T m @

Here it is assumed (this fact will be justified later on in the work) that the so-called Borel-Fourier map
wg,,» appertains to a Banach space labelled Expc(’;cl“ SwBp) which consists in functions with so-called
g—exponential growth of order k; w.r.t 77, exponential growth in 7; and exponential decay relatively

to the mode m. This space is described in the next

Definition 4. We consider the constants B, u, k1,a as prescribed in Section 2. Let a,v > 0and p > a,6 > 1
be real numbers. We set Sy, as an unbounded sector edged at 0 with bisecting direction di € R. We introduce
the open half strip
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Hy ={t € C/Re(t) <0, |Im(7)| <12} (42)

. . g1
for some given real width 17, > 0. We denote Exp(klla, S Bip

(11, T2, m) — h(Ty, T2, m) on the domain S4, X (Hz UDp) x R, holomorphic w.r.t (11, T2) on the product
S4, X (Hz U D), such that the norm

) the vector space of all C—valued continuous maps

| |h<T1/ T, m) | |(k1,a,(5,v,/5,y,p)
2
xp (- ky log”(|n| +9)

1
= su 1+ [m|)Heflm — e
p (14 |mf) e 2 Tog()

Tlesdl 1 |
TQEHnUDp,mER

—alog(|7i| +4))

Lol m)| (43)
||

is finite. The vector space Exp’ ( equipped with the norm |[.|| (x, a,5,,8,,0) represents a Banach space.

kw“ﬂup)

Our main objective is to establish some convolution g—difference equation that the Borel-Fourier
map wy, , is asked to obey. On the way, we need some additional features on the g—Laplace transforms
under multiplication by a monomial and action of g—difference operators. These properties have
already been discussed in our past work [10]. Besides, we describe the action of the homography H;,,
relatively to the variable u; on both expressions (40) and (41).

Lemma 2. Let the map wy, (71, T2, m) supposed to belong to the Banach space Exp?l’j1 w0, Bp)" Then, the
next identities hold.

1. For prescribed integers Iy, 1y > 0, the g—difference operator ullo Ufﬁ.ul acts on the integral representations
(40) and (41) through the formulas

”1 Uq 1y udl, (”1/ up, Z)

+oo ZO L ,lci
" log(q) 27r log(q) (27)172 /Ld / ,r/ (/R Ryl 72 “’dlf”(“’Tz'm)}

1 T “1zm dT] de
X — =)eV — —Zdm (44
O,k (t1/u1) exp ( uz) T n “

and

Ig 1
uloo-ql;ul udl dz (ull 1/[2, )

+oo 0 _IZCQ
log 277: log(q)(27)1/2 /Ld /L,,, ”/ (g1/kr)l )/20‘”1 wdl’”(Tl’Tz’m)}
T V—=1zm dT1 de
xiex — e —— " =dm. (45
@),11/1(1 (1 /uq) Pl Mz) (SR 45)

2. For a given rational number h > 0, the homography Hy, 146 ()., applies on the triple integrals (40) and (41)
by means of

Hpytog(q)u, Uy, (11, 2, 2)
k

- W/Ld /n /_:o (g, (11, T2, m) exp(—T2hlog(q))]

T V—1zm dTl de
X —— _exp(——=)e —Zdm (46
G')ql/kl (1/uq) P uz) T T (16)
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along with

Hi10g (), Uty d, (41, 12, 2)
k1

- log(q)(27)1/2 /Ld /Ld [ +: [wa, (11, T2, m) exp(—T2h log(q))]

%)eﬁzm??m 47)
2 1 2

)exp(—

X -
CRVS (t1/uq
In line with the above technical lemma together with Lemma 1, the next statement follows.
Lemma 3. The map Uy, (u1,uz,z) solves (37) under the constraint Uy, -(0,0,z) = 0 and Uy, 4,(u1, U2, z)

obeys (39) for dy # 7 (modulo 27t) with vanishing data Uy, 4,(0,0,z) = 0 if the Borel-Fourier map
wg, (11, T2, m) fulfills the next convolution q—difference equation

Q(V—1m)wg, (11, T2, m)
’l’dD dp
(Fm)( 1/k1)dD(dD 1)/2 eXP(_TZHIOg(Q))Wdl,n(TbTLm)
I !
1 teo — 7, b
+l (121)61(2)1/2/ Cl(m ml)Rl( ml)(l/kl)lwaqfﬁ Wy, (Tl,Tz,ml)
=/

x exp(—maly log(q))dmy + F (11, T, m) (48)
provided that Ty € Sy, T2 € Hx U Dp and m € R.

3.2. Solving the convolution q—difference equation (48) on unbounded sectors and half strips

In the course of this subsection, we prove the existence and unicity of a solution to the convolution
g—difference reached in Lemma 3.

Our scheme consists in reorganizing the equation (48) as a fixed point equation (displayed later
on in (98)). On the way, we are asked to divide our equation by the next Fourier mode depending map
with two complex variables

dD

exp (— 122 log(q) (49)

Pm(Tl,Tz):Q(\/?lm> RD(rm) k

(g 1/k1)dD(dD 1)/2

provided that 7y € S, and T € Hr U Dp. An essential factorisation of the above map is provided in
the next lemma.

Lemma 4. For a convenient choice of the inner radius rq r,,, outer radius R r,, and aperture &1 > 0 0of Sqr),
set up in (25), one can distinguish an unbounded sector Sy, edged at 0 with suitable bisecting direction dq € R
along with an appropriate strip Hy and a small radius p for which the next splitting of the map Py, (71, 72) holds.
Let T € Sy, written in the factorized form

T = rT{) (50)

for some radius r > 0 and complex number T € Sa, with 70| = 1. Let us take T, € Hy U D,. Then, one can
decompose T, in the form

TzZTS—S-i-\/?hP (51)

for some well chosen complex number T3 (depending on T and m and which remains bounded relatively to m),
for some  # O, close to 0 and some s > — A (for some fixed constant A > 0). With the above factorisations
(50), (51), one can express the map Py, in the form of a non vanishing product
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P11, 2) = QU Tm)[1 — 0 exp (s — v-19) 22 > log(4)| (52)
for given 7 € Sy, and T, € Hy U D,.

Proof. We choose appropriately the sectorial domain Sg r,, given in Subsection 2.2 and select an
unbounded sector S;, edged at 0 with bisecting direction d; chosen in a way that the next constraint

Rp(v/=1m) ap 1
Q(v—1m) 1 (ql/k)do(dp=1)/2

holds for all m € R, all 7y € Sy, for some small positive numbers 0 < a1 < ap. Let 71 € Sy, be given.
We can factorize it in the form (50). We set

0<a < ‘arg( )‘ < ap (53)

1 Rp(v/—1m) 5 1
7= iﬁ’log(q){lo ’g(ﬁm) ()" (ql/kl)dD(del)/Z)
p(v/—=1m) b 1
+f(arg( Q(v—1m) (@)’ (ql/kl)dD(dofl)ﬂ))} 4

Notice that 7) remains bounded and penned in a small domain we denote 7, which is located at some
small positive distance of the real axis, when m spans the real numbers according to the condition (25)
imposed.

In the next step, we select the strip Hx and the disc D, in a way that

(HrUD,)NTy =@ (55)

As a result, when one takes some element 7, € Hy U D), we can write it in the form (51) for some real
number s > —A for some A > 0 and some real number ¢ # 0 that can be chosen close to 0.
By construction of 9, we get in particular that

_ Rp(vV=1m) , g4 1

exp(7 k—Dlog(q)) = W(Tl) v (71/k1)dp(dp—1)72 (56)

In consequence of the combined factorisations (50) and (51) together with the above identity (56), the
next computations hold

7o (T1 )dD

Pm(TerZ) = Q(\/jﬁ’l) - RD(\/jlm) (ql/kl )dD(dD 1)/2 exp( g% 10g(q))

x exp (s = V=T9) 72 log()) = Q(/=Tm)[1 = 0 exp (s — V=19) L log(0)) | 67

which is exactly the announced expression (52). In particular, this product is non vanishing since
Q(v—1m) # 0, for all m € R owing to (25) and considering that ¢ # 0 but close to the origin, the
piece enclosed by brackets in (52) cannot vanish. [J

Let us consider the next linear map
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Hiw(n, mm) = Y ! 1 /+°°C(m—m VR, (v/=Tmy)
VS e P(m) @) 2 e v '
ly )
T h—¢
x exp (— 1l log(q))dmy + M (58)

Pm(Tll TZ)

In the next proposition it is stated that the map H stands for a shrinking map on some fittingly chosen
ball of the Banach space discussed in Definition 4.

Proposition 1. We select the sectorial domain Sq r,,, the unbounded sector Sy, together with the strip Hy and
the disc Dy as in Lemma 4. Then, provided that the constants C; > 0 displayed in (27) are small enough, for
1 € I, an adequate radius @ > 0 can be chosen for which the map H enjoys the next two properties

. The inclusion
H(Bw) C Bo (59)

is granted, where B, denotes the closed ball of radius @ centered at 0 in the space Exp'zl’;l 5 .
. . . 10,8, B,14,0)
®  The1/2—Lipschitz condition

1
||H(w1> - H(w2)||(k1,a,(5,v,ﬁ,y,p) < E"wl - w2| |(k1,a,§,v,ﬁ,y,p) (60)
holds for all wy, w, € Be.

Proof. We first aim our attention to the inclusion (59). Let us prescribe some real number @ > 0 and

take some element w(Ty, T, m) of Exp’

?kll ,6,0,B,1,0) subjected to the condition

||w(T1,T2,m) ) <@

||(k1,u¢,§,v,ﬁ,y,p =~ W.

We plan to disclose norm estimates for each piece of the map H. We first focus on norm upper bounds
for the elements involved in the sum over I. The next technical lemma is crucial in this respect.

Lemma 5. Under the imposed constraints (22), (23) together with (24), (25) and (26), one can find a constant
Cy > 0 such that

! - I llf’l‘%
||m / Cy(m - ml)Rl(\/?lml)Tl Ogr (T, T2, 1)
m 12 —00

x exp ( — 12l 1og(q) ) dma || (s, a,6,0,8,10)
<G CL| |(U(T1, 2, m) | |(k1,0c,5,1/,‘3,y,p) (61)

7;1

forall w(ty, T, m) € EXP (s s fiup)

Proof. According to Definition 4, we next upper bounds hold for the element w,

lw (T, 72, m1) | < Wl (kg a,0,0,8,,0) (1 + |mq|) He—Plml
ki log® (|| +6)

X || exp (?W + alog(|m | +5)) |Tz|e”‘T2‘ (62)

forallty € S, all », € Hr U Dy, my € R. We deduce first upper bounds
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1 +oo 1
Pu(t, ) C R 7 7
Pu(11, 12) / 1(m —my) l(rml)Tl ‘an tw(m, ,m)

x exp (= ol log())dm1 | < (Calom — )[Ry (/=T 711901 5,50,

|Pm Tl/TZ |/

0
ki1 log(| h- | +06)
pu,—Blmil| 1~k 11og {19 1
X (14 |mq|)"He lg 1T]exp< Tog(9)

x |1le'®! | exp (— ol log(q)) |dm1  (63)

-k
+alog(lg' M| +9))

whenever 71 € Sy, T» € Hr U Dy and m € R. The resulting bounds (61) will be reached after several
steps of computations. Namely,
1) We provide upper bounds for the function

Ay (m) = |Com — m)[|[Ry(v/=Tmy)[(1+ [ma])~Fe™ Pl dm, (64)

o [«

for m € R. Since R;(X) are polynomials, we get a constant R; > 0 with

IRi(V=Tm1)| < Ry(1 + [y |) 28R (65)

for all m; € R. Besides, owing to the assumption (25), a constant Q > 0 can be pinpointed with the
lower bounds

Q(V=Tm)| > Q(1 + |m])des(Q) (66)
for all m € R and from the definition of the constants C; > 0, we know that
|Cy(m — my)| < Cp(1 + |m — my|) HemPlm=ml (67)

for all m,m; € R. The collection of bounds (65), (66) and (67) together with the triangular inequality
|m| < |m — myq| + |my| enable the next estimates

CiR,
Q(1+ |m|)des(Q)

+o0
Aj(m) < / (1+ |m — my|)~Fe Plm=rml(1 4 |my|)des(R)
X (14 |mq|)~#ePlmldm,

CR, _d teo 1 -
< 2Rl + p—deg(Q) d x (1+ He—Blml (g8
< =g 1a+lm) /. (L4 [ — )1 (1 4+ [y | )1~ e8(R0 m }px (14 m]) Fe Inl - (68)

At last, according to Lemma 2.2 from [4] or Lemma 4 from [12], we call to mind that the quantity

sup(1 4 |m|)#—9e8(Q) !

dml
ek L G s

is finite under the assumption (24) and (26). Therefore, a constant C; ; > 0 can be singled out with

Ay(m) < Cglcl.l(u jm[) eI (69)

forallm € R.
2) We focus on upper estimates for the quantity

lp
kil "Ry 46
AZ(Tl) —exp( 1108 (|q 1| )

h—R
> s (0] +alog(lg" Fim|+0)) (70)

doi:10.20944/preprints202310.1781.v1
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provided that 7y € Sy, with |T1| > r1 for some fixed real number r; > 1. We need to perform the next
expansions

Ll h-g2 Ah 02
log?(q"' kl\T1|+5):(1°g(q1 “7|) +log(1 + 4" 1@»

2 ) 2 11*11(L llﬂl{L ,i&*ll J
= log (|T1|)+210g(\T1|)(11—E)log(q)+1og (g7 f)+2log(q" *)log(1+qg"n m)

1 1
+2log(|T|) log(1 + q’gh'f) —|—log2(1 + q"(l]llhé') (71)
1 1

together with

11—;1(g ll—;l<L 1?‘115
log(q" M|l +9) =log(g’ *)+log(|mi|) +1log(l+q m) (72)

Owing to the freshman classical limit limy_, ;o log(x)/x = 0 and equivalence relation log(1 + x) ~ x
as x tends to 0, we reach a two constants Ay, A, > 0 with

b 6 by 6
10g(|’[1|)]og<1+qkl llm) <A, 0< 10g(1+qk1 1@) < A (73)

provided that |1;| > 7; > 1. Furthermore, since x — log®(x) and x — log(x) are both increasing maps
on [1,+00), we observe the inequalities

log?(|ni|) < log*(|n| +6) , log(|n]) < log(|m| +9) (74)

whenever |11| > r; > 1. From the two expansions (71), (72) and the bounds (73), (74) together with the
assumption (22), we arrive at the next estimates

k1

2log(q)
_lp _l
+ logz(qll ) +2A1 4+ A%} + Dé[log(qll ) +log(|m| +6) + Az])

[og? (| +6) +2log(|7]) (1 — ,i—ﬂ)logw)

Ax(11) < exp (

k(L —k ke 1
< Cralul" R exp <3llog(q)

provided that 7y € S, with |t;| > rq, for some constant C;, > 0.
3) We supply upper bounds for the quantity

log? (71| +0) +alog(|7i| +4)) (75)

iy (I — 12
_ [afom T Jexp (- mhlog(9))|

|1 =70 exp ((s — V=T¢) {2 log(9))|

Az(t1, 2) (76)

form = rT{) € Sy, with || > rpand i, = Tg —s++v—1¢ € Hy UD, where r > 0, |T?| =19 #0
close to 0 and s > — A for some constant A > 0, according to the decompositions (50) and (51). We
recast Aj in the form

_loy_ d
As(ty, 1) = TR o (s — v =T9) (1 — 1)108())| x| exp (— hlog(g)

_rlexp ((s - VTP §2 log(a))|
11— riexp (s — V- 19) 2 log(q))|

(77)
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Taking heed of our assumption (23), we obtain a constant C; 3 > 0 with

lotky (1 — 12 )—d d
ORI exp (s = vT) (0 — T2 log(0))| < Cus 78)
forall¥ > r; and s > —A, for ¢ # 0 close to 0. Furthermore, a constant C; 4 > 0 can be singled out
with
rolexp (o V1P logla)) | _
11— ripexp ((s — v/~ ¢) 2 log(7))|

aslongasr >ryands > —A, for p # 0 close to 0. From (78) and (79), we deduce a constant C15 > 0
such that

Cia (79)

A3(t1, ) <Cis (80)

whenever 7y € Sy, with |11 > r and all 7, € H; U D,.
4) We establish bounds for the quantity A>(t;) displayed in (70) provided that 7y € S, with
|T1| < r1, where r; > 1 has been fixed in 2). A mere observation yields a constant C1 4 > 0 with

Az (1)

lp
ki lo "R 4 6) — log?(|Ty| + 6 I~k
< {orp (4 BT LED) SB[ 10) | 4 f1og(igh b +.) - tog([ml +9))) }

kq )
exp (mlog (|| +9) +alog(|m| +5)>

k1 2
< Cieexp (210g(q) log“(|7| + J) + alog(|t | +5)) (81)

forall 7y € Sy, with |1y| < rq.
5) We present bounds for the piece

T[] exp ( — 11 log(q))|

Ay(t, ) =
4(Tl 2) ’1_rdDexp((S—\/jllp)%log<q))|

(82)

forty = r1) € Sy, with || <rpand =1 —s++v—1p € Hy UD, wherer > 0, |7)| =1, ¢ # 0
close to 0 and s > — A for some constant A > 0, according to the decompositions (50) and (51). We
rearrange A, as follows

Ay(t, ) = 07 exp ((s — V=1y) (1l — %)) log(q))| x |exp ( — 1311 log(q))]
r2 | exp ((s — V=19) 2 log(1))

|
(83)
|1 — 7o exp ((s — v=Ttp) 2 log(q))|
Bearing in mind the condition (23), we get a constant C; 7 > 0 with
_ d
rlo=dolexp ((s — vV =19) (h — f) log(q))| < C17 (84)

provided that 0 < 7 <rjands > —A, for i # 0 close to 0. On the other hand, a constant C; g > 0 can

be set with
rio|exp ((s — V=1y) {2 log(q)) |
|1*de6XP((S*rlﬁ)dDIOg(Q))l

<Cig (85)
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aslongas0 <r <rjands > —A, for ¢ # 0 close to 0. Due to (84) and (85), a constant C; g > 0 can be
picked out such that
Ay(r,2) < Crg (86)

forall iy € Sy, with || < rjandall , € Hr U D,.
6) As a consequence of the list of estimates (75), (80), (81) and (86), we obtain a constant C; 19 > 0

with
1 |T1|lo
|1 —rip exp ((S —v/-1 —1y) i? 10g(’7))|
kq log2(|q117”£ Tl‘ 5) 117]0
A1 k
><exp(2 Tog(q) + alog(|g 1T1|—|—5))

k
x |exp (— mh log(q))| < Cripexp (Tg](q) logZ(‘m +6) +alog(|m| + 5)) (87)

forty =rt) € Sy and 1, = T — s+ /—1p € Hr UD, where r > 0, |t)| =1, ¢ # 0 close to 0 and
s > —A for some constant A > 0, according to the decompositions (50) and (51).

In conclusion, on the basis of the factorization (52) for the map Py, (7, 7o) together with the bounds
(69) and (87) combined with the bounds (63), we arrive at the next inequality

lp
¥/+WC (m —my) Ry (v —1m )Tloallfﬂw(,[ )
Pu(t1,02) J-oo L 3™ )4 Vgm 1, Tp, M1

CR, L
x exp (— mh log(q))dml‘ < [TCUCUOQ 17 g ||w||(k1,“,glvlﬁly,p)]

k
1 —Hp—Blm| L 1002 5 1 5 Vol (g8
x (1 ) e P oy exp (s Tog?(1ml +0) +alog([m] +0) ) x [mlet!™! - (88)
forall y € S;,,all » € Hr U D,. Notice that this last inequality is tantamount to the awaited bounds
(61) for the constant

o

R, .
—C11Cr109 " M.

C1:Q

O

We need control on the norm of the last term of H related to the forcing term of the equation (48).

Lemma 6. There exists a constant Fx > 0 such that

‘F(Tll T2, m)
Pu(t, ) < Fr.
Pm (Tlr TZ) | | (kl’a’é’v’ﬁ”"!p) =~ UF (89)

Proof. In view of the factorization (52) and the definition (28) of F, we notice that

F(t,©,m) Liehineh [Fip (M)l )2

Pu(T, ) ) T Q(V=Tm)| x |1 =0 exp ((s — vV=T19p) 2 log(q)) o

forall Ty € Sy, and 1, € Hy U D, for which the splittings (50) and (51) hold, and all m € R. Besides,
by Definition of F, constants Fi i, > 0 can be found such that

(m)| < Fj,j,(1+ |m|)~Fe Flm (91)

|}—] T2

12
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for all m € R. Furthermore, we can pinpoint a constant Ky, t, ; > 0 for which

d
11— 0 exp ((s — \/—Trp)k—? 10g(q)) | = Kip ko q ®2)

hold where 7y € S;, and 7, € Hr U D, with the decompositions (50) and (51). As a result, combining
(90), (91) and (92) gives rise to the next upper estimates

F(tr, 7, m) 1 o
= 1+ |m])~HePlml
Pm(Tl/ TZ) ’ ming, cr |Q(\/ —1m)|Klek1’q ( | |)
, o1 k1 2
X F: . g o/?{—exp (- ——1log“(|1y| +6) — alog(|T| + &
{ Z ]1/]2‘ 1| | 2| {|T1| p( 210g(q) g (| 1| ) g(| 1| ))

J1€2€)2

1 v ka2 Vil
X |_L_2|e }} X |t | exp (210g(q) log”(|t1| +6) + alog(|ti| +6))|le

k1
2log(q)

< Fr(1+ [m]) e Pl |y | exp ( log?(|i | +6) + alog(|7i| +6)) [rale™ (93)

forally € S4, and 7, € Hr U D, where

1
Fr=—
min,,cg |Q(v *1m)|KdD,k11q

x Y, FipisupdiTlexp (- Wl() log?(x 4 8) —alog(x +6)) } x { supy” '™V}
1€N1,j2€)2 x=0 &\ y>0

keeping in mind that 0 ¢ [, C N*, for k = 1,2. At last, it remains to notice that the due inequality (89)
results from (93) by taking heed of Definition 4. [

We select the constant @ > 0 suitably together with the constants C; > 0, for [ € I, taken close
enough to 0 in a way that the next inequality

1

l:(lozzl)ez (2m)1/2 (g1 /K Yol =1)/2

Clclco +Fr<w (94)

holds where C; > 0 appears in Lemma 5 and Fr > 0 stems from Lemma 6. Eventually, the expected
inclusion (59) prompts from the bounds (61) and (89) under the restriction (94).

We discuss the second item addressing the shrinking feature (60). We take two elements w1, wy in
the closed ball B, from Exp‘zl;cl1 w60,B10) whose radius @ > 0 has been prescribed in the first item (59).
According to Lemma 5, under the conditions (22), (23), (24), (25) and (26) listed in Subsection 2.2, the

next inequality

1

1 Foo o
||m / Cr(m —my) Ry (V =1m1) 10y, (w1 (1, 72, m1) — wa (11, T2, m1))
m 7 —o0

X exp ( —1nh log('ﬂ)dml | |(k1,a,5,1/,/3,]/1,p)
< GCl|lwi(n, 2, m) — w2 (T, T2 m)| |k, w60,00)  (95)

holds for the constant C; > 0 introduced in Lemma 5. We set the constants C; > 0, for [ € I, small
enough allowing the next inequality

1 1

< =
l=(lg)el (271)1/2(g1/k)lo(l=1)/2 GG < 5

(96)
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to hold. The Lipschitz property (60) is a straight consequence of (95) under the requirement (96).

In conclusion, we properly choose the constants C; > 0, € I and the radius @ > 0 in order to
impose both constraints (94) and (96) at once, which triggers the two properties (59) and (60) for the
map H. O

In the forthcoming proposition, we provide a solution to the convolution g—difference equation
(48) established in Lemma 3.

Proposition 2. Let us prescribe the sectorial domain Sg g, the unbounded sector Sy, together with the strip
Hy and the disc D, as in Lemma 4. Then, the constants C; > 0 defined in (27) and a constant @ > 0 can be
fittingly chosen in a manner that a unique solution wg, , to the convolution q—difference equation (48) can be

built up in the space EXP?;I ) under the condition

0,0,0,B, 14,0
||wd1,7t| |(k1,vc,15,v,‘3,y,p) <o. (97)

Proof. We select @ > 0 as in Proposition 1. We mind the closed ball B, in the Banach space
Exptgl;(l1 WS Bip) which represents a complete metric space for the distance d(x, y) = [|x = /| (x, a,6,0,8,1,0)
deduced from the norm. The proposition 1 states that H{ induces a contractive map from the metric
space (Bg,d) into itself. According to the classical Banach fixed point theorem, it follows that  owns

a unique fixed point inside the ball B, we denote wy, . It means that

H(wdl,ﬂ(Tl/Tzlm)) = wd],ﬂ(T1/T2/m) (98)

forallt € S;,, » € Hr U Dy and m € R. By transfering the term

dp
T d
RD( Vv —1771) (ql/kl )dz)(del)/Z exp ( - TZF? log(q))wdl,n(Tll T, m)

from the right to the left handside of (48) and dividing the resulting equation by the map Py, (71, 2)
displayed in (49), we observe that (48) can be rearranged into the fixed point equation (98). On that
account, the unique fixed point wy, - obtained in By precisely solve (48), which yields Proposition
2. O

3.3. Analytic solutions to the auxiliary equations (37) and (39)

In the next proposition, we craft analytic solutions to the associated set of g—difference and
differential problems under the action of homographic maps established in Subsection 2.3.

Proposition 3. The sectorial domain Sq r,,, the unbounded sector Sy, together with the strip Hy and the disc
D, are prescribed as in Lemma 4.

o We define the map

k oo
Udlrn(ul, uZ’Z) - W ~/Ld1 /n \/—00 wdl’N(Tl,TZI m)
1

T V—1zm dT] de
X — — —=)e — —=dm (99
SRV (/1) exp ( uz) T D )

where the Borel-Fourier map wgq, (1, T2, m) is built up in Proposition 2 and solves the convolution
q—difference equation (48). The map (99) boasts the next two qualities


https://doi.org/10.20944/preprints202310.1781.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1781.v1

22 of 55

— It defines a bounded holomorphic function on the product (R4, A, N Dr,) X Uz, X Hg for some
given Ay > 0, where Ry, A, stands for the set (19) and Dg, is a disc centered at 0 with radius
subjected to the constraint

0<Ry<q /o (100)

and 0 < B < B. Besides, Uy  represents a bounded sector edged at 0 with bisecting direction 7t
with radius Ry > 0, submitted to the next condition: there exists some real number Ay ; > 0 with

cos(rr —arg(up)) > Aoz (101)

forall uy € Uy, where 0 < Ry < Ap /v, for v > 0 fixed in Definition 4.
— It solves the auxiliary equation (37) for prescribed initial data Uy, -(0,0,z) = 0.

e For a direction dy # 7 (modulo 271), we shape the map

ky o0
u 7 7 = 7/ / / 7 7
0010120 ) = o @72 iy g S )

T\ /1mdT AT
X ——————exp(— —)e — Zdm (102
© 17k (t1/uq) P Mz) T T (102)

where wgq, (1, T2, m) is the Borel-Fourier map mentioned in the above item. The map (102) enjoys the
next two properties

— It represents a bounded holomorphic function on the product (R4, A, N Dg,) x U, X Hg, for
the domain Ry, a,, disc Dg, and constant 0 < ' < B given in the first item. Furthermore, U, 4,
stands for a bounded sector centered at 0 with bisecting direction d, and with radius Ry chosen as
in the first item and subjected to the next restriction : some positive real number A, 4, > 0 can be
found with

cos(dy —arg(uz)) > Ay, (103)

foralluy € Uy y,.
— It obeys the auxiiiary equation (39) for given vanishing initial data Uy, 4,(0,0,z) = 0.

Proof. We discuss the first item. We parametrize 71 € Ly, and 2 € Ly in the form 7y = r1eV —1d1 and
T = roeV 17 for r1,r5 > 0. Then, owing to (15) and (97), we get

© 1 V—1zm
w T, T, m)|| ——|| e - = e
| der(( 1,2 )l ®q1/k1(71/u1)‘| Xp( u2)||T1||T2|| |
k
< —p p—Plm| 1 2 vry
<@(1+ |m|)"Fe exp (Zlog(q) log”(r +5)+¢xlog(r1+5)>e

k 1
x — st log?(r1 /| )

1
Cy D1 P ( 2log(q) (r1/|uq )12
X exp ( _ 12 cos(7 — arg(uz))) x e~MIm(z) (104)
|uz|

for all u; € C* with |1+ ;—111’| > A forallr > 0and up € Uy 5. In order to provide upper bounds for
the right handside of (104), we propose the next alternative.
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Assume that 0 < r; <1 withu; € Ry, A, as above under the constraint |u1| < Ry. Then, one can
single out a constant My, 45, > 0 such that

o
(r1/|usg])1/?

k] 2 1
< _ _
< My, g6 ili}g exp ( 2Tog(d) log (x)) 7 (105)

ky 2 Kk 2
exp (Zlog(q) log“(r1 + ) + alog(ry —|—5)) X exp ( 2Tog(d) log (r1/|u1|))

forall 0 <ry <1withuy € Ry, A, NDg,-
Assume that r; > 1and u; € Ry, 4, N Dg, for a radius Ry > 0 under the constraint (100). The
next three expansions are useful. Namely,

log?(r1/|u1]) = log?(r1) — 2log(r1) log(|u1|) +log(|u1]) (106)
together with
6 1)
log?(r1 4 6) = log?(r1) + 2log(r1) log(1 + r—) +log?(1 + r—) (107)
1 1
and 5
log(ry +6) = log(r1) +log(1 + r—) (108)
1

Since log(1 + x) ~ x holds as x is close to 0 and owing to the classical limit lim,_,« log(x)/x = 0,
we get from (107) and (108) two constants M1, Mo > 0 with

logz(rl +9) < logz(rl) + Ms, , log(ri +06) <log(ri)+ Msp (109)

for all ; > 1. As a result, we get from the computation (106) and bounds (109) that

k1 2 N kl 2 1
exp (Tog(q) log®(r1 +0) + alog(ry + (5)) X exp ( 2Tog(d) log (1’1/|u1|)) (CYTLE
k1

2 1/2
TTog(ay % (D)

k 1
X exp (leog(rl) + @ log(r1) log(|u1|)> 7 (110)
1

< exp (Zlcigl;(q)M‘s'l + OéMa,z) X exp ( -

At last, from the assumption (100) and requirement |u;| < Rj, the next bounds

ky 2 __k 2 1
exp (210g(q) log”(r1 + 8) + alog(r; +5)) X exp < 2Tog(q) log (r1/|u1|)) CYITE
1

k1 ki 2 1/2
< _ i
< exp (ZIOg(q)M(s’l + txMM) X exp ( 210g(q) log (|u1|)) |up|™ < x r?/z (111)

are deduced from (110).
On the other hand, taking heed of (101), we observe that

o~ Blml pvr2 exp (_ |:l722| cos(7 — arg<u2))) « p—mIm(z) < e~ (B=B")Im| exp (72(1/ — ﬁfj{)) (112)
AZ,?T

provided that z € Hg, where 0 < ' < fand v — Tusp < Oaccording to the claim that luz] < Ry <
AV /v.

As a consequence of the above bounds (105) along with (111) and (112), we deduce that the map
(u1,up,2) — Uy, »(u1,u2,z) is well defined and represents a bounded holomorphic function on the
product (Ry, A, N DR,) x Up, 7 X Hg under the above requirements (100) and (101).
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Recall that the Borel-Fourier map wy, (71, 72,m) has been constructed as a solution of the
associated convolution g—difference equation (48) in Proposition 2. From Lemma 3, we deduce
that Uy, (u1, ua, z) obeys the auxiliary equation (37) on the domain (R, o, N Dg,) % U,z X Hg for
prescribed initial data Uy, ~(0,0,z) = 0.

We turn to the second item. Let 7y € Ly, and 15 € Ly, , be parametrized as follows 7y = rqeV —1d;
and 7 = reY 12 withr; > 0,0 <71, <a. Bearing in mind (15) and (97), we obtain a constant @ > 0
such that the next inequality

1 Tz 1 —1zm
w T, T,m)|| =———||exp ( — = eV
| d1,7r( 1, 2 )‘®q1/k1(71/u1)‘| p( u2)||71||1'2|| |
< @1+ |m) e P exp ( ML 10g2(ry + ) + alog(n +8))en
- 2log(q)

1 ki 5 1
X —eX — 710 r / u —_——
Cor D1 p( 2log(q) g (n/| 1|)> (r1/|u1])/2

X exp ( 2 cos(dy — arg(uz))> x e~"MmE)(113)
|2

holds provided that u; € Ry, o, and up € Uy 4,. According to (103), we notice that

e’ exp ( — |;—2| cos(dy — arg(uz))> < e"exp ( — ;—2
2

o Bogy) Seexp (= 2bog,)  (114)

Ry

under the restriction |u;| < Ry. By dint of the upper bounds (105) in a row with (111), (112) and (114),
we acknowledge the fact that (11, u2,z) = Uy, 4,(141, U2, z) is bounded and stands for a holomorphic
map on the product (Ry, A, N Dg,) X Uy, X H p under the assumptions (100) and (103). Since the
Borel-Fourier map wy, (71, T2, m) solves the convolution g—difference equation (48) as shown in
Proposition 2, we deduce from Lemma 3 that Uy, 4, (11, 2, z) conforms the auxiliary equation (39) on
the domain (R, A, N Dg,) X Up4, X Hg for given vanishing initial data Uy, 4,(0,0,z) =0. O

4. Construction of a holomorphic solution to the main initial value problem (21) and its Gevrey
asymptotic expansion relatively to complex time ¢ in logarithmic scale.
4.1. A finite set of genuine solutions to related initial value problems.

We restate the definition of a good covering in C* as described in the textbook [8], Section XI-2.

Definition 5. Let ¢ > 2 be an integer. A set of bounded sectors U = {Up }o<p<.—1 edged at 0 is deemed with
the next three attributes

1. Any two consecutive sectors Uy, and Uy 1 have non empty intersection Up N Up 41, for 0 <p <¢—1,
where the convention U, = Uy is assumed.

2. The intersection of any three sectors U, N U, N Uy is reduced to the empty set for all distinct non negative
integers p, q,r less than ¢ — 1.

3. The union Ug;é Uy, covers some punctured neighborhood of 0 in C*.

Such a set U is tagged a good covering in C*.
A notion of fitting set of sectors is discussed in the next definition.

Definition 6. Let ¢ > 2 be an integer. A finite set of bounded sectors U = {Ua s, }o<p<c—1 is minded with
the next three constraints.
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1. Foreach0 < p < ¢ — 1, the sector Uy, is edged at 0, with bisecting direction 9, € R and is subjected to
the condition that some real number Ay 5, > 0 can be singled out with

cos(dp —arg(uz)) > Agp, (115)

forallup € Upp,.
2. There exists an index p1 € {1,...,¢ — 1} with 0y, = 71. All the sectors Up,, 0 < p < ¢ — 1 have the

same radius Ry which obeys the restriction
A
0< Ry < %

where Ay 5 > 0 is introduced in the above item and v > 0 is declared in Definition 4.
3. The set U forms a good covering in C* in the sense of Definition 5.

A set U endowed with the above three features is called a fitting set of sectors.

In the oncoming proposition, we exhibit analytic solutions to the auxiliary problems (37) and (39)
where the directions d; span the set of bisecting directions of some fitting set of sectors. Furthermore,
sharp estimates of their consecutive differences are provided which are essential in the study of their
asymptotic expansions in the variable u;, that will be described in the next Subsection 4.2.

Proposition 4. Let the sectorial domain Sq r,,, the unbounded sector Sy, together with the strip Hy and the
disc D, be arranged as in Lemma 4. Consider a fitting set of sectors U = {Uy,5 ) Yo<p<c—1 and assign a radius
a with 0 < a < p. Then, provided that the constants C; > 0 are taken close enough to 0 in accordance with the
requirements of Proposition 2, the properties described in the forthcoming three items hold.

e Foreachp € {0,...,¢ — 1} \ {p1} (where p; stems from Definition 6 2.) the equation

dp

Lo
Q0:)Ua, 0, (11,142, 2) = 110, 0 Hlay
1

0g q);quD(az)udlr%(”lf U, z)+

Iy 1
Z uloaql;u] OHzl1og(q);u2CL(Z)RL(az)Udl,ap(“1,1«12,2)+Fa,,,a(M1,M2/Z) (116)

where the forcing term Fy, q is given by the triple integral formula (38), possesses a bounded holomorphic
solution (u1,uz,z) — Uy, o, (11, 12,2) on the domain (Rgya, N Dr,) x Uap, X Hy, where Ry, a,
stands for the set (19), for a radius Ry > 0 fulfilling (100), which observes the condition Uy, o, (0,0,z) =0.
Furthermore, the map Uy, o, (u1, up, z) is embodied in a Fourier inverse and a double q—Laplace, Laplace
transform

kl +oo
u 4 4 = 7/ / / 7 7
dy,0, (U1, 12, 2) og(q) 2172 by oy ) e wWg, 7(T1, Ty, m)

xp (— )¢Vt

de
X ——F——¢€ —_—
®q1/k1 (Tl/u1) U T T

dm  (117)
2

where the Borel-Fourier map (ty, T2, m) + wyq, (71, T2, m) belongs to the Banach space Exp‘(’;{l1
(introduced in Definition 4) constrained to the bounds (97).
*  The equation

0,0,V,B,1L,0)

dp
.
Q(02)Ugy, 7 (u1,u2,2z) = MlDUq’f%ll OHi—Dlog( ) Rp(92)Uy, 7 (11, u2,2)+
1

q):uz

Ip 1
Z uloaql;ul o Hh log(q);uzq(z)RL(az)lldl,n(ul, 1/[2,2) + Fn(ul, uz,Z) (118)
l:(lo,ll)el
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with forcing term Fy is displayed in (29) and expressed as a polynomial in (30), holds a bounded holomorphic
solution (u1,uz,z) + Uy, 7 (11, u2,z) on the domain (R4, a, N DR,) X Ua,z X Hg where the set Ry, a,
and radius Ry are given in the above item, under the vanishing condition Udl,n(O, 0,z) = 0. In addition,
the map Uy, (u1, uz, z) is expressed through a Fourier inverse and a double q—Laplace, Laplace transform

k +o0
Udl,n(ulzquZ) = log(q)(1271)1/2/Ld1 /n/_oo wdl,n(rl,’rz,m)
1

2N\ /—1zm dt do
X — — e ——=dm (119
®q1/k1 (t1/uq) exp ( uz) T T (119)

where the Borel-Fourier map (T1, T2, m) + wg, (1, T2, m) is described in the former item.
*  The neighboring differences of the maps Uy, o, are controlled by the next bounds. Forall 0 < p < ¢ —1,
two constants My, Kp,1 > 0 can be found such that

Kpa
Uy 0, (41, 12,2) — Uay 0, (11, 2,2)| < My exp (— ﬁ) (120)
for allvul € R, a, NDgy,allz € Hg, provided that uy € Uz, N u2,0p+1 N DRz for a well chosen radius
0 < Ry < Ry. Here we adopt the convention that 0. = 0.

Proof. The first two items are direct corollaries of the statement of Proposition 3 and the definition of
a fitting set of sectors U chosen at the onset of Proposition 4.

We focus on the third item which demands more labor and hinges on paths deformations
arguments. We distinguish two different situations.

Case 1. Let p = p; or p = p; — 1. We discuss only the subcase p = p; since the other alternative
p = p1 — 1 can be treated in a similar manner. By construction, we notice that 9,,,1 # 7 (modulo
27). According to Proposition 2, for any prescribed 71 € Sy, and m € R, the partial map 7, —
wdl,n(Tlr Ty, m) is analytic on the union H, U D,. As a result, the oriented path L, i~ L can be
bent into the union of

—  Thehalfline —Ly g0 = —|[a, +o0)eY 17
- Thearcof circle Crpo, {aeV=1/6 ¢ [r, 0p11l}

+1,0 —

and the classical Cauchy’s theorem enables the difference Udl,% .1 — Uy, 7 to be reorganized as a sum
of two contributions. Namely,

ud1,bp+1 (ul/ MZ, Z) - udl,n'(ull u2/ Z)

_ _kil/ / /Jroow (T ) m)
- log(q) 2”)1/2 Ldl o J—00 dq,e\ 1, 12,

(
1 (%] \/—1zde1 dt
X — e — —=dm
® 171 (/1) exp ( uz) T T
+7k1 / / /+o°w (T1, T2, m)
dq, 1, 82,
1og(@) 202 Jiy, Jeus, 10 ]

1 T V—1zm dTl de
X — — e ——dm (121
®q1/k1 (11/uq) exp ( uz) (SO (121)
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forall u; € Ry, A, NDg,,allz € Hg and up € Uy N U2,0p+1- We need to control the first piece of (121)

I—kil// /+°°w —_—
' Nog(q) 2m) 72 Sy, S S0 T

1 T V—1zm dT1 de
X _exp(—2 0005, 122
© 1k (1/u1) exp ( uz)e 0 n (122)

Drew on the bounds (104), (105) together with (111) and (112), we split the halfline Ly, in the union of
two segments Ly, 1 = [0, 1]eV=14 and La e = (1, +00)eV =141 and we are reduced to provide bounds
for the next two quantities J; ; and J; » for

h<hithe (123)

where

]*L/ / /Jroow (11, 70, M)
1.1 — 10g<q)(27—f)1/2 Ldl,l B dq,t\ 1, 12,

1 T V—1zm dTl de
X — e — —=dm
CRVS (t1/uq) exp ( Hz) T T

and

+oco
Ji2 = ‘L/ / / wWg, (11, T2, M)
log(q)(Zn’)l/z Ldl/l,oo m,a,00 J —00 v

T V—1zm dTl de
X — — e — —=dm
CRVS (t1/uq) exp ( Mz) T T
Indeed,
k1 T =B 1
]1.1 < log(q)(zn_)l/zw([m e dm) q,klAl Mkllqlé,lx
kl 2 1 /+oo AZ 7T
— 1 — ——=2))d 124
Xililgexp( 2Tog(2) og (x)) 72 X : exp (rz(v |u2|)) ry  (124)
and
kq too 1 R |
ha < e (Lo M) e ()
ky ) K 2 12, [T Mo
X exp (Tg(q)M‘)’l +ocM5,2) X exp( 2Tog(d) log (|u1|)) lug|*/ = x /‘Z exp (rz(v W))drz (125)

Now, we set 0 < Ry = (Ap e — Az,n) /v < Ry for some real number 0 < Az,n < Ay . Hence,

AYR AVZTL' |”2| A\/27r
- < - = = < - 12
/a exp (1’2(1/ ] ))drz /u exp ( ™ rz)drz - exp ( ™ a) (126)

provided that |u;| < Ry,. As a result of (124), (125) and (126), we deduce from the splitting (123) that

1 < ( sup M1(|u1|))|;—2|exp( %@ (127)

uleRdllAlﬁDRl 2,7 |u2|
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forall uy € Ry, o, N Dg,,allz € Hﬂl and up € Uy, N U2/°p+1 N DR2, where
ki T (BB Im]
— d
Miljnl) 1og(q)(zn)1/2“’</,oo ‘ ) Cor i
k1 2 1 k1 /+°° —(B—p' 1
— 1 @ B=B)Iml g\ — =~
<52 (105 ) 317 * gz L, ¢ Orewe
teo 1 ky ky 2 1/2
X (/1 r?/zdrl) X exp (Tg(q)M‘m + txMM) X exp ( 2Tog(d) log (|u1|)) 1| (128)

In the next step, we display bounds for the second piece of (121)

+0co
A T S | P
log(q)(2m0)1/2 Jiy Jewp, a0 "

T V—1zm d'ﬁ ded
_ 2 B 129
x ©, 1/ (11/u1) P ( Uz)e 0 (12)

According to Definition 6 1. of fitting set of sectors, we notice that the lower bounds
cos(0 —arg(uy)) > Azlapﬂﬂ =min(Ayo,,,, B2,7) (130)

forall up € Uy N Uz, whenever the angle 6 belongs to (71,9p41). By breaking up the halfine L,
into the segments Ly, 1 and Ly, 1 «, Similar computations as above yield the bounds

J2 < ( sup M1(|u1|)) ‘ /:p+1 e" exp (— 2 cos(6 — arg(uz)))ad()‘

uleRd],Al mDR] |1/l2|
a
<( sup My(fml)) | = oppafae™ exp (- -

g M20pean) (13D
uleRd1,A1 ﬂDRl 2

forall uy € Ry, a, N Dg,,allz € Hg, as long asup € Uy 7z N Uz,apH-
In conclusion, the decomposition (121) along with the two upper bounds (127) and (131) beget
the estimates (120) under the assumption that p = p;.

Case 2. Assume that p ¢ {p; —1,p1}. We observe that both directions 9, and 9,1 are not equal
to 77 modulo 271. Owing to Proposition 2, for any fixed 1 € Sy, and m € R, the partial map
T > Wy, 7(T1, T2, m) is analytic on the disc D,. On these grounds, we can deform the oriented path
Ly, 1,0 — Lo, q into a single arc of circle

Caprapﬂ/“ = {aemg/() S [0p,0p+1]}

and rewrite the difference Uy, o ,,, — Uy, 5, as a single triple path integral

0pt1
udl,ap+1 (ull Up, Z) - udl,Dp (ull up, Z)

_kil/ / /-‘roow (T . m)
a log(Q) (27-[)1/2 Ldl Cap,h PN dy,e\ 1, L2,

p+1/4

1 T V—1zm dTl dTQ
X ————— — e ——=dm (132
®q1/k1 (t1/uq) exp ( 142) T T (132)
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forallu; € Ry a NDgy,allz € Hy and uy € Uz, NUsp,,,- Upper bounds are asked for the quantity

+o0
/ wdl,ﬂ(rllTZ/ m)

]3 lOg(q 27'[ 1/2 /Ld /(;apa

1

B)e‘ﬁzmﬁ@dﬂz. (133)
2% LS

)exp(—

X -
®q1/k1 (T1 /1/[1
The definition 6 of fitting sets of sectors allows the next lower bounds
cos(f — arg(uz)) > A2,a,,+1,ap = min(Az,apH,Az,ap) (134)

tohold forall uy € Uy p N UZ,D,, ., whenever the angle 6 is taken in (Dp, 0pi1 ). Using the partition of the

halfline Ly, in two segments Ly, 1 = [0, 1]e\md1 and Ly, 10 = [1, +oo)eﬁd1, comparable estimates
as the ones performed in the case 1. give rise to the next bounds

JE S( sup M (|uq]) ‘/ P v exp( |a2|cos( farg(uz)))ade‘

uleRdlyAl ﬂDR1

a -~
< ( sup M1(|u1|)> [0p — 0,41]ae™ exp (— WAz,a,,H,ap) (135)

uy eRdl/Al ﬂDRl

foralluy € Ry, a, N Dg,, all z € Hy, provided that us € Uz, Nz, ,, where My (luz|) is given by
the expression (128).

In brief, the recast expression (132) coupled with the bounds (135) prompts the awaited estimates
(120) under the assumption that p ¢ {p1 —1,p1}. O

4.2. Gevrey asymptotic expansions for the bounded holomorphic solutions to the family of auxiliary problems
(116) and (118).

In the next proposition, asymptotic expansions of Gevrey type are achieved for the maps
Ug o, (111, Uy, z), that are displayed in Proposition 4, relatively to the variable u5.

Proposition 5. For the constants d1, Ay, Ry and p' fixed in Proposition 4, we denote ¥y, A, g, g the Banach
space of C—valued bounded holomorphic functions on the product (R, A, N Dr,) x Hg endowed with the sup
norm. Then, for all 0 < p < ¢ — 1, the partial maps up — udl,op (u1, up, z), viewed as bounded holomorphic
maps from the bounded sector Upp, N Dy into Ky, o, r, g, share a common formal power series

1’[

=Y Gu(uy,z)-= (136)

n>0

with coefficients G, n > 0, that belong to ¥y, a, r, g, as Gevrey asymptotic expansion of order 1 on Uy, It
means that, for each 0 < p < ¢ — 1, two constants K, 2, My, 2 > 0 can be chosen in a way that the next error
bounds

Uy, o, (11, 12,2 Z Gn(uy,z < Kpp(Mpp)NTIT(N +2) jup | N (137)
hold for all integers N > 0, all up € U, N DRz’ whenever uy € Ry, o) N D, and z € Hg.
Proof. In the proof, we apply the next result known as the Ramis-Sibuya theorem that we rephrase for

the sake of completeness and clarity for the reader (see Lemma XI-2-6 in [8]).

Theorem (R.S.) Let (F, ||.||r) be a Banach space over the field of complex numbers and let {Up }o<p<c—1 be
a good covering in C* as outlined in Definition 5. For all 0 < p < ¢ — 1, we consider holomorphic functions
Gp : Uy — T that enjoy the next two features
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1. The maps Gy are bounded on Uy, forall 0 < p < ¢ — 1.

2. The difference ®,(u) = Gpy1(u) — Gp(u) stands for a holomorphic map on the intersection Z, =
Up1 N Up which is exponentially flat of order k, for some integer k > 1, meaning that one can select two
constants C,, Ay > 0 for which

A
[1©p(u)|[r < Cp eXp(—ﬁ)
holds provided that u € Z,, for all 0 < p < ¢ — 1. By convention, we set G = Go and U, = Uy.

Then, a formal power series G(u) = Y,,»0 Guu" with coefficients Gy, belonging to F can be singled out,
which is the common Gevrey asymptotic expansion of order 1/k relatively to u on U, for all the maps G, for
0 < p < ¢ — 1. It attests that two constants K,,, M, > 0 can be chosen with the result that the error bounds

S N+1 NA+T, N1
1Gp(u) = 3 Gut"|le < KpMp ™ IT (14 ——)]u] (138)
n=0

hold for all integers N > 0, allu € Uy, all0 < p < ¢ —1.

Foreach 0 < p < ¢ — 1, we introduce the map G, : Upp, N Dy, — Fy, g, p setas

Gp(uz) := (u1,z) = Uy, o, (11, 112, 2).
In view of Proposition 4, we acknowledge that

- The set of sectors {U,0, N Dy, fo<p<c—1 forms a good covering in C* owing to Definition 6 3.
- Foreach0 < p < ¢—1, themap G, is bounded holomorphic on the sector U, N Dy, .
— Foreach0 < p < ¢ —1, the difference ®y(u2) = Gp11(u2) — Gp(u2) suffers the bounds

K

< _ Ll)
1Op(2)[[F, , ¢ 5 < Mprexp ( us|

for the constants M,,; and K, 1 displayed in (120), provided that u; € U5 , N Uz,ap a N DRz'

Thereupon, the claims 1. and 2. of Theorem (R.S) are matched for the family of maps {Gp }o<p<c—1
with the constant k = 1. The existence of the formal power series (136) which represents the collective
Gevrey asymptotic expansion of order 1 relatively to u; on U5, N Dy, for all the maps G, 0 < p <
¢ — 1 follows. As a result, the error bounds (137) are warranted. [

4.3. Statement of the first main result.

In this subsection, a bounded holomorphic solution to our main initial value problem (21) is
shaped. This solution is favored with an asymptotic expansion in some logarithmic scale that reveals
to be of Gevrey type. The next theorem represents the first main achievement of our work.

Theorem 1. Let the sectorial domain Sq R, the unbounded sector Sy, together with the strip Hy and the disc
D, be duly prescribed as in Lemma 4. Then, assuming that the constants C; > 0 are in the vicinity of 0 as
specified by the requirements of Proposition 2 and that the radius Ry > 0 is close enough to 0, the equation

ap

QM@:)u(t,z) = 100 Rp@)u(tz) + Y. 2ol Ri@)ultz) + f(tz)  (139)
1=(loy)el
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has a bounded holomorphic solution (t,z) — u(t,z) on the domain ((Rg,a, N Dg,) \ (—00,0]) % Hg for
vanishing initial data u(0,z) = 0. In addition, the map u(t,z) can be expressed as a triple integral comprising a
Fourier inverse, a q—Laplace and Laplace transforms

_ 1 _ k1 +oo
u(tlz) - udl,n’(tr log(t)lz) - IOg(q)(ZTf)l/z /Ldl /Ln /700 wd],T[(Tll TZrm)

; — \/jlzmdj@
*®,m (/1) exp (- (log(t))m2)e o A (140)

where the Borel-Fourier map (Ty, T2, m) + Wy, (71, T2, m) originates from the Banach space Exp’(7
(see Definition 4) and is restrained to the bounds (97).

The function u(t,z) enjoys a generalized asymptotic expansion of Gevrey type in a logarithmic scale as t
tends to 0. More precisely, one can single out a formal series

;1
kq,0,0,v,B,1,p)

a(tz) =Y Gn(t,z)(l/k;ﬂ (141)

n>0

with bounded holomorphic coefficients Gy (t,z) on the domain (R4, A, N Dg,) % Hg, which stands for an
asymptotic expansion of Gevrey order 1 in the scale of logarithmic functions { (1/ log(t))" } n>0 of the map u(t, z)
with respect to t on the domain (Rg, A, N DR, ) \ (—09,0]. In other words, two constants Ky, 2, M, 2 > 0 can
be found with the aim that the next error bounds

N n
‘u(t,z) -y Gn(t,z)%

n=0

< K, 2(Mp 2)VTIT(N +2)[1/ Tog (1) N (142)

hold for all integers N > 0, all t € (Rg, o, N DR,) \ (—0,0], provided that z € Hg.

Proof. We select a fitting set of sectors U = {uz,a,,}ogpgg—l and we take the index p = p; for
which 9, = 7 according to Definition 6 2. By definition of the principal value of the logarithm
log(t) = In |t| + +/—1larg(t), for arg(t) € (—m, ), whenever t € C\ (—oo,0], we check that

1
— D 14

log(t) e UZ,T[ n RZ ( 3)
aslongast € (Ry,a, NDR,)\ (—o0,0], provided that we take Ry > 0 sufficiently close to 0, where
Ry > 0 has been disclosed in the third item of Proposition 4. We define

u(tz) = Uy, (t, logl(t)’z) (144)
where the map Uy, - (u1,u2,z) is described in the second item of Proposition 4. By construction of
Uy, x, we ascertain that u(f, z) represents a bounded holomorphic function on the product ((Rderl N
Dg,) \ (—20,0]) x Hpg:.

Besides, according to the second item of Proposition 4, we know that the map lldl,n(ul, Up,z)
stands for a solution to the equation (118) on the domain (R4, A, N Dg,) x Uz 7 X Hg. On the basis of
the computations made in Subsection 2.3, we deduce that the map u(t,z) solves the main equation (21)
on the domain ((Ry, a, N Dg,) \ (—0,0]) x Hg, constrained to the initial value condition u(0,z) = 0.

At last, the asymptotic expansion property (142) of the map u(t,z) is a direct offspring of the
expansion (137) for the particular case p = p;, where u; is set to be the time variable t and the variable
uy is merely replaced by the logarithmic function 1/ log(t) for t € (Ry, o, N Dg,) \ (—00,0]. O
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4.4. Computational features related to the formal power series (136).

In this subsection, we establish that the formal series (136) which represent the asymptotic
expansion of Gevrey type for the holomorphic maps Uy, 5, actually solve some functional partial
differential equation. On the journey, we notice that its coefficients G,, n > 0 fulfill some handy
recursion relations that might be of interest for concrete applications.

Proposition 6. The formal power series

Glup) = n;OGn(ul,z)% (145)

with coefficients G, n > 0 in the space ¥y, A, r, g, conforms the next functional partial differential equation

d
D . Uy

9.)G(up) = uPot Rp(9,)G(— 2
Q(92)G(uz) = uyP oy, Rp(92) (1—|—u2%710g(q))

lO ll A
+ ulot, c(z2)R;(9;) G(—--~——
) (l?ll)el 179U L( ) l( Z) (1 M211 log(q)

u
2 ) +F7T(ul/u212)‘ (146)

In addition, the coefficients G,, n > 0 satisfy the recursion relations (154) and (155).

Proof. We depart from the equation (118) recast in the form

dp

dp ki u
Q(az)udl,rt(ulz up, Z) = ulDUqIE%ll RD (az)udl,ﬂ(ul/ 2

1+ uz%’log(q)

Iy I
+ ) U (z)Ry(0:) Uy, (1
l:(lo,ll)el

,Z)

Uz
P ,2) 4+ Fr(uq,up, z 147
VTl 1og(q) )+ Fr(uy,uz,z) (147)
provided that u; € Ry, A, N DR, u2 € Uprandz € H g We remind the reader the next useful classical
result which relates the coefficients of an asymptotic expansion of a holomorphic map f to its high
order derivatives.

Proposition ([2], Proposition 8, p. 66) Let f : G — I be a holomorphic map from a bounded open sector
G centered at 0 into a complex Banach space IF endowed with a norm ||.||g. The following two statements are
equivalent

o There exists a formal power series f(z) = Y0 fuz" /n! with coefficients f, in F subjected to the next
feature. For all closed subsector S of G centered at 0, there exists a sequence (c(N,S))n>o of positive real
numbers such that N1

1f(2) = X faz"/nlllr < c(N, ) 2™
n=0
forallz € S, all integers N > 1.

e All derivatives of order n, f (")(2) are continuous at the origin and there exists a sequence (fy)y>0 of

elements in F such that
lim || (z) ~ fullr = 0

z—0,zeG
for all integers n > 0.

As a result of the above proposition, we deduce from the asymptotic expansion (137) in the
particular case p = p1 (meaning that 9, = 77) the next limits

li{Tn sup |9, Uy, 7 (u1,u2,2) — Gu(ug,2)] =0 (148)
up€lp 7y,

1ER, A NDR
upy—0 .8 1

z€Hy
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for all integers m > 0. On the basis of the above limits, in order to reach recursion relations for the
coefficients G, m > 0, our strategy consists in searching for recursion relations for the related m—th
derivatives of the map Uy, . relatively to up. On the way, we need to take the m—th derivative
with respect to uy of the left and right handside of the equation (147). However, the equation
(147) involves composition of Uy, , with explicit homographic maps and we are asked to explicitely
compute their higher order derivatives. In order to overcome this difficulty, we will apply a rule to
evaluate high order derivatives of compositions of functions which has been introduced in [16] and
is suitable for Gevrey estimates. This rather new identity allows us to avoid computations with the
cumbersome combinatorial classical Faa-Di-Bruno formula and enables us to present very practical
recursions relations. Indeed, we recall this higher order chain rule (Theorem 2.1 in [16]) under stronger
assumptions (which will be sufficient for our scope) as stated in the previous work of the author [13].

Lemma 7. Let D, G be open setsin C. Let g : D — G and f : G — C be holomorphic functions. Then, the
n-th order derivative of the composite function f o g : D — C is given by the formula

n

L (f =) -

]:1 ]'

N {71 g o onao)

Ih=0
for all integers n > 1 and x € D.

In the next lemma, we perform an auxiliary computation which entails the homographic maps
appearing in the main equation (147).

Lemma 8. For any integer | > 0, we set

Us

gi(uz) = 1+ upllog(q)

Then, for all integers n,j > 1 with n — j > 0, the next identity

{an ][/ g1 (up + 6h)de) }

[h=0
1

~ (1 + uallog(q))

o (og ()" (1) -+ (n = 1) x (=1)" (149)
holds for all uy € Uy, with the convention that j(j +1)---(n —1) =1 when j = n.

Proof. Direct computations show that

1
(1+uzllog(q))?

81 (u) =

and hence

1 1 1
11y + O)dO :/ 4
/ng(uz+ ) 0 (14 (uz+6h)llog(q))?
1

~ (1+ uallog(q)) (1 + uzllog(q) + hilog(q))

for all uy € Uy . We deduce that

1

T aattog(ayy < (1 + vallog(a) + Hllog(g))™” (150)

[ / <)(uz + 611)d8)) =

doi:10.20944/preprints202310.1781.v1


https://doi.org/10.20944/preprints202310.1781.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1781.v1

34 of 55

for all up € Uy and all integers j > 1. It follows from (150) that

1

1 , j
(U st comaol} = 15y

which coincides with the formula (149) in the case j = n > 1 under the convention that j(j +1) - - - (n —
1) = 1. On the other hand, when n — j > 1, we deduce from (150) that

el / ¢l (113 + Oh)d6)i
1

m(l log(q))" Jj(j+1) -+ (n—1) x (=1)"7 x (1 + upllog(q) + hllog(q)) ™"

(152)
which yields the awaited identity (149) by setting & = 0 in the formula (152). O

On the ground of the above lemmas and based on equation (147), we can derive some recursion
relation on the sequence of m—th derivatives 0, Uy, 7 (u1,uz,z) of Uy, » with respect to u. Namely,

Q(az)aglz ud] 7T(u1/ u2/ Z)

d

UL m!
_u 0’ R a U uy, 1) X '
170 R )[]Z%J( — (et z) 1+ 1% log(q)’ ) (14 1272 log(q) )+

x ({2 1og(@)" T x G+ 1)+ (m = 1) x (-1 ]

uz 1

Up

14 uzly log(q) &2

m
+ ) ulloaqulcl (z)R(z [Z (a{,zudlﬂ)(ul,
l:(ZOIll) =
1

X -
(1+ uply log(q))+m

X (I 10g(9))" 7 x j(j+1) -+ (m = 1) x (=1)"7]
+ 9y, Fr(uy,uz,z)  (153)

forallm >1,all uy € Ry, o, N Dg,,alluy € Uy randall z € Hg.

In the next step, we let 1, tend to 0 on the sector Uy  in both identities (147) and (153). According
to the limits (148) and bearing in mind that the maps Uy, - (u1, u2,z) and Gy, (11, z) are holomorphic
relatively to (u1,z) € (Ra,,a, N Dg,) X Hp, we get the next recursion relations for the coefficients Gy,
m 2> 0. Namely,

ap
Q(8:)Go(u1,2) = uP ok Rp(3:)Go(uy,2)

+ Y ubol, c(2)R(3:)Go(ur, z) + Fr(u1,0,2)  (154)
I=(lo,l1)€l
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together with

dp

Q)G (11,2) = P03, Rp(@:)] 31 " Gy, 2)

x (52 10g (@)™ x j(i+1) - (m — 1) x (1))

Y dala@RE)| Y G, 2)

I=(oh)el oL m =)
x (1 10g(9))" T x j(j+1) -+ (m = 1) x (=1)"| + (@ F) (11,0,2)  (155)

forallm >1,all uy € Ry, o, NDg, and z € Hg.

In the last part of the proof, we show that the formal power series (145) obey the functional
equation (146). Our approach hinges on the next technical lemma where the Taylor expansion of the
composition of the formal series (145) with some homographic map is explicitely computed.

Lemma 9. Let [ > 0 be an integer. The next formal Taylor expansion

A 1/[2
G———2
(1 + upllog(q) )
i +1 -1
otun,2)+ L (8 Gylun,)(—1)" I og(a)) L= D s
m>1 " 1<j<m ji(m —=j)!
holds, for all uy € Ry, o, N D, and z € Hg.
Proof. By mere composition, we notice that
A U M;l
G(l + upllog(q rg) G (1,2 n' (14 uyllog(q))" (157)
On the other hand, the geometric series allows to write
1 h I h
— = —1)*(11 158
1+u2l10g(q) h[;)( ) ( Og(I])) U ( )
and taking its derivative of order n > 0 with respect to u; yields the expansion
(1) (og(q))" = (1) og(g)h 1)+ (1 (= )ik (159)

(1+upllog(q)) "*1

with the notation h(h —1)--- (h—(n—1)) =1lifn =0and h(h—1)--- (h— (n—1)) = hifn =1, for
all 1 > n. From (159), for all integers n > 1, we deduce the next identity

n n
U U

(1+upllog(q))" — (—1)"1(Ilog(q))"1(n —1)!
x Y (=1)"(I10g(q)) h(h—l)"'(h—(n—2))ug_("_1)

h>n—1

= Z (_1)hfn+l (llog(q))hfr”“lh(h — 1) e (h — (” — 2))uh+1

ol (n—1)! 2

= Y (1) (1oglq)y I =D (2 D) g

P (n—1)!
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As a result of (157) and (160), we deduce that

A u2

G(Wlog(q)) = Go(u1,2)

# L Gl 2) (1 togta)) ' RO )

- a(h=1)(h=2)---(h—(n—1))
= Go(u1,2) + h);l (1<>n:<h Gu(111,2)(—1)" " (1og(q) )" " )ik
= Go(u1,2)
m—j mf‘(m_1)<m_2)"'(m_(j_l)) m
tE (1§]2§mcj<ul,z><—1> (110 ()" FTE )ug 61
Besides, by straight calculus, we observe that
(m =) =) (m = (=1)) _ji+1) - (m—1)
G~ D) ~ T (162

forallm > 1and 1 < j < m. Eventually, the combination of (161) and (162) yields the awaited formal
Taylor expansion (156). [

According to the fact observed in (30) that the map F;; defines a polynomial in the variable u5, it
follows that its Taylor expansion

(8’:}21-"71) (u1,0,2)
m!

Fr(uy,uz,2z) = )

m>0

! (163)

is convergent (and actually a finite sum) near the origin with respect to u,, for all u; € Ry, o, N Dg,
and z € Hg.

At the very end of the proof, we observe by plugging the expansions (156) and (163) into the
equation (146) that the series @(uz) formally solves (146) if its Taylor coefficients G;;, m > 0 fulfill the
recursion relations (154), (155) which has been shown to hold. Proposition 6 follows. [

5. Fine structure of Gevrey/q—Gevrey asymptotic expansions in combined power and logarithmic
scales for the holomorphic solution to the initial value problem (21).

5.1. Solving the convolution q—difference equation (48) on some neighborhood of the origin
In order to study the equation (48) in the Borel space near the origin in C? and Fourier space on R,

we introduce the next Banach space.

Definition 7. Let B, i, p > 0 be real numbers. For a given real number b > 0, we denote Ey, , 5 ,,) the vector
space of all continuous C—valued functions (ti, T2, m) = h(7y, 72, m) on Dy x Dy x R, holomorphic with
respect to (1, T2) on Dy X D,, such that the norm

1
b0, 2 m) [ pp = sup (14 [m|)FePI™ — |h(zi, 70, m)] (164)
TleDb,T2€Dp |T2|
meR

is finite. The vector space E(y , g, endowed with the norm |.||(y , g ,,) is @ Banach space.

doi:10.20944/preprints202310.1781.v1
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We plan to solve the next convolution g—difference equation

Q(V—-1m)w(t, T2, m)
dp
_ T dp
= Rp(vV—1m) (/R )iolio 1172 exp (— Tzk—l log(q))w(t1, T, m)
1 ]
]_ “+o0 TO ll_ko
+ iz | Culm = )RV =Tmny) s o o(n, o m)
zz(zoz,:ll)ez @m)t/2 ) : (qt/kr)lollo=1)/2757

x exp(—nly log(q))dmy + F (11, 7, m) (165)

provided that m € Dy, » € Dy and m € R, with some function w in the Banach space
Ewppa - wppm)-

In preparation for achieving our goal, we rearrange the equation (165) as a fixed point equation
(disclosed later on in (188)). Along the road, we need to divide our equation by the map Py, (11, 72)
displayed in (49) whenever 7y € Dy, T2 € D, and the mode m belongs to R. Lower bounds for the map
P, are provided in the next lemma.

Lemma 10. Let the inner radius rq r,, outer radius Rqg r,, and aperture of Sq r,, introduced in Subsection
2.2 be chosen as in Lemma 4. Let p > 0 be the radius fixed in Lemma 4. Then, for a proper choice of radius b > 0,
taken close enough to 0, one can find a constant Kdo,kl,q with

|Pu(71,72)| = 1Q(V=1m) Ky o, 4 (166)
forall Ty € Dy, all ©p € Dy, allm € R.

Proof. Take a fixed 7 € D,. We introduce the complex number

1/dp

fo__{ Q(v/—1m)
RD(\/jlm)

B od
0_ ‘(ql/kl)dD(dD 1)/2|exp (Tgflog(q))}}

V-1 Q(v—1m)
xexp( i [arg(RD(\/jlm)

Observe that 7 remains bounded and parked in a small domain we denote 7,° which is located at
some small positive distance of the origin, when m varies within the real numbers, owing to the
requirement (25). We select the radius b > 0 accordingly to the condition

(Wm%%*wamf%bamﬂ)“”>

D,NTY = . (168)
Now, let us take an arbitrary complex number 1, € D,. We decompose it in the form
o =1 (E+V-1¢) (169)

for some real numbers 3, ¢ close to 0 for 7) given above. By construction of % in (167), the next identity

— @ 1/ky\dp(dp—1)/2 ~04D
= Rp(/m ) exp (77> log(7) (170)

holds. Select some arbitrary 7y € D;,. We split it in a factorized form

QU

(%)

7 = 25V 10 171)

doi:10.20944/preprints202310.1781.v1
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for some angle § € R and radius 7 with the constraint 0 < # < b/|%]|. The combined splitting (169)
and (171) together with the identity (170) enables the factorisation of the map

(800 exp(/ Tl
(ql/kl)dD(del)/Z

Pu(ti,2) = Q(v/—1m) — Rp(v/—1m)

_od . o d
xexp(~137 > 10g(q)) x exp((5 + V=1§) > log(q)
=Q(vV—1m)[1— 7DV =140 o oxp((5+ v/ 711/3)(;{—13 log(q))]. (172)
1
Besides, provided that the radius b > 0 is chosen in the vicinity of the origin, we can find a constant
Rap y,q > 0 with
- —1d,0 . N N

|1 — 70eV =108 5 exp((5+ \/—1¢)7? 10g(9))| = Rap ky0 (173)

forall0 <7< b/ |’f{J |, all 6 € R, alls, ¢ close to 0. At last, the factorization (172) and the lower bounds
(173) give rise to (166). O

In the ongoing proposition, we check that the map H introduced in (58) represents a shrinking

map on some appropriately selected ball in the Banach space examined in Definition 7.

Proposition 7. We fix the sectorial domain Sq r,, and the radius p, b as in Lemma 10. Let B,y > 0 be real
numbers fixed as in Subsection 2.2. Then, assuming that the constants C; > 0 presented in (27) are small
enough, for | € 1, for all radius @ > 0 chosen large enough, the map H given by (58) is favoured with the next
two features

. The inclusion
H(Bop) C Boy (174)

is granted, where B, denotes the closed ball of radius @g centered at 0 in the space E(v,0,,)-
. The 1/2—Lipschitz condition

[[H(w1) — H(ws)|

1
b < 51101 = w2llb0p0) (175)

holds for all w1, wy € By,.

In particular, since the radius @wp can be taken arbitrarily large, we observe that the map H turns out to be well
defined on the whole space Ey , g ., where the shrinking property (175) holds true.

Proof. Let us focus on the first item of the proposition. We first provide bounds for the forcing term
F /Py, of H disclosed in the next

Lemma 11. There exists a constant ¥z > 0 such that

F(tr, T, m)
Pm (Tll TZ)

b0 < Er (176)

doi:10.20944/preprints202310.1781.v1
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Proof. Owing to the lower bounds (166) and the definition (28) of F together with the bounds (91),
we arrive at

f(Tlszfm)’ < Tiiejaety [Fijp (m) [T o] 2

Pu(t1, 12) |Q(vV=1m)|Kap k4
1 . .
< — (L ) e MY F b o) x
mlnm€R|Q( _1m)|KdD,k1,q j1€J1,j2€)2 v

<Ep(1+|m])Fe Pln| (177)

forall iy € Dy, & € Dp, allm € R, where

1 Y, Ej bt

Fr=— >
min,, cr |Q(\/j1m)|KdDrk1/q €€l

paying regard to the fact that 0 ¢ J, C N*. At last, the expected bounds (176) follow from (177) and
Definition 7. [J

In the next lemma, we come up with bounds for the linear part of the map H.

Lemma 12. One can find a constant C, > 0 such that

! l b
||m /700 CL(m N ml)Rl(\/jlml)Tloo.q}Tl ! CU(T],T2, ml)

x exp (— 1l log(q))dmi| s < C2Cillw (T, 72, m)| (08 (178)

for all (U(Tll T, m) € E(b,p,ﬁ,ﬂ)‘

Proof. Letus take w € E(y, g ,,). We provide bounds for the function

B(t,,m) := S /+oo Cy(m — my) Ry (v —1my)

Pm<T1/ TZ) —00
L _lo
X Tioaqtfl " w(ty, 1, my) X exp (— wlhlog(g))dmy. (179)

By definition of the space E(; , 5 ,), we notice that

jw(tr, T2, m)| < [|wllppp (1+ m]) e P ||

_lh
forall 7y € Dy, all 7, € Dy and all m € R. Owing to the assumption (22), we notice that qll it e D,
provided that 7y € Dj,. Hence,
I

Lh—+
‘Uq;ﬁ i (U(Tl, T, Wl])| < ||CL)|

(bppy (1 + [ma]) Fe Pml |z (180)

whenever 71 € Dy, T» € Dy and m; € R. Then, according to the lower bounds (166) together with
(180), we deduce that

1
|B(t1, T2, m)| < b exp(ph 10g(¢l))K o[l (b,0,,) I 2]
dp k1,9

1

—+o00
- - — — —He—Blm]
< ot e 160 = IR =T) (14 gt P lams (181
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and bearing in mind the estimates (69) where the map A;(m) is introduced in (64), we reach

CR;

Br,mm)| < b Crybexplpl log(a) Il pppp x [(1 + m)) e Pz (182)
QK k19
forall ; € Dy, » € Dy and m € R. At last, we arrive at some constant C; > 0 for which the norm
bounds
[1B(t1, 72, m)| | (1,0,80) < C2Cullew]|p,0,6,) (183)
holds. O

Now, we select the constants C; > 0, for [ € I, small enough and take a radius @g > 0 large
enough in a way that the next inequality

1

l:(lg)el (27r)1/2(g1/k1)lo(lo=1)/2

CZCL(OE + f:f < @ (184)

holds where the constant C; > 0 appears in Lemma 12 and F# shows up in Lemma 11. Eventually, the
bounds (176) along with (178) under the restriction (184) trigger the expected inclusion (174).

In the second part of the proof, we address the shrinking property (175). Let us choose two
arbitrary elements wy, w, in the closed ball ng whose radius has been prescribed in the first item
(174). Owing to Lemma 12, the following inequality

!

1 +oo L h-

||7p ) / Ci(m — m)Ry (v —1my) 100, k1 (wi(t1, T, m1) — wo(T1, T2, 17))
m 7 —00

x exp (= 121 10g(q))dm |5,
< QCl|wi (T, ©2,m) — wa (T, T2, m)||pp,p,)  (185)

holds for the constant C, > 0 stemming from Lemma 12. We prescribe the constants C; > 0, for [ € I,
small enough allowing the next inequality

1
l/Z(ql/kl)lo(lg—l)/Z

C2C; < (186)

1
1=(iger (270) 2

to hold. The Lipschitz property (175) is a straight consequence of (185) under the requirement (186).

In the end, we suitably select the constants C; > 0, I € I small enough and a radius @ > 0 large
enough in order that both constraints (184) and (186) are granted at once. This induces the two features
(174) and (175) for the map H. O

The next proposition provides a solution to the convolution g—difference equation (165) inside
the space E; 5 5 ,,)-

Proposition 8. We prescribe the sectorial domain Sq r,, together with the radius p, b as in Lemma 10. Let
B, 1 > 0 be real numbers fixed as in Subsection 2.2. Assume that the constants C; > 0, 1 € I, are chosen small
enough in a suitable way as in Proposition 7. Then, for all radius @g > 0 large enough, a unique solution wy,
to the convolution q—difference equation (165) can be constructed in the space E(y, , g ) under the requirement

wn,oll(b,0,60) < @E- (187)

Proof. Select a radius @ > 0 as in Proposition 7. The closed ball B, C E (
metric space for the distance d(x,y) = ||x — v

bo,p,u) Stands for a complete

(b,p,p)- The proposition 7 claims that the map H

induces a contractive map from the metric space (B, d) into itself. The classical Banach fixed point
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theorem allows the map H to possess a unique fixed point located inside de ball By, that we denote
Wp,p- As a result, the next identity

%(wb,p(Tll 1, m)) = wb,p(Tll 1, m) (188)

holds provided 71 € Dy, T2 € Dy, for all m € R. At last, under the conditions imposed, we observe
that the convolution q—difference equation (165) can exactly be rearranged after a division by the map
Py (71, 72) as (188). As a consequence, the unique fixed point wy , obtained in By, fully solves (165).
This yields Proposition 8. [J

5.2. Link between the solutions wg, » and wy , to the convolution g—difference equation (48), (165).

In order to unveil the analytic relation between the two solutions wy, , and wy, to the same
convolution g—difference equation considered in Subsection 3.2 and Subsection 5.1, we introduce a
new auxiliary Banach space.

Definition 8. Let b, o > 0 be given positive real numbers and let S;, be an unbounded sector edged at 0 with
bisecting direction dy € R. We denote E, , 5., s a) the vector space of all continuous maps (11, Tp, m) —
h(7, T2, m) on the product (Sq, N Dy) x Dp x R, holomorphic relatively to the couple (1, T2) on the domain
(S, N Dy) x Dy, for which the norm

1
Wt o m) o p s,y = sup  (1+ [m])eP™l —|n(z, 75, m)] (189)
! 7 €54, (D} 1€Dp ||
meR

is a finite quantity. The vector space E, 5, 5 ) equipped with the norm ||.|[ 4,06, 1) is a Banach space.

In the next proposition, we claim that the map H displayed in (58) is well defined on the space
Ev,p,.1,5 i) where it boasts a 1/2—Lipschitz feature.

Proposition 9. We prescribe the sectorial domain Sq r,, and the radius b, p as in Lemma 10. We set the
constants B,y > 0 as in Subsection 2.2. We select an unbounded sector Sz, as in Lemma 4. Then, assuming
that the constants C; > 0 introduced in (27) are close enough to 0, for all | € I, the map H declared in (58) is
well defined on the whole space Ey, , 5, 5 » and is subjected to the next 1/2—Lipschitz condition

|[H(w1) — H(ws)]

1
(bopuSa) < 5”“’1 — w|

(brp/,Brﬂ,Sdl ) (190)

for all w1, wy belonging to E(b,p,ﬁ,y,sdl)'

Proof. The proof of Proposition 9 mirrors in the very details the one of Proposition 7 and will not be
presented in this work in order to avoid redundancy. [

The following proposition establish the awaited analytical connection between wy,  and wy .

Proposition 10. Let the sectorial domain Sq g, and the radius b, p be prescribed as in Lemma 10. The constants
B, u > 0 are set as in Subsection 2.2 and the unbounded sector Sy, is chosen as in Lemma 4. Then, provided that
the constants C; > 0 given by (27) are taken in the vicinity of the origin for all | € I, the next identity

a)dl,n(rl, Tz,m) = wb’P(Tl, Tz,m) (191)

holds for all Ty € Sy, N Dy, all T2 € Dy, all m € R. In particular, for given & € D, and m € R, the partial
map T — wy (71, T, m) is the analytic continuation of the partial map 7 — wy, »(T1, T2, m) on the full disc
D,
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Proof According to Proposition 2, we know that the map wy, , belongs to the Banach space
Exp? (k1 o Bp)” According to Definition 8 it follows that the restricted map (71, 72, m) — W4, 7,
fory € S5, N Dy, » € Dy and m € R belongs to E(b,p,ﬁr%sdl)‘ On the other hand, we know
from Proposition 8 that the map wy, belongs to the space E,,5,). As a result, the restricted
map (71, T, M) — Wyp(T1, T2, m) on (Sg, N Dy) x Dy x R also belongs to E(brP/ﬁrH/Sdl)' Furthermore,
according to (98) and to (188), we observe in particular that the next two idendities

H(wi, (11,12, m)) = Way (11, T2,m) , H(wpp (11, T2,m)) = Wy p(T1, T2, M) (192)

holds as functions provided that 7y € Sy, N Dy, T2 € Dp and m € R. At last, if one sets w1 = wy, , and
Wy = wy, in the inequality (190), it follows from (192) that

1
(b,p,ﬁ,}l,sdl) S E | |wd1,7l' - wh,p|

| |wd1,7'( - wb,p| (brP/ﬁrV/Sdl )

It implies that |[wg, = — Wpell(b,0,8, =0 from which the expected identity (191) follows. [

5.3. Statement of the second main result.

In this subsection, we exhibit a fine structure for the asymptotic expansion of Gevrey/q—Gevrey
type for the solution u(t, z) to the equation (139) which combines both a logarithmic scale and a power
scale. The next statement represents the second deed of our work.

Theorem 2. We consider the function u(t,z) displayed in (140) which solves our main initial value problem
(139) for vanishing initial data u(0,z) = 0 built up in Theorem 1. Then, the map u(t,z) can be broken up as a
sum of two functions

u(t,z) = uy(t,z) + ux(t, z) (193)

where

—  the map uy(t,z) is bounded holomorphic on the domain ((Rg,,a, N Dg,) \ (—o0,0]) x Hg and possesses
a generalized asymptotic expansion of so-called q—Gevrey type in a power scale as t tends to 0. It means
that one can distinguish a formal power series

a1 (tz) =) ba(t,2)t" (194)

n>0

with bounded coefficients by (t, z) on the domain ((Rg, s, N Dg,) \ (—00,0]) X Hg which represents a
generalized asymptotic expansion of g—Gevrey order ky in the scale of monomials {t" },,>( of the map
uy (t,z) with respect to t on the domain ((Rg, o, N Dg,) \ (—00,0]). Namely, two constants By, By > 0
can be singled out for which the next error bounds

N N(N+1)
lui(t,z) Z (t,2)t"| < By(By)NTlg % |IE|NJrl (195)

hold for all integers N > 0, all t € (R, s, N DR,) \ (—00,0], provided that z € Hg.

—  the map uy(t,z) is bounded holomorphic on the domain ((Rg,,a, N Dg,) \ (—00,0]) x Hg and carries
the null formal series as asymptotic expansion of Gevrey order 1 in a logarithmic scale as t tends to 0. In
other words, two constants Bz, By > 0 can be identified in order that the following error bounds

|ua(t,2)| < B3(By)NTIT(N +2)[1/ log ()| N (196)

hold for all integers N > 0, all t € (R4, s, N DRr,) \ (—00,0], as long as z € Hy.
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Proof. Our idea consists in the splitting of the triple integral representation of u(t,z) given by (140)
into three specific contributions

u(t,z) = vi(t,z) + va(t, z) +v3(t,z) (197)
where
vi(t,z) = L/ / /Ho Wi, (71, T2, m)
log(Q)(zﬂ)l/z Lay b2 /Lnpya /=00 !
X W exp (— (log(t))Tz)emzmd_%E%zdm (198)
and

U(tZ)*L/ / /+Oow (T1, o, m)
2 T 10g(@) @) V2 Sy g S T

T,0/2,00

S - VT 4T 4T
X & m (/1) exp (— (log(t))m)e . dm (199)

in a row with

v3(t, z) k1 / / /+Oow (11, 70, M)
3\ 2) = 1 N0 \1/2 dy, 7 (T, T2,
log(q)(27r)1/2 Ly, py2e0 /L /=00 7

6 P (- V-1 4T 4T
><®q1/k1(71/f) exp (= (log(t))2)e o dm (200

where the integration paths are stated as follows
Lg, b2 = [0,b/2]eV "1, La, b/2,00 = [b/2,+00)eV 1

along with
Ln,p/Z = [O,P/Z]emn ’ L?T,p/Z,oo = [p/2, +oo)e‘/jlﬂ,

where the positive real numbers b, p > 0 are prescribed in Lemma 10.
In the next first main proposition, we provide asymptotic expansions for the first piece vy (t, z)
relatively to ¢.

Proposition 11. There exists a sequence of maps i (t,z), k > 0, that are well defined and bounded holomorphic
relatively to (t,z) on the product ((Rg,,a, N Dg,) \ (—00,0]) x Hg which are submitted to the bounds

1,2

Myog K0 o Mikjop 1 s2log(q)\1/2 — ©2
< 2k 2k

gt 2)| < —p=aq It +10g(q)Rqu,klA1< K ) Vg (201)

for some well selected constants My, @g > 0 and R > 0, where Cyy, > 0 and Ay > 0 are the two constants
arising in (15), for all integers k > 0, provided that t € (R4, A, N DRr,) \ (—00,0] and z € Hg. For any given
natural number N > 0, the next decomposition

N
v1(t,2) = Y gk(t,2) + o1,n41(4 2) (202)
k=0
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holds for (t,z) on ((Ra,,a, N DR,) \ (=00,0]) x Hg, where the remainder term vy,n1(t,z) stands for a
bounded holomorphic function on ((Ra,,a, N DR,) \ (—00,0]) x Hg and is monitored by means of the bounds

(N+3)?

k1 W@E 1 210g(q) 1/2 WD
_ , ,
o8 () RV T 1Ty ( ki ) Ve T (203)

lo1,N41(t 2)] < I

for the constants My, @g, Cyx,, A1 appearing in (201) and for a suitable small radius R > 0, as long as
t € (Rgy,a, NDg,) \ (—00,0] and z € Hy.

Proof. Let b, p > 0 be fixed as in Lemma 10. Owing to Proposition 8, we know in particular that the
partial map 7 — wy , (11, T2,m) is bounded and analytic on the disc Dy, for any prescribed 7, € D,
and m € R. As a result, we can apply the Taylor formula with integral remainder of some fixed order
N > 0 to that function and get the next expansion

N (9%, wpp) (0, T2, m) L(1—tN
wpp(T1, T2,m) = Y —2 ,pk' ™+ T1N+1/0 %(agﬂwb,p)(tﬁ,n,m)dt (204)
= [ [

provided that 7y € Dy, &» € Dy and m € R. According to Proposition 10, we know that the function
wg,, 7 (11, T2, m) coincides with the map wy, , (11, T2, m) for 7 € Sy, N Dy, all , € Dy and m € R. Hence,
from the identity (204), we deduce the next development

N (9% wy,) (0,2, m) 1(1—pN
wdl,n(Tll Tz,m) — Z 0 ’pkl T{{ + 1N+1 /(; %(aer+1whlp)(tT1,Tz, m)dt (205)
k=0 : :

forallty € Ly, p/2,all o € Ly /2 and all m € R. This last formula (205) enable the expansion of the

map v1 (t,z) in the form

k
o1(tz) = Z&tzl%@@wn

N+1 N+1
>< TN a a 7 du
/Ldl,b/z/L / [Tl /0 N1 (O W) (U, T2, m) }

/2 Y

1 dt dt
5 - 0 1 V=1zm 411 4712 5
" ST (t1/t) exp (— (log(t))2)e T d (206)

where

+°° a wb)OTz, )
R S S S G R SO
og(q 27'[ Lay b2 Lrps2

—_— Fzdel dTZ
X®q1/k1(71/t) exp (= (log(t))r)e 1" = 2dm  (207)

for0 <k <N.
In the next step, we provide upper bounds for the maps gi(t,z), 0 < k < N. We first need to
remind the reader the next formula

kl unfl n(n—1)
du=g % "
10g(9) J1, © 176, (u/) " 1

doi:10.20944/preprints202310.1781.v1
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for all t € Ry, A, which has been applied in our recent work [10], see Lemma 3 therein, from which we

deduce the splitting
3 / 7! Mk / il
— 1 i = $— S (208)
log(q) Lay b/2 ®q1/k1 (71 /t) — 1 log(q) Lgy b/2,00 ®q1/k1 (r/t)

forall t € Ry, a,- As aresult, one can further break up the term gj as follows

a whp 0T2, )k
/ k! o]

(t,2) (t )%fk 4 / /
,Z2) =4 , 2 1 T Taol(A) (D172
8k Kz log(q)(27)1/2 JLy e JL 1

1
G (a7 P (~(og(0)m)e

/2
= ZdeTl 9 1 (209)

where

a )(0, 2,
ax(t,2) = 1/ 5/, I wbp, ) }exp(—(log(t))rz)emm%dm (210)
np/Z '

In the next lemma, we focus on bounds for the function a(t, z).

Lemma 13. Forall 0 < k < N, the map ay(t, z) is well defined and bounded holomorphic with respect to (t,z)
n ((Ra;,a, N DR, ) \ (—00,0]) X Hg. Furthermore, there exists two constants My > 0and 0 < R < b such

that
Mg
Rk

or all (t,z) on ((Ry4, o, N Dy —00,0]) x Hg, provided that 0 < B’ < B.
101 1 g P

(£, 2)] <

(211)

Proof. We remind from Proposition 8 that the map wy,, belongs to the space E;, , 5, and that a
constant @g > 0 can be pinpointed with the bounds

|wpp(T1, T2, m)| < @ (1 + |m])~Fe Pl |z (212)

provided that 7y € Dy, 2 € Dy and m € R. Besides, from the classical Cauchy’s formula, we know the
next integral representation

(ak wy p) (0,7, m) =

k! /C wb,p(gf T, m) (213)

2\/?17'[ @'kJrl dé

to hold for 7, € Dy and m € R, where the integration is realized along any positively oriented circle
Cr centered at 0 with radius R subjected to 0 < R < b. On account of (213) and the bounds (212), we
reach the estimates

k! -
|(0%,01,0) (0, 72, 1) | < g (1+ m|) e Pl (214)

forall 7, € Dp, all m € R. As a result of (214), we arrive at

0/2 ptoo 1
ol 2)| < vz f) . el exp(log(e)s)
x @ (14 |m|)~tePlmleMmEml gy, < M17<k9£ (215)
where P N
Mlz(hl)m [ s x [ e 6Pl (216)
0 —o0
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forallt € (Rg,a, N Dg,) \ (—00,0],allz € Hy with0 < g’ < p. O

In the next lemma, bounds for the second piece of (209) are determined.

Lemma 14. Forall 0 < k < N, the map

T

(o) — / /
S = 10g(0) 2172 Sy i

/2

oo (alélwblp)(orTZrm) k
L (- V=i 4T 4T
X &m0 /1) exp (— (log(t))m2)e 5 dm (217)

is well defined and stand for a bounded holomorphic function relatively to (t,z) on ((R4,,a, N Dg,) \ (—09,0]) x
Hg. In addition, the next upper bounds

12
Mikiop 1 2log(g)\/2 — &2
< 2k
|g"'1(t’z)|—1og(q)chq,klA1( o) VE (218)

hold for all t € ((Ra;,a, N Dg,) \ (—20,0]), z € Hg, where the constants My > 0 and R > 0 are prescribed
in Lemma 13 and where Cy ., > 0 and Ay > 0 are the two constants appearing in (15).

Proof. The technical estimates displayed in the next lemma are crucial.

Lemma 15. The next inequality

(k=57

_ 1 1 2log(q)\1/2 2k

k—1 g\q k

T dn| < Vg Tt 219
‘ /Ldl/b/z,oo 1 ®ql/k1 (Tl /t) 1 Cq,klAl ( kl ) q | | ( )

holds for all t € Ry, a, N Dr,, all integers k > 0, where Cr, > 0and Ay > 0 are the two constants appearing
in (15).

Proof. Owing to (15), we first observe that

1 1 ky log?(|al/|t]) 1
< _k 220
|®q1/k1 (m/t)] = Copyd & ( 2 log(q) ) |71 /£[1/2 220

forall Ty € Ly, p/2,00 and t € Ry, o, N Dg,. Based on (220), we deduce that

1
k—1
T ———————dn
“/Ldl,h/z,oo ! ®q1/k1(T1/t) ‘
1 T k-3/2 k1 log?(r1/|t]) 1/2 1 L
< / r exp| — =—2——=—=)dry x |t = I f 271
Copy D1 Jo2 1 p( 2 log(q) ) 1 |t Cori I ki pltl (221)

where the quantity I ;| , is derived by performing the change of variable s; = r1/|¢| in the integral
along the segment [b/2, +o0) above and stands for

T k- k1 log? (s1)
s = [, S5exp (-5 5 (222)
Il ﬁ ( 2 log(q) )
In the next step, we reach upper bounds for I ;| ;. By coarse upper estimates, we first get
too k1 log?(s1)
Ly < Teo = k=3/2 — 21208 U g 22
kit = 0 /0 Lo ep ( 2 log(q) )dsl (223)
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Then, at last, we show that the constant I y can be computed in an exact manner. Indeed, we make the

change of variable
B ki \1/2
b= (m> log(s1)

in the integral I; o, which gives rise to

Foo 1,,21 21
Lo = /_oo exp (( — E)( Ok%(q))l/ztl) exp(—t)dt x ( Ok%(q))l/z. (224)

On the other hand, we recall the Gaussian identity

+o0

2 2

A = / e Y ANy
—0Q0

which is valid for any given real number A € R, that has been already used in our former paper [11]
and stems from the book [1], Chapter 10, p. 498. This last identity enables the straight computation of
(224) as follows
21 12 63
lo = (M) Jg ® (225)
’ kl
for any integer k > 0.
Eventually, we gather all the above bounds (221), (223) and (225) and arrive at (219). O

With the help of the above lemma, we achieve bounds for the map g1 (t,z). Indeed, from (219) in
a row with (214), we get

(k=37

k1 1 (2log(q)\1V2 — 2=k
< 2y |t
| = log(q) (27.[)1/2 Cq,k1A1 ( kl ) \/Eq 1 | |

|8k1(t, 2)

0/2 4o
x [7 T r@ele B0 )P e T g
0 —00

1,2
Mikiop 1 2log(q)\1/2 L;kZ) k
t 226
—1og<q)chq,klA1< B Al 26

forallt € ((Rg,,a, N Dr,) \ (—0,0]), z € Hp for the constant M; > 0 defined in (216). O

In the next lemma, we address bounds for the remainder part of the expansion (206) for v (¢, z).

Lemma 16. Let us denote

kq
log(q)(2m)1/2

>< /
Ly ps2 /L

N1t z) =

Foo 1(1—u)N
/ ['ﬁNH/O %(ai\{“wb,p)(uﬁ,rz,m)du}

/2 —

—_— _ \/jlzmdj@
*®,m (/1) exp (- (log(t))m)e g dm (227)

the tail piece of (206). The map vy N+1(t, z) is well defined and represents a bounded holomorphic function on
the domain ((Rg,,a, N Dg,) \ (—00,0]) x Hg. Moreover, the next estimates

k@ 1 /2log(q)\1/2 — M2?
|01,N+1(t,Z)|Slogtq) RNilMquklAl( kgl(q)) Vg F [N (228)

doi:10.20944/preprints202310.1781.v1
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hold whenever t € ((Rg,,a, N Dr,) \ (—00,0]) and z € Hg, for the constant My > 0 defined in (216) and
where R > 0 is some fixed small radius.

Proof. We first need to upper bound the next quantity

1

N

N T O (m/D " 229
]N ’ Adl/b/z ! ®ql/k1 (T]/t) 1’ ( )

relatively to t and N. Indeed, owing to (220), we deduce

HNFL (230)

1 b/2 N_1 ki log?(r1/|t]) 1 1 .
< = ry 2 — A VUV P Vg x HY2 = I
Jn < Cq,klAl/O 1 eXp( 2 log(q) ) 1 % [t Corit N,|t],b

where the element I, N,j¢|,b 1S obtained by applying the change of variable s; = r;/|t| in the integral
along the segment [0, b/2] overhead and stands for

b 2
- N—1 k1 log“(s
In b = /OZM s, “exp ( - 31 lfggql)) )dsl. (231)

In the next step, we merely observe that

7 to N-L k1 log?(s1)
Injyp < Inv1o = ? - dsy, 232
N Jt,b = IN+1,0 /o 51 exp ( > log(q) ) s1 (232)
where In.1 is given in the inequality (223). According to the computation made in (225), we notice
that .
21o 1/2 (N+32)
INt10 = (kgl(q)) Vg F (233)

At last, with the combination of (230), (231), (232) and (233) we arrive at

1 /2lo 12 32
e G- ) RVE R T 234)

provided that t € (R, o, N Dg,) \ (—00,0], for any given integer N > 0.
Besides, owing to the classical Cauchy’s formula, the next integral representation

(N +1)! [ )wb,p(ér%’”) (235)

= 2vin © —um)2

holds for all 7y € Dy, » € Dy, u € [0,1] and m € R, where the integration is performed along
a positively oriented circle Cz(ut;) centered at ut; with small radius R > 0 chosen in a way that
Cr(uty) C Dy. From (235) together with (212), we deduce the useful bounds

(E)Q\{Hwb,p)(uﬁ,l’z, )

N+ 1)!
1O ) ety 7y )| < DFD)

< v @e(L+ m]) e P | (236)
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forall Ty € Dy, & € Dp, u € [0,1] and m € R. Eventually, the gathering of (234) and (236) gives rise
to

on(t2) G g ([ O )

< log(q)(2m)1/2 RN+1 N!

(N+3)? 00
" 1 (2log( )) N B 1[N+ ¢ // esloglt\dsx/+ (1+|m|)*I/le*mm\e\lm(zmmum
Cq’k1A1 k1 -

ki @k 1 /2log(q)\1/2 it
< ~
= Tog(q) RV 1! Cor M ( ki ) Vg ‘7 Itl (237)

forallt € (R4, A, N Dg,) \ (—00,0] and z € Hg where the constant M; > 0 is defined in (216). [

In conclusion, the proposition 11 ensues from the decompositions (206), (209) and the collection
of Lemma 13,14 and 16. O

In the second main proposition, we show that the second piece v;(t,z) has the null formal series
as Gevrey asymptotic expansion of order 1 in a logarithmic scale with respect to .

Proposition 12. The map v;(t, z) is well defined and bounded holomorphic relatively to (t,z) on the product
((Ray,a, N DR,) \ (=09,0]) x Hy. Furthermore, for some well chosen constants My, My, Q1 > 0 and any
given integer N > 0, the next error bounds

kq 1 2log(gq)\1/2 o~
|va(t,2)] < log(q)(2n)1/2M(D’hC ( o ) Vgt
N+1
—(B=B)Iml g Q 1 NN1/2P(N __1 238
X/—oo ¢ "L M1 Mlp/2) ( )( 10g|t|) ( )

hold provided that t € (R4, s, N Dg,) \ (—00,0] and z € Hy, where C
constants stemming from (15).

2k > 0and Ay > 0 are the two

Proof. According to (97) in Proposition 2, one can find a constant M, ;, > 0 for which the map wy, . is
subjected to the next upper bounds

kq log (7| +9)
log(q)
x [male’l < Mgy (14 [m]) He Pl || let1™] - (239)

@y (71, T2, m) | < @(1 -+ [m]) e P 3 [ exp (5 +alog(|n|+9))

provided that 7y € Sy, N Dy/2, T2 € Ly p/2,0 and m € R. Besides, the bounds (234) for the quantity
(229) in the special case N = 0 yields the next estimates

! 1 2log(@\V2 o~
O 1, (1 /1) g™ |t 240
‘ /Ldl,b/z ®q1/k1 (71 /t ‘ - Cq k1 ( kq ) \F‘] | | (240)

forall t € (Rg a, NDg,)\ (—c0,0]. Furthermore, a constant M; € (0, 1) can be singled out with

e oo log |t tee (M lo |t|)r
H(t) = / e'"2| exp(log(t)ra)|dry < / eV"2¢"2 108t gy, < / e\ )2 s
p/2 p/2 p/2

_ 1 6(1\711 log\t\)p/2 (241)

M log |t|
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aslongast € (Ry a, N Dg,) \ (—00,0], for Ry > 0 chosen small enough. In the next step, we remind
the reader the following technical estimates that are taken from Lemma 14 of [10]. Namely, for any
given real number M > 0, one can select a constant Q1 > 0 such that

M) < quazmyn () (242)

LN
CVexp (- —
for all integers N > 1, all real numbers r > 0. Based on (242) for the constant M = M;ip/2 and specific
value r = —1/log|t|, we deduce from (241) that

H(t) < 2 (;)NNUZF(N)( ! (243)

N+1
- M Mip/2 B log|t|>

for all integers N > 1, provided that t € (Ry, A, N Dg,) \ (—00,0].
At last, the collection of the bounds (239), (240) and (243) triggers the next error bounds for the
piece v5(t,z). Namely,

k1 1 2log(gq)\1/2 e
< 8k
+oo , 1 1 \N+1
—(B=B")Im| g & _ N2 (= ——
x/m ¢ ot Fipr2? (N)( log|t|)

for all integers N > 0, whenever t € (R4, a, N Dg,) \ (—0,0]and z € Hg. O

In the last principal proposition, the third piece v3(t, z) is shown to have the null formal series as
asymptotic expansion of §—Gevrey order k; in the scale of monomials relatively to t.

Proposition 13. The map v3(t, z) is well defined and bounded holomorphic relatively to (t,z) on the product
((Ray,a, M DR,) \ (—=00,0]) x Hy. In addition, for some suitable constants @ > 0, Ms1p, Mspp > O,
M3z > 0 and any given integer N > 0, the next error bounds

K <%+10§% log(b/2))2
1 22 T log(q) T

@ kl
t,z)] < M M, 2%
|U3( Z)l = 10g(q)(27'c)1/2 Cq,klAl exp (210g(q) s1p & 5,2,!7)’7 !

1 1 1, Kk (N+1)2
a—3 —(3F foa(ay 108(6/2)) /k1\N+1 55 || N+1
></b/2r1 2dry x Ms(q 2" Tos@ DNH g 2Nt

ky @ ky
+ ex M +aM, 8k
log() 2712 Cyp 1 ©F (ZIOg(q) s M2y )g

el N AR -
<[ Sy x Ma(q )N BN 4y
1

hold provided that t € (R, A, N Dg,) \ (—00,0] and z € Hg, where Cy
constants appearing in (15).

. > 0and Ay > 0 are the two

Proof. We further break up the integral v3(t, z) in two parts

v3(t,2) = v31(t,2) +032(t,2) (245)
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where

+o0
v31(t,z / / / w, Ty, To, M
a(tz) = log(q) 27r log(q)(2m)1/2 Liy 21 JLn (T T2, )

—_— Fzmdrl an
®q1/k1(T1/t) exp (— (log(1))2)e o dm (246)

with Ly, p/21 = [b/2, l]e‘/?ldl and for

+oo
U32(t,z / / / w T, Tp,m
s2(tz) = log(q) 27r log(q)(27)1/2 Lijieo JLn (T T2 )

Y Fzmdrl an
®q1/k1(T1/t) exp (- (log(t))m2)e g dm (47)

along the segment Ly, 1 . = [1, +o0)eV 11,
As stated in (97) in Proposition 2, the map wy, » is subjected to the next upper bounds

k1 log? (|| + )

(11,12, 10)] < (1 ) e P ryexp (L

+alog(|7| +9))
X ]T2|eV|TZ| (248)

provided that 71 € Ly, /200 = [b/2, —l—oo)eﬁdl, T €Ly = [O,—i—oo)eﬁ” and m € R. On the other
hand, we need the next technical upper bounds.

Lemma 17. One can single out two constants M1, Ms o, > 0 such that

L k1 log? (|| + )
10 1 (11 /D) 5~ tal Ny
|®q1/k1 (11 /)] X ( 2 log(q) alog(|T| ))
' al ky 1/2
<
< Cq,klAl exp (ZIOg(q) Mg+ aMg,z,z;) X exp ( 2Tog(d) log M) It|

kq 1
I 1 log |t 249
X exp (tx og|n|+ g(q) og |ti|log | |> 1 [172 (249)
provided that Ty € Ly, /200 and t € (Rg, a, N Dg,) \ (—00,0].

Proof. For 7y € Ly, /2,0 and t € (Ry,,a, N Dg,) \ (—09,0], we first expand

log?(|T1|/t]) = log® |11| — 2log |71 | log [¢t| +log |¢] (250)
along with
log?([i| +) = log? |1 + 21og] i log(1+ 1)+ log2(1-+ =) 51)
and
log(|t1| + 8) = log |1 + log(1 + |fl|>. (252)

Since log(1 + x) ~ x holds as x tends to 0 and bearing in mind the classical growth comparison
limy 00 log(x)/x = 0, we get from (251) and (252) two constants M1 5, M2, > 0 with

log®(|t| +6) < log” |t1| + Ms1p , log(|m| +6) < log|ti| + Msay (253)
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for all |7y| > b/2. Eventually, the gathering of (220) and (253) with the expansion (250) yields the
awaited estimates (249). [

In the next lemma, we exhibit g—Gevrey type estimates on both segments Ly, /21 and Ly, 1 co-

Lemma 18. The next two q—Gevrey type estimates hold.

*  On the segment Ly, 451, we get that

1 y (ﬁlog2(|T1|—|—(5)

[0 (@/0] “P\2 " logl) wlog(|7i| +9))

1 kq
(2 log(q) log(b/Z))

< Msqp + D‘M(S,Z,h) X q %

1 ( k1
A xp 2log(q)

qukl

(N+1)~
(4 (4 +10g( log(b/z))/k1)N+lq 2k1 |t|N+1|T1|'X 3 (254)

holds for all T € Lg, /21, all t € (Ry, o, N Dg,) \ (—00,0], for all integers N > 0.
*  Onthesegment Ly, 1 o, we arrive at

ky log* (|| +6)
( > 710g(q) + alog(|m | +5)>

1
— X
[©7m (7 /D)

e AT LV |
M5,1,b+04M¢5,2,b) xq%i(qg F) g YT ——. (255)

<
|7y |12

1 ex ( k1
Conbi ¥ \2l0g(q)
provided that Ty € Ly, 1 0, all t € (Rg, o, N DR,) \ (—00,0], for all integers N > 0.

Proof. 1) Consider 7y € Ly, /21 and t € (R, a, N Dg,) \ (—09,0]. In particular, we notice that
b/2 <|7| <land |t| < R; < 1. It follows that

log |71 |log |t] <

kq kq log(b/2)
log(b/2)log |t| = lo tlog 256
fog(7) log(q) 08(6/2)log [t g (It ). (256)

As a result, the inequality (249) becomes

1 (hlog2(|71|+5)

©m @/ P2 Tog(g) T H1OBUIMIT 9)

b _1
My + M) x exp (- log? | f+* e 50/ o3

= Condr P \2l0g(q) 2log<q>

(257)

2) Let us take 71 € Ly, 1 00- In particular |T1| > 1. We select Ry > 0 small enough and fulfilling (100) in
a way that

k1
1 1 < — 1)1 2
fog(4) og [t|log|m| < —(a+1)log |11 (258)

forallt € (R4, a, N DR,) \ (—0,0]. The inequality (249) is then changed into

(ﬁlogz(lfll +9)

2 Tog(q) + alog(|T | +z5))

1
s (7 /1)

1 k1 ky ) 2 1
< ex Ms1p+aMspp) x exp ( — log? [t] )|/ ——. (259
Cop D1 p<21 g(q) b Mb) p( 21og(q) g | |>| | |Tl’1+% (259)
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The next estimates have been presented in Lemma 12 of our recent work [10]. Namely, for any
prescribed real number /1 € R, the next inequality

k1 log?(x) 7o N2
h _ ki log < g% (g—M/k\N 35 N
exp ( 2 Tog(q) ) <% (g MR)NgFix (260)

occurs for all integers N > 1, all positive real numbers x > 0. In particular, the next upper bounds

(3+ log(/2))?
k NI 1 b/2 2 10%('7)
eXp(_zlog(q)1 8 \t|)|f|2 ety 08(0/2) < =0
% (q ( Jrlog( log(h/z))/kl)N+l |t|N+1 (261)
along with
exp (= 5L 1og? 1) /2 < g (g )1 e 262
2log(q) N

hold for all t € (R4, ,a, N Dg,) \ (—00,0], for all integers N > 0.
At last, the g—Gevrey type bounds (254) result from (257) together with (261) and the combination
of (259) with (262) yields (255). O

In the last part of the proof, we can now provide upper bounds for each piece v31(t,z) and
v32(t,z). Namely, based on (248), (254) and (255) we get

(2 log( ) log(b/Z))

kq @ kq
v31(t,2)| < exp(——m—M +aM 2k
| 31( )‘ 10g(q>(27’[)1/2 Cq,klAl P <210g(q> 6,1,b 5,2,h>q
1 [eS) )
X / riﬁ%drl X /+ e'2¢2108 1t g, /+ e (B=F)lml gy
b/2 0 —0
X ( (2+log 10g(b/2))/k1)N+1q( |t|N+l
(341 10g(b/2))2
ky @ ky (2 gty los(t/2)°
< ex M +aM Zey
log(q)(27)1/2 Con D P (ZIOg(q) 51,b 5,2,b)’7
1 1 (N+1)2
< [0 A Ry x Myl SO N BT v )
b/2
along with

l

‘< kq @ ox < kq
= log(q)(21)172 Cy i 1 < F \2log(g)

8 /+oo : —75dr1 % /+ e'"2¢"2108 1t gpy /+°° e~ B=Flml gy
1 rl 0 —o

|v32(t, 2) M51b+0¢Mazh>‘1

1 (N+1)2 k
% (q 2kq )NJrlinkl ‘t|N+1 < 1

@ k1
ex Msqp +aM 8y
= log(q) (21172 Cpp Ay ©F (21 o () Mok 5217)4

+oo 1 1 (N+1)2
</ pdn < Ma(g )N SN e
1

for the constant
00 +oo /
Ms :/ e'r2¢2108 R gy, ></ e~ (B=FIml gy (265)
0 —00

for all integers N > 0, whenever t € (Rg; a, N Dg,) \ (—00,0] and z € Hyg.
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Eventually, the splitting (245) together with the above upper estimates (263) and (264) promotes
the expected bounds (244). O

We return to the proof of Theorem 2. On the ground of the decomposition (197), we set
uy(t,z) = v1(t,z) + v3(t, z).

According to Proposition 11 and Proposition 13, we observe that u;(t,z) represents a bounded
holomorphic map on the domain ((Rg, A, N Dg,) \ (—09,0]) x Hg. Moreover, u; is submitted to error
bounds of the form (195) for the sequence of functions by (t,z), n > 0 given by by (t,z) = g (t,z) /1",
which represent bounded holomorphic maps on the domain ((Rg, 4, N Dg,) \ (—0,0]) x Hg, owing
to the upper bounds (201).

On the other hand, we assign

uy(t,z) = va(t, z).

As claimed by Proposition 12, we check that u;(t,z) stands for a bounded holomorphic function
on ((Rg,,a, N DR,) \ (—20,0]) x Hg. Furthermore, u; is subjected to error bounds shaped in (238).
Theorem 2 is established. 0
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