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Abstract: Nanotechnology has expanded what can be achieved in our approach to cancer treatment.
The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences
of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while
also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize
material characteristics, such as radio- blocking/absorbing high-Z atomic number elements, to
mediate localized effects from therapeutic irradiation. These materials thereby allow for subsequent
scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g.,
protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials
that activate under certain physiologic conditions such as the tumor micro-environment can
selectively target tumor cells. These characteristics combined with biological interactions that can
target the tumor environment allow for localized, radio-sensitization while mitigating damage to
healthy cells. This review explores the various nanomaterial formulations utilized in cancer
radiosensitivity research. Emphasis on inorganic nanomaterials showcase the specific material
characteristics that enable higher incidences of radiation while ensuring localized cancer targeting
based on tumor micro-environment activation. The aim of this review is to guide future research in
cancer radiosensitization using nanomaterial formulations and to detail common approaches to its
treatment, as well their relations to commonly implemented radiotherapy techniques.

Keywords: radiosensitizer; nanomaterials; reactive oxygen species; cancer; radiation therapy;
cerium oxide; carbonaceous nanoparticles

1. Introduction

Cancer is a significant burden on modern human societies as life expectancies have improved.
It is the second leading cause of death with 21% of all global deaths attributed to this lethal illness
[1]. While the mortality rates of cardiovascular diseases, the leading cause of global death, continue
to decrease with targeted intervention and early detection, rates of cancer mortality are rising with
the potential to overtake heart disease as the leading cause of death. This is apparent with cancer
research now overtaking cardiovascular research as one of the top researched and funded diseases
[2,3]. According to the International Cancer Research Partnership (ICRP), nearly $80 billion dollars
(USD) was contributed towards cancer research funding since 2000. Among the various categories of
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research, cancer treatment continues to be the largest investment category and continues to increase
in absolute investment and percentage of the overall funding[4]. As can be summarized from the
financial investments, a substantial amount of resources in all forms has been levied to better
understand and address cancer evolution and progression.

While cancer treatment is a heavily funded venture, translation into clinically viable solutions is
still a massive undertaking. This is due to the nature of this disease: with high rates of mutation and
variation in character/progression from patient to patient; preventing a one-size-fits all approach to
treatment [5]. Causes for the switch from normal cell tissue to cancer cell tissue can be attributed to
processes at the cellular level that include altered signaling and metabolism. However, the specific
causes of this onset of cellular dysfunction are still unknown. Available data suggests a myriad of
factors including environmental, chemical, biological, physical and genetic[6]. While these factors are
being investigated to prevent and mitigate cancer, using these factors as a strategy plan for cancer
elimination have been, as of yet, ineffective. In other words, the unknown cellular mechanisms that
are responsible for cancer transformation are often still present even if strict medical and lifestyle
interventions are administered.

Additionally, there are nearly 200 types of cancer and each cancer type is classified by the origin
of the disease within the body as well as the type of cell that it originates from [7]. This classification
results in major differences in the mortality rate of each cancer from upwards of 80% survival rate of
certain melanomas to less than 10% survival rate of pancreatic cancer in a 5 year span[8]. A major
contributor to the differing rates in mortality is the metastatic ability for each type of cancer, affected
by a multitude of factors. Most significantly, metastatic ability is affected by the immune
environment, the cancer cell type origin, epigenetic factors, metabolic profile of cancerous cells, etc.
[9]. However, the adaptability of cancer to thrive in a myriad of environments within the human body
creates a unique issue in therapeutic intervention. Cancer cells often survive despite radiation and
chemotherapy treatments, which aim to eradicate cancer cells but also cause damage to normal cells.
While certain chemotherapy drugs such as inhibitors of mTOR, Mdm2, caspases and mitogenic
kinases can protect normal cells from both chemotherapy and radiotherapy, innovative techniques
can even reduce overall dosage of radiation [10]. One such technique involves reduction in radiation
dosages by incorporating radiosensitizers. Radiosensitizers are defined as any chemical or
pharmaceutical agent that increases or decreases the cytotoxicity of ionizing radiation[11].
Radiosensitizers work with radiation therapy to create higher tumor inactivation [12].

Chemical radiosensitizers are often divided based on processes of DNA damage and repair [12].
The five categories include oxygen mimics, suppression of thiol groups, formation of toxic radiation
products, structural incorporation of thymine analogous and inhibition of post-irradiation processes
[13]. While this classification system was critical at the time to engineer drug components to target
specific cancer cell cycle arrests, new mechanisms and materials have been proposed that expand
beyond this initial classification. Current research on radiosensitizers now categorizes these agents
by their material characteristics including divisions on macromolecules, small molecules, and
nanomaterials [14] (Figure 1). While small molecules have already been extensively studied,
macromolecules and nanomaterials are emerging as new frontiers in the world of radio-sensitization
as their innovative mechanisms for enhanced cancer apoptosis create the possibility for new
treatment regiments.
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Figure 1. Prevalence of ‘radiosensitizer’ as a keyword in published research literature (1971 to 2022).
Cancer is a wide-spread disease that has a significant negative impact in the modern world, with the
number of affected individuals increasing daily. We are aware that it is currently incurable. There is
a need for effective cancer treatments that do not disrupt the daily lives of individuals afflicted with
the illness nor harm healthy cells outside of the scope of treatment. In this regard, radiation therapy
stands out as one of the best therapeutic solutions for cancer treatment. This publication data was
gathered from Web of Science, a platform provided by Clarivate Analytics. .

Macromolecules have the ability to regulate genetic expression to enhance radiation sensitivity
for cancer cells. Certain genetic regulatory macromolecules such as protein, RNA and DNA can either
augment or mitigate sensitivity to radiation, leading to precision radiotherapy [15]. This revolution
in cancer treatment utilizes the specific mechanisms responsible for each kind of cancer cell as these
processes are affected by radiation. However, the field of precision radiotherapy does not just end
with macromolecules as chemical and structural characteristics are also utilized to effectively
eliminate cancer cells. This is where the field of nanotechnology plays a key role.

Nanomaterials can combine macromolecules such as miRNAs and proteins with functional
material characteristics [14,16]. These material characteristics include control of the radiation
absorption and emission, higher selectivity, production of reactive oxidative species (ROS), up-
conversion/down-conversion processes and tumor microenvironment control [17-19]. While all these
processes can be effective in killing tumor cells, the production of ROS can coincide with the processes
of radiolysis of tumor cells. As radiation interacts with inorganic materials in the nanoscale, atoms
are dislocated from their crystal lattice structure resulting in vacancy-interstitial pairs.[20,21]. These
characteristics are important to consider when developing radiosensitizers and allows
nanotechnology enabled radiosensitizers to be a new frontier in radiotherapy as well as cancer
treatment in general. This review paper focuses on how enhancement of radiotherapy through the
use of various nanomaterials can contribute to eliminating cancer cells. The review paper evaluates
the various approaches to radiosensitization as well as their association with clinically relevant
radiotherapy techniques. An emphasis on research dated from 2000-2023 enables this review to
showcase the recent developments in this emerging field of study. The various nanomaterials are
investigated for their ability to act as radiosensitizers, survive within the tumor microenvironment
and be able to target cancer cells while keeping healthy cells intact.

This paper sets itself apart in that it explores the therapeutic potential of a wide array of
inorganic materials including metallics, semiconductors, and metal oxides. While organic
nanosystems have shown promise in similar therapeutic mechanisms, their material character is
markedly different from that of inorganics and therefore are not discussed in this review. The
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decision to focus this review on inorganic materials specifically is derived from the distinct structure,
composition, and characterization of this category of nanosystem. Several recent papers report on the
applications of nanotechnology in radio and photo sensitization in general and with reference to
oncological use [22-27] . These papers often either adopt a broad approach to the topic or discuss
pinpointed applications. In isolating inorganics specifically, given the commonalities of this group of
materials (i.e., lattice photons, band gaps, surface chemistry), we streamline the consistency of this
paper and are able to provide more detailed explanations on a well-organized subset of potential
therapies. We perceived this to be the ideal format for the readers’ ease of use in future
implementations and research approaches.

Therefore, a number of valuable articles highlighting the efficacy of organic nano systems in
radio sensitization have recently surfaced [22-26,28,29]. Though other systems such as liposomal or
protein based nano systems are currently being studied for similar use, we present a directed focus
on the efficacy of inorganic nanoparticles (NPs) for radio and photo sensitization due to their
uniquely advantageous characteristics [22,28,30] These notable merits include tailorable structure
and function, enhanced radiotherapy outcomes, biocompatibility, precision in targeting, as well as
potential complementary effects with thermal therapies [29,31-33]. While the outcome of inorganic
and organic based radiosensitivity is similar, there are discernable differences in operational
mechanisms between the two. Organic systems tend to be less stable and have been known to
undergo photooxidation or exhibit structural loss as a result of local heating. The biological
environment can further contribute to the degradation of organic NPs, often resulting in
unpredictable and toxic structures, especially under irradiation [34,35] . The typical mechanism of
the inorganics we discuss in this paper is degradation into nontoxic minerals and metal ions, which
tend to be more sustainable in the presence of radiation [36] . Further, we recognize the autocatalytic
reactions of some inorganics, such as those that take place on the surface of cerium oxide NPs [37,38].
We also discuss the thermal properties of inorganic systems. Metals have the inherent ability to
absorb radiation as well as exhibiting property dependent photon/vibration mode activation as well
as free electron energy dissipation. Organic materials lack high-Z nuclei for scattering purposes,
whereas inorganic substances are typically high-Z materials that possess highly absorptive lattice
structures and charged lattice sites that facilitate scintillation and control the energies of photons
through reflection, refraction, or diffraction to enhance local therapies [33]

2. Tumor Physiology

Knowledge of tumor physiology is crucial to pinpointing proper treatments for different cancers
(Figure 2). The tumor environment contrasts greatly from that of healthy tissue and is generally
characterized by abnormal structure and vasculature, heterogeneous hypoxic or anoxic conditions,
low glucose and high lactate levels, increased permeability, and abnormal pH gradients [39]. These
hostile characteristics of a tumor environment, among others, have notable influence on treatment
efficacy (Figure 2). For instance, it has been found that the hypoxic conditions of a tumor can
drastically decrease its sensitivity to radiation therapy, often requiring doses up to three times higher
than what would be needed in normal physiological conditions. This radioresistance of tumors has
proven to be a huge obstacle to treatment, and a notable cause of the inherent systemic side effects of
these therapies [39].

Interactions between antioxidants and reactive oxygen species (ROS) are integral for the
maintenance of biological processes, from homeostasis to tumorigenesis [40-42]. While ROS balance
is required for body homeostasis, excess can result in oxidative stress as well as the related functional
losses, DNA damage, or cell death [42]. ROS imbalances have long been associated with the cancer
cycle, influencing tumorigenesis and progression as well as apoptosis [43]. Though each type of
cancer progresses differently in the presence of variable ROS types, the complicated relationship
between ROS and cancer metastasis is noteworthy in the investigation of treatment mechanisms [44].
Luckily, the implementation of positron emission topography (PET) has enhanced ROS measurement
techniques for more accurate data on in-vivo cancer models in recent years.
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The human immune response can have an unexpected effect following carcinogenesis, often
resulting in metastatic growth of a cancer [44]. Metastasis describes cancer cell dissemination toward
different organs or systems than the parent tissue, and results in 90% of solid tumor patient mortality
[45]. Once a cancer has reached metastasis, there is less confidence in the effectiveness of classical
treatment options such as surgery or radiotherapy [46]. Since cancers that have metastasized are
notoriously harder to approach with treatments than those confined to a single tissue type, inhibition
of the cancer cell migration has been the topic of interest in many recent studies [47]. While previous
attempts to employ antioxidants to halt ROS assisted cancer progression and metastasis worked to
little avail, current work assesses the efficacy of employing prooxidants to induce autophagy and
apoptosis [48,49]. This seemingly contradictory strategy has shown some promise, with
experimentations resulting in preliminary data that suggests nano-mediated ROS production results
in targeted apoptosis of cancer cells [50,51].
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Figure 2. illustrates the difference between the healthy and tumor tissues. In healthy tissue, various
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cell types such as epithelial cell, fibroblast, macrophage, mesenchymal cell, dendritic cell and immune
response cells, lymphatic drainage are presence. These components collectively represent the normal
cellular functions within healthy tissue. Conversely, in tumor tissue, the visual depicts cancer cells
alongside immune response cells, fibroblasts, macrophages, mesenchymal cells, and dendritic cells.
Additionally, the illustration portrays compromised lymphatic drainage and abnormal vasculature.
These elements collectively illustrate the irregular cellular functions characteristic of tumor tissue.".

Despite the increased hostility of the aforementioned tumor characteristics, scientists have been
able to use knowledge of certain characteristics to their advantage. The tumor microenvironment
(TME) consists of interactions between malignant and non-malignant cells (Figure 2). These non-
malignant cells, such as those of the immune, vascular, lymphatic, and connective systems, and their
proteinaceous products, are often employed by the tumor for enhancement of growth and
progression [46]. The vascular system of a tumor lacks supportive tissue, which results in leaky
vessels and hyperpermeability. This, in addition to the lack of a properly functioning lymphatic
system, means that molecules enter the tumor environment easily, and are not readily evacuated [46].

Enhanced understanding of this EPR effect has incited excitement among the nanomedicine
community. Nanotechnology has enhanced the delivery of drugs greatly due to the characteristically
large surface. An important aspect to consider as it allows both stabilization and protection of
cargo[52]. The nanotherapeutics in question are notable for their ability to provide sensitizing
treatment to the cancer system. For example, targeted drug delivery with NPs, which can penetrate
and remain in tumor tissue for continuous employment of the treatment mechanism. This synergy is
often deemed “EPR based tumor targeting”[53]. This site-specific nanomedicine can be used
synergistically alongside classic treatments for cancer, namely radiation therapy. Radiation, can have
amplified effects on a solid tumor with the help of radiosensitization [54]. For instance, certain metal
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NPs, namely silver and gold, have been found to interact with the tumor tissue and increase
radiosensitivity[41,55].

Medical nanotechnology is the centerpiece of a group of emerging radiation treatment
enhancements [56]. High atomic number elements are observed effectively absorbing radiation,
acting as radio-sensitizers in a tumor environment, making these treatments more effective at a lower
dose [56]. Nanomaterials can enhance the effectiveness of radiotherapy in multiple ways. While these
nanosystems can increase absorption of radiation based on their makeup, they can also prime the
tissue to better receive the treatment by influencing the tumor environment. For example, these
nanomedicines can combat the hypoxic conditions of the tissue or induce ROS production and make
the tumor itself more sensitive to radiation [57]. Another notable synergy of these nanomaterials with
radiotherapy is their radioprotective abilities. Certain nanomaterials may act as a buffer from harm
on the healthy tissue surrounding a tumor receiving treatment [57]. With this greater understanding
of both tumor characteristics and the latest therapeutic foci, nanomedicine has emerged with promise
as a new centerpiece for cancer research and treatment. However, to understand the role of
nanomedicine in clinically relevant outcomes, it is important to understand the current approaches
to cancer treatment. The history and development of cancer treatment has opened an array of possible
avenues.

3. Current Approaches to Cancer treatment

3.1. Implementation of Hirudin in Cancer Treatment

Hirudin originates from similarly-related homologous peptides extracted from cranial salivary
glands of medicinal leeches and is widely recognized as a thrombin inhibitor [58]. However, recent
studies have indicated that hirudin has other capabilities such as anti-tumor effects, anti-fibrosis
properties, and wound repair [59] (Figure 3). Further studies indicated that hirudin can facilitate anti-
tumor effects in glioma tissue, hepatocellular carcinoma tissue, hemangiomas, and nasopharyngeal
carcinoma tissue. Hirudin’s anti-tumor effects include suppression of invasion, proliferation,
migration, and metastasis of tumor cells. Additionally, hirudin stimulates apoptosis and hinders
tumor growth by downregulating the following signaling pathways, HGF/C-met, VEGF/VEGEF-R,
and ERK. Hirudin interferes with the VEGF/VEGF-R angiogenesis signaling pathway by
downregulating VEGF, mRNA expression. Hirudin has the potential to decrease the angiogenesis
related expression. Tumorigenic growth is promoted by the increased expression of hepatocyte
growth factor (HGF) and the mesenchymal epithelial transition factor (c-Met). The overexpression of
these factors upregulates the HGF/C-Met pathway. Upon treatment with hirudin, C-met expression
significantly decreased and inhibitory effects on mice tumor cells were exhibited.
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therapy

Immunotherapy

Bone marrow
transplant

Detection and
Radiotherapy,
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Figure 3. presents an overview of the diverse methods employed in cancer treatment. A range of
approaches, including bone marrow transplant, hormonal therapy, surgical intervention,
immunotherapy, hirudin therapy, chemotherapy, and radiotherapy are utilized to address cancer.
Notably, this review focuses on the discussion of the current strategies for cancer treatment,
specifically hirudin therapy, chemotherapy, and radiotherapy. .

Hirudin is also often used as a supplemental therapy in cancer patients receiving radiation
therapy. This is because many patients face a significant risk of thrombosis while receiving
conventional cancer treatments. Recognizing this, one group of researchers attempted targeted
hirudin delivery to mitigate thrombotic complications in cancer treatments by synthesizing and
applying platelet-covered nanocarriers [60]. MnOx/Ag2S nanoflowers were used as the main
structural framework for the nanoparticulate system. The surface of the nanoflowers were modified
with platelet membranes to prolong blood circulation and ensure accurate thrombus targeting [60].
The synthesized nanoparticulate system was able to sustain the release of hirudin and eliminate
thrombosis in conjunction with anti-tumor therapy. Extensive studies indicated that the
nanoparticulate system effectively delivered hirudin to thrombus-prone sites and released hirudin
under near-infrared light radiation. When this occurred, thrombus sites were removed. Further
studies indicated that the system could prohibit progression of tumors and increase life expectancy
of mice with thromboembolic complications. Additionally, the MnOx integration into the structural
framework was able to react with glutathione (GSH), abundantly found in tumor
microenvironments, and release Mn2?* in tumor cells. The released Mn?* then reacted with the
prevalent concentrations of H20: in the tumor microenvironment to generate hydroxyl radicals
through Fenton-like reactions. The hydroxyl radical then exhibited damage to tumor cells and
induced cell apoptosis. Overall, the nanoplatform was able to exhibit synergistic functions by
inhibiting thrombin activity and promoting antitumor therapy by depleting GSH to form toxic
hydroxyl radicals to stimulate tumor cell apoptosis. Therefore, in vivo results showed that
tumorigenic mice treated with the synthesized nanoparticulate systems experienced prolonged
survival times.

One limitation faced with hirudin treatment is its short half-life in the bloodstream. This
property compromises the therapeutic efficacy of hirudin. To overcome this, research groups have
engineered hirudin-bovine serum albumin (BSA) NPs characterized by desolvation techniques [61].
The hirudin-BSA NPs had improved sustained controlled release of hirudin. These results indicate
the hirudin-BSA NPs have the potential to be applied to biomedical clinical therapies. Another
research study manufactured polydopamine-fitted TiO2 nanotubes to prolong hirudin release and
enhance hemocompatibility in vitro and in vivo. The aforementioned studies highlight the amplified
therapeutic potential of synergizing conventional hirudin treatment with nanomaterials. Thus, the
integration of nanomaterials for applications in cancer treatment offer a promising approach to
improve conventional therapies.

3.2. Progresses in Detection and Therapy

In recent years, advancements in cancer diagnostics have allowed for earlier detection and
improved prognosis factors for cancer patients [62]. Key advancements in cancer detection include
screening tests, biomarkers, imaging technology, liquid biopsies, and employment of artificial
intelligence. The widespread use of screening tests, such as colonoscopies and mammograms, has
allowed for the diagnosis of cancer before the presence of symptoms. Biomarkers are molecules that
can indicate the presence of cancer in the body. Through extensive studies, research groups have
identified various biomarkers for different types of cancer. For example, abundant concentrations of
prostate-specific antigens can often be linked to prostate cancer, while the presence of human
papillomavirus indicates cervical cancer. Screening methods such as blood tests enable for the
detection of biomarkers. Advances in imaging technology, such as magnetic resonance imaging
(MRI), computed tomography (CT), and positron emission tomography (PET) scans, have improved
the ability to detect and diagnose cancer (Figure 3). These imaging techniques can provide detailed
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images of the body, which aid in the ability to identify tumors and other cancer markers. Liquid
biopsies are non-invasive tests that analyze samples of blood to detect the presence of cancer cells or
genetic mutations associated with cancer. Liquid biopsies can detect the presence of cancer cells, even
when the tumor is not visible on a traditional imaging test. More recently, artificial intelligence and
machine learning are being used to analyze images from various sources, including radiology,
pathology, and genomics. Research studies have confirmed that artificial intelligence can help detect
cancer with high accuracy, as well as to predict treatment outcomes and patient prognosis.

Radiation technology can be utilized in biomedical diagnostic and therapeutic applications.
Radiation has extensive applications in biomedicine for imaging and therapy purposes. Specifically,
ionizing radiation is useful for radiological imaging, cancer radiation therapy, and radionuclide
imaging [63]. Radiation transmitting optical wavelengths are particularly applicable for localized
imaging as well as photodynamic therapy, while longer wavelength radiation has effective Magnetic
Resonance Imaging (MRI) capabilities. Radioluminescence conjugates optical and ionizing radiation
and is utilized for radionuclide imaging, monitoring radiation therapy, stimulating phototherapy,
and investigating the efficacy of nanoparticle-based diagnostics and therapeutics [63].

An emerging application of radiation is utilizing Cerenkov radiation from radionuclides and
radiotherapy for optical imaging purposes [63]. Conjugating Cerenkov luminescence imaging (CLI)
with radiopharmaceuticals, such as F-fluorodeoxyglucose, holds great potential to supplement
sentinel node biopsies, monitoring tumor growths, and tumor imaging[64-67]. CLI is comparable in
function to Positron Emission Tomography (PET) scans[63]. Additionally, CLI is an effective
radiotracer for breast cancer and gastrointestinal tract (GI) tumors. Cancer phototherapy integrates
photosensitizers for cancer phototherapy[64,65,68]. Photosensitizers are drugs that are activated
when presented with a light stimulus[64]. Under optimal conditions, photosensitizers accumulate
inside of cancer tissue and aid in the generation of reactive oxygen species to stimulate oxidative
damage and apoptosis in carcinogenic cells [69]. Using synergized titanium-oxide NPs with
photosensitizers, a revolutionary solution for cancer therapy can be developed based on current
research[63,70]. Another radiation-based treatment involves scintillation which is luminescence
stimulated by ionizing radiation and has various biomedical applications[71]. Bulk inorganic
scintillators are necessary for surgical gamma probes, nuclear imaging detectors, as well as X-ray
imaging[72,73]. Organic scintillators are utilized in surgical probes and aid in liquid scintillation
devices and radiotherapy dosimeters [74]. Additionally, they have applications in imaging in vivo
dosimetry and monitoring biological mechanisms. Another application of radiation is
radioluminescence microscopy, which is an imaging device for beta-emitting radionuclides on a
cellular level, which is not possible with PET imaging[63]. Radioluminescence microscopy is utilized
to study metabolism, transgene expression, and cell proliferation in human carcinomas[75,76].

3.3. Chemotherapy

The overall goal of chemotherapy is to hinder cell proliferation and tumor cell mitosis [62].
Intervention with these cellular processes will thereby reduce invasion and metastasis. Conventional
chemotherapeutics affect the synthesis of biologically relevant macromolecules and function of DNA,
RNA, and protein synthesis in tumorigenic cells (Figure 3). Current chemotherapeutics commonly
target the S-phase or M-phase of the cell cycle and pose inhibitory effects (Table 1). For example,
vinca alkaloids and taxanes function by preventing mitotic spindle formation and interfering with
the M phase of the cell cycle. Combination chemotherapy is commonly prescribed to cancer patients
with the purpose of targeting different genes, receptors, and signal transduction pathways. These
combination therapies include different classes of drugs that inhibit growth, impede cell signaling,
interfere with angiogenesis pathways, and suppress checkpoint protein degradation. Combination
chemotherapeutic drugs are adjusted based on the evaluation of the following principles. The fraction
kill hypothesis ensures that drug doses are formulated to kill a designated fraction of tumor cells,
regardless of tumor size. The Goldie-Coldman hypothesis considers that cancer cells can acquire
spontaneous mutations that result in drug resistance. While most cancer drugs described above
interfere with metabolic processes and aim to restore cell cycle checkpoint mechanics, drugs such as
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cisplatin and oxaliplatin, pose therapeutic effects by functioning as a cytotoxic metal compound.
Cisplatin, otherwise known as cis-diammine dichloroplatinum (II), is composed of a platinum (II)
complex conjugated with chlorine ligands in a cis configuration. Due to its metal-based structure,
cisplatin is widely recognized as a highly cytotoxic cancer medication. Thus, cisplatin administration
doses must be closely controlled to avoid damage to biological tissue. Cisplatin exerts anti-tumor
effects by forming cross-links with DNA that stimulate cell cycle arrest at S, G1, G2-M and apoptosis
[62].

Table 1. Summary of commonly prescribed chemotherapeutic drugs and their corresponding
mechanism of action.

Mechanism of Action Common Drugs
Alkylating Agents: This class of drugs reacts with
nucleophilic sites on nucleic acids and proteins to
stimulate the formation of unstable alkyl groups.
This reaction then inhibits DNA replication and
transcription.

Bendamustine, cyclophosphamide, ifosfamide,
carmustine, lomustine, temozolomide,
carboplatin, thiotepa, cisplatin, oxaliplatin,
busulfan, dacarbazine, procarbazine.

Cytidine analogs: cytarabine, azacitidine,
gemcitabine, decitabine,
Folate antagonists: methotrexate, pemetrexed
Purine analogs: cladribine, clofarabine,
nelarabine

Antimetabolites: Interfere with DNA
methyltransferase and/or DNA polymerase to
inhibit DNA replication

Pyrimidine analogs: fluorouracil, capecitabine

Antimicrotubular Agents:

Topoisomerase Inhibitors: Inhibit topoisomerase 1 Topoisomerase 1 Inhibitors: Irinotecan,
or topoisomerase 2 to inhibit DNA repair and block Topotecan
DNA and RNA synthesis Topoisomerase 2 Inhibitors: Doxorubicin,
Taxanes: Disruption of microtubule assembly, Daunorubicin, Idarubicin, Mitoxantrone
thereby inhibiting cell cycle progression in the M-~ Taxanes: Paclitaxel, Docetaxel, Cabazitaxel
phase
Vinca alkaloids: Bind to tubulin to inhibit Vinca alkaloids: vinblastine, vincristine,
microtubule development. This complex then vinorelbine

causes cell cycle arrest in metaphase
Antibiotics:
Inhibit the synthesis of RNA and DNA
Binds to DNA to produce single and double-
stranded breaks in DNA
Inhibits ribonucleoside diphosphate reductase, thus

Actinomycin D, bleomycin, daunomycin

Hyd
cell cycle progression in the S-phase ydroxytrea
Targets RAR-alpha Pathway, t.hereby promoting Tretinoin
cell differentiation
Stimulates cell differentiation Arsenic trioxide
Inhibits the functions of proteasomes Bortezomib

3.4. Surgery

In the past, surgical intervention stood as the sole recourse for all types of cancer. While
advancements in medical technology and procedures have bolstered the efficacy of oncological
surgeries, the absence of optimal tumor imaging techniques hampers the effectiveness of surgery as
the primary cancer treatment [77,78]. The less-than-ideal outcomes arise from the surgeons' inability
to completely excise the cancerous tissue due to inadequate visualization. Further, surgery and the
concurrent inflammatory response have been recognized for concern in cancers taking advantage of
the patient’'s compromised state to metastasize soon after the operation [79]. Considering these
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challenges, intraoperative fluorescent imaging has emerged as a solution to facilitate improved
visualization of the cancer site and enable precise and comprehensive removal of all malignant tissue
[77]. Despite these inherent challenges, surgery has come a long way and continues to advance as a
trusted and executed element of modern medical practices and continues to be a common approach
to cancer remediation [78].

3.5. Hormonal therapy

Hormonal therapy, alternatively known as endocrine therapy, is employed in the treatment of
cancers that rely on hormones for their growth [80]. Breast and prostate cancers are most commonly
seen as responsive to such treatments [81]. Some notable hormones involved in these particular
cancer systems include progesterone, oestrogen, testosterone, oestradiol, and androgens. These
endocrine therapies often serve as complementary or primary treatments, effectively inhibiting or
stalling cancer cell proliferation and mitigating symptoms in cases where alternate treatments like
surgery or radiation are not viable. This therapeutic approach can precede a major treatment to
reduce tumor size (neoadjuvant) or follow it to minimize the risk of cancer recurrence or spread
(adjuvant), alongside its inherent ability to combat cancer cells influenced by hormones [80]. This
therapy has been deemed efficient in both primary and metastatic conditions [81]. The two distinct
forms of hormone therapy function either by using specific hormones to obstruct the body's hormone
production or by interfering with hormone activity within the body.

Hormone therapy can be administered through various means, including orally or via
intramuscular injection. In some cases, the removal of the organ responsible for hormone production
is considered as a viable option as it deprives the system of the problem hormones [80,81]. For
females, this typically involves an oophorectomy (ovary removal), while for males, an orchiectomy
(testicle removal) is performed. There are differed treatment approached when it comes to pre and
post-menopausal cases, with premenopausal cases favoring the aforementioned castration and post-
menopausal cases taking a more supplemental approach [81]. The impact of endocrine therapy tends
to differ significantly from one patient to another. There is a high likelihood of patients developing
resistance to the hormones, contributing to eventual readvancement of the cancer that once
responded well to the treatment. This common occurrence is combatted by additional hormone
introductions as well as chemotherapy [81]. Notwithstanding the varied efficacy and unpredictable
consequences for each individual, certain common side effects manifest differently based on gender.
Both men and women may experience symptoms such as hot flashes, fatigue, and nausea, among
others (Institute 2015). This treatment varies in long-term effectiveness but provides a simple and
non-toxic approach to hormone related cancers [81] .

3.6. Bone Marrow Transplant and Stem Cell Therapy

Stem cell therapy has demonstrated its effectiveness as a treatment option for various
complications of cancer, both directly and indirectly. While these treatments are applicable in
conjunction with others such as chemotherapy and radiotherapy, stem cells are also frequently
employed to alleviate the repercussions that cancer and its treatments have on the body [82]. Whether
affected by the treatment itself or by the cancer, the body's blood supply and immune system can
experience regeneration with the aid of stem cell therapy [83].

Cancer stem cells (CSCs) are thought to be derived from mutations in healthy stem cells.
Renowned for initiating the onset of cancer and the disease's resistance to therapy, CSCs have
recently become a target of numerous anti-cancer treatments [84]. These strategies have been
bolstered by the recent identification of CSC biomarkers, facilitating the advancement of these anti-
cancer interventions. These undifferentiated cells contribute to the rapid proliferation, dissemination,
and potential tumor development in cancers [85,86].

Found in the bone marrow, mesenchymal stem cells (MSCs) have been explored as a potential
cancer combating tool. MSCs can differentiate into multiple specialized cell types and are known for
their tissue regenerative abilities [84]. Their great potential is derived from their inherent ease of
replication as well as differentiation into a multitude of cell types for immune regulation [87]. These
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multipotent stem cells can use paracrine systems to influence the growth and development of CSCs.
These MSCs have been found to provide targeted action toward cancer cells, as well as the ability to
transport interleukins, chemokines, and other natural immune activators to enhance the cancer
fighting abilities of the human immune system [88]. Despite the promising recognition of attenuation,
some studies have seen exacerbated proliferation and metastasis of various cancers following use of
MSCs as a treatment [89-92]. Despite a multitude of studies, the varied results and wide range of
research contribute to a deficit of understanding of MSC therapy as a whole [87,93].

In addition to non-cancer related applications, Hematopoietic stem cell (HSC) transplants are
most commonly seen among treatments for leukemia, multiple myeloma, and lymphoma. Each of
these cancers involve abnormal production of cells in the bone marrow. HSCs are known for their
ability to differentiate into any blood cell type [84]. HSCs are typically applied in conjunction with
other treatments such as chemotherapy, immunotherapy, or radiation. However, one study explored
their use in mimicking innate immune cells, such as invariant natural killer T cells (iNKT) with
promising results [94].

Neural stem cells (NSCs) are derived from the CNS and have also been recognized for their
ability to regenerate themselves as well as new glial cells and neurons. They have also been studied
as potential treatment elements of various cancers, with results speaking to the ability of these cells
to hinder progression and metastasis [84,95-97]. Other studies also speak to the ability of these NSCs
to be tailored to a specific tumor system for greater treatment specificity. These cells are expected to
be useful in not only brain related cancers, but also show promise for treatment of lung, breast, and
prostate cancers [98,99].

Pluripotent stem cells (PSCs), previously and controversially derived solely from Embryonic
stem cells (ESCs), show great promise for cancer treatment and regenerative medicine. The discovery
that previously differentiated cells can be returned to a state of pluripotency with the help of
transcription factors, creating induced pluripotent stem cells (iPSCs) [100,101]. PSCs such as ESCs
and iPSCs have the unique ability to mature into, with the exception of placenta, any cell type in the
body [84]. Studies have revealed the ability of iPSCs to specify their differentiation to immune cells
that are specific to a type of tumor (i.e. Natural killer (NK) and T cells) [102-104].

3.7. Immunotherapy

As of 2020, ongoing advancements were being made in the field of biomarker testing for cancer
immunotherapy [105]. Given the varied response of cancer patients to immunotherapy, the role of
these biomarkers is crucial in determining the suitability of such treatments for individual patients
and the future of cancer immunotherapies [105]. Employing biomarkers from the patient's blood and
tissue remains the optimal approach for devising an immunotherapy treatment plan for specific
cancer types [106].

Cancer immunotherapy operates based on an understanding of the adaptive immune system,
focusing on the cancer immunity cycle. This cycle commences with the release of immunogenic
neoantigen proteins by apoptotic and necrotic cells within the tumor region. Subsequently, these cells
are recognized and engulfed by dendritic cells, which then migrate to the lymph nodes to activate
tumor-specific T-cells [105]. While immunotherapy can be highly effective, maintaining the integrity
and continuity of the immunity cycle is crucial to prevent potential tumor growth and improper
immune responses. Thus, comprehending the complexities of the cancer immunity cycle and
strategically applying immunotherapy within the immune sequence is of paramount importance. The
adaptive immune system, involving the rearrangement of B and T lymphocytes to generate a targeted
response to antigens, is utilized to stimulate the body's response to a tumor [105]. In simpler terms,
immunotherapy assists the body in inducing regression of cancer by introducing new antigens into
the system and reinforcing immune reactions against foreign or malignant invaders.

Immunotherapy encompasses various treatment modalities. One approach involves the use of
specific antibodies to unlock the full immune potential of T cells, effectively removing the brakes on
their anti-tumor activity. For instance, antibodies are utilized to block immune checkpoints like
cytotoxic T-lymphocyte antigen 4 (CTLA-4) [107]. Another approach entails extracting a patient's T


https://doi.org/10.20944/preprints202310.1735.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 October 2023 doi:10.20944/preprints202310.1735.v1

12

cells, genetically modifying them to enhance their efficacy against tumors, and then reintroducing
them into the patient's system [108]. Currently, two drugs, pembrolizumab and nivolumab, have
received FDA approval for cancer immunotherapy. Initial studies indicated that cancers
characterized by a high density of tumor mutation exhibited the most favorable response to
immunotherapy treatments, although this correlation was not consistently observed [105].
Furthermore, in patients with melanoma and non-small cell lung cancers, immune checkpoint
blockade therapy demonstrated increased effectiveness as the neoantigen burden heightened. These
findings have led to further research suggesting the use of specific neoantigens in cancer vaccines
and more precise biomarkers for predicting the effectiveness of cancer immunotherapy [105].

4. Radiotherapy

Radiotherapy involves the use of high-energy particles or waves to damage or kill cells that are
potentially dangerous to the body (Figure 4). Radiotherapy is a core part of current cancer treatment
and can be used in the future for applications such as pain control (Table 2) [109]. Radiation therapy
commonly presents itself in two forms: external beam radiation therapy, in which the radiation
required for the therapy comes from an external source that aims the radiation at the target location,
and internal radiation therapy (also known as brachytherapy), in which the radiation source is placed
in your body near the target location.[110].

Table 2. Summary of different energetic rays used various type of cancer treatment.

Radiation

Methodology Subjects Results Why Source
Type
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injected into local of breast and limitations of
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tumors then colorectal . cytotoxic T cell
. subsequently reject
treated with X- cancer response and X-ray
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ray radiation radiation served to
reoccurrence s
perform an “in situ
vaccination”
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. The development of a
to induce a treatment k X
reatment known as X-
hotodynamic X-PDT was shown
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which is coupled . . penetrance of light,
. L cells increased efficiency .
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therapy to . . process to occur
week athymic vitro against tumorous . S
produce . . while combining it
L nude mice  cells, especially more . .
significantly . with radiotherapy.
thermodynamically
better tumor .
o e resistance cells.
killing abilities
The study showed that ~Gamma knife
Gamma knife among the 1475 suppresses tumor
surgery allows . atients who rowth and
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Gamma rays treatments to . Knife Surgery, only 8% control by breaking [113]
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occur most . had enlargement the ability for the
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commonly found afterwards over a 3-  tumor to reform
in the brain. year period. Compared and grow through

with microsurgery, its DNA damage.



https://doi.org/10.20944/preprints202310.1735.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 October 2023 doi:10.20944/preprints202310.1735.v1

13
gamma knife also
allows for a lower
morbidity rate and
fewer complications
Gamma Rays
y The study found that
used through .
gamma rays differed Gamma rays
prompt exposure .
by a factor of two in its produce
were found to . . S
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dosages of Up to tissue sarcoma 59% for those who did  soft tissue and
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Intraoperative . .
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Electron electron beam . . .
.. areas or high- increased from 60 and recitation of [116]
Beam  radiation therapy . .
(IORT) risk areas of ~ 32% respectively to dangerous or
cancer almost 88% and 53% recurrent tumors.
with the undergoing of
IORT.

4.1. Radiotherapy success

Radiotherapy has dominated as a cancer treatment for many years. Unlike other traditional
cancer medicines, radiotherapy provides a more local therapeutic as opposed to exposing the whole
body to a chemical that may occur from ingestion or negative effects from invasive surgery [110]
(Figure 4). An experiment performed on the efficiency of radiotherapy in cancer treatment found that
when compared to surgical treatment, a hybrid system of surgical and radiation therapy lowered the
relapse rate from 54% to 24% as well as extending the average life length of patients [117]. This study
demonstrated the potential benefits of radiotherapy over normal therapeutic practices and shows the
potential for hybrid treatments to help achieve better medical outcomes. An additional study
analyzed pituitary adenomas in response to three treatments: medical therapy, radiation therapy,
and surgical therapy. The results showed that radiation therapy resulted in nearly 50% of patients
remaining free of reemergent adenomas after 10 years. Additionally, radiation therapy allowed
treatment for adenomas that were refractory or otherwise not amenable to surgery[118]. Radiation
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therapy not only removes pituitary adenomas in the short term but also provides a baseline for
preventing its re-emergence in the future[118].

4.2. Modern Radiotherapy

In modern radiotherapy, there are many different techniques to enhance or change the goals of
a radiotherapy treatment (Figure 4). One example of this is pulsed/reduced rate dosing. This
treatment is administered following the progression of the cancer significantly up the body. One case
study done on this treatment showed that while initially treating the patient with surgery and 54 Gy
was delivered in 1.8 Gy dosages for his Grade II astrocytoma, following his progression to Grade IV
astrocytoma the dosage was reduced to 50 Gy with 2.0 Gy dosages[119]. The main reason for using
of different dosages following the progression of the illness is due to the reirradiation of the tumor
bed and the surrounding tissue area. Continuously providing high amounts of radiation to the tissue
bed has shown to be extremely negative for tissue necrosis and can result in the death of surrounding
cells and tissue. Therefore decreasing the amount of radiation that was supplied provided tangible
results without causing necrosis in the same vast extent[120]. Additionally, a separate study has
shown the use of hyper-radiosensitivity of tumor cells as well as the reduced normal tissue toxicity
in normal cells to provide more positive clinical outcomes. The study looked specifically at recurrent
cancers and found that using the lower dosage rates the body can talk advantage of the reirradiation
of the tumor cells but also the increased regenerative speed in normal cells at a low radiation level.
This allows the body to heal while also combating cancer with a safer alternative[121].

Another facet of modern radiotherapy is combinatorial therapy. This treatment involves the use
of one or more methods working together in a therapeutic setting to provide more positive results
for a patient, especially with a lack of response to a singular method. Whereas the combination of
radiotherapy with treatments such as surgery or immunotherapy can see better results, regression of
a cancer is less likely with a monotherapy[122]. In a study done, the therapeutic plan was to combine
radiation therapy with immunotherapy, both of which provide positive results when utilized
separately, to combat nasopharyngeal carcinoma. Immunotherapy lacks the ability to work beyond
the small subset of patients with existing T cell responses whereas radiation therapy lacks the ability
to truly make the regression of cancer, sufficing to only keep it from progressing. However, when
combined, the study cited the benefits of immunotherapy in preventing the relapse of cancer in the
patients and keeping them healthy for longer and reported more positive clinical outcomes as a
whole[123]. Recent studies have examined the therapeutic potential of inorganic NPs targeted to
modify the immune response to cancer cells. One recent study synthesized IR-68 lonidamine NPs
functionalized with albumin to reactivate immunotherapy mechanisms via the programmed cell
death ligand 1 (PD-L1)[124]. The synthesized nanoparticle was found to be effective in regulating
PD-L1 expression, oxygen concentrations, and facilitating photodynamic therapy. These properties
stimulated T-cell mediated tumor cell apoptosis. Furthermore, in vivo studies conducted with the R-
68 lonidamine albumin NPs to examine their metastatic tumor-targeting capabilities, yielded positive
results. Currently, researchers are focused on overcoming the following challenges, regarding precise
tumor-targeting therapies: enhancing biocompatibility of therapeutics and addressing the immune
system evasion properties of tumors [125]. Various research studies have noted positive results when
examining the potential of inorganic NPs to stimulate the immune response against tumors. One
study found that endocytosis of calcium NPs induced immunogenic-mediated mitochondrial
deterioration and cell apoptosis [125,126]. Other studies also noted that manganese and zinc NPs
were capable of inciting adaptive and innate antitumor immune mechanisms by stimulating the
STING immunogenic pathway [125,127]. Effective anti-tumor immune responses were achieved
when cancer cells were treated with carbon nanotubes, silicon NPs, black phosphorous nanosheets,
copper-zinc NPs, gold-silver NPs, and zinc-carbonate hydroxyapatite nanocrystals. Furthermore,
inorganic NPs can promote potent anti-tumor immunogenic responses when functionalized with
biological membranes. Additionally, various immune checkpoints are modulated with different
formulations of inorganic NPs. Comprehensive research studies have shown that aluminum oxide
NPs can upregulate the expression of CD80, CD86, MHC-1, and MHC-2 molecules in dendritic
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immune cells [128]. The overexpression of these checkpoint molecules stimulates the secretion of
interferon-y to inhibit tumorigenic growth. Other studies have shown that the synergistic therapy of
black phosphorous quantum dot nanovesicles and nonionizing radiation facilitated the expression of
immune excitatory molecules such as CD80, CD86, MHC-1, MHC-2, and dendritic cell activation.
Widespread research studies have found that gold NPs (AuNPs) can incite anti-tumorigenic
immune responses by upregulating IL-2 levels, TNF-a, and IFN-y immune checkpoint modulators
[129]. The upregulation of these checkpoint modulators further stimulated MHC-2 macrophage
expression, and CD4*mediated immune response. Another current treatment is combinatorial drug
treatment in cancer patients, combining drugs that are complementary in their targets. A study was
done on the use of CDK-targeting drugs with growth factor-targeting drugs as a possible therapeutic
technique against cancer. The study found that the use of multiple drugs lowered the likelihood of a
cancer becoming resistant to the drugs. This allowed for the dosages to be increased at a much slower
rate and for the drugs to affect the body less despite their high dosages. The study also found that
using an immune-stimulating drug can actually stimulate the body to use its own T-cells to fight off
cancer, allowing for limited effects of the drugs in the body as there are noticeably fewer foreign
substances within the body[122].

erapy using X-ray

Radiotherapy using gamma ray

Bone cancer Brian cancer

Radiotherapy using proton beam

Healthy cells

Breast cancer

Figure 4. represents the different type of radiotherapy such as X-ray beam, gamma ray and proton
beam used for cancer treatment. X-ray beams are commonly used for cancer treatment in a medical
procedure known as radiation therapy or radiotherapy. In radiation therapy, high-energy X-ray
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beams are directed at the cancerous cells to damage their DNA and inhibit their ability to grow and
divide. This helps to shrink tumors or eliminate cancer cells altogether. Gamma rays are also used in
cancer treatment as a form of radiation therapy. Gamma rays are high-energy electromagnetic waves
that are produced by radioactive sources or specialized machines called linear accelerators. They are
similar to X-rays in terms of their ability to damage the DNA of cancer cells, thereby preventing their
growth and division. It is often used for treating certain types of tumors, particularly those located in
the brain and nervous system. It's a precise and non-invasive method that focuses a concentrated dose
of gamma rays on the tumor while minimizing damage to surrounding healthy tissue. Proton beam
is also another type of radiotherapy, which is a specialized form of radiation therapy used for cancer
treatment. Proton beams are high-energy particles that can target cancer cells with precision while
minimizing damage to surrounding healthy tissues. This makes proton therapy particularly useful
for treating certain types of cancer and tumors located in sensitive areas, such as critical area like
spinal cord, brain, eyes, and pediatric cancer patients.

4.3. Proton Therapy

Proton therapy is another notable development in cancer medicine. Proton therapy provides
tangible benefits over normal forms of therapy due to its ability to provide a safer distribution of
radiation through the tissue, thus facilitating a safer therapeutic process as a whole. This means that
dosages can be increased past those of conventional radiotherapy and can potentially be used for
reversing the progression of cancer and finding a more permanent cure (Figure 4). Proton therapy
provides a higher curative dose with similar side effects to current radiotherapy treatments[130].
Radiotherapy is significantly more expensive, however. The average cost of a proton therapy facility
is about 62.5 million euros (68 million USD), and corresponds to an increase in patient treatment
prices of almost 93%[131]. Not including the additional travel costs for patients and lodging costs,
the technology is vastly too expensive for the normal public to use[132].

Nanoparticles have also been integrated with ionizing radiation for diagnostic imaging and
therapeutic approaches. Nanoparticle therapy facilitates X-ray absorption in corresponding
tissues[133]. Furthermore, physical radio-sensitization is utilized to facilitate nanoparticle
luminescence for biomedical purposes (Table 3). Radio-luminescent NPs are synthesized with
materials that possess the property to luminesce when induced with ionizing radiation. The
conjugation of ligands (i.e., antibodies, peptides, small molecules) on the NPs surfaces allow for
efficient imaging and therapeutic opportunities. Radio-luminescent probes, such as quantum dots,
metal nanoclusters, metal organic frameworks, and polymer dots, can be synergized with
conventional nanoparticle therapies to improve the efficacy of diagnostic and therapeutic
approaches[134-137]. X-ray activated photodynamic therapy integrates scintillators with
radiotherapy to transduce photodynamic therapy and increase the efficacy of radiotherapy by
converting X-ray energy into a light stimulus for activation of photosensitizer [138-141]. By
synergizing photosensitizers with radiotherapies successful necrosis and suppression of
osteosarcoma tumors in mice can be achieved [142]. Overall, these literature surveys and experiments
show that radiation is clinically applicable for diagnosing and treating various pathogeneses.

Table 3. Summary of recent studies evaluating the efficacy of integrating nanomaterials with ionizing
radiation for enhanced diagnostic and therapeutic applications in cancer.

Type Application Radiation Used Mechanism  Synthesis Size Ref
Allows for
lori .
Liposomes Imaging and Zoe;];lg;e;r;; Extrusion 175.04 +/-
functionalized with Diagnostic Wide Variety HER- Moethod 245 nm [143]

gold nanoclusters ..
positive breast

cancer cells
AuNPs and Therapeutic Ultraviolet (UV) DNA-directed Extrusion
P Radiation assembly of Method

103 144
Liposomes nm - [144]
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biomolecules
for alleviation
of pathogenic
symptoms of
various
diseases

Allows for
detection and
imaging of
intracellular
thiols that can
AuNPs Imaging Photoluminescence be significant Not Specified 1.8-3.0 nm [145]

biomarkers for
chronic
diseases and
their
progression
Amplify the
formation of

reactive
UV radiation, X- oxygen species
ray radiation (ROS) in
(when titanium correspondin - Not
dioxide NPs were tumoI; tissueg Not Specified Specified
functionalized to facilitate
with gadolinium) apoptosis for
cancer therapy
(ex.
glioblastoma)

[146]

Titanium Dioxide Therapeutic

Generation of
Light Waves (most radicals upon
Therapeutic biocompatible), X- light radiation Not Specified
rays, gammarays for cancer
therapy
Exhibit
cytotoxic
effects on
Superparamagnetic . cancer cell . Not [147]
’ IrI())n Oxidi Therapeutic X-rays lines through Not Specified Specified
the facilitation

Quantum Dots
Not
Specified

synthesized from
CaF, LaF, ZnS, or
ZnO

of radicals’
production

Function as an
Amifostine
carrier and
radiosensitizer
Polymer Therapeutic N/A to allow Not Specified Not
cancer cells to Specified

amplify the

[148]

effects of
radiation
therapy (part
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of synergistic
therapy)

Function as a
radiosensitizer
and deliver
small
interfering
RNAs
(siRNAs)
antagonists for Melt-
programmed Emulsification
cell death
ligand-1 (PD-
L1) and
epidermal
growth factor
receptor
(EGFR)
Function as a

Solid Lipid NPs Therapeutic N/A 51.3 nm [149]

synergistic
radiation
therapy to
AuNPs Therapeutic N/A amplify ~ Not Specified
mitosis
perturbation
pathways

Not

Specified [150]

Control the
release and
dosimetry of .
radiotherapy Citrate- 20.90 +/-

in cancer cells Reduction 0.14 nm [151]

Technique
(synergy
therapy)

AuNPs Therapeutic N/A

5. Radio sensitization using organic molecular compounds

While traditional radiation therapy is quite productive against several types of cancers, it is still
not as effective against certain cancers such as pancreatic, lung and brain. These variants are more
resilient to radiation in lower doses and often require higher dosage of radiation which can be
detrimental to the surrounding healthy tissues[152]. To combat the clinical limitations of radiation
therapy, strategies are in development to enhance the tumor damage associated with radiation.
Radiosensitizers (also known as radio enhancers) either work to directly damage DNA through the
formation of free radicals or indirectly through dysregulation of cell cycle checkpoints in tumor cells.
The latter utilizes conventional chemotherapy agents as the dysregulation compound in conjunction
with radiation therapy[12]. Examples of this process include the utilization of alkylating agents (such
as cisplatin), antimetabolites (such as gemcitabine and 5-fluorouracil), anti-tumor antibiotics (such as
doxorubicin) and fluoropyrimidines. These drugs are often utilized independently of radiation but
recent trends in clinical applications has seen the advent of chemo-radiotherapy where traditional
radiation treatment is combined with chemotherapy drugs[153].
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6. Inorganic nanomaterials

6.1. Gold nanoparticles

Gold NPs possess highly unique characteristics that help them become versatile tools in the
medical field [154].These NPs are known for their ease of synthesis, exceptional biocompatibility,
chemical stability, and the capacity to enhance local radiation doses. Recognizing these qualities
marks a pivotal breakthrough in advancing cancer treatment (Figure 5). A prior study revealed that
when cells uptake AuNPs, they can significantly enhance radio sensitization, leading to an increase
in energy from 1.01 KeV to 2.11 KeV in vitro (Table 4) [155,156]. These findings have been
corroborated by other studies, showing a substantial rise in apoptosis among cancer cells that
absorbed AuNPs [157]. Moreover, research suggests that greater radiation enhancement is achievable
at lower energies, expanding the practical applications of these NPs and opening new avenues in the
biomedical field [157]. Another common aspect of gold nanoparticle research has been the assessment
of potential toxicity in the body. In an in vivo study, reports emerged of hematological toxicity
(blood), nephrotoxicity (kidney), hepatotoxicity (liver), immunogenicity, as well as oxidative and
inflammatory responses resulting from AuNPs . Exposure to AuNPs can result in organelle damage,
mutagenesis, apoptosis (programmed cell death), oxidative stress, DNA damage, and protein
misregulation [158]. Gold is reportedly somewhat cytotoxic, with another in vitro study suggesting
it caused nearly 23% cell death in epithelial and primary cells exposed to it [158].

Gold NPs show great promise for the medical field with their ability to be uptaken into cells, an
uncommon trait for most NPs. Particularly, those with a diameter under 12 nm can penetrate the
blood-brain barrier [159]. Investigations have revealed that accumulation of AuNPs in body is size-
dependent, with particles under 50 nm in diameter easily traversing membranes and dispersing in
and out of cells. Nanoparticles that penetrate cells can fully leverage their unique traits and
capabilities. Gold NPs under 15 nm in diameter were found in an extremely wide array of locations
including the heart, brain, liver, lung, kidney, stomach, spleen, and bloodstream. This widespread
distribution showcases their capacity to navigate the body effectively, setting them apart from many
other biocompatible NPs, which are more limited in use. Other metallic NPs tend to get absorbed by
the liver, which decreases their benefits in the upper body and affects their efficacy among
neurological issues [160].

Gold NPs show promise in cancer treatment, particularly in radio-sensitization. A study using
10 nm colloids with functionalized PEG polymers demonstrated higher uptake in cancer cells than
normal cells, suggesting the effectiveness of using AuNPs for targeted radiation therapy with
reduced impact on healthy tissue [161]. Surface functionalization is increasingly common, enabling
precise targeting of cancer cells while minimizing effects on surrounding tissue [162]. Gold exhibits
many promising attributes beyond its radioprotective potential. Its radiation-enhancing capabilities
are already employed in cancer treatments, reducing the radiation dose required for cancer cells
while sparing healthy cells. Gold's unique ability for cellular uptake and systemic distribution sets it
apart from most NPs, impacting the entire body rather than being limited to liver absorption, though
it can have some toxicity concerns in human use [163,164].

Localized heating is another focus of research on AuNPs. Due to their easily tailored
morphology and surface chemistry, AuNPs can absorb light energy, to impose targeted photothermal
damage upon cancer cells [163,164]. Most studies induce incident heating with lasers, mentioning the
specific virtue of AuNPs in absorbing near infrared light. Hastman and colleagues noted the
advantage of nanoscale temperature therapy, as it can reduce systemic influence and focus treatment
effects on the subcellular level [165]. Abdelilah et. al describe the useful localized surface plasmon
resonance (LSPR) of AuNPs , which excite to produce a targeted heat source. This plasmon resonance
is unique to gold on the nanoscale and is characterized by dipole oscillation of the valence electrons
in the electromagnetic field of the corresponding energy source [166]. Moustaoui and colleagues
investigated surface temperature increases on various gold nanoparticle shapes to determine the size
and shape for photothermal therapies [167]. They compared absorption values of nanospheres and
nanourchins with theoretical calculations, finding that branched urchin-shaped NPs exhibited the
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highest photothermal damage capacity due to increased absorption and emission at branchpoints.
Additional studies explored how these particles induce hyperthermia in cells by releasing ROS to
trigger cancer apoptosis [167].

Phototherapy has recently been researched for efficacy in synergy with existing cancer
treatments [167]. Mirrahimi et. al studied a local synergy of existing treatments, using the
phototherapy of AuNPs with radiotherapy and chemotherapy[167]. This study used AuNPs loaded
with cisplatin in an alginate-based hydrogel. The combination of these therapies resulted in enhanced
local heating and reduced tumor growth rates compared to radiation alone. In in-vivo studies, mice
injected with the gold nanoparticle cisplatin combination before laser irradiation experienced quicker
heating and higher tumor temperatures. Gold NPs were essential for the therapy's effectiveness in
suppressing tumor growth in mice, with thermo-chemo-radio therapy leading to the highest subject
survival rate. Other studies verified the efficacy of nano photothermal immunogenic cell death in
synergy with other cancer drug therapies such as cyclophosphamide, anthracyclines, and oxaliplatin
[168]. One study discusses thermoplasmonics, and the various methods by which gold nanoparticle
absorption can be measured. In addition to classic infrared thermography, they delve into the use of
thermosensitive liquid crystals and hydrogels for meaningful nanoparticle photo absorption data
[166]. The electron transitions following a light pulse to allow the photon absorption of the
nanoparticle, which emits heat by coupling with the electromagnetic wave due to its specific surface
plasmon resonance. The effects of this process are dependent on the environment of the particle [166].
As studied, the tumor environment is receptive to apoptosis by photothermal therapy. The nano
aspect of photothermal therapy has been found to not only induce anti-cancer activity, but also to
exhibit onset of enhanced immune system activity [168]. In comparing different gold nanosphere
shapes, nanoshells/nanocages, nanostars, and nanorods, one study highlighted their distinct
properties. Nanosphere have their absorption peak at 530 nm, but aggregation can shift this toward
near infrared for greater penetration.

Nanoshells and cages feature a gold layer around a dielectric core, often PEG-coated, commonly
used in the near-infrared range. Gold nanostars exhibit plasmon hybridization at their core and easily
tunable tips, enabling deep near-infrared absorption and tumor tissue accumulation. Silica surface
layering of gold nanostars is recommended on account of the shape denaturation in heating. Gold
nanorods, in specific, have gained recognition for their exhibition of two peaks in their surface
plasmon resonance, generating peaks at 530 nm and in the NIR range [168]. This property inspired
research on gold nanorod potential for simultaneous optical imaging and photothermal properties in
a cancer system [168,169]. Multiple studies have attempted to enhance the photothermal properties
of gold nanorods with various metals including Pd and Pt [170-172]. Another recent study found
gold nanoribbons made via seed mediated synthesis and exposed to NIR outperformed nanorods in
inducing MCEF-7 cancer cell death [173]. In addition to the prolonged therapy release and specific
cancer tissue-targeting ability of these NPs, each of the morphological variations of AuNPs show
promise for systemic immunotherapy [167,169,174].

More studies observed the efficacy of AuNPs in producing excess reactive oxygen species (ROS)
as a means of stimulating cancer cell apoptosis. A recent study observed the character of peanut
shaped AuNPs found them to disrupt the redox balance effectively, leading to ovarian cancer cell
death. They found the gold nanopeanuts to reduce the free thiol ROS scavengers and, thus, to induce
oxidative stress. Further investigations proposed the cell death as resulting from the autophagy and
apoptosis mechanism of the of the JNK signaling pathway, which is triggered by this stress [175].
This glutathione consumption and related ROS induced apoptosis is further confirmed in another
study which advocated for drug-free cancer nanotherapies [176]. One study employed IR-780 gold
nanocages with a Pluronic F127 linkage. The Pluronic linked nanocages exhibited a 16% increase in
loading efficiency opposed to the control nanocages, and showed photothermal and apoptotic effects
up to 89.6°C in the tumor environment, exhibiting a 1500mm? volume ablation capability [177].
Another study employed chitosan coated AuNDPs , finding their particles to selectively induce cell
death via ROS production in a number of leukemic cancers [178]. Further research indicates the
biocompatibility of gold nanoclusters with enhanced endocytosis, as well as their NIR efficacy in
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imaging, biolabeling, tracking, and cytotoxicity for diagnosis and treatment of chronic myeloid
leukemia [179].

Table 4. Summary of studies discussing the utilization of AuNPs to enhance the radiosensitization
effect of conventional radiotherapy for improved cancer outcomes.

Synthesis Radiation
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Functionalization . System Results
Size Dose
Simulated
tumor cells
absorbed high The absorbed
amounts of energy for the
energy in the 20 keV was
presence of higher than
Simulated Tumor ce?l in o gol.d. any other
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The AuNPs  The results
can modulate showed that
55 nm on Femtosecond the local rate  modulation
AuNPs dsDNA laser excitation, } [165]
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750 nm .
denaturation nearly
by forminga threefold
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6.2. Silver nanoparticles

One unique characteristic of silver nanoparticles (AgNPs) is their local plasmon resonance
frequencies that have a myriad of applications in nanocrystal development. One study integrated
plasmon resonance to modulate nanocrystal tuning of nanocrystals in any visible or near-infrared
region (Table 5). This approach enabled researchers to synthesize silver triangles with defined edges
to function with enhanced efficacy in propagating a specific wavelength. Another study was
conducted, attempting to combine monodispersed NPs with metal NPs. They found that the
monodispersed NPs enhanced the sharpness of the local field. This has potential optical applications
to generate thin films. These fabrications also have capabilities in non-linear fields, as they can tune
the optical nonlinearity of nanoparticle films. Additionally, these NPs have optimal surface
bioconjugation, which has various biotechnological applications. Silver NPs are toxic to the vast
majority of viruses and bacteria, while non-lethal to normal cells in small dosages (Figure 5). This
property allows for AgNPs to be an ideal sterilization tool, especially from a medical standpoint.
AgNPs have relevant biomedical applications in cancer therapy due to its ability to facilitate joule
heating [180]. Joule heating is the process in which electrical energy is converted to heat energy, to
induce a state of hyperthermia in affected biomolecules. This effect works in conjunction with
radiotherapy to amplify cancer cell apoptosis through the generation of ROS.

Table 5. Summary of studies discussing the utilization of AgNPs to enhance the radiosensitization
effect of conventional radiotherapy for improved cancer outcomes.

Radiation
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The utilization of AgNPs as radiosensitizers has gained widespread attention in recent years.
One study synthesized AgNPs functionalized with Polyethylene Glycol (PEG) and Aptamer As1411
to amplify radiosensitivity of glioma tumor cells, induce apoptosis selection of glioma cells, and
mitigate the irradiation therapy side effects [181]. Extensive studies showed that the PEG and As1411
surface modifications significantly enhanced Ag nanoparticle uptake in glioma tumor cells.
Additionally, the PEG-As1411-AgNPs successfully penetrated the core of tumor spheroids and
facilitated amplified apoptosis rates. Overall, the synergistic therapy of AgNPs and X-ray irradiation
prolonged survival time of C6 glioma bearing mice. In another study, researchers synthesized
PEGylated graphene quantum dot-decorated silver nanoprisms by exploiting the non-covalent
electrostatic interactions created between the AgNPs and the PEG-graphene quantum dots (PEG-
GQDs) [182]. The goal of this study was to improve the efficacy of conventional radiotherapy by
synthesizing a nanoparticulate system for applications in radio-sensitization for treatment of
colorectal cancer. X-ray irradiation at a dose of 2-10 Gy was tested on the HCT 116 and HT29
(relatively radiation-resistant) human colorectal cancer cell lines. PEG-GODs were attached to silver
nanoprisms to enhance targeting and aid NPs uptake into colorectal cancer cells, making the HT29
cell line more receptive to conventional X-ray therapy. Detailed studies indicated that the conjunction
therapy of conventional radiation and the administration of the synthesized NPs stunted colorectal
tumor growth and prolonged the survival time when compared to groups treated with only
radiotherapy. Another study synthesized AgNPs functionalized with anti-EGFR antibodies via the
thermal reduction method to amplify the apoptotic effects of radiotherapy with the co-administration
of the Ag-anti-EGFR NPs for applications in nasopharyngeal carcinoma. Experiments were
conducted on human nasopharyngeal cancer cells with X-ray doses ranging from 0 to 8 Gy.
Overexpressed EGFR in these cells enhances the uptake of synthesized NPs through receptor-
mediated endocytosis. Results showed that the Ag-anti EGFR NPs inhibited nasopharyngeal
carcinoma epithelial cells proliferation and stimulated their apoptosis via G2 cell cycle arrest[183].
One study fabricated cisplatin-loaded Ag NPs to assess the cancer therapeutic effects of Ag NPs in
ovarian cancer cell lines[184]. Cisplatin was conjugated with AgNPs to improve its targeting and
accumulation of in ovarian cancer tissue. The AgNPs inflicted cytotoxic effects through DNA damage
and ROS amplification on the A2780 and SKOV3 ovarian cancer cell lines, whilethe OVCARS3 cell line
showed lower responsive to the AgNPs. Overall, the combination therapy of AgNPs and cisplatin
displayed synergistic effects and resulted in a favorable cisplatin dose reduction in the treatment of
ovarian cancer cells. Another study investigated the therapeutic and radio-sensitizing effects of
AgNPs under 6MeV X-ray radiation (dose rate: 200 cGy/min)[185]. AgNPs facilitated therapeutic
effects in glioma cells by stimulating apoptosis and facilitating destructive autophagy. The
combination therapy of AgNPs coupled with radiotherapy elicited significant anti-glioma effects in
hypoxic U251 and C6 glioma cell lines. In another study, resveratrol-loaded AgNPs were conjugated
with graphene quantum dots [186]. This study aimed to evaluate the therapeutic potential of
combining AgGQDs with resveratrol for treating colorectal cancer. Experiments were performed on
HCT-116 colorectal cancer cells exposed to 2 Gy of X-ray irradiation. AgGODS were surface-
conjugated to enhance targeting and facilitate resveratrol delivery to colorectal cancer cells via
receptor-mediated endocytosis. Results showed that the colorectal cancer cell viability was
significantly hindered, and apoptosis was amplified when treated with X-ray irradiation and silver
quantum dot-Resveratrol NPs. Overall, the synergistic treatment upregulated caspase-3 mRNA and
decreased COX-2 protein expression in colorectal cancer cells. One study synthesized Ag NPs to
evaluate the cytotoxicity of Ag NPs on the MCF-7 and MCT breast cancer cell lines under 6 Gy of
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gamma ray irradiation (dose rate: 0.675 Gy/sec) [187]. The Ag NPs were engineered using a novel
rapid extracellular biosynthesis derived from the utilization of the fungus Penicillium
aurantiogresium. Extensive studies showed that AgNPs displayed dose-dependent cytotoxicity and
confirmed their ability to function as a potent radiosensitizer for gamma irradiation. Additionally,
administration of silver NPs altered cell morphology, inhibited cell proliferation, and activated
lactate dehydrogenase and caspase-3. The activation of lactate dehydrogenase and caspase-3.
Another study fabricated silver NPs synthesized with normoxic polyacrylamide gelatin and tetrakis
hydroxy methyl phosphonium chloride polymer gel[188]. The objective of this study was to create
an advanced dosimetric and theranostic nanoparticulate system to amplify dose distribution in
cancer tissue and serve as an effective contrast agent in MRIs under 6-25 gamma ray irradiation. At
an ideal dose, the AgNPs facilitated polymerization of the polymer gel, Resulting in an 11.82%
increase in the accumulation of anti-cancer drugs in tumor tissue when a 2 mL of AgNPs was used.
Overall, the integration of silver NPs in the system increased the optical density of the drug delivery
fabrication. In one study, AgNPs were functionalized with carbon nanodots and PEG. The study
aimed to assess the potential of PEG-coated Ag-carbon nanodot NPs as a radiosensitizer for enhanced
prostate cancer treatment with X-ray irradiation. PEG improved NPs affinity for prostate cancer cell
accumulation, while carbon nanodots in the Ag nanostructure enhanced stability and
radiosensitization. The combination therapy of X-ray irradiation and Ag NPs provided a synergistic
effect and reduced prostate cancer cell survival by 50%[189]. One study synthesized bimetallic
Au/AgNPs to assess the efficacy of the bimetallic NP system to function as radiosensitizer during
radioembolization of liver tumors[190]. Experiments were conducted using N1-51 hepatocellular
carcinoma cells under external beam radiation (0-10 Gy) and 90Y TheraSphere exposure. The
branched bimetallic Au/AgNPs synthesized from Bile acid, optimizing their surface area and catalytic
activity. The bimetallic Au/AgNPs acted as a radiosensitizer by generating ROS, achieved through
Au/Ag mediated electron transfer to intracellular oxygen. Results revealed that exposure to external
beam radiation or 90Y TheraSphere, along with the bimetallic Au/AgNPs administration,
significantly increased ROS production. This ROS generation induced oxidative stress and promoted
apoptosis in hepatocellular carcinoma cells.
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Figure 5. represents the cancer treatment using radiosensitizer (inorganic NPs). For cancer treatment
how inorganic NPs are used as radiosensitizers, (i) Engineered, high atomic numbers of NPs result
in increased absorption of ionizing radiation such as X-rays, photon, or gamma rays. When these NPs
are introduced into cancer cells, they amplify the absorption of radiation within the tumor, leading to
enhanced local radiation dose and damage, (ii) the metal-based NPs have the ability to generate
reactive oxygen species (ROS) when exposed to radiation. (iii) inorganic NPs can enhance the
deposition of energy from radiation in close proximity to the cancer cells' DNA. This leads to an
increased occurrence of double strand breaks and other types of DNA damage that are difficult for
cancer cells to repair, (iv) inorganic NPs can be functionalized with targeting ligands that direct
them specifically to tumor cells or the tumor microenvironment. This targeting ensures that the NPs
accumulate more in cancerous tissues than in healthy tissues, maximizing their radio sensitizing effect
on the tumor, (v) inorganic NPs can be used in combination with other therapies, such as
chemotherapy or immunotherapy, to create synergistic effects. (vi) some inorganic NPs have
imaging properties that allow them to be tracked in the body using imaging techniques like MRI or
CT scans. This provides real-time information on nanoparticle distribution and treatment efficacy,
(vii) there are also challenges to address, such as ensuring biocompatibility, minimizing potential
toxicities, and achieving consistent and reliable results while using of inorganic NPs as
radiosensitizers. Ongoing research is focused on optimizing nanoparticle design, understanding their
behavior within the body, and conducting preclinical and clinical studies to evaluate their safety and
efficacy for cancer treatment.

6.3. Silica nanoparticles

Silica NPs (SiNPs) are spherical shaped nanoparticles that exhibit many unique surface
properties that allow them to be easily altered for tailored use. Silica NPs have shown promise in the
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nanomedicine field due in part to their functionizable surface chemistry, simple synthesis, protected
circulation, stability compared to other nanoparticles, and low cost of production (Table 6).

Table 6. Summary of SiNPs used for radio sensitization during the cancer treatment.
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Silica NPs have demonstrated significant radiosensitivity properties (Figure 5). Due to the
relatively small size at which SiNPs can be functionalized and produced, they possess the capabilities
of entering a cancerous cell and enabling a cell signaling to help increase the effects of a radiation
treatment on the cells while limiting those effects on non-cancerous cells [191]. A study performed
using amorphous SiNPs with hyperbranched poly(amidoamine) grafted onto the surface, found
that SiNPs could be used to increase damaging effects of radiation on cancerous cells [192]. Results
showed that the breast cancer cells, when exposed to radiation, were shown in significantly reduced
presence [193]. A separate study found that when using mesoporous SiNPs , the cells could be
functionalized with VPA and treated to recognize the overstimulation of folic acid in cancerous cells.
This allows for an increased effectiveness of treatment at a lower radiation level, saving the non-
cancerous cells from the serious side effects of radiation treatment. This method also increased
cancerous cell targeting and allowed SiNPs to secrete VPA to help specifically target the cancerous
cell line. Using uncapped and aminosilanized SiNPs , another study was able to increase the ROS in
cancerous cells by 180% by limiting the effect in nearby cells to only 120% [193]. The synthesized
SiNPs were used in puncturing through the cancerous cell’s mitochondria allowing for a state of
oxidative stress to take over in the cell. This study showed how effective targeting could be in the cell
and how, with limiting the rise in ROS in a cell, the damage the cell takes from radiation can also be
limited.

6.4. Carbonaceous nanomaterials

One study synthesized ultrasmall BiOI quantum dots (BiOI QDs) surface-coated with Tween 20
to function as a intratumoral injection radiosensitizer [196]. The ultrasmall BiOI QDs surface-coated
with Tween 20 were conjugated to have optimal tumor permeability and renal clearance for
biocompatibility and practical use in cancer treatment (Table 7). The Bi(NO3)3-5H20 salt was
introduced into a solution of water and ethanol mixture, followed by ultrasonication to create the
quantum dots (QDs). Subsequently, a Tween 20 solution was employed to separate the BiOI QDs
from the byproducts. HUVECsS, 4T1 cells, and HeLa cells were tested under 6 Gy irradiation of X-rays
to analyze the radiosensitization effect of the synthesized quantum dots. The ultrasmall BiOI QDs
functioned as a radiosensitizer by facilitating the catalysis of the abundant hydrogen peroxide present
in the tumor microenvironment into hydroxyl free radicals. The high concentrations of hydrogen
peroxide are only overexpressed in cancer cells, so the quantum dots can achieve selective
radiosensitization and enhance apoptosis of cancer cells. Furthermore, the synthesized quantum dots
were shown to inhibit tumor cell proliferation, perturb the mitochondrial membrane potential, and
inflict double-stranded DNA damage in cancer cells. As a result, the ultrasmall BiOI QDs surface-
coated with Tween 20 show great promise to complement radiotherapy by facilitating the formation
of hydroxyl free radicals in the tested experimental systems. Another study formulated graphene
quantum dots (GQDs) to function as a nano-radiosensitizer with enhanced uptake in tumor tissue to
complement conventional tumor radiotherapy for more effective treatment of colorectal
carcinoma[197]. The GQDs were synthesized with the Hummer’s Method and through photo-Fenton
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reactions of graphene oxide NPs. SW620 and HCT116 cells were tested under 3-6 Gy irradiation of
Gamma Rays to determine radiosensitization efficacy of GQDs . Researchers found that the synergy
between the radiosensitization of the GQDs and ionizing radiation radiotherapy have the potential
to upregulate G2/M cell cycle arrest, enhance apoptosis, decrease proliferation, and facilitate ROS
production in colorectal carcinoma cells. Additionally, the GQDs , and ionizing radiation synergy
therapy was able to facilitate cell membrane blebbing, enhance chromatin agglutination, induce
mitochondrial damage, condense cytoplasmic contents, and increase double-stranded DNA breaks
in colorectal carcinoma cells. One group of researchers designed poly(lactic-co-glycolic acid) (PLGA)
ultrasmall black phosphorous quantum dots (PQDs) for precise tumor radiosensitization to minimize
the dose required for radiotherapy to be effective[198]. The QDs were made using the emulsion
method, with PLGA NPs loaded with black PQDs. A375 and HeLa cancer cells, along with L02
normal cells were treated with the PLGA ultrasmall black PQDs and 2 Gy X-Ray irradiation to
analyze the radiosensitization potential of the synthesized nanosystem. Results showed that the
PLGA NPs function as carriers of the ultrasmall black PQDs to achieve controlled radiosensitization
of tumors by mitigating off-target release and prolonging systemic circulation. The PLGA-ultrasmall
black PQDs nanoparticulate system specifically targets the Arg-Gly-Asp-Gys sequence abundant in
tumor tissue. In the acidic tumor microenvironment, the 2,3-dimethylmaleic acid anhydride shell
decomposes and the NPs achieve a positive charge, stimulating tumor cell uptake. Additionally,
glutathione deoxidizes the disulfide bond of cysteine and enhances the release of the synthesized
nanoparticle to increase tumor cell sensitivity to radiotherapy. Overall, comprehensive studies
showed that the PLGA ultrasmall black PQDs facilitated apoptosis of cancer cells by promoting the
formation of free radicals and exhibited optimal systemic biocompatibility for favorable applications
in cancer therapy. Another group of researchers created black PQDs to complement the efficacy of
conventional radiotherapy for applications in treatment of aggressive renal cell carcinoma. 786-O
renal carcinoma cells and A498 cells were treated with the black PQDs and 5 or 10 Gy of X-ray
irradiation to determine their radiosensitization capabilities[199]. Studies showed that the black
PQDs amplified ionizing radiotherapy inducing DNA breaks through their interactions with the
DNA-protein kinase catalytic subunit and the enhancement of its associated kinase activity.
Additionally, the black PQDs inhibited the autophosphorylation of the DN A-protein kinase catalytic
subunit at S2056, which is an essential site for DNA double-strand break repair. The black PQDs
enhanced ionizing radiation-induced apoptosis in renal carcinoma cells, evidenced by increased
DNA damage markers YH2AX and 53BP1. Animal experiments further validated the enhanced
effectiveness of combining black PQDs with radiotherapy for treating renal cell carcinoma. One study
synthesized GQDs doped with rare-earth up-conversion a NPs to amplify the organelle-specific
photodynamic effects of cancer therapy for clinical applications[200]. 4T1 cells derived from the
mouse mammary tumor cell line were treated with the conjugated QDs and UV irradiation and the
radiosensitization effects were assessed. Results showed that when the QDs were excited with UV
rays, free radical formation was promoted. This directly led to the decrease of the mitochondrial
membrane potential and stimulated irreversible tumor cell apoptosis. Comprehensive results
indicated that the conjugated nanosystem addressed the limitations of conventional cancer
radiotherapy and offered a feasible approach to organelle-specific precision to amplify tumor cell
apoptosis. Another study formulated silver graphene quantum dots (AgGQDs) and assessed the
combined therapeutic effects of silver graphene quantum dots, Resveratrol, and 2 Gy X-Ray
radiotherapy of HCT-116 colorectal cancer cells. Cell studies showed that the AgGQDs stimulated
colorectal cancer cell apoptosis by inhibiting superoxide dismutase and glutathione peroxidase
activities[186]. Additionally, the AgGQDs increase malondialdehyde concentrations, upregulated
caspase-3 mRNA levels, and decreased cyclooxygenase 2 protein expression levels. Researchers
concluded that the combination therapy of AgGQDs , resveratrol, and neoadjuvant radiotherapy
significantly increased the apoptosis of colorectal cancer cells. One group of researchers
manufactured iron-palladium decorated single-walled carbon nanotubes (Fe-Pd-SWCNTs) and
analyzed their potential to amplify free radical formation to supplement cancer radiotherapy[201].
The Fe-Pd-SWCNTs were prepared by chemical reduction and combined with 0-8 Gy X-ray
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irradiation to treat MCF-7 cells. This Fe-Pd-SWCNTs increased DNA double-stranded breaks by
promoting the generation of ROS. ROS production was facilitated by the nanotubes' ability to convert
abundant hydrogen peroxide in the tumor microenvironment to hydroxyl radicals. At 200 ug/ml, the
Fe-Pd-SWCNTs displayed ideal biocompatibility and the potential to serve as radiosensitizers for

enhanced cancer therapy [201].

Table 7. Summary of studies determining the radiosensitization potential for carbonaceous

nanomaterials to function as a supplemental therapy to conventional radiotherapy for improved

cancer prognosis.
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6.5. Cerium oxide

Cerium oxide NPs (CNPs) is a rare earth metal that has many biomedical applications [202-208].
As a bulk material, cerium oxide relies on a fluorite structure that is pervious to defects depending
on either the inherent stress state or the partial pressure of oxygen. This creates a material that works
as a heterogenous catalysis with implications in the automotive, energy, optics and electrical
industries [209]. The specific mechanism is governed by the low activation threshold for lattice
oxygen vacancies that enhance inherent oxidation processes. The gas-phase oxygen activation is not
only facet-dependent but also intrinsic to surface sites. This relationship between lattice oxygen
processes and surface processes creates healing of vacant lattice oxygen sites that release gaseous
oxygen [210]. The potential for oxygen storage-release is relevant in the clinical setting as this material
can alleviate hypoxic conditions. This process is further enhanced by manipulating the scale of
synthesized cerium to NPs which creates a higher surface defect ratio per cerium molecule. This
enables nanoceria with its co-existence of Ce> and Ce* self-regenerative properties to sensitize tumor
cells [211]. With respect to radiation incidences, majority of research explains the radioprotective
properties of CNP due to its ROS scavenging ability [212-214]. In fact, a recent article even explains
the role of this radioprotective property in protecting astronauts from space radiation [19]. However,
the oxygen storage capabilities of CNPs can enhance radio-sensitization effects by creating more
reactants in creation for radical oxygen species that can eliminate tumor cells (Table 7). For example,
using a core-shell structure of scintillating NPs core with CNP shell utilizes the catalase-like activity
of ceria to decrease hypoxia within the cancer microenvironment. Computed tomography imaging
of this novel hybrid nanomaterial also shows greater imaging potential (3.79 fold) than the clinical
contrast agent of iohexol [215]. Additionally, CNPs can provide combinatorial effects by also
delivering microRNA [16]. This application is useful as miR181a acts as a radiosensitizer through the
regulation of the Chk2 pathway. By combining a 2D graphdiyne structure embedded with CeO2 NPs,
hydrogen peroxide decomposition to oxygen in enhances and reduces tumor hypoxia. The nanozyme
is also subsequently able to protect the miRNA and enhance its therapeutic efficacy under radiation
treatment [216] (Figure 5). One of the most effective ways that studies have found for CNPs to
increase cancerous cells’ sensitivity to radiation is through the use of a core-shell structure that is
made up of cerium oxide particles. In a study done using a shell-core radiosensitizer, the sensitizer
was made of two layers of cerium oxide: CeO: making up the core area and the Ce20s making up the
shell of the sensitizer [217]. The researchers performed in-vitro studies using methyl orange and
found that using UV-Vis radiation enabled the sensitizer to excite electrons and store them between
the layers of cerium oxide (Table 8). The photo-excited electrons were trapped between the layers of
cerium oxide and were then absorbed by oxygen molecules on the surface of the sensitizer, allowing
for O»- radicals in nearby cells. These radical oxygen species would then induce oxidative damage
upon tumorous cells, allowing for this radio sensitizing compound to focus radiation into a collective
way to sensitize cancer cells with future biomedical applications as well. Furthermore, recent studies
have found that biofunctionalized nanoceria can achieve effective penetration across epithelial layers
and controlled release of drugs. These properties render biofunctionalized nanoceria an attractive
choice for synergistic cancer therapies encompassing radio sensitization and enhanced
chemotherapeutic drug delivery [218].

Table 8. Summary of studies analyzing the ability of CNPs to promote radiosensitization effects in
cancer cells.
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7. Conclusions and Future outlook

While nanotechnology is a robust field and its application in medicine is promising, utilization
in the clinical field is still in its infancy. However, its application as cancer treatment, especially as a
cancer radiosensitizer is leading the charge in federal approval and clinical adaptability. In fact, the
first known FDA approved NPs is PEGylated liposomal doxorubicin (known as Doxil) and it paved
the way for nanodrug delivery and tumor targeting. The ability to passively target tumors and
become available to tumor cells through the EPR effect shows how Doxil and other nanodrugs can
be useful in cancer treatment[222]. This same nano-drug also presents excellent radiosensitivity that
enables focused and targeted tumor cell radiolysis. However, according to FDA labels, Doxil is
contraindicated with mediastinal irradiation. The risk of myocardial infraction is stated as the
reasoning, but one clinical study shows this is not necessarily the case [223]. Recent developments in
intensity modulated radiation therapy (IMRT) show reductions in cardiac toxicity of mediastinal
irradiation. When combined with doxorubicin, the initial contraindications of the nanodrug are
mitigated while improving overall patient outcomes than radiation alone [223]. Additionally,
pegylated liposomal doxorubicin shows not only better bioavailability but also reduction in
cardiomyopathy. This sort of modification is important and not only vital to better patient outcomes
but to ensure FDA approval of the nanodrug [224]. This process of ensuring clinical availability of
the various nanomaterials discussed in the review will be more difficult with the utilization of
inorganic compounds. Before inorganic NPs can be clinically implemented on a widespread scale,
further extensive studies are required to elucidate their biocompatibility, their precise interactions
with biological immune system mechanisms, and biological clearance processes [225].

It should also be discussed that the future of cancer treatment will drastically change with the
advent of machine learning algorithms and artificial intelligence. Monumental medical discoveries
such as using machine learning to screen antibiotic molecules to target A.baumannii, are merely the
surface of what algorithmic processing can do [156]. The role of material science and nanotechnology
in this emerging new reality is significant especially with the discovery of new materials, prediction
of function and optimization of synthesis. The growing plethora of material science data and
references will be crucial in uncovering new developments in the realm of radio-sensitizing
nanomaterials [226].

Due to the plethora of cancer variations and the necessity for individualized approaches, there
is a high demand for a streamlined approach to treating cancers. We expect to see cancer only
increasing in prevalence among scholarly articles, with more novel strategies to enhance cancer
treatment outcomes in question. The growing body of scientific knowledge related to cancer and its
potential treatment strategies is encouraging. The introduction of nanotechnology into medicine has
opened a new vein of possibility when it comes to targeted treatments for countless cancer types. Our
increasing ability to strike a chemical balance between radioprotection of healthy cells and radio
sensitization of cancer cells has significant potentiality for the advancement of cancer therapeutics
overall. There is a wide range of delivery methods, as well as options of particle type and
characteristics that may produce individualized desirable treatment outcomes. Future research will
likely delve into detail of what nano systems, elements, and morphologies are most effective for
specific purposes. Overall, nanotechnology poses a propitious addition to the field of cancer research
and the ambition for better treatment outcomes.
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