
Article

Not peer-reviewed version

Leveraging the Novel MSHA

Model: A Focus on Adrenocortical

Carcinoma

Mubarak Taiwo Mustapha 

*

 , Berna Uzun , Dilber Uzun Ozsahin

Posted Date: 27 October 2023

doi: 10.20944/preprints202310.1738.v1

Keywords: adrenocortical carcinoma; computed tomography; detection; evaluation metrics; MSHA

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2517854
https://sciprofiles.com/profile/590927
https://sciprofiles.com/profile/2076860


 

Article 

Leveraging the Novel MSHA Model: A Focus on 

Adrenocortical Carcinoma 

Mubarak Taiwo Mustapha 1,*, Berna Uzun 1,2 and Dilber Uzun Ozsahin 1,3,4, 

1 Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey 
2 Department of Mathematics, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey 
3 Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah, UAE 
4 Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE 

* Correspondence: mubarak.mustapha@neu.edu.tr 

Highlight: 

• Development of a novel model incorporating mixed-scale dense convolution, self-attention 

mechanism, hierarchical feature fusion, and attention-based contextual information techniques. 

• Implementation of the model for ACC detection using CT images. 

• MSHA model aids surgical planning and postoperative monitoring for ACC. 

• Performance evaluation of the MSHA model with ResNet50, VGG16, VGG19, and inceptionV3. 

Abstract: This study aims to explore the utilization of deep learning models, specifically the innovative Multi-

Modal Contextual Fusion Convolutional Neural Network (MSHA), for the detection and diagnosis of 

Adrenocortical Carcinoma (ACC) using computed tomography (CT) images. The objective is to develop an 

accurate and reliable model that can assist in the effective detection and classification of ACC. The study utilizes 

a dataset comprising contrast-enhanced CT images from 53 confirmed ACC patients. The MSHA model is 

employed, which incorporates a combination of mixed-scale dense convolution, self-attention mechanism, 

hierarchical feature fusion, and attention-based contextual information techniques. Evaluation metrics are used 

to assess the performance of the MSHA model, and a comparison is made with other established models, 

including ResNet50, VGG16, VGG19, and InceptionV3. The evaluation of the MSHA model demonstrates high 

performance, with an accuracy of 96.65% and precision, sensitivity, specificity, and F1 score of 96.0%. These 

results highlight the MSHA model’s capability in accurately detecting and classifying ACC. Furthermore, 

compared to other models, the MSHA model outperforms ResNet50, VGG16, VGG19, and InceptionV3, 

indicating its superior performance in ACC detection and diagnosis. The findings of this study suggest that the 

MSHA model holds significant potential in assisting healthcare professionals with the detection and diagnosis 

of ACC. With its advanced features and contextual fusion techniques, the MSHA model achieves high accuracy 

and performance. The results highlight the clinical significance of this novel model and its potential to improve 

patient management and outcomes in the detection and diagnosis of ACC using CT images. 

Keywords: adrenocortical carcinoma; computed tomography; detection; evaluation metrics; MSHA 

 

1. Introduction 

Artificial intelligence (AI) has revolutionized the field of oncology, especially cancer detection, 

by providing innovative tools to improve accuracy, efficiency, and patient outcomes. Advancements 

in machine learning, deep learning, and convolutional neural networks have fueled the evolution of 

AI in cancer detection. These technologies enable the analysis of vast amounts of medical data, 

including imaging studies, molecular profiles, and clinical records, to identify subtle patterns and 

extract meaningful information [1]. By training deep learning models on diverse datasets, researchers 

have achieved remarkable accuracy in detecting various cancer types [1–5]. The importance of deep 

learning models in cancer detection lies in their ability to augment human expertise and enhance 

diagnostic capabilities. Deep learning algorithms can rapidly analyze complex medical images, such 
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as computed tomography (CT) scans, aiding radiologists in identifying suspicious tumors and 

facilitating early intervention [6]. Also, deep learning-based predictive models can assess multiple 

clinical variables and molecular data to stratify patients based on risk profiles and predict treatment 

response [7]. 

The clinical significance of deep learning algorithms for Adrenocortical Carcinoma (ACC) 

detection and diagnosis, specifically with CT images, cannot be overstated. ACC is a rare, aggressive, 

and highly fatal tumor with 5-year overall survival rates ranging from 14% to 44% originating from 

the adrenal cortex [8]. Its accurate detection and characterization are essential for optimal patient 

management. Figure 1 shows the CT scan of the abdomen showing the adrenal mass segmented in 

all planes. By training deep learning models on large datasets of annotated CT images, patterns and 

features specific to ACC can be learned, enabling automated detection of suspicious tumors that 

might otherwise be missed [9]. This enhances diagnostic accuracy and reduces the risk of false-

negative results, allowing for early and timely intervention. 

 

Figure 1. CT scan of the abdomen (A) showing left adrenal mass. The adrenal mass (red) is segmented 

in all planes (Axial (B), Sagittal (C), and coronal (D) planes) [8]. 

By extracting quantitative imaging features from CT images, such as tumor size, shape, density, 

and enhancement patterns, deep learning algorithms can generate predictive models that help 

differentiate ACC from other lesions [9]. This can assist clinicians in making more informed decisions 

regarding treatment planning and patient management, reducing unnecessary surgical procedures, 

and guiding appropriate follow-up protocols. Additionally, deep learning models can contribute to 

postoperative monitoring and surveillance of ACC patients using CT images [12]. This proactive 

surveillance approach allows for timely intervention and adjustment of treatment strategies, 

potentially improving patient outcomes and survival rates. 

In this study, we proposed implementing a novel multi-modal contextual fusion convolutional 

neural network (CNN) model named MSHA to detect and diagnose Adrenocortical Carcinoma using 

CT images from the Cancer Imaging Archive database [8]. The model got its name from combining 

mixed-scale dense convolution, self-attention mechanism, hierarchical feature fusion, and attention-

based contextual information techniques in a single architecture. This model is based on a deep 

learning framework. We further evaluated the performance of our novel model with sophisticated 
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state-of-the-art transfer learning techniques, including ResNet50, vgg16, vgg19, and inceptionV3. The 

outcome of this study will be useful in the improved accuracy and early detection of Adrenocortical 

Carcinoma. 

2. Methodology 

The section outlines the experimental design, as shown in Figure 2, data collection, and analysis 

procedures to address the research objectives. It provides a comprehensive overview of this 

investigation’s techniques, models, and methods.  

 

Figure 2. An experimental design of the study. 

2.1. Data Collection  

The data used for this study was obtained from the cancer imaging archive database, and its 

access is public, indicating it can be used publicly for research purposes [8]. The data consist of 

contrast-enhanced CT images from a total of 53 confirmed ACC patients, resulting in 18,215 CT 

images, as shown in Table 1. The data spanned 2006 to 2018 and included comprehensive clinical and 

pathological information, including the crucial Ki-67 index. All participants met specific inclusion 

criteria, encompassing a histopathological confirmation of ACC, surgical resection of the tumor, and 

determination of the Ki-67 index from the resected tissue as part of the standard evaluation. Only 

patients with available pre-resection contrast-enhanced CT scans of the abdomen were included in 

the dataset. Notably, patients whose Ki-67 index was quantified solely in biopsied tissue samples 

rather than in the resected whole tumor were excluded from the study. Previous research had 

established that Ki-67 quantification should be based on samples collected from the entire tumor [13]. 

Notably, prior to the availability of this dataset, there was no publicly-accessible library designed 

explicitly for adrenal lesions. Consequently, this dataset fills a critical gap in the field. It can serve as 

a valuable training set for machine learning algorithms for diverse applications, including adrenal 

tumor segmentation and classification.  

Because the study involves binary classification modeling, we used a second data- the kidney 

tumor data. The data was obtained from the training set of the 2019 Kidney and Kidney Tumor 

Segmentation Challenge (KiTS19) [13]. The dataset consists of CT scans from 210 patients who 

underwent partial or radical nephrectomy at the University of Minnesota Medical Center. The CT 

scans were collected during routine patient care and were heterogeneous in terms of scanner 

manufacturers and acquisition protocols [13]. 
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Table 1. The demographic distribution of the data. 

Parameter  Statistic  ACC Kidney tumor 

Gender - Male Total  22 123 

Gender - Female Total  31 87 

Age 

Min/Max 22/82 1/90 

Mean 53.00 58.35 

Median 54 61 

Mode 56 73 

SD 13.47421 14.38798 

Number of CT images used Total 18,215 18,215 

Data collection period Years  2006 - 2018 2010 – mid-2018 

2.2. Image Preprocessing  

Image pre-processing enhances fine details and improves key features by removing unwanted 

variations [14]. Properly pre-processed images improve segmentation and classification, as all 

algorithms are susceptible to noise [14]. Image pre-processing techniques can be classified based on 

their target pixel region size. These techniques operate on neighboring pixels of the sub-image to 

eliminate distortion and noise and improve images. The poor quality of images, environmental 

factors, and limited user interface can prevent CT images from becoming distorted, resulting in a loss 

of visual information and processing difficulties [15]. In this study, image contrast enhancement was 

used to improve the display of the region of interest in two datasets. The CT images of ACC and 

kidney tumor were collected initially as DICOM (Digital Imaging and Communications in Medicine) 

images. Directly working with DICOM images in CNN frameworks can be challenging due to its 

non-standard format, limited software support, and potential compatibility issues. However, 

converting DICOM images to JPG (Joint Photographic Experts Group) format simplifies data 

handling, reduces file size, and improves compatibility with CNN frameworks. Hence, the DICOM 

images were converted into JPG format. The conversion was done using libraries such as os, Pydicom, 

NumPy, and PIL (Python Imaging Library), after which rescaling, normalization, and saving of the 

resulting grayscale image as a JPG file was done. 

2.3. Data Augmentation  

We employed several data augmentation techniques to increase the size and diversity of our 

training dataset and enhance the robustness of the model by exposing it to a broader range of 

variations and scenarios. This involves applying various transformations to the existing data, such as 

flipping, shifting, rotating, or zooming, to create new training samples slightly different from the 

original ones, as shown in Table 2. The model becomes less sensitive to small changes or noise in the 

input data by augmenting the data, leading to improved generalization performance [16]. Data 

augmentation plays a crucial role in mitigating overfitting, where the model memorizes the training 

data rather than learning meaningful patterns. By introducing randomness and variability through 

data augmentation, the model is less likely to overfit and learns more robust and generalizable 

representations [16].  

We applied various data augmentation techniques with specific ranges or scales. We utilized 

horizontal and vertical flips to mirror images, width and height shifts to randomly shift images within 

a fraction of their total width or height, shear transformations within a maximum shear angle, 

zooming in or out by a specified range, rotation within a certain angle, ZCA whitening (disabled in 

our case), and channel shifting within a specified range. These scales or ranges provide flexibility in 

controlling the extent of the applied transformations during data augmentation, allowing us to tailor 

the augmentation process to the specific requirements of our deep learning task and the 

characteristics of our dataset. By adjusting these parameters, we can effectively enhance the diversity 

and variability of our training data, thereby improving the model’s ability to learn and generalize 

from the limited available data. 
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Table 2. Data augmentation techniques and their range. 

Techniques  Range/Scale 

Horizontal flip True 

Vertical flip True  

Width shift range 0.3 

Height shift range 0.3 

Shear range 0.2 

Zoom range 0.2 

Rotation range 0.2 

ZCA whitening False 

Channel shift range 0.2 

2.4. Hyperparameter Optimization  

Optimizing hyperparameters is crucial, especially for our novel model developed from scratch, 

as it directly impacts the model’s performance and generalization ability. Hyperparameters are 

settings or configurations not learned by the model but set by the researcher. They significantly 

influence the model’s behavior, such as convergence speed, regularization, and capacity. In our 

study, we chose to leave the hyperparameters of well-established models like ResNet50, VGG16, 

VGG19, and InceptionV3 as they are. This decision ensures that the knowledge transferred through 

transfer learning remains intact, and any alteration to these hyperparameters could significantly 

change the model’s architecture and performance. 

To optimize the hyperparameters of our novel model, we employed the grid-search optimization 

technique. Grid-search optimization technique involves exhaustively searching through a predefined 

set of hyperparameter combinations to identify the best configuration that maximizes the model’s 

performance. This approach is relevant as it systematically explores the hyperparameter space and 

allows us to evaluate the model’s performance across various combinations. We can identify the 

optimal configuration that yields the best results for our specific task by evaluating multiple 

hyperparameter settings. We focused on optimizing four key hyperparameters: batch size, epochs, 

and optimizer choice, along with the learning rate. The batch size, ranging from 10 to 100, determines 

the number of samples processed before updating the model’s weights. The number of epochs, 

ranging from 30 to 100, defines the number of times the entire dataset is passed through the model 

during training. To explore different optimization algorithms, we considered seven optimizers, 

including SDG, RMSProp, Adagrad, Adadelta, Adam, Adamax, and Nadam. Additionally, we varied 

the learning rate with values of 0.0001, 0.001, 0.01, 0.1, and 0.2 to examine its impact on the model’s 

convergence and performance. Our grid-search optimization found that a batch size of 32, 50 epochs, 

an Adam optimizer, and a learning rate 0.0001 provided the optimized set of hyperparameters for 

our novel MSHA model. These settings were determined based on their ability to maximize the 

model’s performance on our specific task while avoiding issues such as overfitting or slow 

convergence. 

2.5. MSHA Model 

The MSHA is a novel multi-modal contextual fusion CNN model. The study adopted the MSHA 

model to illustrate the capability of a CNN model developed from scratch with unique modifications 

and peculiarity to the data in use to attain optimal performance. It conforms with the data used and 

the frame of the problem we intend to solve. We designed the DL network as a simple CNN model 

and improved it by adding layers (convolution, pooling, and dense) and hyperparameter tuning until 

the utmost performance was achieved. While tuning the hyperparameter, we avoided overfitting and 

underfitting to ensure adequate generalization of the unseen data. This is visible in the model’s 

performance compared with the performance of the state-of-the-art pre-trained model evaluated in 

this study. The model is designed to handle both image classification and object detection tasks. It 
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contains components dedicated to feature extraction, object detection using the region proposal 

network (RPN), and final classification.  

We adopted a CNN architecture using the detection method of classification, which determines 

the output information from a single image. Our CNN architecture consists of a 2-dimensional (2-D) 

CNN architecture. The network comprises four convolutional and three max-pooling layers. The two 

layers used kernel and pool sizes of 3 × 3 and 2 × 2, respectively. A series of 4 fully connected layers 

with 128, 64, 32, and 16 neurons, and a final output layer, as shown in Figure 3, provided high-level 

reasoning with a sigmoid activation function for the classification task. The sigmoid activation 

function squashes the output of each neuron between the range of 0 and 1. Details regarding training 

are as follows: Adam, a gradient-based stochastic optimizer, was utilized with a batch size of 32 and 

a dropout of 25% on the convolutional and fully connected layers, respectively. We used the binary 

cross entropy loss to compare the predicted probabilities to the actual class output, which can be 0 or 

1. Finally, we compile the model using accuracy metrics. The rectified linear activation function 

(ReLu) was the activation function of choice across the entire network before the final sigmoid 

activation function. 

Our model stands out as a unique and novel approach in several aspects. Firstly, it incorporates 

additional features such as batch normalization layers, dropout layers, residual connections, and 

attention mechanisms. These additions contribute to improved training stability, regularization 

against overfitting, enhanced gradient flow, and the ability to capture long-range dependencies. 

Secondly, our model is designed to handle both image classification and object detection tasks within 

a single unified framework. It consists of components dedicated to feature extraction, object detection 

using the region proposal network (RPN), and final classification. This multi-purpose architecture 

offers versatility and efficiency, eliminating the need for separate models for different tasks. 

Moreover, the attention mechanism in our model allows for capturing dependencies across spatial 

locations, enabling the model to focus on relevant image regions and understand contextual 

relationships. This attention mechanism enhances performance in both image classification and 

object detection tasks. Combining convolutional layers and residual connections also empowers the 

model to learn complex image features and structures effectively. The convolutional layers capture 

hierarchical features, while residual connections facilitate gradient flow and enable the training of 

deeper models. Lastly, our model’s flexibility and modifiability make it a valuable tool for researchers 

and practitioners. 

 

Figure 3. The basic Architecture of the Proposed Model. 

3. Result and Discussion 

This study conducted the model training and evaluation using the Keras package and Python 

programming language in the Jupyter Notebook environment. The pre-processed data were divided 

into 80% training and 20% test set and fed into the novel MSHA model. The model was validated 

using a 20% subset of the training data and trained using 50 epochs. We adopted the dropout 

regularization technique after the third max pooling layer and in the dense layers. Dropout 
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regularization is an easy-to-use regularization technique. It produces a simple and efficient neural 

network by turning off some neurons during training. Simple neural network results in less 

complexity and, in return, reduce overfitting. Two callbacks, including EarlyStopping and 

ReduceLROnPlateau, were implemented to improve the training process, optimize model 

performance, and prevent overfitting. The EarlyStopping monitors the validation loss and stops the 

training process early if the loss does not improve for a certain number of epochs [17]. In our case, 

we selected the validation loss. The ReduceLROnPlateau callback reduces the learning rate when the 

validation loss does not improve for a certain number of epochs [18]. In this case, patience=3. 

3.1. Performance Evaluation Metrics 

Performance evaluation metrics are crucial in developing, testing, and deploying machine 

learning models, allowing for more accurate and effective AI solutions [19]. They provide a way to 

quantitatively measure the accuracy, precision, sensitivity, specificity, and other aspects of the 

model’s performance. With performance evaluation metrics, it is possible to determine how well a 

model performs or compare different models’ performance. Performance evaluation metrics also 

help improve machine learning models’ transparency and interpretability, essential for building trust 

in these systems [20]. 

In this study, the performance of the novel MSHA model was evaluated using performance 

evaluation metrics. The results indicate that the MSHA model was highly accurate in detecting and 

classifying ACC and kidney tumors, with a 97.00% and 95.00% precision, as shown in Table 3. The 

model’s high precision score indicates it could correctly identify ACC and kidney tumors in most 

cases. Also, the sensitivity score of 94.00% for ACC and 97.00% for kidney tumors show that the 

model could correctly identify all positive cases. This indicates a highly sensitive model with 

promising clinical significance in accurately detecting ACC and kidney tumors in CT images. 

Subsequently, the specificity score of 96.80% for ACC and 94.50% for kidney tumors show that the 

model could correctly identify all negative cases. This indicates that the model is highly specific and 

can accurately tell when the tumor is absent. Furthermore, the F1 score of 96.00% for ACC and kidney 

tumors indicates the model’s potential to balance precision and sensitivity efficiently. This means the 

model could identify the positive cases (ACC and kidney tumor) while correctly minimizing the false 

positives. Finally, the accuracy score of 95.65% indicates that the model could correctly classify the 

CT images of ACC and kidney tumors with a high degree of accuracy.  

The high performance of the MSHA model in detecting and accurately classifying CT images of 

ACC and kidney tumors has significant clinical implications in providing a rapid and accurate 

diagnosis, particularly in regions with limited access to specialized medical care and facilities. The 

model highlights the potential of the MSHA model as a valuable tool in detecting and classifying 

ACC and kidney tumors using CT images. 

Table 3. The Performance Evaluation Metrics for the MSHA Model. 

 
Precision 

% 

Sensitivity 

% 

Specificity 

% 

F1 Score 

% 

Accuracy 

% 

ACC 97.00 94.00 96.80 96.00 
95.65 

Kidney tumor 95.00 97.00 94.50 96.00 

3.2. Confusion Matrix 

A confusion matrix is a statistical tool commonly used to evaluate the performance of machine 

learning models. We implemented it to help determine how well our model can classify all the images 

into the two classes. The matrix presents the number of true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) predictions made by the model. A confusion matrix is essential 

for evaluating the accuracy and effectiveness of models, as it provides a clear visual representation 

of the model’s performance. By examining the matrix, the strengths and weaknesses of the model can 
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be identified, and adequate improvements can be made to ensure more accurate and reliable 

diagnoses [21]. 

The MSHA model produced excellent results, as evidenced by the confusion matrix. The model 

correctly predicted 3444 CT images (TP) as ACC, with 204 images misclassified as kidney tumors 

(FP), as shown in Figure 4. This result indicates that the model is highly accurate and reliable for 

diagnosing ACC. Also, the model correctly classifies 3525 CT images (TN) as kidney tumors but 

misclassifies 113 as ACC images (FN). The resulting confusion matrix of the MSHA model in 

detecting and classifying CT images is highly significant for medical diagnosis.  

 

Figure 4. The confusion matrix of the MSHA model. 

3.3. Learning Curve 

Model accuracy and model loss learning curves are important tools for evaluating the 

performance of deep learning models. They provide information about the accuracy and loss of a 

model over time during the training process, which can help identify potential issues with the 

model’s performance and guide improvements to the model [5]. The model accuracy learning curve 

shows the model’s accuracy on the training and validation datasets over time. It can reveal whether 

the model is overfitting or underfitting the training data [22]. An overfit model will have high 

accuracy on the training data but low accuracy on the validation data, indicating that it needs to 

generalize better to new and unseen data [23]. An underfit model will have low accuracy on both the 

training and validation data, indicating that it needs to learn the patterns in the data better [24]. 

Monitoring the model accuracy learning curve makes it possible to identify the optimal number of 

epochs to train the model and ensure that it is not overfitting or underfitting.  

The MSHA model produced a good fit and could learn the underlying patterns in the data 

without overfitting or underfitting. The increased training accuracy over the epochs indicates that 

the model is learning and improving. As shown in Figure 5, the training started slowly at epoch 0 

and maintained an upward and steady increase to produce an approximate training accuracy of 

92.7% between epochs 44-50. As important as the training accuracy, it is important to evaluate the 

model’s performance on the validation data, which represents new, unseen data, to ensure that the 

model is balanced with the training data. Similar to the training accuracy, the validation accuracy 
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starts slowly and experiences a slight irregularity. However, it steadily increases until it plateaus at 

a validation accuracy of 94.7% at epoch 50, indicating that further training may not improve the 

model’s performance on new data. 

The model loss learning curve shows the change in the loss function of a model as it trains over 

multiple epochs. The training loss decreases over time as the model learns to fit the data better, which 

is a good sign. The training loss started at 0.6919 at epoch 1 and gradually decreased uniformly to 

0.1805 at epoch 50. This indicates that the model improves its ability to predict the correct output 

with less error. On the other hand, the validation loss steadily decreased from epochs 1 to 11 with 

consistent fluctuation between epochs 14-43 before stabilizing at epoch 45 and maintaining a uniform 

decrease. The validation loss measures the difference between the predicted and actual outputs on a 

data set that the model has not seen during training. Thus, it estimates the model’s performance on 

new data. A good fit is achieved when the model’s low training and validation losses have stabilized 

over several epochs. Low training and high validation loss indicate overfitting, while high values of 

both losses may suggest underfitting [5]. Therefore, analyzing the model accuracy and model loss 

learning curves is crucial in evaluating a model’s performance and deciding how to improve it. 

  

Figure 5. The Model Accuracy and Loss of the MSHA Model. 

3.4. Receiver Operating Characteristic (ROC) Curve 

The Area Under the ROC Curve (AUC ROC) is an important supervised learning metric, 

especially in binary classification problems that provide a graphical representation of the diagnostic 

performance of a classification model [25]. This metric comprehensively measures a classifier’s 

performance across all possible classification thresholds. The AUC ROC considers the true positive 

rate (sensitivity) and the true negative rate (specificity). It provides a single scalar value that 

summarizes the classifier’s ability to discriminate between ACC and kidney tumors. This ensures 

that a higher AUC ROC implies better model performance. While AUC and ROC curves are closely 

related, they represent different concepts. The ROC is a curve plot that represents the performance 

of a binary classification model as its discrimination threshold is varied [26]. AUC, on the other hand, 

is a numerical value that quantifies the overall performance of a binary classification model based on 

its ROC curve [27]. The AUC value quantifies the overall discriminatory power of the model, with a 

value of 1 representing perfect classification and 0.5 indicating random chance. 

A ROC curve with an AUC of 0.99, as shown in Figure 6, suggests that the MSHA model has a 

high discriminatory capacity for differentiating between ACC and kidney tumors. This implies that 

the model can effectively separate true positive cases (correctly classified CT images) from false 

positive cases (incorrectly classified CT images) with a very high level of accuracy. Such a high AUC 

value indicates that the model has exceptional performance in correctly classifying the skin lesions 

associated with ACC and kidney tumors. This signifies that the MSHA model has the potential to 

provide reliable and accurate diagnostic support for oncologists, especially in distinguishing between 

ACC and kidney tumors. This high discriminatory power can aid in making precise diagnoses, 
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guiding appropriate treatment decisions, and potentially reducing misdiagnoses or unnecessary 

procedures [27]. 

 

Figure 6. The ROC Curve of the MSHA Model. 

3.5. Comparative Evaluation with State-of-Art Transfer Learning Techniques 

Comparing our model with other state-of-the-art transfer learning techniques such as ResNet50, 

VGG16, VGG19, and InceptonV3 provides a benchmark for evaluation, assesses generalizability, 

contributes to advancements in the field, and aids decision-making for practical applications. 

Furthermore, these models are well-known and widely used transfer learning techniques in 

computer vision with remarkable performance and significant contributions to image recognition 

tasks. By comparing the MSHA model with these well-established models, we can effectively assess 

its performance, competitiveness, and potential superiority. This comparison will help position the 

novel MSHA model within the context of existing state-of-the-art approaches and establish its 

credibility and relevance in computer vision.  

Similar to the implementation of the MSHA model, all the state-of-art transfer learning 

techniques used were implemented on the Jupyter Notebook. The last layers were frozen during the 

fine-tuning process to preserve learned representations and prevent them from being modified or 

overwritten, allowing the model to focus on adapting its parameters to the new task at hand and 

reducing the number of parameters that need to be updated, making the training process more 

efficient and faster. Furthermore, three dense layers with the ReLU activation function were adopted 

before the final output layer with the sigmoid activation function. Finally, the model was trained 

using 50 epochs while callbacks were adopted to prevent overfitting.  

The ResNet50 is a convolutional neural network (CNN) architecture known for its deep residual 

learning framework. It addresses the problem of vanishing gradients in very deep networks, allowing 

for the training of extremely deep models. It has been successful in various image classification 

challenges and is renowned for its ability to capture intricate features from images [28]. The VGG16 

and VGG19 are deep CNN architectures developed by the Visual Geometry Group (VGG) at the 

University of Oxford. These models are characterized by their uniform architecture, consisting of 

multiple stacked convolutional and fully connected layers. VGG16 and VGG19 are known for their 

excellent performance on large-scale image classification tasks, exhibiting high accuracy due to their 

deep and fine-grained feature extraction capabilities [29]. The InceptionV3, also known as GoogleNet, 

introduced the concept of inception modules, efficiently capturing multi-scale features by employing 

parallel convolutions at different spatial resolutions. This architecture reduces the computational 

complexity while maintaining high accuracy. InceptionV3 has been widely used in various image 
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recognition tasks and has demonstrated excellent object recognition and localization performance 

[30].  

The comparative analysis of the novel MSHA model with state-of-the-art models reveals 

significant variation in performance and provides differing clinical implications. The novel MSHA 

model significantly outperformed other models with improved performance. The MSHA model 

outperforms ResNet50, VGG16, VGG19, and InceptionV3 in terms of accuracy, precision, sensitivity, 

specificity, F1 score, AUC, and loss. It achieves an accuracy of 96.65%, significantly higher than the 

other models, as shown in Table 4. The MSHA model also demonstrates higher precision, sensitivity, 

and specificity than ResNet50, VGG16, VGG19, and InceptionV3. Its F1 score of 96.0% indicates a 

superior balance between precision and sensitivity. Additionally, the MSHA model achieves an AUC 

value of 0.99, reflecting excellent discriminative ability, and has a lower loss value of 0.108, indicating 

better optimization and fewer errors. 

The improved accuracy of the MSHA model holds significant clinical significance. With a 96.65% 

accuracy in correctly classifying CT images of ACC and kidney tumors, the MSHA model provides 

reliable and precise results. This high level of accuracy can greatly benefit oncologists and healthcare 

professionals involved in diagnosing and treating these types of tumors. It reduces the chances of 

misclassification, enabling early detection and appropriate intervention and improving patient 

outcomes. 

By outperforming other models across various metrics, the MSHA model offers a more robust 

and accurate tool for assisting oncologists in making critical decisions. Its higher precision, 

sensitivity, and specificity values ensure better identification of positive cases and accurate exclusion 

of negative cases. The model’s superior F1 score indicates a well-balanced trade-off between precision 

and sensitivity, striking an optimal equilibrium in tumor classification. Moreover, the high AUC 

value of 0.99 signifies its excellent discriminative ability, distinguishing between ACC and kidney 

tumors with high confidence. The MSHA model’s lower loss value demonstrates effective error 

minimization and optimization, enhancing its overall performance. 

The superior performance of the novel MSHA model can be attributed to several factors, such 

as its unique architectural design, effective training strategy, and better capability to learn and 

represent the relevant features in the skin lesion images. The incorporation of specific design choices, 

such as the Mixed-Scale Dense Convolution Layer, Self-Attention Mechanism, Hierarchical Feature 

Fusion, and Attention-Based Contextual Information, enabled the MSHA model to capture and 

extract relevant features more effectively for skin lesion classification. The MSHA model’s 

architecture seems better suited to learning and representing the intricate patterns and structures in 

the skin lesion images associated with ACC and kidney tumors. Also, the MSHA model was trained 

using an optimized configuration and effective training strategies, such as carefully selecting 

hyperparameters such as learning rate, batch size, and regularization techniques. These 

configurations will facilitate faster convergence and help the model find a more optimal solution.  

Despite ResNet50 being a sophisticated model known for its deep architecture and skip 

connections, it exhibited the least performance compared to other models. The lower precision and 

F1 score of 66.0% suggests that ResNet50 had a higher rate of false positives and false negatives, 

resulting in suboptimal predictions. This could result from the unique data characteristic of the data 

used and the architectural complexity of the ResNet50 model, which may not be ideal for detecting 

CT images associated with ACC and kidney tumors. Also, the VGG19 model, designed as a more 

sophisticated version of VGG16, achieved slightly lower performance with a sensitivity, specificity, 

F1 score, TP, AUC, and accuracy lower than the VGG16 model. This difference can also be attributed 

to factors such as increased model complexity in the case of the VGG19 model leading to insufficient 

representation of the specific features relevant to the classification task. 

Table 4. The Comparative Analysis of the Novel MSHA and Other State-of-the-art Models. 

Models 
Precision 

% 

Sensitivity 

% 

Specificity 

% 

F1 

Score 

% 

TP FP TN FN AUC Loss 
Accuracy 

% 
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MSHA 96.0 96.0 96.0 96.0 3444 204 3525 113 0.99 0.108 96.65 

ResNet50 66.0 66.0 66.5 66.0 2475 1173 2335 1303 0.72 0.615 66.02 

VGG16 81.0 81.0 81.0 81.0 2872 776 3004 634 0.90 0.424 80.65 

VGG19 81.0 80.0 80.0 80.0 2667 981 3181 457 0.89 0.424 80.26 

InceptionV3 72.0 72.0 72.0 72.0 2900 748 2302 1336 0.79 0.592 71.40 

4. Conclusions 

The study highlights the clinical significance of deep learning models, specifically the novel 

MSHA model, in detecting and diagnosing ACC using CT images. The MSHA model exhibits high 

accuracy, precision, sensitivity, specificity, and F1 score, indicating its potential as a valuable tool for 

rapid and accurate diagnosis. The model’s ability to differentiate ACC from kidney tumors, assist in 

surgical planning, and facilitate postoperative monitoring has significant implications for patient 

management and outcomes. The findings of this study contribute to the ongoing advancements in 

AI-based cancer detection and emphasize the potential of deep learning models in improving 

diagnostic accuracy and patient care. 

A significant limitation of this study is the relatively limited sample size, which can impact the 

generalizability of the results. However, due to the rarity of ACC, obtaining a large sample size can 

take time and effort. Consequently, the findings may not apply to the broader population of 

individuals with ACC, and there is an increased risk of chance variations in the data. Furthermore, 

potential biases in participant selection and the data collection process are possible. The study 

predominantly includes patients from a specific race (white, black, Hispanic/Latino, and Asian). With 

an age group between 22-82 years, the results may not represent the broader population. This 

introduces the potential for patient selection bias or data collection bias, which can skew the findings 

and limit the generalizability of the study. 
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