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Abstract: Nowadays, semantic segmentation is increasingly used in exploration by underwater robots,

for example in autonomous navigation, so that the robot can recognise the nature and elements of its

environment during the mission and act according to this classification to avoid collisions. Other

applications can be found in the search for archaeological artefacts, in the inspection of underwater

structures or in species monitoring. Therefore, it is necessary to try to improve the performance in

these tasks as much as possible. To this end, we compare some methods for improving image quality

and for data augmentation and test whether higher performance metrics can be achieved with both

strategies. The experiments are performed with the SegNet implementations and the SUIM dataset

with 8 common underwater classes to compare the obtained results with the already known ones.

The results obtained with both strategies show that they are beneficial and lead to better performance

results by achieving a mean IoU of 56% and an increased overall accuracy of 81.8%. The single result

shows that there are 5 classes with an IoU value above 60% and only one class with an IoU value

below 30%, which is a more reliable result and easier to use in real contexts.

Keywords: semantic segmentation; data augmentation; enhancement techniques; underwater; visual

information

1. Introduction

Semantic segmentation is an important task for the various fields of robotics, which often relies on

visual data from cameras. Nowadays, it is increasingly used in robotic exploration of the underwater

world, for example in autonomous navigation, so that the robot can recognise the nature and elements

of its environment during the mission and act according to this classification to avoid collisions,

for example, as well as in object recognition and finding archaeological artefacts or even inspecting

underwater structures such as platforms, cables or pipelines. Other applications can be found in

marine biology and ecology in identifying species and monitoring their growth, but also in the search

and rescue of missing persons or the recovery of parts of ships, or in military defence through the

detection and classification of mines. The main objective of this task is to label each pixel of an image

with a corresponding class of the represented image, which is a dense classification, and often it is

difficult to obtain good results in terms of prediction. In conventional approaches, there are some

problems with the accuracy of the results because the data obtained in underwater environments

have challenges such as colour distortion, low contrast, noise or uneven illumination, and for these

reasons some important information is lost. In addition, traditional methods generally do not have

high transferability or robustness, so the segmentation effect of a single traditional method is in the

majority of the cases poor [1]. Therefore, it is necessary to resort to advanced approaches, often

incorporating Deep Learning [2], in order to to better overcome these challenges of the underwater

environment [3–5]. However, for these methods to perform well on this type of task that requires

training models, appropriate datasets must be used. However, one of the main problems with visual

methods in this area is often the lack of complete datasets or with multiple images to consider for

different contexts or classes [6–9]. When there are existing suitable datasets for the general underwater

context, they often do not have masks with the ground truth label [10], which is a challenge when it
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is necessary to manually label them. In a previous study by the authors, the SUIM dataset [11] was

selected to comparatively test different machine learning approaches (SegNet [12], Pyramid Scene

Parsing Network - PSPNET [13] and two versions of Fully Convolutional Networks - FCNN [14])

for semantic segmentation. This dataset was chosen because it contains 7 common classes of the

underwater world with different perspectives and visual conditions. In this research [15], the Segnet

implementation, which is a deep, fully convolutional neural network architecture for pixel-level

semantic segmentation and designed to be efficient in terms of both memory and computation time,

stands out in terms of key performance metrics. Thus, the overall accuracy, mean accuracy and mean

Intersection over Union (IoU) achieve 80%, 64% and 52% respectively, but show lower performance

when we analyse the results of the individual classes, with only three of the overall classes achieving

more than 60% and two classes achieving less than 30%, with one train large for 100 evaluations.

Although the results obtained are not bad in real contexts, they could be dangerous to work with

in a real mission and the question arises: "Can we achieve higher accuracy in semantic segmentation?".

According to the literature, it is possible to improve the results of semantic segmentation by adjusting

the parameters of the model, resorting to some image enhancement techniques, increasing the number

of images for training, using more balanced datasets, etc [16,17]. The first goal was to find the right

parameters and this was achieved in the first iteration. Now the next strategies need to be tested to see

if they are successful in the underwater environment.

Therefore, the main purpose of this work is to verify if there are some approaches commonly used

in outdoor environments that allow to improve the results in terms of accuracy and how much this

improvement is, comparing some methods to improve the image quality and some data augmentation

strategies. The idea is that in the final of this work to know how to build a dataset more balanced and

without less effort in collecting data as it is already challenging and expensive in terms of time and

cost.

This paper is arranged as follows: Section 2 describes the background of this work with the

explanation of the previously obtained results, i.e. the starting point of this study. Section 3 describes

the main methods used to improve the quality of the underwater images and some approaches to

expand the number of samples in a dataset. Next, the section 4 presents the main findings in terms of

accuracy and visual results and some discussion about them, and finally, in the section 5 presents the

main conclusions and some ideas for future work.

2. Background

Semantic segmentation involves labelling all objects of the same class, and when used with

machine learning, the system is trained with already segmented datasets to accurately identify

elements and segment an unknown set of images. As mentioned earlier, the authors conducted

a detailed comparative study of different implementations for semantic segmentation applications

in an underwater context in a first paper [15]. For this, after reviewing the available online data, we

used the SUIM dataset, which is one of the most complete and could be useful in these scenarios,

although it does not yet contain all the intended objects. It is not a large dataset as it is not easy to

obtain underwater images for these scenarios, but it provides different perspectives as well as colour

and size information. Another important aspect of this dataset is that it contains the ground truth for

the different images, i.e. masks with the pixels labelled with the classes. There are 8 classes: Waterbody

(Class 0), Human Divers (Class 1), Robots or Instruments (Class 2), Reefs and Invertebrates (Class 3),

Plants (Class 4), Wrecks or Ruins (Class 5), Fish and Vertebrates (Class 6), and Seabed and Rocks (Class

7), but with a different number of samples for each class, which leads to an unbalanced dataset and

could be a problem in the training phase. Figure 1 shows the representativeness of the classes in the

original dataset, i.e. in how many images a class is present, according to the respective colour that

appears on the masks.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2023                   doi:10.20944/preprints202310.1767.v1

https://doi.org/10.20944/preprints202310.1767.v1


3 of 23

Figure 1. Distribution of the individual classes for the images of the original training set.

Therefore, a series of experiments were conducted under different conditions to find out which

of SegNet, PSPNET and FCNNs is most suitable for the intended context, and Segnet stands out in

the results obtained. This approach is a deep convolutional encoder-decoder architecture for image

segmentation that has good segmentation performance in terms of both memory and computation

time. It also offers a smaller number of trainable parameters than other approaches. The study carried

out on the selected underwater dataset shows a good trade-off between the accuracy of the results

and the time required, even though time is not the most important factor. In order to test this type

of application, it is important to resort to different techniques to measure the performance obtained

after the training. Therefore, in addition to observing the final results, it is generally possible to use

the overall and mean accuracy, which refers to the number of pixels correctly assigned (the mean

takes into account the predicted classes). It is also possible to calculate the intersection over the union,

which calculates the performance of each class taking into account the area of overlap between the

prediction and the real observation and the union of the two areas, i.e. the well-predicted and the

poorly-predicted pixels.

An example of the final results obtained is presented, where a test is performed on the original

dataset with more than 1500 images for training and 110 for evaluation. It is important to point out

that the test dataset is hard as it contains the biggest challenges encountered in underwater visual data

collection such as: inconsistencies in lighting, boundaries of objects that are not perceived as a whole,

etc. The test is performed after every 500 random images, and a total of 100 evaluations are performed

to obtain the final model and performance metrics. However, the best model was found after 45000

images, i.e. after 90 evaluations. Table 1 summarises the results in terms of overall accuracy, mean

accuracy, mean IoU and the values for this metric for each class.

Table 1. Performance measurements [%] for the best result obtained with the original dataset in a total

of 100 evaluations.

Overall Acc Mean Acc Mean IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

79.7 64.4 53.1 87.2 62.7 29.5 58.8 16.6 51.6 59.1 69.6

As can be seen from the table, although the results are generally not bad and useful, there are

errors in some classes that are dangerous from the autonomous vehicle’s point of view. For example,

the Plant and Robot classes show IoU values of less than 30%, which can lead to some erroneous

actions. In the initial experiments, it was found that this can occur because these classes have a smaller

number of images for training compared with the rest of classes. In the Figure 2 the results for semantic

segmentation for 5 examples can be seen. In general, it was found that the boundaries of the elements

are correctly selected, but some of them are assigned to a wrong class, like the diver in the second

image or even the wreck in the fourth image.
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Figure 2. The segmented images obtained with the original dataset for a total of 100 evaluations after

500 training images each, based the best model.

Although the results obtained are not bad, it is important to investigate if there is a way to increase

these numbers to avoid possible errors. Since the investigation of the parameters of the model has

already been done, the next steps will be to investigate other strategies to apply in the training dataset.

As mentioned earlier, visual data collection in this world is not easy as it is an expensive task that

requires appropriate materials and communication platforms and is often dangerous for divers. In

addition, this task brings several problems, such as light absorption, turbidity and limited range,

which reduces the number of good quality images. The existing datasets for the train of semantic

segmentation are therefore intended for out-of-water applications, and when underwater, they are

sparse in terms of classes (often a dataset contains only one class, e.g. for fish classification) and has a

smaller number of samples (many of them contain 1000/2000 images in total, which is considered a

small dataset in the literature). In this particular case, the dataset contains a total of 1525 images for

training with 8 different classes, which may mean fewer images per class. Furthermore, this dataset

is unbalanced, as the class with the highest representativeness is represented by more than 80% and

the class with the lowest representativeness by less than 10%. Another crucial aspect of this dataset

for semantic segmentation is the need for proper annotation for the training process, and this task is

challenging as it often has to be done by the user or with the help of computer tools, but this takes time

and is challenging. The dataset tries to represent each class under different viewing angles, lighting

conditions, sizes, etc., as in the case of the fish class, but in some other cases this is difficult. Some of

the images have worse visual conditions, with bad boundaries and without correct information about

the colour of the objects, and some of them have some discrepancies in the annotation mask (because

it is a difficult and repetitive task). In the Figure 3 you can see some of SUIM-dataset problems.

Figure 3. Problems of the dataset: more elements of a class in the original image than in the mask

(a), some labeled errors when referring to the same class (b) and poor quality of the images obtained

underwater (c).

In this way, it is visible an example of pictures with more fish than in the ground truth image

because there are difficulties in the annotation, another example is the same class with a different

annotation, which can confuse the learning process, and the third example shows the difficulties that

often occur when perceiving the boundaries of the objects. Therefore, it is necessary to review the weak
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points of the dataset and improve some problems and solve others to improve the final performance

(e.g. poor segmentation).

3. Auxiliary Techniques for Semantic Segmentation

According to the literature and all that is known about the visual conditions of this underwater

environment, there are high expectations of the improvements that the enhancement of visual data

will bring to the end results of all processes that need to manipulate underwater images, namely

semantic segmentations. According to the current state of the art, there are several techniques for

different enhancements. One of them deals with the restoration of true colours, another with filtering

techniques to de-noise the image, and others that allow the removal of backscatter caused by tiny

particles in the water that reflect light back to the camera [18]. After some research in the literature, it

was decided to test three techniques that seemed to be suitable for the intended application: Contrast

Limited Adaptive Equalisation (CLAHE) [19], White Balance (WB) [20] and a third technique that

came from diving experience and summarises some enhancements suitable for underwater imaging.

Thus, in detailed way:

1. CLAHE is used to increase the contrast of an image by redistributing light across the image. It is

one of the methods of histogram equalisation, but it is not applied to the whole image, but only to

small areas to reduce noise and provide a method that combines the different tiles without their

boundaries being visible. This method is very important in underwater scenarios as there are

different lighting variations and in some cases a lot of darkness, and it promises to improve the

visibility of object boundaries and some important features. The implementation used is based on

the OpenCv library and some parameterisation is required. After some experiments, a higher

quality image for the context was found by dividing the images into tiles of 80x80 pixels and

using a clip limit of 1.
2. WB is a process that adjusts all pixel colour information so that it looks natural to humans. This

is not an easy task underwater, as water absorbs and scatters light differently than in air, and

many colours disappear at depth, where everything looks blue or green.In this context, this

technique is used as post-processing, but it is not trivial to achieve the correct white balance.

There are several variations for implementing this technique, and the approach used [21] shows

that realistic degradation of the colour constant can be accurately minimised without producing

unrealistic colours, such as the purple of the grass, which can affect the results of semantic

segmentation. However, the approach used was not tested in underwater environments, which

is why some images without quality were produced in the experiments. However, different

parameter combinations were used and when a pattern of behaviour emerged in the results, the

better combination was chosen.
3. The third method compared in this study, referred to here as dive correction [22], is the result of

combining the different filtering methods. It is a tool that can be used in code or with as desktop

tool and consists of a philtre that adjusts each colour channel to restore the true colours and make

the image appear more natural and contrasty.

It is also important to mention that since these methods only change the aspect of the image, it

is not necessary to make a change in terms of ground truth, and for this reason the original masks

were used. The three methods are thus applied to the entire dataset of the training and also the test

images. As can be seen in the Figure 4, the results of the enhancement methods vary when compared

to each other, and it is therefore necessary to check if this pre-processing improves the final result when

applied before training the model. As can be observed, the results vary and lead to images that are

more visually appealing with some enhancements, but the same enhancement can lead to undesirable

images for other.
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Figure 4. Comparison of the improvement methods using 6 original images (a) with the CLAHE

method (b), white balance transformation (c) and dive correction (d).

Another reason for the poor results of semantic segmentation could be that the dataset is often

too small compared to the need, and obtaining labelled datasets is expensive and time-consuming.

Therefore, training the models with small datasets is another crucial challenge, and this dataset contains

only about 1500 images. Another approach to improve the results is data augmentation, which consists

of various techniques that change the appearance of the images, e.g. rotating, zooming, flipping, colour

variations, etc. In this way, the dataset can be enlarged, and the resort to data augmentation offers some

advantages to deep learning methods, such as improving generalisation, increasing the robustness of

the model to different variations of the input, allowing the use of smaller datasets for some needed

applications, and avoiding overfitting since the training data is more diverse. It is also worth noting

that in most cases this approach is only used for the training dataset, as is the case in this study. In

underwater scenarios this is particularly important because, as explained earlier, underwater imagery

presents many challenges and the model has to cope with all the changes and variations. Therefore, it

was crucial in this context to take into account lighting changes, distortions and perspective changes

as the water causes movements of the camera or objects during the shot, as well as additional noise

as the conditions for the shooting equipment are often not the best, etc. Figure 5 shows some of the

possible changes that can be made to an image to use it in the training set.

Figure 5. Five examples of possible changes to increase the size of the dataset using a single image.

So, in this case, it is possible to get more images with only one image to better train the class of

human divers. However, some of these changes are not useful for all scenarios as they change the sense

of reality, e.g. when the seaweed appears at the bottom of the image. As can be seen in the Figure 6,

vertical flipping is useful in some cases, especially when the camera captures images in an upper plane
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with respect to the object, i.e. images of bottom of the underwater floor, but it is wrong in cases where

the image is captured in front of the object of interest, as can be seen from the air bubbles that can

never come down. In many cases, extreme transformations (flipping or rotating) must be avoided.

Figure 6. Result from two original images (a): in some cases, good variations result, but at the same

time images arise that do not fit into the intended context (b).

For this reason, it is important to ensure that this process does not provide misleading information,

and for the data augmentation in this application it is assumed that the images are taken from a vehicle

that does not rotate much along the x-axis. It is crucial that the consistency of the data provided is

maintained, and the changes must represent reality and the greatest possible number of variations in

the real world. There are already many methods of data augmentation to increase the size and variety

of datasets. However, when a segmented dataset is needed, the transformation must be applied to each

image while keeping the ground truth consistent. Sometimes it is non-trivial to maintain this in order

not to add false information or, for example, black pixels during the rotation transformation. To solve

this problem, it is often necessary to add a crop transformation to the result of the first transformation.

But not all transformations require an intervention in the mask, such as the changes in the colour

information of the image, where there are no changes in the position or size of the objects. The different

transformations can be divided into categories, such as:

• Spatial transformations - refer to changes in the image coordinate system that affect the position

and orientation of objects and the overall image.
• Intensity transformations - change the appearance of objects, but not their shape, and act at the

pixel level.
• Elastic deformations - can simulate the flexibility of objects, the variability of their shapes or, in

underwater scenarios, some water movements that are often seen in the image.
• Noise addition - makes the model more robust to the diversity of data collection, especially in

underwater scenarios where there is noise in the images.
• Random erasing - some techniques remove regions and in the mask this class is ignored.

In the literature there are several implementations of these transformations and libraries for the

intended context, such as: ImageDataGenerator from TensorFlow or the transformations from PyTorch,

when the user needs to apply the same transformation in the image and in the labelled mask. However,

these approaches have some limitations, such as rotating an image and the appearance of black

corners. Another option is Albumentations [23], a fast image augmentation library that simultaneously

applies the transformations for the images and the ground truth labels and has an extensive set of

transformations, from the most common to more unique ones, such as the grid-based distortions,

supporting more than sixty transformations in total. It is designed to be adaptable and efficient

in applying the transformation to the training process and ensuring that both the image and the

corresponding mask receive the same transformations and parameters. It also allows a pipeline of
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transformations to be put together so that the variety of transformations is incredibly large. For this

reason, this library has been used for this work, and in Figure 7 you can see some transformations in the

image and ground truth made by this library, e.g. by flipping, cropping and reducing transformations.

Figure 7. Some examples of original images (a) and corresponding transformations (b). The first and

second rows represent transformations by flipping and cropping, which also change the mask, and the

third row represents a quality degradation where the ground truth does not need to be changed.

4. Experimental Results

In order to be able to verify the statements made in the literature about the selected procedures

for increasing the final performance of semantic segmentation, it is necessary to test them individually

and analyse their relevance to the intended context. In this way, new datasets are created for each

test according to the respective assumptions. To compare the results, the common metrics and the

quality of the visual results are used, as explained earlier. All experiments were conducted using an

Intel(R)Core(TM) i9-9880 CPU @ 2.3GHz with 32GB RAM computer.

4.1. Enhancement Tecniques Comparison

As described earlier, three implementations of enhancement visual quality of the images are

tested and compared: CLAHE, white balance and the dive correction. The corrections are applied

to both training images and test images, as they are visual enhancement techniques and the results

can benefit from them. For this test, four different datasets were created and the model was trained

with a total of 50000 images, with evaluations after 500 randomly selected images, resulting in 100

evaluations each. The results obtained are compared with the original dataset, i.e. with the training

performed on images without the image enhancement already described, and can be seen in Table 2.

Table 2. Comparative results of best measured model performance [%] achieved with: CLAHE, WV

and dive corrections in a total of 100 validations, each after 500 training images.

Method
Overall

Acc
Mean Acc Mean IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

Original 79.7 64.4 53.1 87.2 62.7 29.5 58.8 16.6 51.6 59.1 69.6
CLAHE 80.4 64.0 53.3 87.0 61.6 25.7 59.1 14.1 54.2 60.5 64.2

WB 80.0 62.5 51.9 86.6 58.2 30.0 59.7 8.5 55.8 56.8 59.4
Dive 80.5 63.4 52.3 87.1 58.2 27.4 60.0 11.6 53.9 57.6 62.8

In general, the mean IoU value is the best way to check the performance of the semantic

segmentation methods, since it is calculated with respect to all classes, but since we have 8 classes, it

is normal that this value is not much higher. In other words, it indicates how well the segmentation

model works across all classes. As for the quantitative results, it shows that the CLAHE has only

a small increase in the mean IoU. But it gives better results than the original for tree classes and in

the case of the fish class with significant results (more than 3%). For this reason, this enhancement

technique seems to be the best, but the visual results should be observed. Figure 8 shows the results

obtained by applying the three enhancement methods to the images.
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Figure 8. Qualitative comparison results of 4 different examples (a and b): the CLAHE method (c), WB

method (d) and dive correction (e) using the best model in a total of 100 validations, each after 500

training images.

Looking at the visual results, it is possible that the CLAHE results are generally better because it is

the best method to observe the body of the human diver and the coral in the second example. Also, it is

a unique method that shows the plants of the third example in a high number of pixels, which is a good

result as it is a difficult class to model. The other implementation stands out compared to the CLAHE

method in the robot class, but it is not significant because it is only one of eight classes and does not

give good segmentation results. In this way, the best result is obtained with the CLAHE method, which

slightly improves the final result and has a higher overall accuracy, i.e. a higher rate of well-detected

pixels. This result was to be expected, as the contrast and therefore the visibility of the main features of

the images is improved, which can increase the performance especially in underwater images with

different lighting conditions. It is also important to mention that this enhancement technique allows

the model to reach the best value of mean IoU (within 50000) after 90 evaluations, i.e. using a total of

45000 training images instead of 50000 for white balance enhancement or 47500 for dive correction.

For this reason, the CLAHE method is chosen as the best and most appropriate for the context and for

use in the next experiments, if necessary. Figure 9 shows an example of the improvement in the final

segmentation results using the CLAHE method in the fish and wreck classes compared to the original

results.
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Figure 9. Comparison of the qualitative results of 2 different examples (a and b), between the result

obtained with the original set (c) and the CLAHE method (d) using the best model for a total of 100

validations.

4.2. Data Augmentation Influence

As far as data augmentation is concerned, there are several options that can be applied to the

images, but it is not possible to apply all of them because the data set would be larger than the

need and the processing time would increase greatly without need. To create the datasets with data

augmentation needed for the following tests, a total of eight transformations were used, which can be

seen in Figure 10. Clipping operations were used as well as some distortions (grid and elastic) and a

flipping in the horizontal axis. It is important to note that the test of the influence of data augmentation

was carried out in a isolated way, i.e. without visual enhancement methods.

Figure 10. Eight transformations used in the creation of the augmented datasets for training.

4.2.1. Geral Data Augmentation

The first experiment with data augmentation was conducted on a dataset where 5 of the

augmentations shown were applied to each image in the training dataset. This gave a total number of

9144 images for the training dataset to be able to evaluate the effects of training in a larger dataset,

because 1500 images is a small dataset for the intended context. Figure 11 illustrates the distribution of

classes across images. It can be seen that the number of samples per class increases and the distribution

of classes remains the same. To allow a fair comparison and because the new dataset is larger, the

original dataset was run for 50000 training images, with the evaluations done for 1000 images at a time

(about two-thirds of the total number of images). Therefore, the new dataset with data augmentation

(DA) was run after every 6000 images for a total number of 300000 iterations, aiming to have the
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same number of evaluations at the end, i.e. 50 evaluations. Table 3 summarises the result for the best

iteration for the original dataset and the dataset with data augmentation (iteration 41 and iteration 47

respectively).

Figure 11. Distribution of the individual classes for the images of the training set with data

augmentation.

Table 3. Performance measures [%] for the best result obtained with the original dataset and the dataset

with data augmentation in a total of 50 validations.

Overall Acc Mean Acc Mean IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

Original 80.6 62.9 51.8 87.6 60.9 20.9 60.2 11.6 54.1 55.5 64.0
DA 80.4 65.0 54.1 85.7 64.2 38.6 61.3 8.6 54.3 61.1 58.8

Looking at the results, it is possible to see that increasing the number and variety of sample, under

equivalent conditions for thre train) increases the general value of the mean IoU by about 2.5%, which

is a relevant result because there are 5 classes whose IoU of the results is increased. There are two

classes where the behaviour decreases, but one of them is a difficult class to model (plants) and another

is a general class because it is rocks and the value of this class is still useful in the intended context.

Figure 12 shows the results obtained during the learning process in terms of the mean IoU value.

Figure 12. Mean IoU measurement along the 50 evaluations with the original dataset and the data

augmentation dataset.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2023                   doi:10.20944/preprints202310.1767.v1

https://doi.org/10.20944/preprints202310.1767.v1


12 of 23

It can be seen that the result with data augmentation generally performs better throughout the

process, and if we look at the first 25 evaluations, we see that the difference between the maximum

values reached is about 6.5%, which means that the data segmentation learns faster. Figure 13 shows

the same analysis, but in relation to the individual classes of the process.

Figure 13. IoU measurement along the 50 evaluations with the original dataset and the data

augmentation dataset, for each class.

It can be noted that in most cases the data augmentation improves the result of the IoU values

or starts better and faster than the results without data augmentation. With respect to classes 0 and

7, the results of DA are not better than the original results, but these are common classes that are

strongly represented on many images and for this reason are easy to learn. Regarding the worst classes

(plants and robots), it is important to point out that with data augmentation, the results with better

performance start earlier, which means that the ability to learn in the training dataset with a larger

number of samples. These two values are lower than those of the other classes because the dataset is

unbalanced with more images, which means that these classes are less represented than the others.

Figure 14 shows the results of the original dataset (second column) and the dataset with

augmentation (third column) with the same configurations. It can also be seen that for most classes

and images, the result with the augmented data is better than the previous one. Pixels identified as

robots occur in large numbers, and wrecks and duman divers are better delineated. Plants and robots

are the classes that give the worst results, as they remain the classes with low representativeness.
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Figure 14. Qualitative comparison of the results of 10 different examples of semantic segmentation

(a and d) using the original dataset (b and e) and the data augmentation set (c and f) for the training

process, where the best model was selected in a total of 50 validations.

4.2.2. Data Augmentation of the Less Representative Classes

Now that it is clear that segmentation is well suited to improve the results, as it produces more

images in which the classes are represented with different perspectives, sizes and image qualities, the

next experiment is to see what happens when we apply data augmentation to all images, but in a

different number of variations according to class.

Looking at the distribution of the original dataset used for training (see Figure 1), we can see

that the classes robots, plants and wrecks are less represented in the images. Therefore, 2 image data

augmentations (RandomSizedCrop and HorizontalFlipping) were applied in all classes and another 5

transformations (CenterCrop, Crop on the left, Grid and Elastic Distortion and Dowscale) were applied

in the less representative classes (classes 2, 4 and 5). The generated dataset includes a total of 7312

images, which is a larger dataset, but it needs to be verified if this number of images is sufficient to

model the 8 classes. The new distribution of classes in all images is shown in Figure 15.

Figure 15. Distribution of the individual classes for the images of the training set when applying the

data augmentation in different number according to the class.
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It can be seen that the less representative classes are the same as in the previous experiment, but

with higher number of samples per class. The higher representative class is present in about 70%

instead of 80% of the images and the three less representative classes are present on average in about

17% instead of 12%. It should be noted, however, that the increase in the worst class is not proportional

(while the robot class increases by 6 times, the wrecks increase by 7 times) because the classes are not

isolated in the image and some cropping transformations may suppress some of them. This factor

in addition with the different size of the representation of each class in each image may affect this

result. In the same way as in the previous experiment, training was performed on the images of this

new dataset with data augmentation (DA1) after every 5000 images (about two-thirds of the total

number of images in this dataset) for a total number of 250000 iterations, with the aim of obtaining the

same number of evaluations at the end as the original result presented before. Table 4 summarises the

result for the best iteration for the original dataset and for the dataset with the new data augmentation

dataset during the segmentation process over the 50 evaluations.

Table 4. Performance measures [%] for the best result obtained with the original dataset and the new

with data augmentation (DA1) in a total of 50 validations.

Overall Acc Mean Acc Mean IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

Original 80.6 62.9 51.8 87.6 60.9 20.9 60.2 11.6 54.1 55.5 64.0
DA1 80.2 66.0 54.4 86.3 61.1 37.7 61.2 23.5 53.4 54.8 57.9

As can be seen, the value of the mean IoU as well as the mean Acc increases because there are

some classes that increase both the accuracy in detecting the pixels and the ratio between the area

overlap between the prediction and the mask with the union of the two. The classes that are more

augmented in the training set increase the value obtained, except for the wrecks, but the value is

similar to the original one (less than 1%). However, the plants and the robots increase the value of IoU

by 12% and 16% respectively, which is good because they are difficult to model and learn. The class

of divers is not highly augmented compared to the robots, but they increase their IoU value because

in most cases the robots appear on the image together with the human divers. The wrecks (class 5)

do not improve their results even though they belong to the augmented classes, but their results are

already higher than 50% and for this reason it is a good result. A curiosity is that this model was

selected because it has the best value for the mean IoU during the 250000 training iterations, but this

best value corresponds to iteration number 22, i.e. much less evaluations until the best performance.

Figure 16 therefore shows the segmentation obtained for images with the classes that are augmented

in the training process: Wrecks, Plants and Robots, and for these particular cases one can see that the

results are much better than those obtained with the original set. So you can see that the results are

better with the data augmentation because the area of the plants is much better delineated and the

bodies of the robots and the wrecks are well identified in terms of class even with more pixels.
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Figure 16. Qualitative comparison results of 4 different examples of semantic segmentation (a and b),

obtained from the original training set (c) and the data augmentation set (d), using the best model in a

total of 50 validations for each case.

4.2.3. Data Augmentation of the Isolate Classes

The last result related to data augmentation has the main objective to test if it is possible to

increase the value of an isolated class by data augmentation in the images when this class appears. For

this purpose, a dataset was created in which the images of the robot (class with low representativeness)

were augmented with the 7 semantic segmentations of those previously described. The new dataset

shows the distribution of the graph of Figure 17, obtaining a total of 2252 images.

Figure 17. Distribution of the individual classes for the images of the training set when applying the

data augmentation only in the robot class.

The number of images with the robot class increases sharply and its representation reaches more

than 25%, which is a good result for a dataset with 8 classes to be segmented. The plant class is the

class with the lowest representation and the human divers increase their value to more than 30% as

they often co-occur with the robot. Therefore, this dataset was trained with a total of 75000 images,

evaluating all 1500 images to perform a total of 50 evaluations, and the best model was determined
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after 36 evaluations. The result of this best evaluation gave an IoU value of 41.4% for the robot class,

which is an incredible result for the class that had a maximum value of 20.9% in the original case.

As expected, the value for the human diver increases to 67.8%, and these two increases lead to a

higher mean value than in the original case (54.5% instead of 51.8%), proving that when working

with different classes, one or two of which give poor results, the final value of the mean IoU can be

sacrificed a lot. In Figure 18 the result for the value of the IoU of the robot class can be seen throughout

the training process.

Figure 18. IoU measurement for the robot class (class 2) along the 50 evaluations with the original

dataset and the data augmentation dataset.

It can be observed that in addition to the fact that the value in the original dataset is always

lower than when the images with data augmentation were used for the robot, the values in the data

augmentation dataset start to show before. In the original case, the class shows results higher than 0

(also unusable) after 25 evaluations.

Figure 19 shows the result of some images with robot class present, for which the best model

obtained in this test was used.

Figure 19. Qualitative results of different examples of segmented image with robots, obtained from the

data augmentation set for the robot class, using the best model in a total of 50 validations.

In the same way, the class plant is another one that is less representative in the original set, and

so a dataset was created in which the images of the plant were augmented using for that 7 semantic

segmentations. The difference is that only about 100 of the total number of plants are augmented,

because this class occurs in many images with very small sizes or only in one corner of the image,

and the transformation produces images without this class (see Figure 20). The remaining images are

retained in the dataset without data augmentation in a similar way as all images without plant class.
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Figure 20. Demonstration of the size and location on the original set of the plants in some of the images.

In this way a dataset is obtained with a total number of 2588 images, but with more images with

the plant classes, this class being the fourth class most represented in all the images, see Figure 21.

Figure 21. Distribution of the individual classes for the images of the training set when applying the

data augmentation only in the plant class.

Therefore, this dataset was trained with a total of 75000 images, evaluating all 1500 images to

perform a total of 50 evaluations, and the best model was obtained after 45 evaluations. As for the

result, a similar behaviour as for the robot class can be observed, i.e. starting with values higher than

0% and obtaining higher results over the 50 evaluations (see Figure 22), with the best model obtained

with a mean IoU of 53%. In this case, however, the best value of the mean IoU does not refer to the best

value of the IoU for the plants, as all classes are considered in this metric. The value obtained for the

IoU for the plant is about 20% for the best value for the semantic model, which is also a higher value

than the results obtained without data augmentation. It is important to point out that this class is very

difficult to model because it can appear on the image in different sizes, perspectives and variations.

Figure 22. IoU measurement for the plant class (class 4) along the 50 evaluations with the original

dataset and the data augmentation dataset.
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4.3. Data Augmentation with CLAHE Method

In order to evaluate the effect of using both strategies simultaneously and to see if the results

improved, it was decided to use the DA1 dataset, i.e. the more balanced dataset of the previous tests,

where the less representative classes were supplemented with new image samples, and the better

ehancement technique (CLAHE). Therefore, training with the images of this new dataset (DA _C))

was performed after every 5000 images for a total number of 250000 iterations to make 50 evaluations.

Table 5 shows the comparison between the new results and the results obtained in the test with the

data augmentation only. In this way it can be clarified whether it makes sense to use both or whether

the data augmentation is sufficient.

Table 5. Performance metrics [%] comparison for the best result with the more balanced dataset

with data augmentation (DA) and this dataset with CLAHE method (DA_C) applied for a total of 50

validations.

Overall Acc Mean Acc Mean IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

DA1 80.2 66.0 54.4 86.3 61.1 37.7 61.2 23.5 53.4 54.8 57.9
DA_C 81.8 67.6 56.0 87.9 66.7 39.4 62.4 12.8 53.9 61.0 63.9

From the results we can see that all general performance metrics are increasing, especially overall

accuracy, which has been the best metric since the first test, i.e. pixels that belong to a class according

to the model are that class. Mean Acc algthout with less result, considering not only the amount of

pixels well assigned but also the class of each pixel, exceeds 1.5% and in terms of mean IoU it was

the best result ever obtained with this dataset, reaching 56%, which is a good result considering the

number of evaluations that are performed. Looking at the results of the individual classes, we can

see that they are all increasing, except for the value of the plants. It is important to mention that the

value of IoU obtained during the training process for the plant class has a maximum of 17.3%, but in

the table the values considered are those obtained for the best value of mean IoU during the training

process, considering all classes at the same time. This may be because the CLAHE could damage the

region of the specific plant areas on the images. So, it was proved that both strategies together are a

good plan to improve the results in general.

Figure 23 shows the result of the segmented images for some of the images used to test the

different approaches with the best model trained on this final dataset, and the results show good

segmentations and many of the pixels are well labelled (some of the classes, such as robots of fish,

represent the complete object).
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Figure 23. Results of 5 different examples of semantic segmentation (a and b), obtained from the use

of both strategies at the same time: data augmentation of the less representative classes and CLAHE

method.

5. Conclusions

The main objective of this work was to evaluate whether there are approaches commonly used in

outdoor environments that can be applied in visual segmentation methods for the underwater context,

and if so, how much they could improve the overall performance of this task. It was intended to find

out how to build a more balanced dataset without requiring effort in data collection, which is already

challenging and expensive in terms of time and cost, in order to extend these methods to different

domains and application tasks. To do this, we start from the findings obtained in a previous study

by the authors. In that work, 4 literature implementations for semantic segmented applications were

tested and Segnet stands out for its performance and for this reason this method is used in this work.

The lack of good datasets to test these applications is still a problem, namely datasets for semantic

segmentation that it also requires the labelled ground truth for each image. So, the SUIM-dataset is

selected and although it includes only 1500 images for the train, it presents different perspectives, sizes

and conditions of 8 classes that are commonly encountered in this world. Although not all objects

intended for our applications are covered yet and there are some errors in the labelled masks, in both

papers the authors resort to this dataset to perform the evaluations. Therefore, using the Segnet in

a training with 50000 training images and evaluations after every 500 images, an overall accuracy

of 80%, a mean accuracy of 64% and a mean IoU of 52% is obtained for the best result during these

100 evaluations, which is our starting point: the model shows lower performance, with only three

of the total classes achieving more than 60% and two classes achieving less than 30%, which could

be dangerous in a real mission. Therefore, some strategies need to be tested to see if it is possible to

improve these results, and for that approaches to improve image quality and data augmentation are

being tested. The main conclusions regarding the results are therefore the following:
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• The first test was carried out on 50000 training images, with evaluation after 500 randomly

selected images, i.e. after 100 evaluations, with the main aim of finding out which enhancement

techniques can improve segmentation performance. The images used for the test are 100, which

were selected beforehand and are the same for all tests. Looking at the quantitative results, we

can see that the CLAHE method is the only one that increases the mean IoU value, but with a

small increase. In terms of the individual classes, this implementation improves the result of

corals, wrecks and fish classes. The visual results confirm the quantitative results and for this

reason this method was chosen as the best for improving the image quality, as it improves the

visibility of the object boundaries and some important features that allow a better training of the

model.

The next tests have the main objective to test the influence of the data augmentation for the intended

application, since the dataset used is small and a total of 8 transformations were used to create the new

datasets used in the tests.

• In the first test of data augmentation, a new dataset with a total of approximately 9000 images is

created using 5 random data augmentations. The dataset is used along a training of a total of

300000 training images, evaluated after every 6000 images (two thirds of the total dataset) and a

new test of the original images is performed over the same conditions (a total of 50000 training

iterations and evaluations after every 1000 images to also obtain a total of 50 evaluations). The

results with the dataset using the data augmentation increase the original result of the mean

IoU by 2.3%, which shows that it is relevant and allows learning some classes with a greater

diversification. There are 5 classes that improve their results, namely classes that are more difficult

to learn, such as the robot, because it is a class with fewer images in the original dataset (only

104 images), which increases its metric in 17%. However, this class and the plants are the worst

classes because the increase in the number of images per class is the same for each class, which

also leads to an unbalanced dataset. The classes that decrease its performance decrease by values

that are still good and useful in a real context, i.e. they are not dangerous.
• The following test wants to see what happens when we augmented the classes with less

representative and for this, the images where there are plants, robots and wrecks are augmented

with 7 transformations and the rest of them with only 2. However, it is impossible to isolate

classes and sometimes when we augment a class with an image, we augment more than this class

because in the original there is not only one class. This results in a slightly more balanced dataset

where the higher representative class is present in about 70% instead of 80% of the images and

the three less representative classes are present on average in about 17% instead of 12%. Under

the same conditions as the previous test, the performance for the mean IoU is 54.4%, with robots

improving their score and plants presenting a IoU value of 23.5% for the best model obtained

during training.
• To test whether it is possible to increase the value of the isolated classes, two tests are performed:

one with the robot class that is least representative in the original dataset, and another with the

plants that are shown to be the most difficult class to learn. For this, the images in which the

robot class appears are isolated and 7 transformations are applied and so, the robot is no longer

the less representative class. The value of IoU for this class increases for values of 41.4% (value

never obtained for this class). When examining the plants, in addition to isolating the images

of the plant class, it is necessary to select only some of them to data augmentation, because in

many images the class appears with few pixels and the transformations are images without the

class. Comparing the results of the class with this data augmentation and the original case, we

can see that in test of data augmentation the class presents values higher than 0% first before

than than with original case. The values obtained are always higher than in the original test and

reach a maximum of 25%. This lower value can be explained by the fact that the images are not

very representative with different variations and for this reason it is a more difficult class to learn.
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These tests show that it is possible to increase the values of a class by feeding the model with a

variety of images.
• The last test has the main objective to see if the data augmentation and enhancement technique

gives good results. For this purpose, the CLAHE method was applied to the data augmentation

of the less representative classes (DA1). The results obtained are very good, with a mean IoU

value of 56% and an increased Overall Accuracy value of 81.8% (the highest value at this time).

The mean Accuracy value is also increasing, which means that the results are better in different

classes. The results are better than just applying the data augmentation for all classes except

plants, which may mean that the enhancement can confuse the model in the regions of the images

(put many saliency features, for example) where there are plants and this class continues to be

the most difficult in learning process, but in the visual results this class already appears more.

Considering the last result with both strategies, we can conclude that all the changes made during

the study are beneficial and that the results at this moment are better than in the original cases, because

now there are 5 classes with more than 60% and only one with less than 30% for the IoU value, and

therefore it is a more reliable result and can be more easily used in real contexts. It is important to

mention that the results are different from the original results trained along a higher train, which

is a good result as it is expected that in longer trains, the values of some classes can achieve higher

performance as they are more difficult to train. So, both strategies shows real relevance in semantic

segmentation context namely in underwater, where it is so difficult to acquire images with relevance

in the quantity need to feed the deep learning techniques.

In terms of future work, the intention is to automate the process of data augmentation to apply

more transformations without worrying about the capture this implies, namely, for example, in the

rotational or flipping transformations (which are allowed in some cases and avoided in others when it

is not practical), and to test the performance with images captured in real missions of the robots. In

addition, other objects that are crucial for the movement of the vehicles, such as pipelines, anchors,

etc., will also be included in this dataset.
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Abbreviations

The following abbreviations are used in this manuscript:

CLAHE Contrast Limited Adaptive Histogram Equalization

DA Data Augmentation

FCNN Fully Convolutional Networks

IoU Intersection-over-Union

PSPNet Pyramid Scene Parsing Network

SUIM Segmentation of Underwater IMagery

WB White Balance
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