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Solution to a q-Analog of a Singular Initial Value
Problem

S. Malek

University of Lille, Laboratoire Paul Painlevé, 59655 Villeneuve d’Ascq cedex, France,

stephane.malek@univ-lille.fr

Abstract: We examine a linear q−difference differential equation which is singular in complex time t

at the origin. Its coefficients are polynomial in time and bounded holomorphic on horizontal strips in

one complex space variable. The equation under study represents a q−analog of a singular partial

differential equation, recently investigated by the author, which comprises Fuchsian operators and

entails a forcing term that combines polynomial and logarithmic type functions in time. A sectorial

holomorphic solution to the equation is constructed as a double complete Laplace transform in both

time t and its complex logarithm log t and Fourier inverse integral in space. For a particular choice of

the forcing term, this solution turns out to solve some specific nonlinear q−difference differential

equation with polynomial coefficients in some positive rational power of t. Asymptotic expansions of

the solution relatively to time t are investigated. A Gevrey type expansion is exhibited in a logarithmic

scale. Furthermore, a formal asymptotic expansion in power scale is displayed, revealing a new fine

structure involving remainders with both Gevrey and q−Gevrey type growth.

Keywords: asymptotic expansion; Borel-Laplace transform; Fourier transform; initial value problem;

formal power series

MSC: 35C10; 35C20

1. Introduction

In this work, we draw attention to a family of singular linear q−difference differential equations

modelled as

Q(∂z)u(t, z) = tdD σ

dD
k1

q;t RD(∂z)u(t, z) + P(t, z, σq;t, ∂z)u(t, z) + f (t, z) (1)

for vanishing initial data u(0, z) ≡ 0, where dD, k1 ≥ 1 from the leading term of (1) are integers, Q(X),

RD(X) represent polynomials with complex coefficients and P(t, z, V1, V2) stands for a polynomial in

its arguments t, V1, V2 with holomorphic coefficients relatively to the space variable z on a horizontal

strip in C designed as Hβ = {z ∈ C/|Im(z)| < β}, for some prescribed width 2β > 0. The forcing

term f (t, z) is a logarithmic type function represented as a polynomial in both complex time variable t

and inverse of its complex logarithm 1/ log t with coefficients that are bounded holomorphic on the

strip Hβ.

This paper is a natural sequel of the recent study [9] by the author. Indeed, in [9], we focused on

the next singularly perturbed linear partial differential equations shaped as

Q(∂z)y(t, z, ǫ) = (ǫt)dD (t∂t)
dD
k1 RD(∂z)y(t, z, ǫ) + H(t, z, ǫ, t∂t, ∂z)y(t, z, ǫ) + h(t, z, ǫ) (2)

for given initial data y(0, z, ǫ) ≡ 0, for integers dD, k1 ≥ 1 appearing in the principal term of (2),

complex polynomials Q(X), RD(X) as above and where H(t, z, ǫ, V1, V2) represents a polynomial

in t, V1, V2 whose coefficients are bounded holomorphic w.r.t z on the strip Hβ and relatively to a

complex parameter ǫ on some fixed disc Dǫ0 centered at 0 for some radius ǫ0 > 0. The forcing term

h(t, z, ǫ) comprises coefficients that rely polynomially on complex time t, analytically in ǫ on Dǫ0 and
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holomorphically in z on Hβ. This term also entails logarithmic type functions stated as truncated

Laplace transforms along a fixed segment [−a, 0] for some radius a > 0 that involve the inverse

complex logarithm 1/ log(ǫt). When the radius a > 0 is taken large, the expression of the forcing term

h becomes proximate to maps that are similar to the forcing term f (t, z) of (1) described above, namely

a polynomial in both ǫt and 1/ log(ǫt) with bounded holomorphic coefficients on Dǫ0 × Hβ.

Under suitable constraints set on the profile of (2), we were able to construct a set of genuine

bounded holomorphic solutions yp to (2), for p in a finite subset I1 of the natural numbers N, expressed

as a complete Laplace transform of integer order k1 in the monomial ǫt, a truncated Laplace transform

of order 1 in the inverse 1/ log(ǫt) and inverse Fourier integral in the space variable z,

yp(t, z, ǫ) =
k1

(2π)1/2

∫

Ldp

∫

[−a,0]

∫ +∞

−∞
wp(τ1, τ2, m, ǫ)

× exp
(

− (
τ1

ǫt
)k1 − log(ǫt)τ2

)

e
√
−1zmdm

dτ2

τ2

dτ1

τ1
(3)

where the so-called Borel-Fourier map wp(τ1, τ2, m, ǫ) is

– analytic near τ1 = 0 and relatively to τ2 ∈ Da and ǫ ∈ Dǫ0 \ {0} and has (at most) exponential

growth of order k1 along some well chosen unbounded sector Sdp
centered at 0 and containing

the halfline Ldp
= [0,+∞)e

√
−1dp for dp ∈ R, with respect to τ1.

– continuous and subjected to exponential decay in phase m ∈ R.

As a result, these functions yp(t, z, ǫ) define bounded holomorphic maps on domains T × Hβ ×Ep,

for well selected bounded sector T edged at 0 and where E = {Ep}p∈I1
is an appropriate set of bounded

sectors centered at 0. At this point, it is crucial to notice that these solutions yp cannot be represented

as complete Laplace transform in the map 1/ log(ǫt). It turns out that the radii a, ǫ0 > 0 are related by

a rule of the form ǫn0
0 an1 ≤ M, for some suitable constant M > 0 and positive integers n0, n1 ≥ 1.

Besides, asymptotic features of these solutions have been examined in [9]. It appears that the

family {yp}p∈I1
owns asymptotic expansions of Gevrey type in two distinguished scales of functions.

Indeed, for each p ∈ I1, the partial map (t, ǫ) 7→ yp(t, z, ǫ) holds a generalized asymptotic formal

expansion (in a sense defined in the classical textbooks [5] and [14])

ŷ1
p(t, z, ǫ) = ∑

n≥0

G1
n,p(t, z, ǫ)

(1/ log(ǫt))n

n!
(4)

on the domain T × Ep, in the scale of logarithmic functions {(1/ log(ǫt))n}n≥0 with bounded

holomorphic coefficients G1
n,p on T × Hβ × Ep. These asymptotic expansions are revealed to be

of Gevrey 1 on T × Ep, giving rise to constants K1, M1
> 0 for which the error bounds

sup
z∈Hβ

|yp(t, z, ǫ)−
N

∑
n=0

G1
n,p(t, z, ǫ)

(1/ log(ǫt))n

n!
| ≤ K1(M1)N+1Γ(N + 2)|1/ log(ǫt)|N+1 (5)

occur for all integers N ≥ 0, provided that ǫ ∈ Ep, t ∈ T , where Γ(x) stands for the Gamma function

in x. On the other hand, all the partial maps ǫ 7→ yp(t, z, ǫ), p ∈ I1, share a common generalized

asymptotic formal expansion

ŷ2(t, z, ǫ) = ∑
n≥0

G2
n(t, z, ǫ)

ǫn

n!
(6)

on Ep, in the scale of monomial {ǫn}n≥0 with bounded holomorphic coefficients G2
n on T × Hβ ×Dǫ0 ,

for some open domain Dǫ0 containing all the sectors Ep, p ∈ I1. Moreover, these asymptotic expansions

happen to be of Gevrey order 1/k1 on each sector, meaning that constants K2
p, M2

p > 0 can be pinpointed

for which the error estimates
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sup
t∈T ,z∈Hβ

|yp(t, z, ǫ)−
N

∑
n=0

G2
n(t, z, ǫ)

ǫn

n!
| ≤ K2

p(M2
p)

N+1Γ(1 +
N + 1

k1
)|ǫ|N+1 (7)

hold for all integers N ≥ 0, whenever ǫ ∈ Ep. At last, we proved in [9] that the coefficients G1
n,p and

G2
n of both formal expansions ŷ1

p and ŷ2 solve explicit differential recursion relations with respect to

n ≥ 0 that might be handy for effective computations.

In the present investigation of the problem (1), we plan to follow a similar roadmap as in [9].

Namely, we plan to build up genuine sectorial solutions to (1) and describe their asymptotic expansions

as time t borders the origin, instead of a perturbation parameter ǫ which does not appear in (1). We

notice that our main problem (1) can be viewed as a q−analog of (2) where the Fuchsian operator t∂t is

substituted by the discret dilation operator σq;t. This terminology stems from the plain observation

that the quotient ( f (qt)− f (t))/(qt − t) neighbors the derivative f ′(t) as q tends to 1. The problem (2)

involves at first sight only powers of the basic differential operator of Fuchsian type t∂t. However, the

conditions imposed on (2) allows to express it also by means of powers of the basic differential operator

of so-called irregular type tk1+1∂t. The same fact is acknowledged for the problem (1) under study for

which q−difference operators of the form tl0 σ
l1
q;t where l0 ≥ k1l1 appear, see (22). These operators are

labeled of irregular type in the literature by analogy with the differential case. We quote the classical

textbooks [2] and [3] as references for analytic aspects of differential equations wih irregular type and

the book [15] for analytic and algebraic features of q−difference equations with irregular type. This

suggests that in the building process of the solutions to (1), the classical Laplace transform of order k1

ought to be supplanted by a q−Laplace transform of order k1 similarly to our earlier work [11] where

some related initial value q−difference differential problem was handled.

We now describe a little more precisely the main statements of this paper achieved in Theorem

1 and Theorem 2. Namely, under fitting restrictions on the shape of (1) listed in Subsection 2.2 and

complemented in the statement of Theorem 1 in Subsection 4.3, we can establish the existence of a

bounded holomorphic solution u(t, z) to (1) on a domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ, for some

small radius R1 > 0, where Rd1,∆1
stands for an open sector centered at 0 with large opening that does

not contain the halfline Ld1+π = [0,+∞)e
√
−1(d1+π), see (19), for thoroughly chosen directions d1 ∈ R.

In addition, the map u(t, z) is modelled through a triple integral which entails a Fourier inverse, a

q−Laplace and a complete Laplace transforms

u(t, z) =
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (8)

where the Borel-Fourier map ωd1,π(τ1, τ2, m) is

– analytic on a unbounded sector Sd1
centered at 0 containing the halfline Ld1

with respect to τ1

where it has (at most) q−exponential growth of order k1.
– analytic relatively to τ2 on some open halfstrip

Hπ = {τ ∈ C/Re(τ) < 0 , |Im(τ)| < η2}

with small width η2 > 0 and on a small disc Dρ.
– continuous and submitted to exponential decay in phase m ∈ R.

At this stage, we emphasize that the geometry of the Borel space in the variable (τ1, τ2) for

the map ωd1,π differs significantly from the one of the Borel-Fourier map wp in (3). Indeed, the

map ωd1,π(τ1, τ2, m) is in general not analytic near τ1 = 0 while wp(τ1, τ2, m, ǫ) possesses this

property. As we will realize later on, this will be the root of the dissemblances observed between

the asymptotic properties of the solutions yp of (2) and the solution u of (1). Besides, the partial map
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τ2 7→ wp(τ1, τ2, m, ǫ) is only holomorphic on some fixed disc Da but τ2 7→ ωd1,π(τ1, τ2, m) is analytic

on a full halfstrip Hπ which allows the solution u(t, z) to be expressed as a complete Laplace transform

in 1/ log t in direction π while yp(t, z, ǫ) is represented as a truncated Laplace transform along the

segment [−a, 0]. A direct by-product of this observation is that the forcing term f (t, z) of (1) can be

presented as an exact polynomial in both time t and inverse complex logarithm 1/ log t while the

forcing term h(t, z, ǫ) has to be only considered as proximate to such a polynomial in t and 1/ log t.

Some interesting aftermath is reached when f (t, z) is chosen a mere monomial in t and 1/ log t since in

that case f (t, z) solves an explicit nonlinear ordinary differential equation with polynomial coefficients

in some positive rational power tα, α ∈ Q+, displayed in (34). As a result, u(t, z) turns out to be an

exact holomorphic solution to some specific nonlinear q−difference differential equation with bounded

holomorphic coefficients with respect to z on Hβ and polynomial in tα, stated in (36). Contrastingly,

the equation (2) becomes close to some nonlinear partial differential equation as a → +∞ but no

information can be extracted about the existence of an exact genuine solution to the limit nonlinear

problem.

It is worthwhile noting that in the recent years much attention has been drawn on on nonlinear

q−difference equations and especially on those related to the so-called q−Painlevé equations. For a

comprehensive overview on major studies for q−Painlevé equations and more generally for integrable

discrete dynamical systems, we refer to the book [7]. In this trend of research we quote the novel

paper [6] where the authors construct convergent generalized power series with complex exponents

on sectors that are solutions to nonlinear algebraic q−difference equations. In the context of nonlinear

q−difference differential equations we mention an important result by H. Yamazawa obtained in [17].

Indeed, he considers equations with the shape

u(qt, x) = u(t, x) + F(t, x, {∂α
xu}|α|≤m) (9)

for t ∈ C, x ∈ Cn, for some integers n, m ≥ 1, some real number q > 1, where F is a well prepared

analytic function in its arguments. Under non resonance conditions of the so-called characteristic

exponent ρ(x) associated to (9) at x = 0, he has constructed convergent logarithmic type solutions of

the form

u(t, x) =
+∞

∑
i=1

ui(x)ti + ∑
i≥1,j≥1

0≤k≤i+2m(j−1)

ϕi,j,k(x)ti+jρq(x)(log t)k

where the coefficients ui(x) and ϕi,j,k(x) are holomorphic on a common disc DR and where ρq(x) =

log(1 + (q − 1)ρ(x))/ log(q) stands for a q−analog of the characteristic exponent ρ(x).

In the second part of Theorem 1, we exhibit for the solution u(t, z) of (1) a generalized asymptotic

expansion of Gevrey type in a logarithmic scale for t in the vicinity of 0. The statement is similar to the

one reached in [9] for the solutions yp(t, z, ǫ) of (2). Indeed, the partial map t 7→ u(t, z) is shown to

possess a generalized formal series

û(t, z) = ∑
n≥0

Gn(t, z)
(1/ log t)n

n!
(10)

with bounded holomorphic coefficients Gn(t, z) on the domain (Rd1,∆1
∩ DR1

)× Hβ as asymptotic

expansion of Gevrey order 1 with respect to t on (Rd1,∆1
∩ DR1

) \ (−∞, 0], leading to estimates of the

form

sup
z∈Hβ

|u(t, z)−
N

∑
n=0

Gn(t, z)
(1/ log t)n

n!
| ≤ KMN+1Γ(N + 2)|1/ log t|N+1 (11)

for some constants K, M > 0, for all integers N ≥ 0, whenever t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0].

Furthermore, in Section 4.4, Proposition 6, we provide explicit and simple q−difference and differential

recursion relations displayed in (154) and (155) for the coefficients Gn(t, z), n ≥ 0, intended for practical
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use. The existence of such a formal expression (10) is shown in a comparable way as (4) for the partial

maps (t, ǫ) 7→ yp(t, z, ǫ) in the problem (2). Namely, it is based on sharp estimates of some exponential

decay for the differences of neighboring analytic solutions {Ud1,dp
(u1, u2, z)}0≤p≤ς−1, disclosed in

(120), to some related q−difference differential equation which comprises an homography action, see

(116) and (118) in Proposition 4. In the process, we use a classical result known as the Ramis-Sibuya

theorem (see Theorem (R.S.) in the subsection 4.2) which ensures the existence of a common Gevrey

asymptotic expansion for families of sectorial holomorphic functions.

In the second main result of this paper, stated in Theorem 2, a generalized asymptotic expansion

of the solution u(t, z) is established in the scale of monomials {tn}n≥0. This statement differs notably

from the one obtained for the partial maps ǫ 7→ yp(t, z, ǫ) in the problem (2). Namely, the holomorphic

solution u(t, z) to (1) can be split into a sum u(t, z) = u1(t, z) + u2(t, z) where

• the map u1(t, z) owns a formal expression

û1(t, z) = ∑
n≥0

bn(t, z)tn (12)

with bounded holomorphic coefficients bn(t, z) on the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ

as generalized asymptotic expansion of so-called q−Gevrey order k1. It means that two constants

B1, B2 > 0 can be found with the error bounds

sup
z∈Hβ

|u1(t, z)−
N

∑
n=0

bn(t, z)tn| ≤ B1(B2)
N+1q

N(N+1)
2k1 |t|N+1 (13)

for all integers N ≥ 0, all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0].
• the map u2(t, z) has the null formal series as asymptotic expansion of order 1 in a logarithmic

scale as t tends to 0. Indeed, two constants B3, B4 > 0 can be sorted with the estimates

sup
z∈Hβ

|u2(t, z)| ≤ B3(B4)
N+1Γ(N + 2)|1/ log t|N+1 (14)

for all integers N ≥ 0, provided that t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0].

At this point, we stress the fact that the generalized expansion of Gevrey type (7) obtained for the

solutions yp(t, z, ǫ) of (2) in the monomial scale {ǫn}n≥0 are obtained by means of the Ramis-Sibuya

theorem (see Theorem (R.S.) in Subsection 4.2) through precise estimates of some exponential decay

for the differences of the consecutive maps yp+1 − yp relatively to ǫ on the intersections Ep+1 ∩ Ep.

These estimates were achieved according to the fact that the Borel-Fourier maps τ1 7→ wp(τ1, τ2, m, ǫ)

are analytic at τ1 = 0 in (3). In contrast, for the problem (1) under study, as observed earlier in

this introduction, any of the partial Borel-Fourier map τ1 7→ ωd1,π(τ1, τ2, m) appearing in (8) for any

admissible direction d1 ∈ R is not analytic near τ1 = 0, only on sectors centered at 0. Therefore, no

bounds for differences of solutions u(t, z) to (1) for different directions d1 ∈ R can be rooted out and

the recipe using the Ramis-Sibuya theorem fails to be applied. Instead we introduce a new approach

based on a specific splitting of the triple integral (8) defining u(t, z) and on the observation that the

partial map τ1 7→ ωd1,π(τ1, τ2, m) can be analytically continued near τ1 = 0 provided that τ2 remains

on the small disc Dρ, see Proposition 10. Besides, whereas explicit differential recursions could be

provided for the coefficients G2
n, n ≥ 0 of the formal expansions (6), no such relations are achieved for

the coefficients bn(t, z), n ≥ 0 of (12). However, explicit formulas (displayed in (207)) for bn, n ≥ 0,

can be presented as double truncated q−Laplace, Laplace transforms and inverse Fourier integral of

derivatives of the partial Borel-Fourier map τ1 7→ ωd1,π(τ1, τ2, m) at the origin.
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2. Setup of the main initial value problem and an associated set of q−difference-differential
problems with homography action

2.1. Accounts on q−Laplace transforms of order k and Fourier inverse maps

This concise subsection presents the basic material about q−Laplace transforms and Fourier

inverse maps that will be handled to built up the solution of our main problem under study.

Let k ≥ 1 be an integer and set q > 1 a positive real number. We present the definition of a

q−Laplace transform of order k as described in our former work [10]. In the construction of this

q−analog of the classical Laplace transform of order k, the Jacobi Theta function of order k defined as

the Laurent series

Θq1/k (x) = ∑
n∈Z

q−
n(n−1)

2k xn

for any x ∈ C∗ plays a prominent role.

We remind that the set of zeros of this analytic function is given by {−qm/k/m ∈ Z} and is

contained on the real line R. The next lower bounds for the Jacobi Theta function attesting its so-called

q−exponential growth of order k on a domain bypassing this set of zeros are essential. Let ∆ > 0. A

constant Cq,k > 0 relying on q, k and independent of ∆ can be chosen such that

|Θq1/k (x)| ≥ Cq,k∆ exp
( k

2

log2 |x|
log(q)

)

|x|1/2 (15)

provided that x ∈ C∗ with |1 + xqm/k| > ∆ for all m ∈ Z.

Definition 1. Let Dρ be a disc of some radius ρ > 0 centered at 0 and Sd be an open unbounded sector edged at

0 with bisecting direction d ∈ R in C. Let us consider a holomorphic function f : Dρ ∪ Sd → C assumed to be

continuous up to the closure D̄ρ and subjected to the bounds

| f (x)| ≤ K|x| exp
( k

2

log2(|x|+ δ)

log(q)
+ α log(|x|+ δ)

)

(16)

for all x ∈ Dρ ∪ Sd, for some given positive constants K, α > 0, δ > 1 and some integer k ≥ 1. We select some

direction γ ∈ R such that e
√
−1γ ∈ Sd. The q−Laplace transform of order k of f in direction γ is assigned as

Lγ
q;1/k( f )(T) :=

k

log(q)

∫

Lγ

f (u)

Θq1/k (u/T)

du

u
(17)

where Lγ = [0,+∞)e
√
−1γ stands for a halfline in direction γ.

Let ∆ > 0 be some fixed real number. The integral transform Lγ
q;1/k( f )(T) represents a bounded

holomorphic function on the domain Rγ,∆ ∩ Dr1
, for any radius r1 constrained by

0 < r1 ≤ q−
1
k (α+1)/2 (18)

and where

Rγ,∆ = {T ∈ C∗/|1 + e
√
−1γ

T
r| > ∆, for all r ≥ 0}. (19)

In the special case f : C → C is an entire function with Taylor expansion f (x) = ∑n≥1 fnxn conforming to

the bounds (16), its q−Laplace transform of order k, (17) does not depend on the direction γ ∈ R and defines a

bounded holomorphic function on Dr1
under the restriction (18) which possesses a Taylor expansion given by the

convergent series ∑n≥1 fnq
n(n−1)

2k Tn.

The next Banach space of continuous function on R with exponential decay was introduced in [4].
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Definition 2. Let β, µ be real numbers. We denote E(β,µ) the vector space of continuous functions h : R → C

such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) endowed with the norm ||.||(β,µ) becomes a Banach space.

We recall the definition of the inverse Fourier transform acting on the space E(β,µ).

Definition 3. Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is given by

F−1( f )(x) =
1

(2π)1/2

∫ +∞

−∞
f (m) exp(

√
−1xm)dm

for all x ∈ R. The function F−1( f ) extends to an analytic bounded function on the strips

Hβ′ = {z ∈ C/|Im(z)| < β′}. (20)

for all given 0 < β′
< β.

The next lemma described how the inverse Fourier integral is transformed under the action

differential operators and products.

Lemma 1. a) Let f be an element of E(β,µ) for β > 0, µ > 1. Define the function m 7→ φ(m) =
√
−1m f (m)

which belongs to the space E(β,µ−1). Then, the next identity

∂zF−1( f )(z) = F−1(φ)(z)

occurs for all z ∈ Hβ′ , for any 0 < β′
< β.

b) Take g ∈ E(β,µ) and set the convolution product of f and g

ψ(m) =
1

(2π)1/2

∫ +∞

−∞
f (m − m1)g(m1)dm1.

Then, ψ belongs to E(β,µ) and moreover, the next equality

F−1( f )(z)F−1(g)(z) = F−1(ψ)(z)

holds for all z ∈ Hβ′ , provided that 0 < β′
< β.

2.2. Layout of the main problem

Throughout this subsection, we unveil the principal initial value problem under investigation in

this work. It is shaped as follows,

Q(∂z)u(t, z) = tdD σ

dD
k1

q;t RD(∂z)u(t, z) + ∑
l=(l0,l1)∈I

cl(z)t
l0 σ

l1
q;tRl(∂z)u(t, z) + f (t, z) (21)

for vanishing data u(0, z) ≡ 0, where σq;t stands for the q−difference operator acting on t by means of

σq;tu(t, z) = u(qt, z) for some given real number q > 1.

The set I represents a finite subset of N2 and dD, k1 ≥ 1 are positive integers that are subjected to

the next list of technical constraints:
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1. The inequality
l0
k1

≥ l1 (22)

holds for all l = (l0, l1) ∈ I.
2. The restrictions

dD ≥ k1l1 , l0 ≥ dD (23)

are required for all l = (l0, l1) ∈ I.

The maps Q(X), RD(X) and Rl(X) for l ∈ I are polynomial required to fufill the next features:

1. The degrees of Q and of Rl are constrained by the relation

deg(Q) ≥ deg(Rl) (24)

for all l ∈ I.
2. We assume the existence of an open sectorial domain SQ,RD

with inner radius rQ,RD
(resp. outer

radius RQ,RD
) given by

SQ,RD
= {Z ∈ C∗/|arg(Z)| < α̌1 , rQ,RD

< |Z| < RQ,RD
}

for some opening α̌1 > 0, which satisfies the next inclusion

Q(
√
−1m)

RD(
√
−1m)

∈ SQ,RD
(25)

for all m ∈ R. Furthermore, the inner and outer radii together with the aperture of SQ,RD
will be

suitably constrained later on in the work.

The coefficients cl(z), l ∈ I, are built up through the next procedure. For l ∈ I, we consider maps

m 7→ Cl(m) that belong to the Banach space E(β,µ), for given real numbers β > 0 and µ > 1 constrained

to

µ > deg(Rl) + 1 (26)

for all l ∈ I. We introduce the constants

Cl := ||Cl(m)||(β,µ) (27)

for all l ∈ I on which restrictions will be set in due course of the paper. We define the coefficient cl(z)

as the inverse Fourier transform

cl(z) := F−1(m 7→ Cl(m))(z)

for all l ∈ I, provided that z ∈ Hβ. According to Definition 3, the maps z 7→ cl(z) stand for bounded

holomorphic functions on the strips Hβ′ for any prescribed 0 < β′
< β.

The forcing term is described in term of the next construction. Let J1, J2 be finite subsets of the

positive natural numbers N∗. For all j1 ∈ J1, j2 ∈ J2, we deem some maps m 7→ Fj1,j2(m) which

appertain to E(β,µ) for β > 0 and µ > 1 given above. We introduce the next polynomial

F (τ1, τ2, m) = ∑
j1∈J1,j2∈J2

Fj1,j2(m)τ
j1
1 τ

j2
2 (28)

in the variables τ1,τ2 with coefficients in E(β,µ). We bring in the map
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Fπ(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞
F (τ1, τ2, m)

1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (29)

where Ld1
= [0,+∞)e

√
−1d1 stands for a halfline in some given direction d1 ∈ R and Lπ =

[0,+∞)e
√
−1π is the negative real axis.

Owing to Definition 1 and Definition 3, this map Fπ(u1, u2, z) is well defined provided that

• the variable u1 belongs to Rd1,∆1
∩ Dr1

, for any fixed ∆1 > 0 and radius r1 > 0 subjected to (18)

where k = k1, for any given α > 0,
• the variable u2 is not vanishing and obeys the constraint cos(arg(u2)) < −∆2, for some ∆2 > 0,
• the variable z is kept in the strip Hβ′ for any 0 < β′

< β.

However, we can further simplify the expression of Fπ . Taking heed of Definition 1, we notice

that Fπ(u1, u2, z) turns out to be a polynomial in u1,

Fπ(u1, u2, z) = ∑
j1∈J1

Fπ,j1(u2, z)q
j1(j1−1)

2k1 u
j1
1

whose coefficients Fπ,j1 are expressed through sums over J2 of Laplace transforms in direction π,

Fπ,j1(u2, z) = ∑
j2∈J2

F−1(m 7→ Fj1,j2(m))(z)
∫

Lπ

τ
j2−1
2 exp

(

− τ2

u2

)

dτ2

with bounded holomorphic coefficients on Hβ′ . Besides, according to the definition of the Gamma

function and Cauchy’s theorem, we acknowledge that

∫

Lπ

τ
j2−1
2 exp

(

− τ2

u2

)

dτ2 = Γ(j2)u
j2
2

provided that u2 ∈ C∗ with cos(arg(u2)) < 0. On that account, it follows that Fπ(u1, u2, z) can be

expanded as a polynomial in both variables u1 and u2 with bounded coefficients on Hβ′ , for 0 < β′
< β.

Namely, we get

Fπ(u1, u2, z) = ∑
j1∈J1,j2∈J2

Fj1,j2(z)u
j1
1 u

j2
2 (30)

where we define

Fj1,j2(z) := F−1(m 7→ Fj1,j2(m))(z)q
j1(j1−1)

2k1 Γ(j2) (31)

for all j1 ∈ J1 and j2 ∈ J2. At last, we configure the forcing term f (t, z) as the logarithmic type function

f (t, z) = Fπ(t,
1

log(t)
, z). (32)

Here log(t) stands for the principal value of logarithm, namely log(t) = ln(|t|) +
√
−1arg(t) provided

that −π < arg(t) < π. Furthermore, we observe that

cos(arg(
1

log(t)
)) = cos(arg(log(t))) < −∆2 (33)

for some ∆2 > 0, whenever t /∈ (−∞, 0] and close enough to 0.

In the particular case J1 = {j1} and J2 = {j2} for some positive integers j1, j2 ≥ 1, we make the

noteworthy remark that the solution u(t, z) of the linear main equation (21) actually solves a special

nonlinear q−difference-differential equation with polynomial coefficients in some positive rational power

of time t stated in (36). Indeed, let the forcing term f (t, z) have the particular shape
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f j1,j2(t, z) = Fj1,j2(z)
tj1

logj2(t)

where Fj1,j2(z) is given by the expression (31). By direct computation, we check that the forcing term

f j1,j2(t, z) satisfies the next nonlinear ordinary differential equation with polynomial coefficients in t1/j2

(Fj1,j2(z))
1/j2 t

1+
j1
j2 ∂t f j1,j2(t, z) = j1tj1/j2(Fj1,j2(z))

1/j2 f j1,j2(t, z)− j2( f j1,j2(t, z))
1+ 1

j2 (34)

Let us recast the main equation (21) in the form

P(t, z, ∂z, σq;t)u(t, z) = f j1,j2(t, z) (35)

where the q−difference-differential operator P is polynomial in t, with bounded holomorphic

coefficients in z on the strip Hβ′ , for 0 < β′
< β. The combination of (34) and (35) gives rise to

the next nonlinear equation

(Fj1,j2(z))
1/j2 t

1+
j1
j2 ∂t

(

P(t, z, ∂z, σq;t)u(t, z)
)

= j1tj1/j2(Fj1,j2(z))
1/j2 P(t, z, ∂z, σq;t)u(t, z)− j2

(

P(t, z, ∂z, σq;t)u(t, z)
)1+ 1

j2 . (36)

2.3. A set of related q−difference-differential equations with an homography action

In this subsection, the main problem is embedded in a set of auxiliary problems which comprise

three independent complex variables which will be the object of study in the forthcoming sections.

We seek for solutions u(t, z) to (21) for prescribed vanishing initial data at t = 0 of the form

u(t, z) = Uπ(t,
1

log(t)
, z)

for some expression Uπ(u1, u2, z) in the three independent variables u1, u2 and z.

The next computations hold for any given rational number h > 0,

σh
q;tu(t, z) = Uπ(q

ht,
1

log(qht)
, z) = Uπ(q

ht,
1

h log(q) + log(t)
, z)

= (σh
q;u1

◦Hh log(q);u2
Uπ)(t,

1

log(t)
, z)

where

• the dilation σh
q;u1

acts on Uπ relatively to u1 through (σq;u1
Uπ)(u1, u2, z) = Uπ(qhu1, u2, z),

• the homography Hh log(q);u2
is applied on Uπ with respect to the variable u2 by means of

(Hh log(q);u2
Uπ)(u1, u2, z) = Uπ(u1,

u2

1 + u2h log(q)
, z)

As a result, it follows that the expression u(t, z) (formally) solves the equation (21) under the condition

u(0, z) ≡ 0 if the expression Uπ(u1, u2, z) fulfills the next equation

Q(∂z)Uπ(u1, u2, z) = udD
1 σ

dD
k1

q;u1
◦H dD

k1
log(q);u2

RD(∂z)Uπ(u1, u2, z)+

∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

◦Hl1 log(q);u2
cl(z)Rl(∂z)Uπ(u1, u2, z) + Fπ(u1, u2, z) (37)
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under the constraint Uπ(0, 0, z) ≡ 0. Later on, we plan to build a genuine solution to (21) and in

order to investigate its asymptotic expansion in some particular scale described in Subsection 4.3, we

are required to complement the above single equation (37) by a family of auxiliary problems stated

underneath.

For any given direction d2 ∈ R with d2 6= π (modulo 2π) and given positive real radius a > 0, we

define a new forcing term

Fd2,a(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Ld2,a

∫ +∞

−∞
F (τ1, τ2, m)

1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (38)

where Ld2,a = [0, a]e
√
−1d2 stands for a segment of length a > 0 in direction d2 and Ld1

is the halfline

appearing in the formula (29). Owing to Definition 1, we notice that the map Fd2,a does not rely on the

direction d1. However, it hinges on the direction d2 and radius a > 0. We display the next problem

Q(∂z)Ud2
(u1, u2, z) = udD

1 σ

dD
k1

q;u1
◦H dD

k1
log(q);u2

RD(∂z)Ud2
(u1, u2, z)+

∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

◦Hl1 log(q);u2
cl(z)Rl(∂z)Ud2

(u1, u2, z) + Fd2,a(u1, u2, z) (39)

for given vanishing initial data Ud2
(0, 0, z) ≡ 0.

3. Analytic solutions to the associated set of q−difference and differential problems under
homography action

In this section, we intend to exhibit analytic solutions to the problems (37) and (39) we came up

with in Subsection 2.3.

3.1. Profile of the analytic solutions and joint convolution q−difference equations

We search for a solution to (37) (resp. (39) for d2 6= π modulo 2π) in the form of a double

q−Laplace, Laplace transform and inverse Fourier integral with the shape

Ud1,π(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (40)

(resp.

Ud1,d2
(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Ld2,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (41)

Here it is assumed (this fact will be justified later on in the work) that the so-called Borel-Fourier map

ωd1,π appertains to a Banach space labelled Exp
q;1

(k,α,δ,ν,β,µ,ρ)
which consists in functions with so-called

q−exponential growth of order k1 w.r.t τ1, exponential growth in τ2 and exponential decay relatively

to the mode m. This space is described in the next

Definition 4. We consider the constants β, µ, k1, a as prescribed in Section 2. Let α, ν > 0 and ρ > a, δ > 1

be real numbers. We set Sd1
as an unbounded sector edged at 0 with bisecting direction d1 ∈ R. We introduce

the open half strip
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Hπ = {τ ∈ C/Re(τ) < 0 , |Im(τ)| < η2} (42)

for some given real width η2 > 0. We denote Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
the vector space of all C−valued continuous maps

(τ1, τ2, m) 7→ h(τ1, τ2, m) on the domain Sd1
× (Hπ ∪ Dρ)× R, holomorphic w.r.t (τ1, τ2) on the product

Sd1
× (Hπ ∪ Dρ), such that the norm

||h(τ1, τ2, m)||(k1,α,δ,ν,β,µ,ρ)

:= sup
τ1∈Sd1

τ2∈Hπ∪Dρ ,m∈R

(1 + |m|)µeβ|m| 1

|τ1|
exp

(

− k1

2

log2(|τ1|+ δ)

log(q)
− α log(|τ1|+ δ)

)

× 1

|τ2|
e−ν|τ2||h(τ1, τ2, m)| (43)

is finite. The vector space Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
equipped with the norm ||.||(k1,α,δ,ν,β,µ,ρ) represents a Banach space.

Our main objective is to establish some convolution q−difference equation that the Borel-Fourier

map ωd1,π is asked to obey. On the way, we need some additional features on the q−Laplace transforms

under multiplication by a monomial and action of q−difference operators. These properties have

already been discussed in our past work [10]. Besides, we describe the action of the homography Hs;u2

relatively to the variable u2 on both expressions (40) and (41).

Lemma 2. Let the map ωd1,π(τ1, τ2, m) supposed to belong to the Banach space Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
. Then, the

next identities hold.

1. For prescribed integers l0, l1 ≥ 0, the q−difference operator ul0
1 σ

l1
q;u1

acts on the integral representations

(40) and (41) through the formulas

ul0
1 σ

l1
q;u1

Ud1,π(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞

[ τl0
1

(q1/k1)l0(l0−1)/2
σ

l1−
l0
k1

q;τ1
ωd1,π(τ1, τ2, m)

]

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (44)

and

ul0
1 σ

l1
q;u1

Ud1,d2
(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Ld2,a

∫ +∞

−∞

[ τl0
1

(q1/k1)l0(l0−1)/2
σ

l1−
l0
k1

q;τ1
ωd1,π(τ1, τ2, m)

]

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm. (45)

2. For a given rational number h > 0, the homography Hh log(q);u2
applies on the triple integrals (40) and (41)

by means of

Hh log(q);u2
Ud1,π(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞

[

ωd1,π(τ1, τ2, m) exp(−τ2h log(q))
]

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (46)
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along with

Hh log(q);u2
Ud1,d2

(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Ld2,a

∫ +∞

−∞

[

ωd1,π(τ1, τ2, m) exp(−τ2h log(q))
]

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (47)

In line with the above technical lemma together with Lemma 1, the next statement follows.

Lemma 3. The map Ud1,π(u1, u2, z) solves (37) under the constraint Ud1,π(0, 0, z) ≡ 0 and Ud1,d2
(u1, u2, z)

obeys (39) for d2 6= π (modulo 2π) with vanishing data Ud1,d2
(0, 0, z) ≡ 0 if the Borel-Fourier map

ωd1,π(τ1, τ2, m) fulfills the next convolution q−difference equation

Q(
√
−1m)ωd1,π(τ1, τ2, m)

= RD(
√
−1m)

τdD
1

(q1/k1)dD(dD−1)/2
exp

(

− τ2
dD

k1
log(q)

)

ωd1,π(τ1, τ2, m)

+ ∑
l=(l0,l1)∈I

1

(2π)1/2

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)

τl0
1

(q1/k1)l0(l0−1)/2
σ

l1−
l0
k1

q;τ1
ωd1,π(τ1, τ2, m1)

× exp(−τ2l1 log(q))dm1 +F (τ1, τ2, m) (48)

provided that τ1 ∈ Sd1
, τ2 ∈ Hπ ∪ Dρ and m ∈ R.

3.2. Solving the convolution q−difference equation (48) on unbounded sectors and half strips

In the course of this subsection, we prove the existence and unicity of a solution to the convolution

q−difference reached in Lemma 3.

Our scheme consists in reorganizing the equation (48) as a fixed point equation (displayed later

on in (98)). On the way, we are asked to divide our equation by the next Fourier mode depending map

with two complex variables

Pm(τ1, τ2) = Q(
√
−1m)− RD(

√
−1m)

τdD
1

(q1/k1)dD(dD−1)/2
exp

(

− τ2
dD

k1
log(q)

)

(49)

provided that τ1 ∈ Sd1
and τ2 ∈ Hπ ∪ Dρ. An essential factorisation of the above map is provided in

the next lemma.

Lemma 4. For a convenient choice of the inner radius rQ,RD
, outer radius RQ,RD

and aperture α̌1 > 0 of SQ,RD

set up in (25), one can distinguish an unbounded sector Sd1
edged at 0 with suitable bisecting direction d1 ∈ R

along with an appropriate strip Hπ and a small radius ρ for which the next splitting of the map Pm(τ1, τ2) holds.

Let τ1 ∈ Sd1
written in the factorized form

τ1 = rτ0
1 (50)

for some radius r > 0 and complex number τ0
1 ∈ Sd1

with |τ0
1 | = 1. Let us take τ2 ∈ Hπ ∪ Dρ. Then, one can

decompose τ2 in the form

τ2 = τ0
2 − s +

√
−1ψ (51)

for some well chosen complex number τ0
2 (depending on τ0

1 and m and which remains bounded relatively to m),

for some ψ 6= 0, close to 0 and some s ≥ −A (for some fixed constant A > 0). With the above factorisations

(50), (51), one can express the map Pm in the form of a non vanishing product
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Pm(τ1, τ2) = Q(
√
−1m)

[

1 − rdD exp
(

(s −
√
−1ψ)

dD

k1
log(q)

)

]

(52)

for given τ1 ∈ Sd1
and τ2 ∈ Hπ ∪ Dρ.

Proof. We choose appropriately the sectorial domain SQ,RD
given in Subsection 2.2 and select an

unbounded sector Sd1
edged at 0 with bisecting direction d1 chosen in a way that the next constraint

0 < α1 <

∣

∣

∣
arg

(RD(
√
−1m)

Q(
√
−1m)

τdD
1

1

(q1/k1)dD(dD−1)/2

)∣

∣

∣
< α2 (53)

holds for all m ∈ R, all τ1 ∈ Sd1
for some small positive numbers 0 < α1 < α2. Let τ1 ∈ Sd1

be given.

We can factorize it in the form (50). We set

τ0
2 =

1
dD
k1

log(q)

[

log
∣

∣

∣

RD(
√
−1m)

Q(
√
−1m)

(τ0
1 )

dD
1

(q1/k1)dD(dD−1)/2

∣

∣

∣

+
√
−1

(

arg
(RD(

√
−1m)

Q(
√
−1m)

(τ0
1 )

dD
1

(q1/k1)dD(dD−1)/2

)

)]

(54)

Notice that τ0
2 remains bounded and penned in a small domain we denote T 0

2 which is located at some

small positive distance of the real axis, when m spans the real numbers according to the condition (25)

imposed.

In the next step, we select the strip Hπ and the disc Dρ in a way that

(Hπ ∪ Dρ) ∩ T 0
2 = ∅ (55)

As a result, when one takes some element τ2 ∈ Hπ ∪ Dρ, we can write it in the form (51) for some real

number s > −A for some A > 0 and some real number ψ 6= 0 that can be chosen close to 0.

By construction of τ0
2 , we get in particular that

exp(τ0
2

dD

k1
log(q)) =

RD(
√
−1m)

Q(
√
−1m)

(τ0
1 )

dD
1

(q1/k1)dD(dD−1)/2
(56)

In consequence of the combined factorisations (50) and (51) together with the above identity (56), the

next computations hold

Pm(τ1, τ2) = Q(
√
−1m)− RD(

√
−1m)

rdD (τ0
1 )

dD

(q1/k1)dD(dD−1)/2
exp(−τ0

2
dD

k1
log(q))

× exp
(

(s −
√
−1ψ)

dD

k1
log(q)

)

= Q(
√
−1m)

[

1 − rdD exp
(

(s −
√
−1ψ)

dD

k1
log(q)

)

]

(57)

which is exactly the announced expression (52). In particular, this product is non vanishing since

Q(
√
−1m) 6= 0, for all m ∈ R owing to (25) and considering that ψ 6= 0 but close to the origin, the

piece enclosed by brackets in (52) cannot vanish.

Let us consider the next linear map
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H(ω(τ1, τ2, m)) := ∑
l=(l0,l1)∈I

1

Pm(τ1, τ2)

1

(2π)1/2

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)

× τl0
1

(q1/k1)l0(l0−1)/2
σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)

× exp
(

− τ2l1 log(q)
)

dm1 +
F (τ1, τ2, m)

Pm(τ1, τ2)
(58)

In the next proposition it is stated that the map H stands for a shrinking map on some fittingly chosen

ball of the Banach space discussed in Definition 4.

Proposition 1. We select the sectorial domain SQ,RD
, the unbounded sector Sd1

together with the strip Hπ and

the disc Dρ as in Lemma 4. Then, provided that the constants Cl > 0 displayed in (27) are small enough, for

l ∈ I, an adequate radius ̟ > 0 can be chosen for which the map H enjoys the next two properties

• The inclusion

H(B̟̄) ⊂ B̟̄ (59)

is granted, where B̟̄ denotes the closed ball of radius ̟ centered at 0 in the space Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
.

• The 1/2−Lipschitz condition

||H(ω1)−H(ω2)||(k1,α,δ,ν,β,µ,ρ) ≤
1

2
||ω1 − ω2||(k1,α,δ,ν,β,µ,ρ) (60)

holds for all ω1, ω2 ∈ B̟̄.

Proof. We first aim our attention to the inclusion (59). Let us prescribe some real number ̟ > 0 and

take some element ω(τ1, τ2, m) of Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
subjected to the condition

||ω(τ1, τ2, m)||(k1,α,δ,ν,β,µ,ρ) ≤ ̟.

We plan to disclose norm estimates for each piece of the map H. We first focus on norm upper bounds

for the elements involved in the sum over I. The next technical lemma is crucial in this respect.

Lemma 5. Under the imposed constraints (22), (23) together with (24), (25) and (26), one can find a constant

C1 > 0 such that

|| 1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)τ

l0
1 σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)

× exp
(

− τ2l1 log(q)
)

dm1||(k1,α,δ,ν,β,µ,ρ)

≤ C1Cl ||ω(τ1, τ2, m)||(k1,α,δ,ν,β,µ,ρ) (61)

for all ω(τ1, τ2, m) ∈ Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
.

Proof. According to Definition 4, we next upper bounds hold for the element ω,

|ω(τ1, τ2, m1)| ≤ ||ω||(k1,α,δ,ν,β,µ,ρ)(1 + |m1|)−µe−β|m1|

× |τ1| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

|τ2|eν|τ2| (62)

for all τ1 ∈ Sd1
, all τ2 ∈ Hπ ∪ Dρ, m1 ∈ R. We deduce first upper bounds
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∣

∣

∣

1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)τ

l0
1 σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)

× exp
(

− τ2l1 log(q)
)

dm1

∣

∣

∣
≤ 1

|Pm(τ1, τ2)|
∫ +∞

−∞
|Cl(m − m1)||Rl(

√
−1m1)||τ1|l0 ||ω||(k1,α,δ,ν,β,µ,ρ)

× (1 + |m1|)−µe−β|m1||ql1−
l0
k1 τ1| exp

( k1

2

log2(|ql1−
l0
k1 τ1|+ δ)

log(q)
+ α log(|ql1−

l0
k1 τ1|+ δ)

)

× |τ2|eν|τ2|∣∣ exp
(

− τ2l1 log(q)
)∣

∣dm1 (63)

whenever τ1 ∈ Sd1
, τ2 ∈ Hπ ∪ Dρ and m ∈ R. The resulting bounds (61) will be reached after several

steps of computations. Namely,

1) We provide upper bounds for the function

A1(m) :=
1

|Q(
√
−1m)|

∫ +∞

−∞
|Cl(m − m1)||Rl(

√
−1m1)|(1 + |m1|)−µe−β|m1|dm1 (64)

for m ∈ R. Since Rl(X) are polynomials, we get a constant Rl > 0 with

|Rl(
√
−1m1)| ≤ Rl(1 + |m1|)deg(Rl) (65)

for all m1 ∈ R. Besides, owing to the assumption (25), a constant Q > 0 can be pinpointed with the

lower bounds

|Q(
√
−1m)| ≥ Q(1 + |m|)deg(Q) (66)

for all m ∈ R and from the definition of the constants Cl > 0, we know that

|Cl(m − m1)| ≤ Cl(1 + |m − m1|)−µe−β|m−m1| (67)

for all m, m1 ∈ R. The collection of bounds (65), (66) and (67) together with the triangular inequality

|m| ≤ |m − m1|+ |m1| enable the next estimates

A1(m) ≤ ClRl

Q(1 + |m|)deg(Q)

∫ +∞

−∞
(1 + |m − m1|)−µe−β|m−m1|(1 + |m1|)deg(Rl)

× (1 + |m1|)−µe−β|m1|dm1

≤ ClRl

Q

{

(1 + |m|)µ−deg(Q)
∫ +∞

−∞

1

(1 + |m − m1|)µ(1 + |m1|)µ−deg(Rl)
dm1

}

× (1 + |m|)−µe−β|m| (68)

At last, according to Lemma 2.2 from [4] or Lemma 4 from [12], we call to mind that the quantity

sup
m∈R

(1 + |m|)µ−deg(Q)
∫ +∞

−∞

1

(1 + |m − m1|)µ(1 + |m1|)µ−deg(Rl)
dm1

is finite under the assumption (24) and (26). Therefore, a constant C1.1 > 0 can be singled out with

A1(m) ≤ ClRl

Q
C1.1(1 + |m|)−µe−β|m| (69)

for all m ∈ R.

2) We focus on upper estimates for the quantity

A2(τ1) := exp
( k1

2

log2(|ql1−
l0
k1 τ1|+ δ)

log(q)
+ α log(|ql1−

l0
k1 τ1|+ δ)

)

(70)
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provided that τ1 ∈ Sd1
with |τ1| > r1 for some fixed real number r1 > 1. We need to perform the next

expansions

log2(q
l1−

l0
k1 |τ1|+ δ) =

(

log(q
l1−

l0
k1 |τ1|) + log(1 + q

l0
k1
−l1 δ

|τ1|
)
)2

= log2(|τ1|) + 2 log(|τ1|)(l1 −
l0
k1
) log(q) + log2(q

l1−
l0
k1 ) + 2 log(q

l1−
l0
k1 ) log(1 + q

l0
k1
−l1 δ

|τ1|
)

+ 2 log(|τ1|) log(1 + q
l0
k1
−l1 δ

|τ1|
) + log2(1 + q

l0
k1
−l1 δ

|τ1|
) (71)

together with

log(q
l1−

l0
k1 |τ1|+ δ) = log(q

l1−
l0
k1 ) + log(|τ1|) + log(1 + q

l0
k1
−l1 δ

|τ1|
) (72)

Owing to the freshman classical limit limx→+∞ log(x)/x = 0 and equivalence relation log(1 + x) ∼ x

as x tends to 0, we reach a two constants A1, A2 > 0 with

log(|τ1|) log(1 + q
l0
k1
−l1 δ

|τ1|
) ≤ A1 , 0 < log(1 + q

l0
k1
−l1 δ

|τ1|
) ≤ A2 (73)

provided that |τ1| > r1 > 1. Furthermore, since x 7→ log2(x) and x 7→ log(x) are both increasing maps

on [1,+∞), we observe the inequalities

log2(|τ1|) ≤ log2(|τ1|+ δ) , log(|τ1|) ≤ log(|τ1|+ δ) (74)

whenever |τ1| > r1 > 1. From the two expansions (71), (72) and the bounds (73), (74) together with the

assumption (22), we arrive at the next estimates

A2(τ1) ≤ exp
( k1

2 log(q)

[

log2(|τ1|+ δ) + 2 log(|τ1|)(l1 −
l0
k1
) log(q)

+ log2(q
l1−

l0
k1 ) + 2A1 + A2

2

]

+ α
[

log(q
l1−

l0
k1 ) + log(|τ1|+ δ) + A2

]

)

≤ C1.2|τ1|
k1(l1−

l0
k1
)

exp
( k1

2

1

log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

(75)

provided that τ1 ∈ Sd1
with |τ1| > r1, for some constant C1.2 > 0.

3) We supply upper bounds for the quantity

A3(τ1, τ2) =
|τ1|l0 |τ1|

k1(l1−
l0
k1
)| exp

(

− τ2l1 log(q)
)

|
|1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
(76)

for τ1 = rτ0
1 ∈ Sd1

with |τ1| > r1 and τ2 = τ0
2 − s +

√
−1ψ ∈ Hπ ∪ Dρ where r > 0, |τ0

1 | = 1, ψ 6= 0

close to 0 and s > −A for some constant A > 0, according to the decompositions (50) and (51). We

recast A3 in the form

A3(τ1, τ2) = r
l0+k1(l1−

l0
k1
)−dD | exp

(

(s −
√
−1ψ)(l1 −

dD

k1
) log(q)

)

| × | exp
(

− τ0
2 l1 log(q)

)

|

×
rdD | exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
|1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
(77)
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Taking heed of our assumption (23), we obtain a constant C1.3 > 0 with

r
l0+k1(l1−

l0
k1
)−dD | exp

(

(s −
√
−1ψ)(l1 −

dD

k1
) log(q)

)

| ≤ C1.3 (78)

for all r > r1 and s > −A, for ψ 6= 0 close to 0. Furthermore, a constant C1.4 > 0 can be singled out

with
rdD | exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
|1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
≤ C1.4 (79)

as long as r > r1 and s > −A, for ψ 6= 0 close to 0. From (78) and (79), we deduce a constant C1.5 > 0

such that

A3(τ1, τ2) ≤ C1.5 (80)

whenever τ1 ∈ Sd1
with |τ1| > r1 and all τ2 ∈ Hπ ∪ Dρ.

4) We establish bounds for the quantity A2(τ1) displayed in (70) provided that τ1 ∈ Sd1
with

|τ1| ≤ r1, where r1 > 1 has been fixed in 2). A mere observation yields a constant C1.6 > 0 with

A2(τ1)

≤
{

exp
( k1

2

log2(|ql1−
l0
k1 τ1|+ δ)− log2(|τ1|+ δ)

log(q)
+ α{log(|ql1−

l0
k1 τ1|+ δ)− log(|τ1|+ δ)}

)}

× exp
( k1

2 log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

≤ C1.6 exp
( k1

2 log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

(81)

for all τ1 ∈ Sd1
with |τ1| ≤ r1.

5) We present bounds for the piece

A4(τ1, τ2) =
|τ1|l0 | exp

(

− τ2l1 log(q)
)

|
|1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
(82)

for τ1 = rτ0
1 ∈ Sd1

with |τ1| ≤ r1 and τ2 = τ0
2 − s +

√
−1ψ ∈ Hπ ∪ Dρ where r > 0, |τ0

1 | = 1, ψ 6= 0

close to 0 and s > −A for some constant A > 0, according to the decompositions (50) and (51). We

rearrange A4 as follows

A4(τ1, τ2) = rl0−dD | exp
(

(s −
√
−1ψ)(l1 −

dD

k1
) log(q)

)

| × | exp
(

− τ0
2 l1 log(q)

)

|

×
rdD | exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
|1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
(83)

Bearing in mind the condition (23), we get a constant C1.7 > 0 with

rl0−dD | exp
(

(s −
√
−1ψ)(l1 −

dD

k1
) log(q)

)

| ≤ C1.7 (84)

provided that 0 < r ≤ r1 and s > −A, for ψ 6= 0 close to 0. On the other hand, a constant C1.8 > 0 can

be set with
rdD | exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
|1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
≤ C1.8 (85)
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as long as 0 < r ≤ r1 and s > −A, for ψ 6= 0 close to 0. Due to (84) and (85), a constant C1.9 > 0 can be

picked out such that

A4(τ1, τ2) ≤ C1.9 (86)

for all τ1 ∈ Sd1
with |τ1| ≤ r1 and all τ2 ∈ Hπ ∪ Dρ.

6) As a consequence of the list of estimates (75), (80), (81) and (86), we obtain a constant C1.10 > 0

with

1

|1 − rdD exp
(

(s −
√
−1ψ) dD

k1
log(q)

)

|
|τ1|l0

× exp
( k1

2

log2(|ql1−
l0
k1 τ1|+ δ)

log(q)
+ α log(|ql1−

l0
k1 τ1|+ δ)

)

× | exp
(

− τ2l1 log(q)
)

| ≤ C1.10 exp
( k1

2 log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

(87)

for τ1 = rτ0
1 ∈ Sd1

and τ2 = τ0
2 − s +

√
−1ψ ∈ Hπ ∪ Dρ where r > 0, |τ0

1 | = 1, ψ 6= 0 close to 0 and

s > −A for some constant A > 0, according to the decompositions (50) and (51).

In conclusion, on the basis of the factorization (52) for the map Pm(τ1, τ2) together with the bounds

(69) and (87) combined with the bounds (63), we arrive at the next inequality

∣

∣

∣

1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)τ

l0
1 σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)

× exp
(

− τ2l1 log(q)
)

dm1

∣

∣

∣
≤

[ClRl

Q
C1.1C1.10q

l1−
l0
k1 ||ω||(k1,α,δ,ν,β,µ,ρ)

]

× (1 + |m|)−µe−β|m||τ1| exp
( k1

2 log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

× |τ2|eν|τ2| (88)

for all τ1 ∈ Sd1
, all τ2 ∈ Hπ ∪ Dρ. Notice that this last inequality is tantamount to the awaited bounds

(61) for the constant

C1 =
Rl

Q
C1.1C1.10q

l1−
l0
k1 .

We need control on the norm of the last term of H related to the forcing term of the equation (48).

Lemma 6. There exists a constant FF > 0 such that

||F (τ1, τ2, m)

Pm(τ1, τ2)
||(k1,α,δ,ν,β,µ,ρ) ≤ FF . (89)

Proof. In view of the factorization (52) and the definition (28) of F , we notice that

∣

∣

∣

F (τ1, τ2, m)

Pm(τ1, τ2)

∣

∣

∣
≤ ∑j1∈J1,j2∈J2

|Fj1,j2(m)||τ1|j1 |τ2|j2

|Q(
√
−1m)| × |1 − rdD exp

(

(s −
√
−1ψ) dD

k1
log(q)

)

|
(90)

for all τ1 ∈ Sd1
and τ2 ∈ Hπ ∪ Dρ for which the splittings (50) and (51) hold, and all m ∈ R. Besides,

by Definition of F , constants Fj1,j2 > 0 can be found such that

|Fj1,j2(m)| ≤ Fj1,j2(1 + |m|)−µe−β|m| (91)
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for all m ∈ R. Furthermore, we can pinpoint a constant KdD ,k1,q > 0 for which

|1 − rdD exp
(

(s −
√
−1ψ)

dD

k1
log(q)

)

| ≥ KdD ,k1,q (92)

hold where τ1 ∈ Sd1
and τ2 ∈ Hπ ∪ Dρ with the decompositions (50) and (51). As a result, combining

(90), (91) and (92) gives rise to the next upper estimates

∣

∣

∣

F (τ1, τ2, m)

Pm(τ1, τ2)

∣

∣

∣
≤ 1

minm∈R |Q(
√
−1m)|KdD ,k1,q

(1 + |m|)−µe−β|m|

×
[

∑
j1∈J1,j2∈J2

Fj1,j2 |τ1|j1 |τ2|j2
{ 1

|τ1|
exp

(

− k1

2 log(q)
log2(|τ1|+ δ)− α log(|τ1|+ δ)

)

× 1

|τ2|
e−ν|τ2|}

]

× |τ1| exp
( k1

2 log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

|τ2|eν|τ2|

≤ FF (1 + |m|)−µe−β|m||τ1| exp
( k1

2 log(q)
log2(|τ1|+ δ) + α log(|τ1|+ δ)

)

|τ2|eν|τ2| (93)

for all τ1 ∈ Sd1
and τ2 ∈ Hπ ∪ Dρ, where

FF =
1

minm∈R |Q(
√
−1m)|KdD ,k1,q

× ∑
j1∈J1,j2∈J2

Fj1,j2

{

sup
x≥0

xj1−1 exp
(

− k1

2 log(q)
log2(x + δ)− α log(x + δ)

)}

×
{

sup
y≥0

yj2−1e−νy
}

keeping in mind that 0 /∈ Jk ⊂ N∗, for k = 1, 2. At last, it remains to notice that the due inequality (89)

results from (93) by taking heed of Definition 4.

We select the constant ̟ > 0 suitably together with the constants Cl > 0, for l ∈ I, taken close

enough to 0 in a way that the next inequality

∑
l=(l0,l1)∈I

1

(2π)1/2(q1/k1)l0(l0−1)/2
C1Cl̟ + FF ≤ ̟ (94)

holds where C1 > 0 appears in Lemma 5 and FF > 0 stems from Lemma 6. Eventually, the expected

inclusion (59) prompts from the bounds (61) and (89) under the restriction (94).

We discuss the second item addressing the shrinking feature (60). We take two elements ω1, ω2 in

the closed ball B̟̄ from Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
whose radius ̟ > 0 has been prescribed in the first item (59).

According to Lemma 5, under the conditions (22), (23), (24), (25) and (26) listed in Subsection 2.2, the

next inequality

|| 1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)τ

l0
1 σ

l1−
l0
k1

q;τ1

(

ω1(τ1, τ2, m1)− ω2(τ1, τ2, m1)
)

× exp
(

− τ2l1 log(q)
)

dm1||(k1,α,δ,ν,β,µ,ρ)

≤ C1Cl ||ω1(τ1, τ2, m)− ω2(τ1, τ2, m)||(k1,α,δ,ν,β,µ,ρ) (95)

holds for the constant C1 > 0 introduced in Lemma 5. We set the constants Cl > 0, for l ∈ I, small

enough allowing the next inequality

∑
l=(l0,l1)∈I

1

(2π)1/2(q1/k1)l0(l0−1)/2
C1Cl ≤

1

2
(96)
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to hold. The Lipschitz property (60) is a straight consequence of (95) under the requirement (96).

In conclusion, we properly choose the constants Cl > 0, l ∈ I and the radius ̟ > 0 in order to

impose both constraints (94) and (96) at once, which triggers the two properties (59) and (60) for the

map H.

In the forthcoming proposition, we provide a solution to the convolution q−difference equation

(48) established in Lemma 3.

Proposition 2. Let us prescribe the sectorial domain SQ,RD
, the unbounded sector Sd1

together with the strip

Hπ and the disc Dρ as in Lemma 4. Then, the constants Cl > 0 defined in (27) and a constant ̟ > 0 can be

fittingly chosen in a manner that a unique solution ωd1,π to the convolution q−difference equation (48) can be

built up in the space Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
under the condition

||ωd1,π ||(k1,α,δ,ν,β,µ,ρ) ≤ ̟. (97)

Proof. We select ̟ > 0 as in Proposition 1. We mind the closed ball B̟̄ in the Banach space

Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
which represents a complete metric space for the distance d(x, y) = ||x− y||(k1,α,δ,ν,β,µ,ρ)

deduced from the norm. The proposition 1 states that H induces a contractive map from the metric

space (B̟̄ , d) into itself. According to the classical Banach fixed point theorem, it follows that H owns

a unique fixed point inside the ball B̟̄, we denote ωd1,π . It means that

H(ωd1,π(τ1, τ2, m)) = ωd1,π(τ1, τ2, m) (98)

for all τ1 ∈ Sd1
, τ2 ∈ Hπ ∪ Dρ and m ∈ R. By transfering the term

RD(
√
−1m)

τdD
1

(q1/k1)dD(dD−1)/2
exp

(

− τ2
dD

k1
log(q)

)

ωd1,π(τ1, τ2, m)

from the right to the left handside of (48) and dividing the resulting equation by the map Pm(τ1, τ2)

displayed in (49), we observe that (48) can be rearranged into the fixed point equation (98). On that

account, the unique fixed point ωd1,π obtained in B̟̄ precisely solve (48), which yields Proposition

2.

3.3. Analytic solutions to the auxiliary equations (37) and (39)

In the next proposition, we craft analytic solutions to the associated set of q−difference and

differential problems under the action of homographic maps established in Subsection 2.3.

Proposition 3. The sectorial domain SQ,RD
, the unbounded sector Sd1

together with the strip Hπ and the disc

Dρ are prescribed as in Lemma 4.

• We define the map

Ud1,π(u1, u2, z) =
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (99)

where the Borel-Fourier map ωd1,π(τ1, τ2, m) is built up in Proposition 2 and solves the convolution

q−difference equation (48). The map (99) boasts the next two qualities
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– It defines a bounded holomorphic function on the product (Rd1,∆1
∩ DR1

)× U2,π × Hβ′ for some

given ∆1 > 0, where Rd1,∆1
stands for the set (19) and DR1

is a disc centered at 0 with radius

subjected to the constraint

0 < R1 < q
− 1

k1
(α+1)

/2 (100)

and 0 < β′
< β. Besides, U2,π represents a bounded sector edged at 0 with bisecting direction π

with radius R2 > 0, submitted to the next condition: there exists some real number ∆2,π > 0 with

cos(π − arg(u2)) > ∆2,π (101)

for all u2 ∈ U2,π , where 0 < R2 < ∆2,π/ν, for ν > 0 fixed in Definition 4.
– It solves the auxiliary equation (37) for prescribed initial data Ud1,π(0, 0, z) ≡ 0.

• For a direction d2 6= π (modulo 2π), we shape the map

Ud1,d2
(u1, u2, z) =

k1

log(q)(2π)1/2

∫

Ld1

∫

Ld2,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (102)

where ωd1,π(τ1, τ2, m) is the Borel-Fourier map mentioned in the above item. The map (102) enjoys the

next two properties

– It represents a bounded holomorphic function on the product (Rd1,∆1
∩ DR1

)× U2,d2
× Hβ′ , for

the domain Rd1,∆1
, disc DR1

and constant 0 < β′
< β given in the first item. Furthermore, U2,d2

stands for a bounded sector centered at 0 with bisecting direction d2 and with radius R2 chosen as

in the first item and subjected to the next restriction : some positive real number ∆2,d2
> 0 can be

found with

cos(d2 − arg(u2)) > ∆2,d2
(103)

for all u2 ∈ U2,d2
.

– It obeys the auxiliary equation (39) for given vanishing initial data Ud1,d2
(0, 0, z) ≡ 0.

Proof. We discuss the first item. We parametrize τ1 ∈ Ld1
and τ2 ∈ Lπ in the form τ1 = r1e

√
−1d1 and

τ2 = r2e
√
−1π for r1, r2 ≥ 0. Then, owing to (15) and (97), we get

|ωd1,π(τ1, τ2, m)|
∣

∣

∣

1

Θ
q1/k1

(τ1/u1)

∣

∣

∣
| exp

(

− τ2

u2

)

| 1

|τ1||τ2|
|e
√
−1zm|

≤ ̟(1 + |m|)−µe−β|m| exp
( k1

2 log(q)
log2(r1 + δ) + α log(r1 + δ)

)

eνr2

× 1

Cq,k1
∆1

exp
(

− k1

2 log(q)
log2(r1/|u1|)

) 1

(r1/|u1|)1/2

× exp
(

− r2

|u2|
cos(π − arg(u2))

)

× e−mIm(z) (104)

for all u1 ∈ C∗ with |1 + τ1
u1

r| > ∆1 for all r ≥ 0 and u2 ∈ U2,π . In order to provide upper bounds for

the right handside of (104), we propose the next alternative.
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Assume that 0 ≤ r1 < 1 with u1 ∈ Rd1,∆1
as above under the constraint |u1| ≤ R1. Then, one can

single out a constant Mk1,q,δ,α > 0 such that

exp
( k1

2 log(q)
log2(r1 + δ) + α log(r1 + δ)

)

× exp
(

− k1

2 log(q)
log2(r1/|u1|)

) 1

(r1/|u1|)1/2

≤ Mk1,q,δ,α sup
x>0

exp
(

− k1

2 log(q)
log2(x)

) 1

x1/2
(105)

for all 0 ≤ r1 < 1 with u1 ∈ Rd1,∆1
∩ DR1

.

Assume that r1 ≥ 1 and u1 ∈ Rd1,∆1
∩ DR1

for a radius R1 > 0 under the constraint (100). The

next three expansions are useful. Namely,

log2(r1/|u1|) = log2(r1)− 2 log(r1) log(|u1|) + log2(|u1|) (106)

together with

log2(r1 + δ) = log2(r1) + 2 log(r1) log(1 +
δ

r1
) + log2(1 +

δ

r1
) (107)

and

log(r1 + δ) = log(r1) + log(1 +
δ

r1
). (108)

Since log(1 + x) ∼ x holds as x is close to 0 and owing to the classical limit limx→+∞ log(x)/x = 0,

we get from (107) and (108) two constants Mδ,1, Mδ,2 > 0 with

log2(r1 + δ) ≤ log2(r1) + Mδ,1 , log(r1 + δ) ≤ log(r1) + Mδ,2 (109)

for all r1 ≥ 1. As a result, we get from the computation (106) and bounds (109) that

exp
( k1

2 log(q)
log2(r1 + δ) + α log(r1 + δ)

)

× exp
(

− k1

2 log(q)
log2(r1/|u1|)

) 1

(r1/|u1|)1/2

≤ exp
( k1

2 log(q)
Mδ,1 + αMδ,2

)

× exp
(

− k1

2 log(q)
log2(|u1|)

)

|u1|1/2

× exp
(

α log(r1) +
k1

log(q)
log(r1) log(|u1|)

) 1

r1/2
1

(110)

At last, from the assumption (100) and requirement |u1| ≤ R1, the next bounds

exp
( k1

2 log(q)
log2(r1 + δ) + α log(r1 + δ)

)

× exp
(

− k1

2 log(q)
log2(r1/|u1|)

) 1

(r1/|u1|)1/2

≤ exp
( k1

2 log(q)
Mδ,1 + αMδ,2

)

× exp
(

− k1

2 log(q)
log2(|u1|)

)

|u1|1/2 × 1

r3/2
1

(111)

are deduced from (110).

On the other hand, taking heed of (101), we observe that

e−β|m|eνr2 exp
(

− r2

|u2|
cos(π − arg(u2))

)

× e−mIm(z) ≤ e−(β−β′)|m| exp
(

r2(ν − ∆2,π

|u2|
)
)

(112)

provided that z ∈ Hβ′ , where 0 < β′
< β and ν − ∆2,π

|u2| < 0 according to the claim that |u2| < R2 <

∆2,π/ν.

As a consequence of the above bounds (105) along with (111) and (112), we deduce that the map

(u1, u2, z) 7→ Ud1,π(u1, u2, z) is well defined and represents a bounded holomorphic function on the

product (Rd1,∆1
∩ DR1

)× U2,π × Hβ′ under the above requirements (100) and (101).
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Recall that the Borel-Fourier map ωd1,π(τ1, τ2, m) has been constructed as a solution of the

associated convolution q−difference equation (48) in Proposition 2. From Lemma 3, we deduce

that Ud1,π(u1, u2, z) obeys the auxiliary equation (37) on the domain (Rd1,∆1
∩ DR1

)× U2,π × Hβ′ for

prescribed initial data Ud1,π(0, 0, z) ≡ 0.

We turn to the second item. Let τ1 ∈ Ld1
and τ2 ∈ Ld2,a be parametrized as follows τ1 = r1e

√
−1d1

and τ2 = r2e
√
−1d2 with r1 ≥ 0, 0 ≤ r2 ≤ a. Bearing in mind (15) and (97), we obtain a constant ̟ > 0

such that the next inequality

|ωd1,π(τ1, τ2, m)|
∣

∣

∣

1

Θ
q1/k1

(τ1/u1)

∣

∣

∣
| exp

(

− τ2

u2

)

| 1

|τ1||τ2|
|e
√
−1zm|

≤ ̟(1 + |m|)−µe−β|m| exp
( k1

2 log(q)
log2(r1 + δ) + α log(r1 + δ)

)

eνr2

× 1

Cq,k1
∆1

exp
(

− k1

2 log(q)
log2(r1/|u1|)

) 1

(r1/|u1|)1/2

× exp
(

− r2

|u2|
cos(d2 − arg(u2))

)

× e−mIm(z) (113)

holds provided that u1 ∈ Rd1,∆1
and u2 ∈ U2,d2

. According to (103), we notice that

eνr2 exp
(

− r2

|u2|
cos(d2 − arg(u2))

)

≤ eνa exp
(

− r2

|u2|
∆2,d2

)

≤ eνa exp
(

− r2

R2
∆2,d2

)

(114)

under the restriction |u2| < R2. By dint of the upper bounds (105) in a row with (111), (112) and (114),

we acknowledge the fact that (u1, u2, z) 7→ Ud1,d2
(u1, u2, z) is bounded and stands for a holomorphic

map on the product (Rd1,∆1
∩ DR1

)× U2,d2
× Hβ′ under the assumptions (100) and (103). Since the

Borel-Fourier map ωd1,π(τ1, τ2, m) solves the convolution q−difference equation (48) as shown in

Proposition 2, we deduce from Lemma 3 that Ud1,d2
(u1, u2, z) conforms the auxiliary equation (39) on

the domain (Rd1,∆1
∩ DR1

)× U2,d2
× Hβ′ for given vanishing initial data Ud1,d2

(0, 0, z) ≡ 0.

4. Construction of a holomorphic solution to the main initial value problem (21) and its Gevrey
asymptotic expansion relatively to complex time t in logarithmic scale.

4.1. A finite set of genuine solutions to related initial value problems.

We restate the definition of a good covering in C∗ as described in the textbook [8], Section XI-2.

Definition 5. Let ς ≥ 2 be an integer. A set of bounded sectors U = {Up}0≤p≤ς−1 edged at 0 is deemed with

the next three attributes

1. Any two consecutive sectors Up and Up+1 have non empty intersection Up ∩ Up+1, for 0 ≤ p ≤ ς − 1,

where the convention Uς = U0 is assumed.
2. The intersection of any three sectors Up ∩ Uq ∩ Ur is reduced to the empty set for all distinct non negative

integers p, q, r less than ς − 1.
3. The union ∪ς−1

p=0Up covers some punctured neighborhood of 0 in C∗.

Such a set U is tagged a good covering in C∗.

A notion of fitting set of sectors is discussed in the next definition.

Definition 6. Let ς ≥ 2 be an integer. A finite set of bounded sectors U = {U2,dp}0≤p≤ς−1 is minded with

the next three constraints.
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1. For each 0 ≤ p ≤ ς − 1, the sector U2,dp is edged at 0, with bisecting direction dp ∈ R and is subjected to

the condition that some real number ∆2,dp > 0 can be singled out with

cos(dp − arg(u2)) > ∆2,dp (115)

for all u2 ∈ U2,dp .
2. There exists an index p1 ∈ {1, . . . , ς − 1} with dp1

= π. All the sectors U2,dp , 0 ≤ p ≤ ς − 1 have the

same radius R2 which obeys the restriction

0 < R2 <
∆2,π

ν

where ∆2,π > 0 is introduced in the above item and ν > 0 is declared in Definition 4.
3. The set U forms a good covering in C∗ in the sense of Definition 5.

A set U endowed with the above three features is called a fitting set of sectors.

In the oncoming proposition, we exhibit analytic solutions to the auxiliary problems (37) and (39)

where the directions d2 span the set of bisecting directions of some fitting set of sectors. Furthermore,

sharp estimates of their consecutive differences are provided which are essential in the study of their

asymptotic expansions in the variable u2 that will be described in the next Subsection 4.2.

Proposition 4. Let the sectorial domain SQ,RD
, the unbounded sector Sd1

together with the strip Hπ and the

disc Dρ be arranged as in Lemma 4. Consider a fitting set of sectors U = {U2,dp}0≤p≤ς−1 and assign a radius

a with 0 < a < ρ. Then, provided that the constants Cl > 0 are taken close enough to 0 in accordance with the

requirements of Proposition 2, the properties described in the forthcoming three items hold.

• For each p ∈ {0, . . . , ς − 1} \ {p1} (where p1 stems from Definition 6 2.) the equation

Q(∂z)Ud1,dp
(u1, u2, z) = udD

1 σ

dD
k1

q;u1
◦H dD

k1
log(q);u2

RD(∂z)Ud1,dp
(u1, u2, z)+

∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

◦Hl1 log(q);u2
cl(z)Rl(∂z)Ud1,dp

(u1, u2, z) + Fdp ,a(u1, u2, z) (116)

where the forcing term Fdp ,a is given by the triple integral formula (38), possesses a bounded holomorphic

solution (u1, u2, z) 7→ Ud1,dp
(u1, u2, z) on the domain (Rd1,∆1

∩ DR1
) × U2,dp × Hβ′ , where Rd1,∆1

stands for the set (19), for a radius R1 > 0 fulfilling (100), which observes the condition Ud1,dp
(0, 0, z) ≡ 0.

Furthermore, the map Ud1,dp
(u1, u2, z) is embodied in a Fourier inverse and a double q−Laplace, Laplace

transform

Ud1,dp
(u1, u2, z) =

k1

log(q)(2π)1/2

∫

Ld1

∫

Ldp ,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (117)

where the Borel-Fourier map (τ1, τ2, m) 7→ ωd1,π(τ1, τ2, m) belongs to the Banach space Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
(introduced in Definition 4) constrained to the bounds (97).

• The equation

Q(∂z)Ud1,π(u1, u2, z) = udD
1 σ

dD
k1

q;u1
◦H dD

k1
log(q);u2

RD(∂z)Ud1,π(u1, u2, z)+

∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

◦Hl1 log(q);u2
cl(z)Rl(∂z)Ud1,π(u1, u2, z) + Fπ(u1, u2, z) (118)
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with forcing term Fπ is displayed in (29) and expressed as a polynomial in (30), holds a bounded holomorphic

solution (u1, u2, z) 7→ Ud1,π(u1, u2, z) on the domain (Rd1,∆1
∩ DR1

)×U2,π × Hβ′ where the set Rd1,∆1

and radius R1 are given in the above item, under the vanishing condition Ud1,π(0, 0, z) ≡ 0. In addition,

the map Ud1,π(u1, u2, z) is expressed through a Fourier inverse and a double q−Laplace, Laplace transform

Ud1,π(u1, u2, z) =
k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (119)

where the Borel-Fourier map (τ1, τ2, m) 7→ ωd1,π(τ1, τ2, m) is described in the former item.
• The neighboring differences of the maps Ud1,dp

are controlled by the next bounds. For all 0 ≤ p ≤ ς − 1,

two constants Mp,1, Kp,1 > 0 can be found such that

|Ud1,dp+1
(u1, u2, z)− Ud1,dp

(u1, u2, z)| ≤ Mp,1 exp
(

−
Kp,1

|u2|
)

(120)

for all u1 ∈ Rd1,∆1
∩ DR1

, all z ∈ Hβ′ , provided that u2 ∈ U2,dp ∩U2,dp+1
∩ DŘ2

for a well chosen radius

0 < Ř2 < R2. Here we adopt the convention that dς = d0.

Proof. The first two items are direct corollaries of the statement of Proposition 3 and the definition of

a fitting set of sectors U chosen at the onset of Proposition 4.

We focus on the third item which demands more labor and hinges on paths deformations

arguments. We distinguish two different situations.

Case 1. Let p = p1 or p = p1 − 1. We discuss only the subcase p = p1 since the other alternative

p = p1 − 1 can be treated in a similar manner. By construction, we notice that dp+1 6= π (modulo

2π). According to Proposition 2, for any prescribed τ1 ∈ Sd1
and m ∈ R, the partial map τ2 7→

ωd1,π(τ1, τ2, m) is analytic on the union Hπ ∪ Dρ. As a result, the oriented path Ldp+1,a − Lπ can be

bent into the union of

– The halfline −Lπ,a,∞ = −[a,+∞)e
√
−1π

– The arc of circle Cπ,dp+1,a = {ae
√
−1θ/θ ∈ [π, dp+1]}

and the classical Cauchy’s theorem enables the difference Ud1,dp+1
− Ud1,π to be reorganized as a sum

of two contributions. Namely,

Ud1,dp+1
(u1, u2, z)− Ud1,π(u1, u2, z)

= − k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ,a,∞

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm

+
k1

log(q)(2π)1/2

∫

Ld1

∫

Cπ,dp+1,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (121)
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for all u1 ∈ Rd1,∆1
∩ DR1

, all z ∈ Hβ′ and u2 ∈ U2,π ∩ U2,dp+1
. We need to control the first piece of (121)

J1 =
∣

∣

∣

k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ,a,∞

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm

∣

∣

∣
(122)

Drew on the bounds (104), (105) together with (111) and (112), we split the halfline Ld1
in the union of

two segments Ld1,1 = [0, 1]e
√
−1d1 and Ld1,1,∞ = [1,+∞)e

√
−1d1 and we are reduced to provide bounds

for the next two quantities J1.1 and J1.2 for

J1 ≤ J1.1 + J1.2 (123)

where

J1.1 =
∣

∣

∣

k1

log(q)(2π)1/2

∫

Ld1,1

∫

Lπ,a,∞

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm

∣

∣

∣

and

J1.2 =
∣

∣

∣

k1

log(q)(2π)1/2

∫

Ld1,1,∞

∫

Lπ,a,∞

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm

∣

∣

∣

Indeed,

J1.1 ≤ k1

log(q)(2π)1/2
̟
(

∫ +∞

−∞
e−(β−β′)|m|dm

) 1

Cq,k1
∆1

Mk1,q,δ,α

× sup
x>0

exp
(

− k1

2 log(q)
log2(x)

) 1

x1/2
×

∫ +∞

a
exp

(

r2(ν − ∆2,π

|u2|
)
)

dr2 (124)

and

J1.2 ≤ k1

log(q)(2π)1/2
̟
(

∫ +∞

−∞
e−(β−β′)|m|dm

) 1

Cq,k1
∆1

(

∫ +∞

1

1

r3/2
1

dr1

)

× exp
( k1

2 log(q)
Mδ,1 + αMδ,2

)

× exp
(

− k1

2 log(q)
log2(|u1|)

)

|u1|1/2 ×
∫ +∞

a
exp

(

r2(ν − ∆2,π

|u2|
)
)

dr2 (125)

Now, we set 0 < Ř2 = (∆2,π − ∆̌2,π)/ν < R2 for some real number 0 < ∆̌2,π < ∆2,π . Hence,

∫ +∞

a
exp

(

r2(ν − ∆2,π

|u2|
)
)

dr2 ≤
∫ +∞

a
exp

(

− ∆̌2,π

|u2|
r2

)

dr2 =
|u2|
∆̌2,π

exp
(

− ∆̌2,π

|u2|
a
)

(126)

provided that |u2| ≤ Ř2. As a result of (124), (125) and (126), we deduce from the splitting (123) that

J1 ≤
(

sup
u1∈Rd1,∆1

∩DR1

M1(|u1|)
) |u2|

∆̌2,π

exp
(

− ∆̌2,π

|u2|
a
)

(127)
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for all u1 ∈ Rd1,∆1
∩ DR1

, all z ∈ Hβ′ and u2 ∈ U2,π ∩ U2,dp+1
∩ DŘ2

, where

M1(|u1|) =
k1

log(q)(2π)1/2
̟
(

∫ +∞

−∞
e−(β−β′)|m|dm

) 1

Cq,k1
∆1

Mk1,q,δ,α

× sup
x>0

exp
(

− k1

2 log(q)
log2(x)

) 1

x1/2
+

k1

log(q)(2π)1/2
̟
(

∫ +∞

−∞
e−(β−β′)|m|dm

) 1

Cq,k1
∆1

×
(

∫ +∞

1

1

r3/2
1

dr1

)

× exp
( k1

2 log(q)
Mδ,1 + αMδ,2

)

× exp
(

− k1

2 log(q)
log2(|u1|)

)

|u1|1/2 (128)

In the next step, we display bounds for the second piece of (121)

J2 =
∣

∣

∣

k1

log(q)(2π)1/2

∫

Ld1

∫

Cπ,dp+1,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm

∣

∣

∣
(129)

According to Definition 6 1. of fitting set of sectors, we notice that the lower bounds

cos(θ − arg(u2)) > ∆̃2,dp+1,π = min(∆2,dp+1
, ∆2,π) (130)

for all u2 ∈ U2,π ∩ U2,dp+1
whenever the angle θ belongs to (π, dp+1). By breaking up the halfine Ld1

into the segments Ld1,1 and Ld1,1,∞, similar computations as above yield the bounds

J2 ≤
(

sup
u1∈Rd1,∆1

∩DR1

M1(|u1|)
)∣

∣

∣

∫

dp+1

π
eaν exp

(

− a

|u2|
cos(θ − arg(u2))

)

adθ
∣

∣

∣

≤
(

sup
u1∈Rd1,∆1

∩DR1

M1(|u1|)
)

|π − dp+1|aeaν exp
(

− a

|u2|
∆̃2,dp+1,π

)

(131)

for all u1 ∈ Rd1,∆1
∩ DR1

, all z ∈ Hβ′ , as long as u2 ∈ U2,π ∩ U2,dp+1
.

In conclusion, the decomposition (121) along with the two upper bounds (127) and (131) beget

the estimates (120) under the assumption that p = p1.

Case 2. Assume that p /∈ {p1 − 1, p1}. We observe that both directions dp and dp+1 are not equal

to π modulo 2π. Owing to Proposition 2, for any fixed τ1 ∈ Sd1
and m ∈ R, the partial map

τ2 7→ ωd1,π(τ1, τ2, m) is analytic on the disc Dρ. On these grounds, we can deform the oriented path

Ldp+1,a − Ldp ,a into a single arc of circle

Cdp ,dp+1,a = {ae
√
−1θ/θ ∈ [dp, dp+1]}

and rewrite the difference Ud1,dp+1
− Ud1,dp

as a single triple path integral

Ud1,dp+1
(u1, u2, z)− Ud1,dp

(u1, u2, z)

=
k1

log(q)(2π)1/2

∫

Ld1

∫

Cdp ,dp+1,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (132)
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for all u1 ∈ Rd1,∆1
∩ DR1

, all z ∈ Hβ′ and u2 ∈ U2,dp ∩U2,dp+1
. Upper bounds are asked for the quantity

J3 =
∣

∣

∣

k1

log(q)(2π)1/2

∫

Ld1

∫

Cdp ,dp+1,a

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/u1)
exp

(

− τ2

u2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm

∣

∣

∣
. (133)

The definition 6 of fitting sets of sectors allows the next lower bounds

cos(θ − arg(u2)) > ∆̃2,dp+1,dp = min(∆2,dp+1
, ∆2,dp) (134)

to hold for all u2 ∈ U2,dp ∩U2,dp+1
whenever the angle θ is taken in (dp, dp+1). Using the partition of the

halfline Ld1
in two segments Ld1,1 = [0, 1]e

√
−1d1 and Ld1,1,∞ = [1,+∞)e

√
−1d1 , comparable estimates

as the ones performed in the case 1. give rise to the next bounds

J3 ≤
(

sup
u1∈Rd1,∆1

∩DR1

M1(|u1|)
)∣

∣

∣

∫

dp+1

dp

eaν exp
(

− a

|u2|
cos(θ − arg(u2))

)

adθ
∣

∣

∣

≤
(

sup
u1∈Rd1,∆1

∩DR1

M1(|u1|)
)

|dp − dp+1|aeaν exp
(

− a

|u2|
∆̃2,dp+1,dp

)

(135)

for all u1 ∈ Rd1,∆1
∩ DR1

, all z ∈ Hβ′ , provided that u2 ∈ U2,dp ∩ U2,dp+1
, where M1(|u1|) is given by

the expression (128).

In brief, the recast expression (132) coupled with the bounds (135) prompts the awaited estimates

(120) under the assumption that p /∈ {p1 − 1, p1}.

4.2. Gevrey asymptotic expansions for the bounded holomorphic solutions to the family of auxiliary problems
(116) and (118).

In the next proposition, asymptotic expansions of Gevrey type are achieved for the maps

Ud1,dp
(u1, u2, z), that are displayed in Proposition 4, relatively to the variable u2.

Proposition 5. For the constants d1, ∆1, R1 and β′ fixed in Proposition 4, we denote Fd1,∆1,R1,β′ the Banach

space of C−valued bounded holomorphic functions on the product (Rd1,∆1
∩ DR1

)× Hβ′ endowed with the sup

norm. Then, for all 0 ≤ p ≤ ς − 1, the partial maps u2 7→ Ud1,dp
(u1, u2, z), viewed as bounded holomorphic

maps from the bounded sector U2,dp ∩ DŘ2
into Fd1,∆1,R1,β′ , share a common formal power series

Ĝ(u2) = ∑
n≥0

Gn(u1, z)
un

2

n!
(136)

with coefficients Gn, n ≥ 0, that belong to Fd1,∆1,R1,β′ , as Gevrey asymptotic expansion of order 1 on U2,dp . It

means that, for each 0 ≤ p ≤ ς − 1, two constants Kp,2, Mp,2 > 0 can be chosen in a way that the next error

bounds
∣

∣

∣
Ud1,dp

(u1, u2, z)−
N

∑
n=0

Gn(u1, z)
un

2

n!

∣

∣

∣
≤ Kp,2(Mp,2)

N+1Γ(N + 2)|u2|N+1 (137)

hold for all integers N ≥ 0, all u2 ∈ U2,dp ∩ DŘ2
, whenever u1 ∈ Rd1,∆1

∩ DR1
and z ∈ Hβ′ .

Proof. In the proof, we apply the next result known as the Ramis-Sibuya theorem that we rephrase for

the sake of completeness and clarity for the reader (see Lemma XI-2-6 in [8]).

Theorem (R.S.) Let (F, ||.||F) be a Banach space over the field of complex numbers and let {Up}0≤p≤ς−1 be

a good covering in C∗ as outlined in Definition 5. For all 0 ≤ p ≤ ς − 1, we consider holomorphic functions

Gp : Up → F that enjoy the next two features
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1. The maps Gp are bounded on Up for all 0 ≤ p ≤ ς − 1.
2. The difference Θp(u) = Gp+1(u) − Gp(u) stands for a holomorphic map on the intersection Zp =

Up+1 ∩ Up which is exponentially flat of order k, for some integer k ≥ 1, meaning that one can select two

constants Cp, Ap > 0 for which

||Θp(u)||F ≤ Cp exp(− Ap

|u|k )

holds provided that u ∈ Zp, for all 0 ≤ p ≤ ς − 1. By convention, we set Gς = G0 and Uς = U0.

Then, a formal power series Ĝ(u) = ∑n≥0 Gnun with coefficients Gn belonging to F can be singled out,

which is the common Gevrey asymptotic expansion of order 1/k relatively to u on Up for all the maps Gp, for

0 ≤ p ≤ ς − 1. It attests that two constants Kp, Mp > 0 can be chosen with the result that the error bounds

||Gp(u)−
N

∑
n=0

Gnun||F ≤ Kp MN+1
p Γ(1 +

N + 1

k
)|u|N+1 (138)

hold for all integers N ≥ 0, all u ∈ Up, all 0 ≤ p ≤ ς − 1.

For each 0 ≤ p ≤ ς − 1, we introduce the map Gp : U2,dp ∩ DŘ2
→ Fd1,∆1,R1,β′ set as

Gp(u2) := (u1, z) 7→ Ud1,dp
(u1, u2, z).

In view of Proposition 4, we acknowledge that

– The set of sectors {U2,dp ∩ DŘ2
}0≤p≤ς−1 forms a good covering in C∗ owing to Definition 6 3.

– For each 0 ≤ p ≤ ς − 1, the map Gp is bounded holomorphic on the sector U2,dp ∩ DŘ2
.

– For each 0 ≤ p ≤ ς − 1, the difference Θp(u2) = Gp+1(u2)− Gp(u2) suffers the bounds

||Θp(u2)||Fd1,∆1,R1,β′ ≤ Mp,1 exp
(

−
Kp,1

|u2|
)

for the constants Mp,1 and Kp,1 displayed in (120), provided that u2 ∈ U2,dp ∩ U2,dp+1
∩ DŘ2

.

Thereupon, the claims 1. and 2. of Theorem (R.S) are matched for the family of maps {Gp}0≤p≤ς−1

with the constant k = 1. The existence of the formal power series (136) which represents the collective

Gevrey asymptotic expansion of order 1 relatively to u2 on U2,dp ∩ DŘ2
for all the maps Gp, 0 ≤ p ≤

ς − 1 follows. As a result, the error bounds (137) are warranted.

4.3. Statement of the first main result.

In this subsection, a bounded holomorphic solution to our main initial value problem (21) is

shaped. This solution is favored with an asymptotic expansion in some logarithmic scale that reveals

to be of Gevrey type. The next theorem represents the first main achievement of our work.

Theorem 1. Let the sectorial domain SQ,RD
, the unbounded sector Sd1

together with the strip Hπ and the disc

Dρ be duly prescribed as in Lemma 4. Then, assuming that the constants Cl > 0 are in the vicinity of 0 as

specified by the requirements of Proposition 2 and that the radius R1 > 0 is close enough to 0, the equation

Q(∂z)u(t, z) = tdD σ

dD
k1

q;t RD(∂z)u(t, z) + ∑
l=(l0,l1)∈I

cl(z)t
l0 σ

l1
q;tRl(∂z)u(t, z) + f (t, z) (139)
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has a bounded holomorphic solution (t, z) 7→ u(t, z) on the domain
(

(Rd1,∆1
∩ DR1

) \ (−∞, 0]
)

× Hβ′ for

vanishing initial data u(0, z) ≡ 0. In addition, the map u(t, z) can be expressed as a triple integral comprising a

Fourier inverse, a q−Laplace and Laplace transforms

u(t, z) = Ud1,π(t,
1

log(t)
, z) =

k1

log(q)(2π)1/2

∫

Ld1

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (140)

where the Borel-Fourier map (τ1, τ2, m) 7→ ωd1,π(τ1, τ2, m) originates from the Banach space Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
(see Definition 4) and is restrained to the bounds (97).

The function u(t, z) enjoys a generalized asymptotic expansion of Gevrey type in a logarithmic scale as t

tends to 0. More precisely, one can single out a formal series

û(t, z) = ∑
n≥0

Gn(t, z)
(1/ log(t))n

n!
(141)

with bounded holomorphic coefficients Gn(t, z) on the domain (Rd1,∆1
∩ DR1

) × Hβ′ , which stands for an

asymptotic expansion of Gevrey order 1 in the scale of logarithmic functions {(1/ log(t))n}n≥0 of the map u(t, z)

with respect to t on the domain (Rd1,∆1
∩ DR1

) \ (−∞, 0]. In other words, two constants Kp1,2, Mp1,2 > 0 can

be found with the aim that the next error bounds

∣

∣

∣
u(t, z)−

N

∑
n=0

Gn(t, z)
(1/ log(t))n

n!

∣

∣

∣
≤ Kp1,2(Mp1,2)

N+1Γ(N + 2)|1/ log(t)|N+1 (142)

hold for all integers N ≥ 0, all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], provided that z ∈ Hβ′ .

Proof. We select a fitting set of sectors U = {U2,dp}0≤p≤ς−1 and we take the index p = p1 for

which dp1
= π according to Definition 6 2. By definition of the principal value of the logarithm

log(t) = ln |t|+
√
−1arg(t), for arg(t) ∈ (−π, π), whenever t ∈ C \ (−∞, 0], we check that

1

log(t)
∈ U2,π ∩ DŘ2

(143)

as long as t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], provided that we take R1 > 0 sufficiently close to 0, where

Ř2 > 0 has been disclosed in the third item of Proposition 4. We define

u(t, z) = Ud1,π(t,
1

log(t)
, z) (144)

where the map Ud1,π(u1, u2, z) is described in the second item of Proposition 4. By construction of

Ud1,π , we ascertain that u(t, z) represents a bounded holomorphic function on the product
(

(Rd1,∆1
∩

DR1
) \ (−∞, 0]

)

× Hβ′ .

Besides, according to the second item of Proposition 4, we know that the map Ud1,π(u1, u2, z)

stands for a solution to the equation (118) on the domain (Rd1,∆1
∩ DR1

)× U2,π × Hβ′ . On the basis of

the computations made in Subsection 2.3, we deduce that the map u(t, z) solves the main equation (21)

on the domain
(

(Rd1,∆1
∩ DR1

) \ (−∞, 0]
)

× Hβ′ , constrained to the initial value condition u(0, z) ≡ 0.

At last, the asymptotic expansion property (142) of the map u(t, z) is a direct offspring of the

expansion (137) for the particular case p = p1, where u1 is set to be the time variable t and the variable

u2 is merely replaced by the logarithmic function 1/ log(t) for t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0].
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4.4. Computational features related to the formal power series (136).

In this subsection, we establish that the formal series (136) which represent the asymptotic

expansion of Gevrey type for the holomorphic maps Ud1,dp
actually solve some functional partial

differential equation. On the journey, we notice that its coefficients Gn, n ≥ 0 fulfill some handy

recursion relations that might be of interest for concrete applications.

Proposition 6. The formal power series

Ĝ(u2) = ∑
n≥0

Gn(u1, z)
un

2

n!
(145)

with coefficients Gn, n ≥ 0 in the space Fd1,∆1,R1,β′ , conforms the next functional partial differential equation

Q(∂z)Ĝ(u2) = udD
1 σ

dD
k1

q;u1
RD(∂z)Ĝ(

u2

1 + u2
dD
k1

log(q)
)

+ ∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

cl(z)Rl(∂z)Ĝ(
u2

1 + u2l1 log(q)
) + Fπ(u1, u2, z). (146)

In addition, the coefficients Gn, n ≥ 0 satisfy the recursion relations (154) and (155).

Proof. We depart from the equation (118) recast in the form

Q(∂z)Ud1,π(u1, u2, z) = udD
1 σ

dD
k1

q;u1
RD(∂z)Ud1,π(u1,

u2

1 + u2
dD
k1

log(q)
, z)

+ ∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

cl(z)Rl(∂z)Ud1,π(u1,
u2

1 + u2l1 log(q)
, z) + Fπ(u1, u2, z) (147)

provided that u1 ∈ Rd1,∆1
∩ DR1

, u2 ∈ U2,π and z ∈ Hβ′ . We remind the reader the next useful classical

result which relates the coefficients of an asymptotic expansion of a holomorphic map f to its high

order derivatives.

Proposition ([2], Proposition 8, p. 66) Let f : G → F be a holomorphic map from a bounded open sector

G centered at 0 into a complex Banach space F endowed with a norm ||.||F. The following two statements are

equivalent

• There exists a formal power series f̂ (z) = ∑n≥0 fnzn/n! with coefficients fn in F subjected to the next

feature. For all closed subsector S of G centered at 0, there exists a sequence (c(N, S))N≥0 of positive real

numbers such that

|| f (z)−
N−1

∑
n=0

fnzn/n!||F ≤ c(N, S)|z|N

for all z ∈ S, all integers N ≥ 1.
• All derivatives of order n, f (n)(z) are continuous at the origin and there exists a sequence ( fn)n≥0 of

elements in F such that

lim
z→0,z∈G

|| f (n)(z)− fn||F = 0

for all integers n ≥ 0.

As a result of the above proposition, we deduce from the asymptotic expansion (137) in the

particular case p = p1 (meaning that dp1
= π) the next limits

lim
u2∈U2,π
u2→0

sup
u1∈Rd1,∆1

∩DR1
z∈Hβ′

|∂m
u2

Ud1,π(u1, u2, z)− Gm(u1, z)| = 0 (148)
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for all integers m ≥ 0. On the basis of the above limits, in order to reach recursion relations for the

coefficients Gm, m ≥ 0, our strategy consists in searching for recursion relations for the related m−th

derivatives of the map Ud1,π relatively to u2. On the way, we need to take the m−th derivative

with respect to u2 of the left and right handside of the equation (147). However, the equation

(147) involves composition of Ud1,π with explicit homographic maps and we are asked to explicitely

compute their higher order derivatives. In order to overcome this difficulty, we will apply a rule to

evaluate high order derivatives of compositions of functions which has been introduced in [16] and

is suitable for Gevrey estimates. This rather new identity allows us to avoid computations with the

cumbersome combinatorial classical Faa-Di-Bruno formula and enables us to present very practical

recursions relations. Indeed, we recall this higher order chain rule (Theorem 2.1 in [16]) under stronger

assumptions (which will be sufficient for our scope) as stated in the previous work of the author [13].

Lemma 7. Let D, G be open sets in C. Let g : D → G and f : G → C be holomorphic functions. Then, the

n-th order derivative of the composite function f ◦ g : D → C is given by the formula

∂n
x( f ◦ g)(x) =

n

∑
j=1

n!

j!(n − j)!
(∂

j
x f )(g(x))

{

∂
n−j
h [

∫ 1

0
g′(x + θh)dθ]j

}

|h=0

,

for all integers n ≥ 1 and x ∈ D.

In the next lemma, we perform an auxiliary computation which entails the homographic maps

appearing in the main equation (147).

Lemma 8. For any integer l ≥ 0, we set

gl(u2) =
u2

1 + u2l log(q)
.

Then, for all integers n, j ≥ 1 with n − j ≥ 0, the next identity

{

∂
n−j
h [

∫ 1

0
g′l(u2 + θh)dθ]j

}

|h=0

=
1

(1 + u2l log(q))j+n
(l log(q))n−j × j(j + 1) · · · (n − 1)× (−1)n−j (149)

holds for all u2 ∈ U2,π , with the convention that j(j + 1) · · · (n − 1) = 1 when j = n.

Proof. Direct computations show that

g′l(u2) =
1

(1 + u2l log(q))2

and hence

∫ 1

0
g′l(u2 + θh)dθ =

∫ 1

0

1

(1 + (u2 + θh)l log(q))2
dθ

=
1

(1 + u2l log(q))(1 + u2l log(q) + hl log(q))

for all u2 ∈ U2,π . We deduce that

[
∫ 1

0
g′l(u2 + θh)dθ]j =

1

(1 + u2l log(q))j
× (1 + u2l log(q) + hl log(q))−j (150)
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for all u2 ∈ U2,π and all integers j ≥ 1. It follows from (150) that

{

[
∫ 1

0
g′l(u2 + θh)dθ]j

}

|h=0

=
1

(1 + u2l log(q))j+j
(151)

which coincides with the formula (149) in the case j = n ≥ 1 under the convention that j(j + 1) · · · (n −
1) = 1. On the other hand, when n − j ≥ 1, we deduce from (150) that

∂
n−j
h [

∫ 1

0
g′l(u2 + θh)dθ]j

=
1

(1 + u2l log(q))j
(l log(q))n−j j(j + 1) · · · (n − 1)× (−1)n−j × (1 + u2l log(q) + hl log(q))−n

(152)

which yields the awaited identity (149) by setting h = 0 in the formula (152).

On the ground of the above lemmas and based on equation (147), we can derive some recursion

relation on the sequence of m−th derivatives ∂m
u2

Ud1,π(u1, u2, z) of Ud1,π with respect to u2. Namely,

Q(∂z)∂
m
u2

Ud1,π(u1, u2, z)

= udD
1 σ

dD
k1

q;u1
RD(∂z)

[ m

∑
j=1

m!

j!(m − j)!

(

∂
j
u2

Ud1,π

)

(u1,
u2

1 + u2
dD
k1

log(q)
, z)× 1

(1 + u2
dD
k1

log(q))j+m

× (
dD

k1
log(q))m−j × j(j + 1) · · · (m − 1)× (−1)m−j

]

+ ∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

cl(z)Rl(z)
[ m

∑
j=1

m!

j!(m − j)!

(

∂
j
u2

Ud1,π

)

(u1,
u2

1 + u2l1 log(q)
, z)

× 1

(1 + u2l1 log(q))j+m
× (l1 log(q))m−j × j(j + 1) · · · (m − 1)× (−1)m−j

]

+ ∂m
u2

Fπ(u1, u2, z) (153)

for all m ≥ 1, all u1 ∈ Rd1,∆1
∩ DR1

, all u2 ∈ U2,π and all z ∈ Hβ′ .

In the next step, we let u2 tend to 0 on the sector U2,π in both identities (147) and (153). According

to the limits (148) and bearing in mind that the maps Ud1,π(u1, u2, z) and Gm(u1, z) are holomorphic

relatively to (u1, z) ∈ (Rd1,∆1
∩ DR1

)× Hβ′ , we get the next recursion relations for the coefficients Gm,

m ≥ 0. Namely,

Q(∂z)G0(u1, z) = udD
1 σ

dD
k1

q;u1
RD(∂z)G0(u1, z)

+ ∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

cl(z)Rl(∂z)G0(u1, z) + Fπ(u1, 0, z) (154)
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together with

Q(∂z)Gm(u1, z) = udD
1 σ

dD
k1

q;u1
RD(∂z)

[ m

∑
j=1

m!

j!(m − j)!
Gj(u1, z)

× (
dD

k1
log(q))m−j × j(j + 1) · · · (m − 1)× (−1)m−j

]

+ ∑
l=(l0,l1)∈I

ul0
1 σ

l1
q;u1

cl(z)Rl(z)
[ m

∑
j=1

m!

j!(m − j)!
Gj(u1, z)

× (l1 log(q))m−j × j(j + 1) · · · (m − 1)× (−1)m−j
]

+ (∂m
u2

Fπ)(u1, 0, z) (155)

for all m ≥ 1, all u1 ∈ Rd1,∆1
∩ DR1

and z ∈ Hβ′ .

In the last part of the proof, we show that the formal power series (145) obey the functional

equation (146). Our approach hinges on the next technical lemma where the Taylor expansion of the

composition of the formal series (145) with some homographic map is explicitely computed.

Lemma 9. Let l ≥ 0 be an integer. The next formal Taylor expansion

Ĝ(
u2

1 + u2l log(q)
)

= G0(u1, z) + ∑
m≥1

(

∑
1≤j≤m

Gj(u1, z)(−1)m−j(l log(q))m−j j(j + 1) · · · (m − 1)

j!(m − j)!

)

um
2 (156)

holds, for all u1 ∈ Rd1,∆1
∩ DR1

and z ∈ Hβ′ .

Proof. By mere composition, we notice that

Ĝ(
u2

1 + u2l log(q)
) = ∑

n≥0

Gn(u1, z)
1

n!

un
2

(1 + u2l log(q))n
(157)

On the other hand, the geometric series allows to write

1

1 + u2l log(q)
= ∑

h≥0

(−1)h(l log(q))huh
2 (158)

and taking its derivative of order n ≥ 0 with respect to u2 yields the expansion

(−1)n(l log(q))nn!

(1 + u2l log(q))n+1
= ∑

h≥n

(−1)h(l log(q))hh(h − 1) · · · (h − (n − 1))uh−n
2 (159)

with the notation h(h − 1) · · · (h − (n − 1)) = 1 if n = 0 and h(h − 1) · · · (h − (n − 1)) = h if n = 1, for

all h ≥ n. From (159), for all integers n ≥ 1, we deduce the next identity

un
2

(1 + u2l log(q))n
=

un
2

(−1)n−1(l log(q))n−1(n − 1)!

× ∑
h≥n−1

(−1)h(l log(q))hh(h − 1) · · · (h − (n − 2))u
h−(n−1)
2

= ∑
h≥n−1

(−1)h−n+1(l log(q))h−n+1 h(h − 1) · · · (h − (n − 2))

(n − 1)!
uh+1

2

= ∑
h′≥n

(−1)h′−n(l log(q))h′−n (h
′ − 1)(h′ − 2) · · · (h′ − (n − 1))

(n − 1)!
uh′

2 . (160)
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As a result of (157) and (160), we deduce that

Ĝ(
u2

1 + u2l log(q)
) = G0(u1, z)

+ ∑
n≥1

Gn(u1, z)
(

∑
h≥n

(−1)h−n(l log(q))h−n (h − 1)(h − 2) · · · (h − (n − 1))

n!(n − 1)!
uh

2

)

= G0(u1, z) + ∑
h≥1

(

∑
1≤n≤h

Gn(u1, z)(−1)h−n(l log(q))h−n (h − 1)(h − 2) · · · (h − (n − 1))

n!(n − 1)!

)

uh
2

= G0(u1, z)

+ ∑
m≥1

(

∑
1≤j≤m

Gj(u1, z)(−1)m−j(l log(q))m−j (m − 1)(m − 2) · · · (m − (j − 1))

j!(j − 1)!

)

um
2 (161)

Besides, by straight calculus, we observe that

(m − 1)(m − 2) · · · (m − (j − 1))

j!(j − 1)!
=

j(j + 1) · · · (m − 1)

j!(m − j)!
(162)

for all m ≥ 1 and 1 ≤ j ≤ m. Eventually, the combination of (161) and (162) yields the awaited formal

Taylor expansion (156).

According to the fact observed in (30) that the map Fπ defines a polynomial in the variable u2, it

follows that its Taylor expansion

Fπ(u1, u2, z) = ∑
m≥0

(∂m
u2

Fπ)(u1, 0, z)

m!
um

2 (163)

is convergent (and actually a finite sum) near the origin with respect to u2, for all u1 ∈ Rd1,∆1
∩ DR1

and z ∈ Hβ′ .

At the very end of the proof, we observe by plugging the expansions (156) and (163) into the

equation (146) that the series Ĝ(u2) formally solves (146) if its Taylor coefficients Gm, m ≥ 0 fulfill the

recursion relations (154), (155) which has been shown to hold. Proposition 6 follows.

5. Fine structure of Gevrey/q−Gevrey asymptotic expansions in combined power and logarithmic
scales for the holomorphic solution to the initial value problem (21).

5.1. Solving the convolution q−difference equation (48) on some neighborhood of the origin

In order to study the equation (48) in the Borel space near the origin in C2 and Fourier space on R,

we introduce the next Banach space.

Definition 7. Let β, µ, ρ > 0 be real numbers. For a given real number b > 0, we denote E(b,ρ,β,µ) the vector

space of all continuous C−valued functions (τ1, τ2, m) 7→ h(τ1, τ2, m) on Db × Dρ ×R, holomorphic with

respect to (τ1, τ2) on Db × Dρ, such that the norm

||h(τ1, τ2, m)||(b,ρ,β,µ) := sup
τ1∈Db ,τ2∈Dρ

m∈R

(1 + |m|)µeβ|m| 1

|τ2|
|h(τ1, τ2, m)| (164)

is finite. The vector space E(b,ρ,β,µ) endowed with the norm ||.||(b,ρ,β,µ) is a Banach space.
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We plan to solve the next convolution q−difference equation

Q(
√
−1m)ω(τ1, τ2, m)

= RD(
√
−1m)

τdD
1

(q1/k1)dD(dD−1)/2
exp

(

− τ2
dD

k1
log(q)

)

ω(τ1, τ2, m)

+ ∑
l=(l0,l1)∈I

1

(2π)1/2

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)

τl0
1

(q1/k1)l0(l0−1)/2
σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)

× exp(−τ2l1 log(q))dm1 +F (τ1, τ2, m) (165)

provided that τ1 ∈ Db, τ2 ∈ Dρ and m ∈ R, with some function ω in the Banach space

(E(b,ρ,β,µ), ||.||(b,ρ,β,µ)).

In preparation for achieving our goal, we rearrange the equation (165) as a fixed point equation

(disclosed later on in (188)). Along the road, we need to divide our equation by the map Pm(τ1, τ2)

displayed in (49) whenever τ1 ∈ Db, τ2 ∈ Dρ and the mode m belongs to R. Lower bounds for the map

Pm are provided in the next lemma.

Lemma 10. Let the inner radius rQ,RD
, outer radius RQ,RD

and aperture of SQ,RD
introduced in Subsection

2.2 be chosen as in Lemma 4. Let ρ > 0 be the radius fixed in Lemma 4. Then, for a proper choice of radius b > 0,

taken close enough to 0, one can find a constant K̂dD ,k1,q with

|Pm(τ1, τ2)| ≥ |Q(
√
−1m)|K̂dD ,k1,q (166)

for all τ1 ∈ Db, all τ2 ∈ Dρ, all m ∈ R.

Proof. Take a fixed τ̃0
2 ∈ Dρ. We introduce the complex number

τ̃0
1 =

[∣

∣

∣

Q(
√
−1m)

RD(
√
−1m)

∣

∣

∣
(q1/k1)dD(dD−1)/2

∣

∣ exp
(

τ̃0
2

dD

k1
log(q)

)∣

∣

]1/dD

× exp
(

√
−1

dD

[

arg
( Q(

√
−1m)

RD(
√
−1m)

(q1/k1)dD(dD−1)/2 exp
(

τ̃0
2

dD

k1
log(q)

))

])

(167)

Observe that τ̃0
1 remains bounded and parked in a small domain we denote T̃ 0

1 which is located at

some small positive distance of the origin, when m varies within the real numbers, owing to the

requirement (25). We select the radius b > 0 accordingly to the condition

Db ∩ T̃ 0
1 = ∅. (168)

Now, let us take an arbitrary complex number τ2 ∈ Dρ. We decompose it in the form

τ2 = τ̃0
2 − (s̃ +

√
−1ψ̃) (169)

for some real numbers s̃, ψ̃ close to 0 for τ̃0
2 given above. By construction of τ̃0

1 in (167), the next identity

(τ̃0
1 )

dD =
Q(

√
−1m)

RD(
√
−1m)

(q1/k1)dD(dD−1)/2 exp
(

τ̃0
2

dD

k1
log(q)

)

(170)

holds. Select some arbitrary τ1 ∈ Db. We split it in a factorized form

τ1 = τ̃0
1 r̃e

√
−1θ̃ (171)
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for some angle θ̃ ∈ R and radius r̃ with the constraint 0 ≤ r̃ < b/|τ̃0
1 |. The combined splitting (169)

and (171) together with the identity (170) enables the factorisation of the map

Pm(τ1, τ2) = Q(
√
−1m)− RD(

√
−1m)

(τ̃0
1 )

dD r̃dD exp(
√
−1dD θ̃)

(q1/k1)dD(dD−1)/2

× exp(−τ̃0
2

dD

k1
log(q))× exp((s̃ +

√
−1ψ̃)

dD

k1
log(q))

= Q(
√
−1m)

[

1 − r̃dD e
√
−1dD θ̃ × exp((s̃ +

√
−1ψ̃)

dD

k1
log(q))

]

. (172)

Besides, provided that the radius b > 0 is chosen in the vicinity of the origin, we can find a constant

K̂dD ,k1,q > 0 with
∣

∣1 − r̃dD e
√
−1dD θ̃ × exp((s̃ +

√
−1ψ̃)

dD

k1
log(q))

∣

∣ ≥ K̂dD ,k1,q (173)

for all 0 ≤ r̃ < b/|τ̃0
1 |, all θ̃ ∈ R, all s̃, ψ̃ close to 0. At last, the factorization (172) and the lower bounds

(173) give rise to (166).

In the ongoing proposition, we check that the map H introduced in (58) represents a shrinking

map on some appropriately selected ball in the Banach space examined in Definition 7.

Proposition 7. We fix the sectorial domain SQ,RD
and the radius ρ, b as in Lemma 10. Let β, µ > 0 be real

numbers fixed as in Subsection 2.2. Then, assuming that the constants Cl > 0 presented in (27) are small

enough, for l ∈ I, for all radius ̟E > 0 chosen large enough, the map H given by (58) is favoured with the next

two features

• The inclusion

H(B̟̄E
) ⊂ B̟̄E

(174)

is granted, where B̟̄E
denotes the closed ball of radius ̟E centered at 0 in the space E(b,ρ,β,µ).

• The 1/2−Lipschitz condition

||H(ω1)−H(ω2)||(b,ρ,β,µ) ≤
1

2
||ω1 − ω2||(b,ρ,β,µ) (175)

holds for all ω1, ω2 ∈ B̟̄E
.

In particular, since the radius ̟E can be taken arbitrarily large, we observe that the map H turns out to be well

defined on the whole space E(b,ρ,β,µ) where the shrinking property (175) holds true.

Proof. Let us focus on the first item of the proposition. We first provide bounds for the forcing term

F/Pm of H disclosed in the next

Lemma 11. There exists a constant F̂F > 0 such that

||F (τ1, τ2, m)

Pm(τ1, τ2)
||(b,ρ,β,µ) ≤ F̂F . (176)
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Proof. Owing to the lower bounds (166) and the definition (28) of F together with the bounds (91),

we arrive at

∣

∣

∣

F (τ1, τ2, m)

Pm(τ1, τ2)

∣

∣

∣
≤ ∑j1∈J1,j2∈J2

|Fj1,j2(m)[|τ1|j1 |τ2|j2
|Q(

√
−1m)|K̂dD ,k1,q

≤ 1

minm∈R |Q(
√
−1m)|K̂dD ,k1,q

(1 + |m|)−µe−β|m|
[

∑
j1∈J1,j2∈J2

Fj1,j2 bj1 |τ2|j2−1
]

× |τ2|

≤ F̂F (1 + |m|)−µe−β|m||τ2| (177)

for all τ1 ∈ Db, τ2 ∈ Dρ, all m ∈ R, where

F̂F =
1

minm∈R |Q(
√
−1m)|K̂dD ,k1,q

[

∑
j1∈J1,j2∈J2

Fj1,j2 bj1 ρj2−1
]

paying regard to the fact that 0 /∈ J2 ⊂ N∗. At last, the expected bounds (176) follow from (177) and

Definition 7.

In the next lemma, we come up with bounds for the linear part of the map H.

Lemma 12. One can find a constant C2 > 0 such that

|| 1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)τ

l0
1 σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)

× exp
(

− τ2l1 log(q)
)

dm1||(b,ρ,β,µ) ≤ C2Cl ||ω(τ1, τ2, m)||(b,ρ,β,µ) (178)

for all ω(τ1, τ2, m) ∈ E(b,ρ,β,µ).

Proof. Let us take ω ∈ E(b,ρ,β,µ). We provide bounds for the function

B(τ1, τ2, m) :=
1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)

× τl0
1 σ

l1−
l0
k1

q;τ1
ω(τ1, τ2, m1)× exp

(

− τ2l1 log(q)
)

dm1. (179)

By definition of the space E(b,ρ,β,µ), we notice that

|ω(τ1, τ2, m)| ≤ ||ω||(b,ρ,β,µ)(1 + |m|)−µe−β|m||τ2|

for all τ1 ∈ Db, all τ2 ∈ Dρ and all m ∈ R. Owing to the assumption (22), we notice that q
l1−

l0
k1 τ1 ∈ Db

provided that τ1 ∈ Db. Hence,

|σ
l1−

l0
k1

q;τ1
ω(τ1, τ2, m1)| ≤ ||ω||(b,ρ,β,µ)(1 + |m1|)−µe−β|m1||τ2| (180)

whenever τ1 ∈ Db, τ2 ∈ Dρ and m1 ∈ R. Then, according to the lower bounds (166) together with

(180), we deduce that

|B(τ1, τ2, m)| ≤ bl0 exp(ρl1 log(q))
1

K̂dD ,k1,q

||ω||(b,ρ,β,µ)|τ2|

× 1

|Q(
√
−1m)|

∫ +∞

−∞
|Cl(m − m1)||Rl(

√
−1m1)|(1 + |m1|)−µe−β|m1|dm1 (181)
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and bearing in mind the estimates (69) where the map A1(m) is introduced in (64), we reach

|B(τ1, τ2, m)| ≤ ClRl

QK̂dD ,k1,q

C1.1bl0 exp(ρl1 log(q))||ω||(b,ρ,β,µ) ×
[

(1 + |m|)−µe−β|m||τ2|
]

(182)

for all τ1 ∈ Db, τ2 ∈ Dρ and m ∈ R. At last, we arrive at some constant C2 > 0 for which the norm

bounds

||B(τ1, τ2, m)||(b,ρ,β,µ) ≤ C2Cl ||ω||(b,ρ,β,µ) (183)

holds.

Now, we select the constants Cl > 0, for l ∈ I, small enough and take a radius ̟E > 0 large

enough in a way that the next inequality

∑
l=(l0,l1)∈I

1

(2π)1/2(q1/k1)l0(l0−1)/2
C2Cl̟E + F̂F ≤ ̟E (184)

holds where the constant C2 > 0 appears in Lemma 12 and F̂F shows up in Lemma 11. Eventually, the

bounds (176) along with (178) under the restriction (184) trigger the expected inclusion (174).

In the second part of the proof, we address the shrinking property (175). Let us choose two

arbitrary elements ω1, ω2 in the closed ball B̟̄E
whose radius has been prescribed in the first item

(174). Owing to Lemma 12, the following inequality

|| 1

Pm(τ1, τ2)

∫ +∞

−∞
Cl(m − m1)Rl(

√
−1m1)τ

l0
1 σ

l1−
l0
k1

q;τ1

(

ω1(τ1, τ2, m1)− ω2(τ1, τ2, m1)
)

× exp
(

− τ2l1 log(q)
)

dm1||(b,ρ,β,µ)

≤ C2Cl ||ω1(τ1, τ2, m)− ω2(τ1, τ2, m)||(b,ρ,β,µ) (185)

holds for the constant C2 > 0 stemming from Lemma 12. We prescribe the constants Cl > 0, for l ∈ I,

small enough allowing the next inequality

∑
l=(l0,l1)∈I

1

(2π)1/2(q1/k1)l0(l0−1)/2
C2Cl ≤

1

2
(186)

to hold. The Lipschitz property (175) is a straight consequence of (185) under the requirement (186).

In the end, we suitably select the constants Cl > 0, l ∈ I small enough and a radius ̟E > 0 large

enough in order that both constraints (184) and (186) are granted at once. This induces the two features

(174) and (175) for the map H.

The next proposition provides a solution to the convolution q−difference equation (165) inside

the space E(b,ρ,β,µ).

Proposition 8. We prescribe the sectorial domain SQ,RD
together with the radius ρ, b as in Lemma 10. Let

β, µ > 0 be real numbers fixed as in Subsection 2.2. Assume that the constants Cl > 0, l ∈ I, are chosen small

enough in a suitable way as in Proposition 7. Then, for all radius ̟E > 0 large enough, a unique solution ωb,ρ

to the convolution q−difference equation (165) can be constructed in the space E(b,ρ,β,µ) under the requirement

||ωb,ρ||(b,ρ,β,µ) ≤ ̟E. (187)

Proof. Select a radius ̟E > 0 as in Proposition 7. The closed ball B̟̄E
⊂ E(b,ρ,β,µ) stands for a complete

metric space for the distance d̃(x, y) = ||x − y||(b,ρ,β,µ). The proposition 7 claims that the map H
induces a contractive map from the metric space (B̟̄E

, d̃) into itself. The classical Banach fixed point

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2023                   doi:10.20944/preprints202310.1781.v1

https://doi.org/10.20944/preprints202310.1781.v1


41 of 55

theorem allows the map H to possess a unique fixed point located inside de ball B̟̄E
that we denote

ωb,ρ. As a result, the next identity

H(ωb,ρ(τ1, τ2, m)) = ωb,ρ(τ1, τ2, m) (188)

holds provided τ1 ∈ Db, τ2 ∈ Dρ, for all m ∈ R. At last, under the conditions imposed, we observe

that the convolution q−difference equation (165) can exactly be rearranged after a division by the map

Pm(τ1, τ2) as (188). As a consequence, the unique fixed point ωb,ρ obtained in B̟̄E
fully solves (165).

This yields Proposition 8.

5.2. Link between the solutions ωd1,π and ωb,ρ to the convolution q−difference equation (48), (165).

In order to unveil the analytic relation between the two solutions ωd1,π and ωb,ρ to the same

convolution q−difference equation considered in Subsection 3.2 and Subsection 5.1, we introduce a

new auxiliary Banach space.

Definition 8. Let b, ρ > 0 be given positive real numbers and let Sd1
be an unbounded sector edged at 0 with

bisecting direction d1 ∈ R. We denote E(b,ρ,β,µ,Sd1
) the vector space of all continuous maps (τ1, τ2, m) 7→

h(τ1, τ2, m) on the product (Sd1
∩ Db)× Dρ ×R, holomorphic relatively to the couple (τ1, τ2) on the domain

(Sd1
∩ Db)× Dρ, for which the norm

||h(τ1, τ2, m)||(b,ρ,β,µ,Sd1
) := sup

τ1∈Sd1
∩Db ,τ2∈Dρ

m∈R

(1 + |m|)µeβ|m| 1

|τ2|
|h(τ1, τ2, m)| (189)

is a finite quantity. The vector space E(b,ρ,β,µ,Sd1
) equipped with the norm ||.||(b,ρ,β,µ,Sd1

) is a Banach space.

In the next proposition, we claim that the map H displayed in (58) is well defined on the space

E(b,ρ,β,µ,Sd1
) where it boasts a 1/2−Lipschitz feature.

Proposition 9. We prescribe the sectorial domain SQ,RD
and the radius b, ρ as in Lemma 10. We set the

constants β, µ > 0 as in Subsection 2.2. We select an unbounded sector Sd1
as in Lemma 4. Then, assuming

that the constants Cl > 0 introduced in (27) are close enough to 0, for all l ∈ I, the map H declared in (58) is

well defined on the whole space E(b,ρ,β,µ,Sd1
) and is subjected to the next 1/2−Lipschitz condition

||H(ω1)−H(ω2)||(b,ρ,β,µ,Sd1
) ≤

1

2
||ω1 − ω2||(b,ρ,β,µ,Sd1

) (190)

for all ω1, ω2 belonging to E(b,ρ,β,µ,Sd1
).

Proof. The proof of Proposition 9 mirrors in the very details the one of Proposition 7 and will not be

presented in this work in order to avoid redundancy.

The following proposition establish the awaited analytical connection between ωd1,π and ωb,ρ.

Proposition 10. Let the sectorial domain SQ,RD
and the radius b, ρ be prescribed as in Lemma 10. The constants

β, µ > 0 are set as in Subsection 2.2 and the unbounded sector Sd1
is chosen as in Lemma 4. Then, provided that

the constants Cl > 0 given by (27) are taken in the vicinity of the origin for all l ∈ I, the next identity

ωd1,π(τ1, τ2, m) = ωb,ρ(τ1, τ2, m) (191)

holds for all τ1 ∈ Sd1
∩ Db, all τ2 ∈ Dρ, all m ∈ R. In particular, for given τ2 ∈ Dρ and m ∈ R, the partial

map τ1 7→ ωb,ρ(τ1, τ2, m) is the analytic continuation of the partial map τ1 7→ ωd1,π(τ1, τ2, m) on the full disc

Db.
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Proof. According to Proposition 2, we know that the map ωd1,π belongs to the Banach space

Exp
q;1

(k1,α,δ,ν,β,µ,ρ)
. According to Definition 8 it follows that the restricted map (τ1, τ2, m) 7→ ωd1,π ,

for τ1 ∈ Sd1
∩ Db, τ2 ∈ Dρ and m ∈ R belongs to E(b,ρ,β,µ,Sd1

). On the other hand, we know

from Proposition 8 that the map ωb,ρ belongs to the space E(b,ρ,β,µ). As a result, the restricted

map (τ1, τ2, m) 7→ ωb,ρ(τ1, τ2, m) on (Sd1
∩ Db)× Dρ × R also belongs to E(b,ρ,β,µ,Sd1

). Furthermore,

according to (98) and to (188), we observe in particular that the next two idendities

H(ωd1,π(τ1, τ2, m)) = ωd1,π(τ1, τ2, m) , H(ωb,ρ(τ1, τ2, m)) = ωb,ρ(τ1, τ2, m) (192)

holds as functions provided that τ1 ∈ Sd1
∩ Db, τ2 ∈ Dρ and m ∈ R. At last, if one sets ω1 = ωd1,π and

ω2 = ωb,ρ in the inequality (190), it follows from (192) that

||ωd1,π − ωb,ρ||(b,ρ,β,µ,Sd1
) ≤

1

2
||ωd1,π − ωb,ρ||(b,ρ,β,µ,Sd1

).

It implies that ||ωd1,π − ωb,ρ||(b,ρ,β,µ,Sd1
) = 0, from which the expected identity (191) follows.

5.3. Statement of the second main result.

In this subsection, we exhibit a fine structure for the asymptotic expansion of Gevrey/q−Gevrey

type for the solution u(t, z) to the equation (139) which combines both a logarithmic scale and a power

scale. The next statement represents the second deed of our work.

Theorem 2. We consider the function u(t, z) displayed in (140) which solves our main initial value problem

(139) for vanishing initial data u(0, z) ≡ 0 built up in Theorem 1. Then, the map u(t, z) can be broken up as a

sum of two functions

u(t, z) = u1(t, z) + u2(t, z) (193)

where

– the map u1(t, z) is bounded holomorphic on the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ and possesses

a generalized asymptotic expansion of so-called q−Gevrey type in a power scale as t tends to 0. It means

that one can distinguish a formal power series

û1(t, z) = ∑
n≥0

bn(t, z)tn (194)

with bounded coefficients bn(t, z) on the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ which represents a

generalized asymptotic expansion of q−Gevrey order k1 in the scale of monomials {tn}n≥0 of the map

u1(t, z) with respect to t on the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0]). Namely, two constants B1, B2 > 0

can be singled out for which the next error bounds

|u1(t, z)−
N

∑
n=0

bn(t, z)tn| ≤ B1(B2)
N+1q

N(N+1)
2k1 |t|N+1 (195)

hold for all integers N ≥ 0, all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], provided that z ∈ Hβ′ .
– the map u2(t, z) is bounded holomorphic on the domain ((Rd1,∆1

∩ DR1
) \ (−∞, 0])× Hβ′ and carries

the null formal series as asymptotic expansion of Gevrey order 1 in a logarithmic scale as t tends to 0. In

other words, two constants B3, B4 > 0 can be identified in order that the following error bounds

|u2(t, z)| ≤ B3(B4)
N+1Γ(N + 2)|1/ log(t)|N+1 (196)

hold for all integers N ≥ 0, all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], as long as z ∈ Hβ′ .
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Proof. Our idea consists in the splitting of the triple integral representation of u(t, z) given by (140)

into three specific contributions

u(t, z) = v1(t, z) + v2(t, z) + v3(t, z) (197)

where

v1(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,b/2

∫

Lπ,ρ/2

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (198)

and

v2(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,b/2

∫

Lπ,ρ/2,∞

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (199)

in a row with

v3(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,b/2,∞

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (200)

where the integration paths are stated as follows

Ld1,b/2 = [0, b/2]e
√
−1d1 , Ld1,b/2,∞ = [b/2,+∞)e

√
−1d1

along with

Lπ,ρ/2 = [0, ρ/2]e
√
−1π , Lπ,ρ/2,∞ = [ρ/2,+∞)e

√
−1π ,

where the positive real numbers b, ρ > 0 are prescribed in Lemma 10.

In the next first main proposition, we provide asymptotic expansions for the first piece v1(t, z)

relatively to t.

Proposition 11. There exists a sequence of maps gk(t, z), k ≥ 0, that are well defined and bounded holomorphic

relatively to (t, z) on the product ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ which are submitted to the bounds

|gk(t, z)| ≤ M1̟E

Rk
q

k(k−1)
2k1 |t|k + M1k1̟E

log(q)Rk

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(k− 1
2 )

2

2k1 |t|k (201)

for some well selected constants M1, ̟E > 0 and R > 0, where Cq,k1
> 0 and ∆1 > 0 are the two constants

arising in (15), for all integers k ≥ 0, provided that t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ . For any given

natural number N ≥ 0, the next decomposition

v1(t, z) =
N

∑
k=0

gk(t, z) + v1,N+1(t, z) (202)
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holds for (t, z) on ((Rd1,∆1
∩ DR1

) \ (−∞, 0]) × Hβ′ , where the remainder term v1,N+1(t, z) stands for a

bounded holomorphic function on ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ and is monitored by means of the bounds

|v1,N+1(t, z)| ≤ k1

log(q)

̟E

R̃N+1
M1

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(N+ 1
2 )

2

2k1 |t|N+1 (203)

for the constants M1, ̟E, Cq,k1
, ∆1 appearing in (201) and for a suitable small radius R̃ > 0, as long as

t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ .

Proof. Let b, ρ > 0 be fixed as in Lemma 10. Owing to Proposition 8, we know in particular that the

partial map τ1 7→ ωb,ρ(τ1, τ2, m) is bounded and analytic on the disc Db for any prescribed τ2 ∈ Dρ

and m ∈ R. As a result, we can apply the Taylor formula with integral remainder of some fixed order

N ≥ 0 to that function and get the next expansion

ωb,ρ(τ1, τ2, m) =
N

∑
k=0

(∂k
τ1

ωb,ρ)(0, τ2, m)

k!
τk

1 + τN+1
1

∫ 1

0

(1 − t)N

N!
(∂N+1

τ1
ωb,ρ)(tτ1, τ2, m)dt (204)

provided that τ1 ∈ Db, τ2 ∈ Dρ and m ∈ R. According to Proposition 10, we know that the function

ωd1,π(τ1, τ2, m) coincides with the map ωb,ρ(τ1, τ2, m) for τ1 ∈ Sd1
∩ Db, all τ2 ∈ Dρ and m ∈ R. Hence,

from the identity (204), we deduce the next development

ωd1,π(τ1, τ2, m) =
N

∑
k=0

(∂k
τ1

ωb,ρ)(0, τ2, m)

k!
τk

1 + τN+1
1

∫ 1

0

(1 − t)N

N!
(∂N+1

τ1
ωb,ρ)(tτ1, τ2, m)dt (205)

for all τ1 ∈ Ld1,b/2, all τ2 ∈ Lπ,ρ/2 and all m ∈ R. This last formula (205) enable the expansion of the

map v1(t, z) in the form

v1(t, z) =
N

∑
k=0

gk(t, z) +
k1

log(q)(2π)1/2

×
∫

Ld1,b/2

∫

Lπ,ρ/2

∫ +∞

−∞

[

τN+1
1

∫ 1

0

(1 − u)N

N!
(∂N+1

τ1
ωb,ρ)(uτ1, τ2, m)du

]

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (206)

where

gk(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,b/2

∫

Lπ,ρ/2

∫ +∞

−∞

[ (∂k
τ1

ωb,ρ)(0, τ2, m)

k!
τk

1

]

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (207)

for 0 ≤ k ≤ N.

In the next step, we provide upper bounds for the maps gk(t, z), 0 ≤ k ≤ N. We first need to

remind the reader the next formula

k1

log(q)

∫

Ld1

un−1

Θ
q1/k1

(u/t)
du = q

n(n−1)
2k1 tn
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for all t ∈ Rd1,∆1
which has been applied in our recent work [10], see Lemma 3 therein, from which we

deduce the splitting

k1

log(q)

∫

Ld1,b/2

τk−1
1

Θ
q1/k1

(τ1/t)
dτ1 = q

k(k−1)
2k1 tk − k1

log(q)

∫

Ld1,b/2,∞

τk−1
1

Θ
q1/k1

(τ1/t)
dτ1 (208)

for all t ∈ Rd1,∆1
. As a result, one can further break up the term gk as follows

gk(t, z) = ak(t, z)q
k(k−1)

2k1 tk − k1

log(q)(2π)1/2

∫

Ld1,b/2,∞

∫

Lπ,ρ/2

∫ +∞

−∞

[ (∂k
τ1

ωb,ρ)(0, τ2, m)

k!
τk

1

]

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (209)

where

ak(t, z) =
1

(2π)1/2

∫

Lπ,ρ/2

∫ +∞

−∞

[ (∂k
τ1

ωb,ρ)(0, τ2, m)

k!

]

exp
(

− (log(t))τ2

)

e
√
−1zm dτ2

τ2
dm (210)

In the next lemma, we focus on bounds for the function ak(t, z).

Lemma 13. For all 0 ≤ k ≤ N, the map ak(t, z) is well defined and bounded holomorphic with respect to (t, z)

on ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ . Furthermore, there exists two constants M1 > 0 and 0 < R < b such

that

|ak(t, z)| ≤ M1̟E

Rk
(211)

for all (t, z) on ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ , provided that 0 < β′
< β.

Proof. We remind from Proposition 8 that the map ωb,ρ belongs to the space E(b,ρ,β,µ) and that a

constant ̟E > 0 can be pinpointed with the bounds

|ωb,ρ(τ1, τ2, m)| ≤ ̟E(1 + |m|)−µe−β|m||τ2| (212)

provided that τ1 ∈ Db, τ2 ∈ Dρ and m ∈ R. Besides, from the classical Cauchy’s formula, we know the

next integral representation

(∂k
τ1

ωb,ρ)(0, τ2, m) =
k!

2
√
−1π

∫

CR

ωb,ρ(ξ, τ2, m)

ξk+1
dξ (213)

to hold for τ2 ∈ Dρ and m ∈ R, where the integration is realized along any positively oriented circle

CR centered at 0 with radius R subjected to 0 < R < b. On account of (213) and the bounds (212), we

reach the estimates

|(∂k
τ1

ωb,ρ)(0, τ2, m)| ≤ k!

Rk
̟E(1 + |m|)−µe−β|m||τ2| (214)

for all τ2 ∈ Dρ, all m ∈ R. As a result of (214), we arrive at

|ak(t, z)| ≤ 1

(2π)1/2

∫ ρ/2

0

∫ +∞

−∞

1

Rk
| exp((log(t))s)|

× ̟E(1 + |m|)−µe−β|m|e|Im(z)||m|dsdm ≤ M1̟E

Rk
(215)

where

M1 =
1

(2π)1/2

∫ ρ/2

0
elog(R1)sds ×

∫ +∞

−∞
e−(β−β′)|m|dm (216)
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for all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], all z ∈ Hβ′ with 0 < β′
< β.

In the next lemma, bounds for the second piece of (209) are determined.

Lemma 14. For all 0 ≤ k ≤ N, the map

gk,1(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,b/2,∞

∫

Lπ,ρ/2

∫ +∞

−∞

[ (∂k
τ1

ωb,ρ)(0, τ2, m)

k!
τk

1

]

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (217)

is well defined and stand for a bounded holomorphic function relatively to (t, z) on ((Rd1,∆1
∩DR1

) \ (−∞, 0])×
Hβ′ . In addition, the next upper bounds

|gk,1(t, z)| ≤ M1k1̟E

log(q)Rk

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(k− 1
2 )

2

2k1 |t|k (218)

hold for all t ∈ ((Rd1,∆1
∩ DR1

) \ (−∞, 0]), z ∈ Hβ′ , where the constants M1 > 0 and R > 0 are prescribed

in Lemma 13 and where Cq,k1
> 0 and ∆1 > 0 are the two constants appearing in (15).

Proof. The technical estimates displayed in the next lemma are crucial.

Lemma 15. The next inequality

∣

∣

∣

∫

Ld1,b/2,∞

τk−1
1

1

Θ
q1/k1

(τ1/t)
dτ1

∣

∣

∣
≤ 1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(k− 1
2 )

2

2k1 |t|k (219)

holds for all t ∈ Rd1,∆1
∩ DR1

, all integers k ≥ 0, where Cq,k1
> 0 and ∆1 > 0 are the two constants appearing

in (15).

Proof. Owing to (15), we first observe that

1

|Θ
q1/k1

(τ1/t)| ≤
1

Cq,k1
∆1

exp
(

− k1

2

log2(|τ1|/|t|)
log(q)

) 1

|τ1/t|1/2
(220)

for all τ1 ∈ Ld1,b/2,∞ and t ∈ Rd1,∆1
∩ DR1

. Based on (220), we deduce that

∣

∣

∣

∫

Ld1,b/2,∞

τk−1
1

1

Θ
q1/k1

(τ1/t)
dτ1

∣

∣

∣

≤ 1

Cq,k1
∆1

∫ +∞

b/2
rk−3/2

1 exp
(

− k1

2

log2(r1/|t|)
log(q)

)

dr1 × |t|1/2 =
1

Cq,k1
∆1

Ik,|t|,b|t|k (221)

where the quantity Ik,|t|,b is derived by performing the change of variable s1 = r1/|t| in the integral

along the segment [b/2,+∞) above and stands for

Ik,|t|,b =
∫ +∞

b
2|t|

sk−3/2
1 exp

(

− k1

2

log2(s1)

log(q)

)

ds1. (222)

In the next step, we reach upper bounds for Ik,|t|,b. By coarse upper estimates, we first get

Ik,|t|,b ≤ Ik,0 =
∫ +∞

0
sk−3/2

1 exp
(

− k1

2

log2(s1)

log(q)

)

ds1. (223)
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Then, at last, we show that the constant Ik,0 can be computed in an exact manner. Indeed, we make the

change of variable

t1 =
( k1

2 log(q)

)1/2
log(s1)

in the integral Ik,0, which gives rise to

Ik,0 =
∫ +∞

−∞
exp

(

(

k − 1

2

)(2 log(q)

k1

)1/2
t1

)

exp(−t2
1)dt1 ×

(2 log(q)

k1

)1/2
. (224)

On the other hand, we recall the Gaussian identity

eA2/4
√

π =
∫ +∞

−∞
e−x2−Axdx

which is valid for any given real number A ∈ R, that has been already used in our former paper [11]

and stems from the book [1], Chapter 10, p. 498. This last identity enables the straight computation of

(224) as follows

Ik,0 =
(2 log(q)

k1

)1/2√
πq

(k− 1
2 )

2

2k1 (225)

for any integer k ≥ 0.

Eventually, we gather all the above bounds (221), (223) and (225) and arrive at (219).

With the help of the above lemma, we achieve bounds for the map gk,1(t, z). Indeed, from (219) in

a row with (214), we get

|gk,1(t, z)| ≤ k1

log(q)(2π)1/2

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(k− 1
2 )

2

2k1 |t|k

×
∫ ρ/2

0

∫ +∞

−∞

1

Rk
̟E|es log(t)|(1 + |m|)−µe−β|m||e

√
−1zm|dsdm

≤ M1k1̟E

log(q)Rk

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(k− 1
2 )

2

2k1 |t|k (226)

for all t ∈ ((Rd1,∆1
∩ DR1

) \ (−∞, 0]), z ∈ Hβ′ for the constant M1 > 0 defined in (216).

In the next lemma, we address bounds for the remainder part of the expansion (206) for v1(t, z).

Lemma 16. Let us denote

v1,N+1(t, z) =
k1

log(q)(2π)1/2

×
∫

Ld1,b/2

∫

Lπ,ρ/2

∫ +∞

−∞

[

τN+1
1

∫ 1

0

(1 − u)N

N!
(∂N+1

τ1
ωb,ρ)(uτ1, τ2, m)du

]

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (227)

the tail piece of (206). The map v1,N+1(t, z) is well defined and represents a bounded holomorphic function on

the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ . Moreover, the next estimates

|v1,N+1(t, z)| ≤ k1

log(q)

̟E

R̃N+1
M1

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(N+ 1
2 )

2

2k1 |t|N+1 (228)
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hold whenever t ∈ ((Rd1,∆1
∩ DR1

) \ (−∞, 0]) and z ∈ Hβ′ , for the constant M1 > 0 defined in (216) and

where R̃ > 0 is some fixed small radius.

Proof. We first need to upper bound the next quantity

JN =
∣

∣

∣

∫

Ld1,b/2

τN
1

1

Θ
q1/k1

(τ1/t)
dτ1

∣

∣

∣
(229)

relatively to t and N. Indeed, owing to (220), we deduce

JN ≤ 1

Cq,k1
∆1

∫ b/2

0
r

N− 1
2

1 exp
(

− k1

2

log2(r1/|t|)
log(q)

)

dr1 × |t|1/2 =
1

Cq,k1
∆1

ĨN,|t|,b|t|N+1 (230)

where the element ĨN,|t|,b is obtained by applying the change of variable s1 = r1/|t| in the integral

along the segment [0, b/2] overhead and stands for

ĨN,|t|,b =
∫ b

2|t|

0
s

N− 1
2

1 exp
(

− k1

2

log2(s1)

log(q)

)

ds1. (231)

In the next step, we merely observe that

ĨN,|t|,b ≤ IN+1,0 =
∫ +∞

0
s

N− 1
2

1 exp
(

− k1

2

log2(s1)

log(q)

)

ds1, (232)

where IN+1,0 is given in the inequality (223). According to the computation made in (225), we notice

that

IN+1,0 =
(2 log(q)

k1

)1/2√
πq

(N+ 1
2 )

2

2k1 . (233)

At last, with the combination of (230), (231), (232) and (233) we arrive at

JN ≤ 1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(N+ 1
2 )

2

2k1 |t|N+1 (234)

provided that t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], for any given integer N ≥ 0.

Besides, owing to the classical Cauchy’s formula, the next integral representation

(∂N+1
τ1

ωb,ρ)(uτ1, τ2, m) =
(N + 1)!

2
√
−1π

∫

CR̃(uτ1)

ωb,ρ(ξ, τ2, m)

(ξ − uτ1)N+2
dξ (235)

holds for all τ1 ∈ Db/2, τ2 ∈ Dρ, u ∈ [0, 1] and m ∈ R, where the integration is performed along

a positively oriented circle CR̃(uτ1) centered at uτ1 with small radius R̃ > 0 chosen in a way that

CR̃(uτ1) ⊂ Db. From (235) together with (212), we deduce the useful bounds

|(∂N+1
τ1

ωb,ρ)(uτ1, τ2, m)| ≤ (N + 1)!

R̃N+1
̟E(1 + |m|)−µe−β|m||τ2| (236)
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for all τ1 ∈ Db/2, τ2 ∈ Dρ, u ∈ [0, 1] and m ∈ R. Eventually, the gathering of (234) and (236) gives rise

to

|v1,N+1(t, z)| ≤ k1

log(q)(2π)1/2

(N + 1)!

R̃N+1
̟E ×

(

∫ 1

0

(1 − u)N

N!
du

)

× 1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(N+ 1
2 )

2

2k1 |t|N+1 ×
∫ ρ/2

0
es log |t|ds ×

∫ +∞

−∞
(1 + |m|)−µe−β|m|e|Im(z)||m|dm

≤ k1

log(q)

̟E

R̃N+1
M1

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

(N+ 1
2 )

2

2k1 |t|N+1 (237)

for all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ where the constant M1 > 0 is defined in (216).

In conclusion, the proposition 11 ensues from the decompositions (206), (209) and the collection

of Lemma 13, 14 and 16.

In the second main proposition, we show that the second piece v2(t, z) has the null formal series

as Gevrey asymptotic expansion of order 1 in a logarithmic scale with respect to t.

Proposition 12. The map v2(t, z) is well defined and bounded holomorphic relatively to (t, z) on the product

((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ . Furthermore, for some well chosen constants M̟,b, M̃1, Q1 > 0 and any

given integer N ≥ 0, the next error bounds

|v2(t, z)| ≤ k1

log(q)(2π)1/2
M̟,b

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

1
8k1 |t|

×
∫ +∞

−∞
e−(β−β′)|m|dm × Q1

M̃1
(

1

M̃1ρ/2
)N N1/2Γ(N)

(

− 1

log |t|
)N+1

(238)

hold provided that t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ , where Cq,k1
> 0 and ∆1 > 0 are the two

constants stemming from (15).

Proof. According to (97) in Proposition 2, one can find a constant M̟,b > 0 for which the map ωd1,π is

subjected to the next upper bounds

|ωd1,π(τ1, τ2, m)| ≤ ̟(1 + |m|)−µe−β|m||τ1| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

× |τ2|eν|τ2| ≤ M̟,b(1 + |m|)−µe−β|m||τ1||τ2|eν|τ2| (239)

provided that τ1 ∈ Sd1
∩ Db/2, τ2 ∈ Lπ,ρ/2,∞ and m ∈ R. Besides, the bounds (234) for the quantity

(229) in the special case N = 0 yields the next estimates

∣

∣

∣

∫

Ld1,b/2

1

Θ
q1/k1

(τ1/t)
dτ1

∣

∣

∣
≤ 1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

1
8k1 |t| (240)

for all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0]. Furthermore, a constant M̃1 ∈ (0, 1) can be singled out with

H(t) =
∫ +∞

ρ/2
eνr2 | exp(log(t)r2)|dr2 ≤

∫ +∞

ρ/2
eνr2 er2 log |t|dr2 ≤

∫ +∞

ρ/2
e

(

M̃1 log |t|
)

r2 dr2

= − 1

M̃1 log |t| e
(

M̃1 log |t|
)

ρ/2 (241)
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as long as t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], for R1 > 0 chosen small enough. In the next step, we remind

the reader the following technical estimates that are taken from Lemma 14 of [10]. Namely, for any

given real number M > 0, one can select a constant Q1 > 0 such that

(
1

r
)N exp

(

− M

r

)

≤ Q1(1/M)N N1/2Γ(N) (242)

for all integers N ≥ 1, all real numbers r > 0. Based on (242) for the constant M = M̃1ρ/2 and specific

value r = −1/ log |t|, we deduce from (241) that

H(t) ≤ Q1

M̃1
(

1

M̃1ρ/2
)N N1/2Γ(N)

(

− 1

log |t|
)N+1

(243)

for all integers N ≥ 1, provided that t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0].

At last, the collection of the bounds (239), (240) and (243) triggers the next error bounds for the

piece v2(t, z). Namely,

|v2(t, z)| ≤ k1

log(q)(2π)1/2
M̟,b

1

Cq,k1
∆1

(2 log(q)

k1

)1/2√
πq

1
8k1 |t|

×
∫ +∞

−∞
e−(β−β′)|m|dm × Q1

M̃1
(

1

M̃1ρ/2
)N N1/2Γ(N)

(

− 1

log |t|
)N+1

for all integers N ≥ 0, whenever t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ .

In the last principal proposition, the third piece v3(t, z) is shown to have the null formal series as

asymptotic expansion of q−Gevrey order k1 in the scale of monomials relatively to t.

Proposition 13. The map v3(t, z) is well defined and bounded holomorphic relatively to (t, z) on the product

((Rd1,∆1
∩ DR1

) \ (−∞, 0]) × Hβ′ . In addition, for some suitable constants ̟ > 0, Mδ,1,b, Mδ,2,b > 0,

M3 > 0 and any given integer N ≥ 0, the next error bounds

|v3(t, z)| ≤ k1

log(q)(2π)1/2

̟

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

q

( 1
2 +

k1
log(q)

log(b/2))2

2k1

×
∫ 1

b/2
r

α− 1
2

1 dr1 × M3(q
−( 1

2+
k1

log(q)
log(b/2))/k1)N+1q

(N+1)2

2k1 |t|N+1

+
k1

log(q)(2π)1/2

̟

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

q
1

8k1

×
∫ +∞

1

1

r3/2
1

dr1 × M3(q
− 1

2k1 )N+1q
(N+1)2

2k1 |t|N+1 (244)

hold provided that t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ , where Cq,k1
> 0 and ∆1 > 0 are the two

constants appearing in (15).

Proof. We further break up the integral v3(t, z) in two parts

v3(t, z) = v3.1(t, z) + v3.2(t, z) (245)
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where

v3.1(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,b/2,1

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (246)

with Ld1,b/2,1 = [b/2, 1]e
√
−1d1 and for

v3.2(t, z) =
k1

log(q)(2π)1/2

∫

Ld1,1,∞

∫

Lπ

∫ +∞

−∞
ωd1,π(τ1, τ2, m)

× 1

Θ
q1/k1

(τ1/t)
exp

(

− (log(t))τ2

)

e
√
−1zm dτ1

τ1

dτ2

τ2
dm (247)

along the segment Ld1,1,∞ = [1,+∞)e
√
−1d1 .

As stated in (97) in Proposition 2, the map ωd1,π is subjected to the next upper bounds

|ωd1,π(τ1, τ2, m)| ≤ ̟(1 + |m|)−µe−β|m||τ1| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

× |τ2|eν|τ2| (248)

provided that τ1 ∈ Ld1,b/2,∞ = [b/2,+∞)e
√
−1d1 , τ2 ∈ Lπ = [0,+∞)e

√
−1π and m ∈ R. On the other

hand, we need the next technical upper bounds.

Lemma 17. One can single out two constants Mδ,1,b, Mδ,2,b > 0 such that

1

|Θ
q1/k1

(τ1/t)| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

≤ 1

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

× exp
(

− k1

2 log(q)
log2 |t|

)

|t|1/2

× exp
(

α log |τ1|+
k1

log(q)
log |τ1| log |t|

) 1

|τ1|1/2
(249)

provided that τ1 ∈ Ld1,b/2,∞ and t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0].

Proof. For τ1 ∈ Ld1,b/2,∞ and t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], we first expand

log2(|τ1|/|t|) = log2 |τ1| − 2 log |τ1| log |t|+ log2 |t| (250)

along with

log2(|τ1|+ δ) = log2 |τ1|+ 2 log |τ1| log(1 +
δ

|τ1|
) + log2(1 +

δ

|τ1|
) (251)

and

log(|τ1|+ δ) = log |τ1|+ log(1 +
δ

|τ1|
). (252)

Since log(1 + x) ∼ x holds as x tends to 0 and bearing in mind the classical growth comparison

limx→+∞ log(x)/x = 0, we get from (251) and (252) two constants Mδ,1,b, Mδ,2,b > 0 with

log2(|τ1|+ δ) ≤ log2 |τ1|+ Mδ,1,b , log(|τ1|+ δ) ≤ log |τ1|+ Mδ,2,b (253)
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for all |τ1| ≥ b/2. Eventually, the gathering of (220) and (253) with the expansion (250) yields the

awaited estimates (249).

In the next lemma, we exhibit q−Gevrey type estimates on both segments Ld1,b/2,1 and Ld1,1,∞.

Lemma 18. The next two q−Gevrey type estimates hold.

• On the segment Ld1,b/2,1, we get that

1

|Θ
q1/k1

(τ1/t)| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

≤ 1

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

× q

( 1
2 +

k1
log(q)

log(b/2))2

2k1

× (q
−( 1

2+
k1

log(q)
log(b/2))/k1)N+1q

(N+1)2

2k1 |t|N+1|τ1|α−
1
2 (254)

holds for all τ1 ∈ Ld1,b/2,1, all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], for all integers N ≥ 0.
• On the segment Ld1,1,∞, we arrive at

1

|Θ
q1/k1

(τ1/t)| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

≤ 1

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

× q
1

8k1 (q
− 1

2k1 )N+1q
(N+1)2

2k1 |t|N+1 1

|τ1|1+
1
2

. (255)

provided that τ1 ∈ Ld1,1,∞, all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], for all integers N ≥ 0.

Proof. 1) Consider τ1 ∈ Ld1,b/2,1 and t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0]. In particular, we notice that

b/2 ≤ |τ1| ≤ 1 and |t| < R1 < 1. It follows that

k1

log(q)
log |τ1| log |t| ≤ k1

log(q)
log(b/2) log |t| = log

(

|t|
k1

log(q)
log(b/2)

)

. (256)

As a result, the inequality (249) becomes

1

|Θ
q1/k1

(τ1/t)| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

≤ 1

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

× exp
(

− k1

2 log(q)
log2 |t|

)

|t|
1
2+

k1
log(q)

log(b/2)|τ1|α−
1
2 .

(257)

2) Let us take τ1 ∈ Ld1,1,∞. In particular |τ1| ≥ 1. We select R1 > 0 small enough and fulfilling (100) in

a way that
k1

log(q)
log |t| log |τ1| ≤ −(α + 1) log |τ1| (258)

for all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0]. The inequality (249) is then changed into

1

|Θ
q1/k1

(τ1/t)| exp
( k1

2

log2(|τ1|+ δ)

log(q)
+ α log(|τ1|+ δ)

)

≤ 1

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

× exp
(

− k1

2 log(q)
log2 |t|

)

|t|1/2 1

|τ1|1+
1
2

. (259)
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The next estimates have been presented in Lemma 12 of our recent work [10]. Namely, for any

prescribed real number h ∈ R, the next inequality

xh exp
(

− k1

2

log2(x)

log(q)

)

≤ q
h2

2k1 (q−h/k1)Nq
N2

2k1 xN (260)

occurs for all integers N ≥ 1, all positive real numbers x > 0. In particular, the next upper bounds

exp
(

− k1

2 log(q)
log2 |t|

)

|t|
1
2+

k1
log(q)

log(b/2) ≤ q

( 1
2 +

k1
log(q)

log(b/2))2

2k1

× (q
−( 1

2+
k1

log(q)
log(b/2))/k1)N+1q

(N+1)2

2k1 |t|N+1 (261)

along with

exp
(

− k1

2 log(q)
log2 |t|

)

|t|1/2 ≤ q
1

8k1 (q
− 1

2k1 )N+1q
(N+1)2

2k1 |t|N+1 (262)

hold for all t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0], for all integers N ≥ 0.

At last, the q−Gevrey type bounds (254) result from (257) together with (261) and the combination

of (259) with (262) yields (255).

In the last part of the proof, we can now provide upper bounds for each piece v3.1(t, z) and

v3.2(t, z). Namely, based on (248), (254) and (255) we get

|v3.1(t, z)| ≤ k1

log(q)(2π)1/2

̟

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

q

( 1
2 +

k1
log(q)

log(b/2))2

2k1

×
∫ 1

b/2
r

α− 1
2

1 dr1 ×
∫ +∞

0
eνr2 er2 log |t|dr2 ×

∫ +∞

−∞
e−(β−β′)|m|dm

× (q
−( 1

2+
k1

log(q)
log(b/2))/k1)N+1q

(N+1)2

2k1 |t|N+1

≤ k1

log(q)(2π)1/2

̟

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

q

( 1
2 +

k1
log(q)

log(b/2))2

2k1

×
∫ 1

b/2
r

α− 1
2

1 dr1 × M3(q
−( 1

2+
k1

log(q)
log(b/2))/k1)N+1q

(N+1)2

2k1 |t|N+1 (263)

along with

|v3.2(t, z)| ≤ k1

log(q)(2π)1/2

̟

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

q
1

8k1

×
∫ +∞

1

1

r3/2
1

dr1 ×
∫ +∞

0
eνr2 er2 log |t|dr2 ×

∫ +∞

−∞
e−(β−β′)|m|dm

× (q
− 1

2k1 )N+1q
(N+1)2

2k1 |t|N+1 ≤ k1

log(q)(2π)1/2

̟

Cq,k1
∆1

exp
( k1

2 log(q)
Mδ,1,b + αMδ,2,b

)

q
1

8k1

×
∫ +∞

1

1

r3/2
1

dr1 × M3(q
− 1

2k1 )N+1q
(N+1)2

2k1 |t|N+1 (264)

for the constant

M3 =
∫ +∞

0
eνr2 er2 log R1 dr2 ×

∫ +∞

−∞
e−(β−β′)|m|dm (265)

for all integers N ≥ 0, whenever t ∈ (Rd1,∆1
∩ DR1

) \ (−∞, 0] and z ∈ Hβ′ .
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Eventually, the splitting (245) together with the above upper estimates (263) and (264) promotes

the expected bounds (244).

We return to the proof of Theorem 2. On the ground of the decomposition (197), we set

u1(t, z) = v1(t, z) + v3(t, z).

According to Proposition 11 and Proposition 13, we observe that u1(t, z) represents a bounded

holomorphic map on the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ . Moreover, u1 is submitted to error

bounds of the form (195) for the sequence of functions bn(t, z), n ≥ 0 given by bn(t, z) = gn(t, z)/tn,

which represent bounded holomorphic maps on the domain ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ , owing

to the upper bounds (201).

On the other hand, we assign

u2(t, z) = v2(t, z).

As claimed by Proposition 12, we check that u2(t, z) stands for a bounded holomorphic function

on ((Rd1,∆1
∩ DR1

) \ (−∞, 0])× Hβ′ . Furthermore, u2 is subjected to error bounds shaped in (238).

Theorem 2 is established.
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