Pre prints.org

Article Not peer-reviewed version

AGPNet: Augmented Graph
Pointpillars for Object Detection
from Point Clouds

Xiaohua Wang ~, Jian Liu , Zhonghe Liao

Posted Date: 27 October 2023
doi: 10.20944/preprints202310.1729v1

Keywords: 3D object detection; point cloud; voxel; deep learning

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3221396
https://sciprofiles.com/profile/3215274

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

AGPNet: Augmented Graph Pointpillars for Object
Detection from Point Clouds

Xiaohua Wang *, Jian Liu 2> and Zhonghe Liao 2

! School of Mechatronic Engineering and Automation, Shanghai University, China
2 x.wang@shu.edu.cn; jianl@shu.edu.cn; zhongheliao@shu.edu.cn;
* Correspondence: x.wang@shu.edu.cn

Abstract: In the realm of autonomous vehicle environment perception, the primary objective of point cloud
target detection is to swiftly and accurately identify three-dimensional objects from point cloud data. To meet
this requirement, the prevalent network architecture employed in the industry is the voxel-based PointPillars
model. Nonetheless, this model faces challenges in maintaining detection accuracy when objects are obscured
or diminutive in size. In response to this issue, we introduce AGPNet, a novel model that seamlessly integrates
four key modules: Data Augmentation, Dynamic Graph CNN, Pillar Feature Net, and Detection Head (SSD).
The Data Augmentation module enhances the adaptability of point cloud data to complex and ever-changing
real-world environments. The Dynamic Graph CNN module endows the network structure with geometric
features, which encapsulate not only the point itself but also its adjacent points. The Pillar Feature Net module
translates three-dimensional point cloud data into pseudo-image data through the utilization of voxels.
Subsequently, the Detection Head (5SD) module leverages this pseudo-image data to conduct target detection
of three-dimensional objects. Our experiments, conducted on the KITTI dataset, demonstrate that our proposed
method boosts object detection accuracy by 6-7 percentage points compared to the PointPillars model, while

maintaining similar detection times.

Keywords: 3D object detection; point cloud; voxel; deep learning

1. Introduction

The detection of three-dimensional objects constitutes a vital component within the autonomous
driving environment perception system. It offers crucial reference information about objects in the
vehicle's vicinity for subsequent processes. Common methods for three-dimensional object detection
rely on both image data and three-dimensional point cloud data. Owing to its robust resistance to
interference and its capability to capture the three-dimensional nature and spatial characteristics of
the object's environment, three-dimensional point cloud data has emerged as a fundamental
approach for achieving high-quality 3D object detection.

In recent years, with deep learning yielding remarkable outcomes in the field of two-
dimensional image analysis in computer vision, an increasing number of researchers have turned
their attention to the integration of deep learning techniques with three-dimensional point clouds.
This integration capitalizes on the wealth of spatial information provided by point clouds to enhance
the computer's capacity to process and understand complex three-dimensional data, ultimately
elevating its environmental awareness. Nevertheless, owing to the irregular and disordered nature
of point cloud data, researchers often face challenges when attempting to extract relevant local
features through convolution, unlike the relatively structured two-dimensional images. Current
three-dimensional object detection methods employing point cloud deep learning can be categorized
into three main approaches: multi-view fusion, point-based methods, and voxel-based methods.
Within the multi-view fusion category, notable examples include MV3D [1], AVOD [2], and MVF [3].
These methods involve projecting 3D point clouds into multi-view images, enabling the use of 2D
object detection techniques to perform 3D object detection tasks. However, the process of converting
from three-dimensional to two-dimensional representation results in dimension reduction, limiting
the ability of multi-view fusion methods to capture fine-grained point cloud features, which can affect

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202310.1729.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

their overall detection accuracy. In contrast, point-based methods, such as PointRCNN [4], Frustum
PointNet [5], and Point-GNN [6], utilize PointNet and PointNet++ [7,8] networks for direct feature
learning from the original point cloud data. They predict object frame positions and sizes for selected
points in the object point cloud and employ the non-maximum suppression technique used in two-
dimensional object detection models like SSD (Single Shot MultiBox Detector, SSD) [9] to obtain final
three-dimensional object frame regression and classification results. While point-based methods offer
high detection accuracy without issues like resolution loss resulting from point cloud grouping, they
are computationally intensive and have slower detection speeds, making them less suitable for real-
time detection in autonomous driving scenarios. On the other hand, voxel-based methods, including
VoxelNet [10], SECOND [11], and PointPillars [12], employ a uniform voxelization process to encode
irregular point cloud data into a regular, grid-like format akin to images. The encoded data is
subsequently fed into traditional convolutional neural networks for feature extraction, which leads
to the acquisition of voxel-based features. Finally, these voxel features are utilized to generate object
frame prediction results through two-dimensional target detection algorithms. Voxel-based methods
strike a balance between detection accuracy and speed, making them a prominent choice for three-
dimensional object detection in this study.

In this paper, we introduce the AGPNet model, a network structure that combines Data
Augmentation, Dynamic Graph CNN, Pillars Feature Net, and Detection Head (SSD). As illustrated
in Figure 1, the AGPNet model comprises four stages: (i) Data Augmentation Stage: Through
occlusion, exchange, and sparsity operations, the point cloud data can be brought closer to the real-
world point cloud data in a genuine environment. (ii) Dynamic Graph CNN Stage: Utilizing point
cloud convolution network operations, we can extract pertinent geometric information for each point
within the point cloud and its neighboring points, and integrate it into the dimension of each point.
(iii) Pillars Feature Net Stage: By employing PointPillars-related processing operations, we can
transform relevant point cloud data into pseudo-image information. (iv) Detection Head (SSD) Stage:
The SSD detection module processes the pseudo-image information from the previous stage to obtain
pertinent information for object detection. Experiments demonstrate that, compared to the commonly
used PointPillars model architecture in the industry, our AGPNet model enhances 3D object detection
accuracy by approximately 6-7%, while maintaining detection times within the same order of
magnitude as PointPillars. This meets the real-time 3D object detection requirements for autonomous
vehicles.

Point Cloud Predictions

Data Dynamic Pillar Feature Detection f =
Augmentation Graph CNN Net Head(SSD) M o &>

T g
o

Another
Input Object

_\ - Point Stacked Learned Pseudo
o — v e cloud Pillars Features image
% dropout 2 : ORC) e —Ho @ .0 {1 _——eN f ;
| A s all Query P / __GNN A Ne1s/ | | U — | — ‘ — N
. S\\'BX @ @ ~ >NO o/ —— Y b ot | S ¥

5 o 1 ® P ® = ® o i ! .
> i ® @ ® @ Yo o | iar Ingex

=

sparsify

Figure 1. AGPNet Module Overview: The primary components of the network encompass Data
Augmentation, Dynamic Graph CNN, Pillar Feature Net, and Detection Head (SSD) . Data
Augmentation serves to enhance data diversity, while Dynamic Graph CNN conduct high-
dimensional operations on point cloud data. The Pillar Feature Net transforms the initial elevated
point cloud into a two-dimensional pseudo-image, and the Detection Head (SSD) utilizes the pseudo-
image features to predict the three-dimensional bounding box of the object.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

1.1. Related Work

1.1.1. Data Augmentation

To address challenges such as occlusion, proximity, varying shapes of objects within the same
category encountered in real road conditions, and to enhance the model's capacity to understand the
unique circumstances of objects, as well as improve the common detection results of current 3D object
detection models that often exhibit limited accuracy, particularly for distant or sparse object point
clouds, we employed data augmentation techniques. In this study, we drew inspiration from the data
enhancement operations introduced in [12]. However, our approach, embodied in the AGPNet
model's Data Augmentation module, diverges from the original method in an important way. Rather
than using the farthest point sampling method, as proposed in [12], during the sparsification
operation, we opted for a voxel-based approach. In this method, we randomly selected a point within
each voxel's range as the representative point for that voxel. This modification serves to bring our
point cloud data closer to real-world conditions, while simultaneously reducing the computational
load for subsequent point cloud data processing.

1.1.2. Dynamic Graph CNN

When it comes to extracting geometric features from point clouds, this paper adopts the ball
query method from the point cloud Dynamic Graph convolutional neural network (Dynamic Graph
CNN) [13]. This method involves identifying all points within a specified radius of each point and
combining the resulting vectors, which consist of the central point and its neighboring points. These
combined vectors are utilized for graph convolution-based feature learning. Through a series of
operations, the model learns the pertinent geometric relationships between the central point and the
neighboring points within the sphere. The learned features, along with the three-dimensional
coordinates of the corresponding point, are then utilized as feature dimensions for that point.

1.1.3. Differences from Pointpillars Model

Our AGPNet network model was developed in response to the PointPillars [12] network model's
limitations in accurately detecting occluded or small objects. While AGPNet draws inspiration from
the PointPillars network structure, it differs significantly in several key aspects. Firstly, our AGPNet
model omits the Backbone (2D CNN) module found in the PointPillars model, opting instead for
point cloud processing using the Dynamic Graph CNN module before voxelizing the features within
the Pillar Feature Net. Secondly, we introduce a Data Augmentation module to our model to address
the challenges posed by occlusion in point cloud data within real-world environments, as well as
variations in point cloud data distances. Lastly, in the Pillar Feature Net module, the PointPillars
model voxelizes the input point data, including three-dimensional coordinates (x,y,z), reflectivity
(r), the distance of three-dimensional coordinates from the column's center point (x., ., z;), and the
offset distance from the center of the column's xy-plane (x,,y,). These parameters make up the nine-
dimensional feature space for each point. In contrast, our Pillar Feature Net module in AGPNet takes
as input the three-dimensional coordinates of the point cloud (x,y,z) and the features obtained after
learning from the corresponding point cloud convolutional neural network, resulting in a feature
space with C dimensions.

1.2. Contributions

The Key contributions of this paper are as follows:

e We introduce the AGPNet network framework, which offers a novel integration of Data
Augmentation and Dynamic Graph CNN modules with PointPillars. This innovative approach
not only enhances the diversity of point cloud data but also transforms it into pseudo-image
data, resulting in a notable acceleration in the detection process;

e Our proposed model effectively addresses the issue of inadequate detection accuracy
encountered when dealing with obstructed or small-sized objects, a common limitation in the

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

current industry-standard PointPillars model. Importantly, our model strikes a balance between
detection speed and accuracy;

e Experimental results demonstrate that our method achieves a detection accuracy approximately
6-7% higher than that of the PointPillars model when evaluated on the KITTI dataset.
Remarkably, it accomplishes this without sacrificing detection speed, ensuring it meets the
stringent requirements for both accuracy and speed in a real-world autonomous driving
environment.

2. Proposed 3D Object Detection

The AGPNet network model, as illustrated in Figure 1, addresses the transformation of discrete
point cloud data P = {py,...,p,} € R®. Our primary objective is to convert this data into a more
representative form, one that better captures the geometric characteristics of the surrounding point
cloud data, ultimately enhancing the accuracy of three-dimensional object detection within point
clouds. As explained in the initial section, our approach to converting point cloud data into pseudo
images entails several key steps P ={py,...,py,} S R® to F(Hx W xC). Firstly, we apply Data
Augmentation module to the point cloud data P = {py,...,p,} S R?® to obtain enhanced three-
dimensional point cloud data P = {py,...,px} € R®* (N # n). Subsequently, we employ Dynamic
Graph CNN module to upgrade the point cloud data’s dimensions P = {py,...,py} € R (N # n), and
then pass it through the Pillar Feature Net module, which transforms it into pseudo image
F (H x W x C). The pseudo image is then processed by the Detection Head (SSD) module to facilitate
three-dimensional object detection, ultimately producing prediction results.

P>P->P->F 1)

As depicted in Figure 1, the implementation process of equation (1) primarily comprises four
modules:

e The Data Augmentation module augments point cloud data diversity, facilitating the acquisition
of more varied point cloud features;

¢ The Dynamic Graph CNN module performs dimension expansion on each point, encompassing
its three-dimensional coordinates and pertinent geometric relationships with nearby points;

e The Pillar Feature Net module voxels the dimension-expanded point cloud data and conducts
related processing to convert it into pseudo-image information representing the point cloud data;

e The Detection Head (SSD) module processes the two-dimensional pseudo-image features and
generates three-dimensional detection results.

The quality of the pseudo-image data produced by the last two modules is directly influenced
by the data processing outcomes from the initial two modules, which subsequently impacts the object
detection results from the fourth module.

2.1. Data Augmentation

In Figure 1, our shape enhancement scheme is illustrated within the Data Augmentation module
as per the design. The object point cloud is divided into six regions based on the diagonal connections
of the real bounding box, as it is often encountered in Lidar point cloud scans on object surfaces. This
division into six areas enhances our point cloud data's ability to mimic real-world point cloud data.

Our data augmentation process is specifically executed in three steps:

e Regional Ensemble Point Cloud Pruning: A certain probability is applied to randomly remove
point cloud data from one of the six regions, as depicted in the blue section in the figure. This
action simulates point cloud occlusion experienced in real-world environments.

e Inter-Region Point Cloud Exchange: With a specified probability, an area is randomly selected

from the six regional point cloud sets in the current frame. Corresponding point cloud data is
then exchanged with another region on the same side of objects belonging to the same category.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

This exchange is illustrated by the yellow and green portions in the figure. It serves to enrich the
point cloud data's ability to capture the diversity among objects of the same category.

e Subsequent Sparsification: For the point cloud data involved in the second step, a voxel-based
method is used to randomly select a point within non-empty voxels. This point serves as a
representative feature of the voxel area, and downsampling is applied, as seen in the yellow part
of the point cloud in the figure. This operation simulates the variation in point cloud density in
real environments.

Through these operations, we transform the initial point cloud data P = {p,,...,p,} € R® into
enhanced point cloud data P ={p;,...,px} S R®*(N#n). Our data augmentation procedure
significantly reduces the computational cost of subsequent point cloud data processing while
effectively mimicking the characteristics of point cloud data in real-world scenarios.

2.2. Dynamic Graph CNN

In view of the close-to-distant characteristics of 3D point cloud data in the real environment, we
use the Ball Query method to perform graph convolution operations on point clouds. The
implementation steps are shown in the Dynamic Graph CNN module in Figure 1. Definition P =
{p1,---,pn} € R¥ (N # n), P is a set of N points in the point cloud, where Pieqr.ny = (X, ¥, 2;) means
that each point includes its three-dimensional coordinate value. The discrete graph structure
composed of points and adjacent points can be expressed as G = (P, E), where:

E={(pup)lllpi—pl<ri={1...,N}L,j={1,....,m} @)

In other words, this involves the set of m neighboring points located within a radius r of the
given point and within the sphere. Next, we process the matrix consisting of point coordinates and
coordinates of neighboring points through a shared multi-layer perceptron (MLP) to perform a
dimensionality transformation, yielding the resulting feature e;:

eij = ReLU(By - (pi — pj) + @m " Pi) (3)

which © = (04,...6p,04,...0,) represents the learnable parameter of the shared multi-layer
perceptron (MLP).
Finally, the corresponding features are aggregated through the max pooling operation:

Xim = MaXj)eg (€j)) 4)

By employing the point cloud graph convolutional neural network operation, we acquire high-
dimensional point cloud data P = {p;,...,px} € RS (N # n) that includes the three-dimensional
coordinates of each point and the characteristics of its neighboring points.

2.3. Pillar Feature Net

Following the preceding operation of the point cloud convolutional neural network, we've
obtained point cloud data P ={py,...,pn} SR°(N #n) with dimension C. The first three
dimensions of each point represent the x, y, and z-axis coordinates of the point cloud data. Next, we
will execute Pointpillar operations on these points to transform them into pseudo-image data. The
operational details are depicted in the Pillar Feature Net module in Figure 1.

e Firstly, we discretize the point cloud by uniformly dividing it into a grid(0.16°m?) on the x-y
plane, generating a collection of columns, denoted as P, which function as voxels with infinite
spatial extent along the z-coordinate.

e Secondly, we construct a dense tensor with dimensions (C,P,N) by imposing specific
constraints on the number of non-empty bins per sample, P, and the number of points per bin,
N. In cases where a sample or pillar contains an excessive number of points, we downsample
the data by randomly selecting P points or, if needed, apply zero padding to ensure
completeness.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

e Thirdly, we employ a simplified version of PointNet to produce a tensor with dimensions
(C,P,N). Subsequently, a maximum operation is applied to create an output tensor with
dimensions (C, P).

e Fourthly, we disperse these features back to their original pillar positions, effectively generating
pseudo-image data denoted as F(H x W x C), with H and W representing the height and width
of the canvas.

2.4. Detection Head (SSD)

In the Detection Head (SSD) module, we employ a two-dimensional object detection network
based on SSD to conduct object frame matching detection on the pseudo-picture features after feature
compression and conversion. In the final layer of the network, height regression prediction
parameters for the object frame are output through the fully connected layer, restoring the z-axis
height information of the object frame.

2.5. Loss Function

In the context of the three-dimensional object detection model, the model's output must provide
information about the size, orientation, and precise object classification results. Consequently, our
loss function primarily consists of a weighted sum of the object frame regression loss function and
the classification loss function.

2.5.1. Object frame regression loss function

The object frame regression part needs to predict the center position coordinates of the object's
three-dimensional object frame, the length, width and height of the frame (I, w,h) and the direction
angle of the frame 6. In order to facilitate effective training of the model and enable rapid
convergence, the predicted object frame parameters (x,y,z1,w,h,0) are normalized. For
convenience of description, the following definitions are given:

(1) (x8%,y8t, z8t 18, wet het, 0 gt) represents the real object frame parameter;

2) (x*y32z1%,w?h? 0 Z71) denotes the object frame parameter of the positive sample in the
prediction;

3) {af’os}iﬂmNpos stands for the set of positive sample object frames in the prediction, with a total of
N

4) {a?eg}izl_"Nneg signifies the set of negative sample object frames in the prediction, with a total of

pos’

Nheg-
The regression residual between the actual object frame and the predicted object frame is
calculated as follows:

L yet — ya 28t _ 5
Ax = TR Ay = TR Az = e (5)
0® Iet het
Aw =log?,A1=logl—a,Ah=logF (6)
AO =sin(05 — 07 @)

Among them, d? = /(w a)2 + (12)? is the diagonal length of the matrix where the length and

width of the positive sample object frame are predicted.

Object frame regression loss function We use the Smooth L1 [15] function to calculate the object
frame regression loss, including the regression loss value of Ax, Ay, Az, Aw, Al A%z A 0 . Define Jfloc as
the position regression loss function (the subscript loc represents location, that is, the position of the
object frame), and the formula is as follows:

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

7
Lioe = Z smooth;, (Ab) (8)
be(x,y,z,w,1,h,0)
_(05x%if|x| <1
smoothy, (x) = {|x| - 05 if|x] =1)

While the £ loss function calculates the object frame angle loss A 0, it does not address the
specific orientation problem of the object frame. We approach the task of determining the specific
orientation of the object frame as a two-class problem with mutually exclusive outcomes. Once the
rotation angle A 0 of the object frame is established, there are only two possible orientations: the
current orientation and the orientation after a 180° rotation. To determine the specific orientation of
the object frame, we introduce a direction regression loss function £, (where the subscript 'dir’
denotes direction, representing the orientation of the object frame). In this context, we utilize the
softmax classification loss function [16], denoted as £ dir loss function in Formula (10). We assign a
direction category, denoted as category 'i,' with i=1 corresponding to the current orientation and i=2
to the orientation after a 180° rotation. The value predicted by the model for category 'i' is represented
as x;.
1

Trerm (19

Lair (%) =

Among them, i =1,2; j=1,2; j #i.

2.5.2. Classification loss function

For the object classification task, we are confronted with the challenge of categorizing three
distinct types of objects in the dataset. Additionally, the object categories exhibit an issue of
imbalanced sample distribution. To address this issue, we employ the focal loss [3] classification
function to tackle the multi-classification problem within the context of imbalanced samples.

The classification loss function £, (the subscript cls represents class, that is, the object frame
category) is defined as follows:

Las = —a,(1 — p?)Ylogp? (11)

Among them, a € {0,1,2} represents three types of objects respectively, 0 represents the car
category, 1 represents the pedestrian category, and 2 represents the bicycle category. p? is the object
frame category confidence. In the article, a issetto(0.25and v issetto2.

2.5.3. Overall loss function

The overall loss function of the model is expressed as follows:

1
L= N (BloclLlocl + Blochlocz + Bclchls + BdirLdir) (12)
pos

Considering the challenge of imbalanced object categories, we introduce different scale

parameters for large and small objects: B is the position regression loss function for the ‘car’

1

object category, setto1; B isthe position regression loss function for the 'bicycle’ and 'pedestrian’
oc

2
object categories, set to 2; B | is the object category loss function, set to 1; and B . is the object
direction loss function, set to 0.2. This strategic parameter adjustment strengthens the weight
attributed to small objects. As a result, the model prioritizes the accuracy of small object detection
during training.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

3. Evaluations
3.1. Implementation Details

3.1.1. Experiment platform

All experiments in this paper were conducted within the following hardware environment: Intel
Xeon (R) CPU E5-2603, GTX 1050 Ti GPU graphics card; and software environment: 64-bit Ubuntu
18.04 LTS, Python 3.7, PyTorch 1.3.0, OpenPCDet 0.5.2, CUDA 10.0, cuDNN 7.5.0, PCL 1.11, MATLAB
R2019b, numpy, tensorboardX, and numba. OpenPCDet is a 3D object detection code library for lidar
point cloud analysis developed by the Open-MMLab team. It is commonly employed for 3D object
detection based on lidar data. The Point Cloud Library (PCL) is a comprehensive library that provides
various commonly used point cloud processing functions.

3.1.2. Experimental data

The KITTI dataset was established jointly by the Karlsruhe Institute of Technology (KIT) in
Germany and the Toyota Technical Institute of Chicago (TTIC) in 2012, specifically for autonomous
driving tasks. This dataset comprises data collected from various sensors, including optical cameras,
lidar, and others, mounted on a Volkswagen Passat, as depicted in Figure 3. It includes a total of
14,999 images along with their corresponding point cloud data. Out of these, 7,481 groups were
allocated for training, while 7,518 groups were designated for testing. The KITTI dataset offers
annotations for a grand total of 80,256 objects within the three primary categories: cars, pedestrians,
and bicycles, making it valuable for tasks related to environmental perception in autonomous
driving, including 2D and 3D detection. It's essential to note that the KITTI 3D object detection test
set does not provide object labels. Consequently, to acquire evaluation data, detection results must
be submitted to the official website. In our research, we divided the official KITTI 3D object detection
training dataset into a training set and a validation set, with 3,712 samples assigned to training and
3,769 samples allocated for validation, following the guidelines in [3]. Additionally, the KITTI dataset
has been categorized into three difficulty levels based on different occlusion conditions, as presented
in Table 1: 'simple,' 'medium,’ and 'difficult.' This classification helps in assessing the object detection
performance under varying complexities.

Velodyne HDL-64E Laserscanner

Point Gray Flea 2
Video Cameras _\

Figure 2. KITTI data set collection equipment, the sensors used by vehicles include: inertial navigation
system (GPS/IMU), lidar (Velodyne HDL-64E), grayscale and color cameras.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

" TP [FP [FN |Precision Recall
4 2 10 66.7% 100%

Figure 3. Visualization of the verification results of the AGPNet model under the verification set 0006
data set, (a) simulated verification set 0006 camera image. (b) Simulation verification set of two-digit
image detection situation and sum. (c) Simulation verification set 3D point cloud detection situation

Table 1. Description of difficulty of data set detection

Bounding box Object occlusion The maximum degree of truncation of an

Difficul
tHficulty Minimum Height level object
Simple 40px 0, fully visible 15%
Medium 25px 1, partial occlusion 30%
Difficult 25px 2, hard to see 50%

3.1.3. Evaluation index

In this article, we calculate the target detection evaluation metrics using the prediction of
positive samples (TP - True Positives), the prediction of negative samples (FP - False Positives), and
the absence of true positive samples (FN - False Negatives) to derive accuracy (precision) and recall.
Furthermore, we compute the average accuracy (AP - Average Precision) and mAP (Mean Average
Precision) based on accuracy and recall values.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

10

First, we predict the IOU (Intersection over Union) of the area or volume of the object frame and
the real object frame. During the experiment, we set the IOU of the car category object to 0.7, and the
pedestrian and bicycle category object IOU to 0.5;

__area(BpNBg)

I0U =
area(B,UByg)

(13)
where B, is the predicted object box (predict bounding box) and Bg; is the ground truth bounding
box.

If IOU is greater than the threshold, the object frame result is determined to be TP. If it is less
than the threshold, it is determined to be FP. For the true value of the object frame that does not
intersect with the object frame prediction result, it is determined to be FN. It can be performed
through TP, FP, and FN. Calculation of precision and recall;

oo TP (14)
precision = ——
TP
I = —— 15
e T TP EN ()
Finally, mAP is calculated using the precision corresponding to the 40recall value:
1
mAP|, = mzmk 0 mery @ (16)
Which takes R = {i,i,i,...,l}.
407 40" 40

In the multi-scene continuous frame detection process, first, a frame of point cloud data is
extracted from the scene continuous frame data set in chronological order, and put into the trained
model to obtain the object frame result predicted by the model; the prediction result and KITTI
tracking result are compared with the object frame true Compare the value results, calculate the two-
dimensional IOU value from the BEV perspective, and obtain the TP, FP, and FN values of the point
cloud data of the frame. Traverse all frame point cloud data in chronological order; count the number
of TP, FP, and FN of all object frames; finally, calculate the evaluation indicators precision, recall, and
average detection time based on the number of TP, FP, and FN.

i=1 TR
jn=1 TPi + Z?:l l:Pi

precision = 17)

ie1 TR,
ie1 TP + XL FN;

recall = (18)

3.2. Comparison with state-of-the-art methods

To validate the efficacy of our voxel-based 3D object detection model, we conducted a
comparative analysis with two top-performing 3D object detection models, PointPillars and
SECOND, which currently hold the highest rankings for voxel detection accuracy on the KITTI
official website. Additionally, we included PointRCNN, known for achieving the highest detection
accuracy based on point cloud data, for a comprehensive evaluation. To ensure a fair comparison, we
partitioned the training and testing datasets for the models according to the data set classification
described in Section 3.1.2. Throughout the training and testing phases, we utilized the two-
dimensional Intersection over Union (2D IOU) and three-dimensional Intersection over Union (3D
IOU) thresholds as specified in Section 2. The visual representation of AGPNet's verification results
is presented in Figure 3. Following the convergence of all three models after their respective training
processes, we present the experimental results for the test set in Tables 2 and 3. To provide a
comprehensive overview, we computed the average detection results for both two-dimensional and
three-dimensional IOU for each object category with varying levels of difficulty. These results are
visualized in the scatter plot for the three object types, as depicted in Figure 4.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

11

From the two-dimensional Intersection over Union (2D IOU) detection results (a, b, ¢) shown in
Figure 4, it is evident that the AGPNet model proposed in this article exhibits a negligible time
difference, being only 0.03 seconds slower than the PointPillars model, which boasts the shortest
detection time. Moreover, the mean Average Precision (mAP) of AGPNet surpasses that of all other
voxel-based three-dimensional object detection models, with the exception of the 'Bicycle' category.
Specifically, for relatively small objects like bicycles and pedestrians, AGPNet achieves a 14% and
15% higher mAP than the PointPillars model. When it comes to detecting larger objects such as cars,
AGPNet outperforms the PointRCNN model, currently the highest-accuracy point-based method on
KITTI, by 4%. On average, AGPNet enhances the detection accuracy of the three object categories by
11% compared to the PointPillars network. While our AGPNet model's detection accuracy on the
pedestrian and bicycle datasets remains slightly lower than the PointRCNN network model, which
directly operates on point cloud data, it achieves a 15% and 5% lower accuracy on bicycles and
pedestrians, respectively, while offering a 47% improvement in detection speed.

Table 2. Two-dimensional IOU results from BEV perspective.

Method Model Time/s—; Car , Bloyde , Pedestrian __
Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult

Pointpillars 0.21 89.45 82.26 80.86 66.99 53.61 49.97 51.90 45.26 41.55

Voxel SECOND 0.31 88.77 82.40 78.91 76.36 63.56 60.07 49.78 45.83 42.71
AGPNet 0.24 90.93 86.75 84.78 77.99 59.86 55.97 59.14 52.51 47.40

Point PointRCNN 0.45 89.91 86.49 80.11 88.20 72.80 66.97 64.22 55.47 48.35

Table 3. Three-dimensional IOU results from BEV perspective.

. Car Bicycle Pedestrian
Method Model Time/s—— - — - - — - - —
Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult
Pointpillars 0.21 80.62 67.88 65.21 61.95 48.70 45.55 47.49 40.77 36.73
Voxel SECOND 0.31 84.68 71.89 68.31 71.60 59.41 57.62 41.27 36.28 32.92
AGPNet 0.24 84.94 75.51 72.76 73.60 55.57 51.54 54.64 47.72 42.72
Point PointRCNN 0.45 89.56 78.24 75.79 86.80 69.99 64.99 61.47 53.61 45.94
a.2D Car b.2D Bicycle ¢.2D Pedestrian
I
d.3D Car b.3D Bicycle ¢.3D Pedestrian

Figure 4. Detection results of three objects in two-dimensional and three-dimensional states of
AGPNet's KITTI data set.

Analyzing the three-dimensional Intersection over Union (3D IOU) results presented in Figure
4d-f, we observe that the voxel-based AGPNet model, introduced in this article, exhibits lower

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

12

detection accuracy when compared to the SECOND network, especially in the context of bicycle
object detection. It also demonstrates reduced accuracy in detecting cars and pedestrians.
Nonetheless, AGPNet's detection accuracy surpasses the current leading three-dimensional object
detection method based on voxel analysis. Specifically, the mean Average Precision (mAP) of the
AGPNet network, in the case of relatively small objects such as bicycles and pedestrians, is 16%
higher than that of the PointPillars model. When it comes to detecting larger objects, including cars,
AGPNet outperforms the PointRCNN model, which is currently the highest-accuracy point-based
method on KITTI, by 9% compared to PointPillars. On average, the detection accuracy for all three
object types improves by 14% compared to the PointPillars network. It's important to note that
although the detection accuracy of our AGPNet model on pedestrian and bicycle datasets remains
slightly lower than the PointRCNN network model, which operates directly on point cloud data, it
exhibits a 22% and 11% lower accuracy on bicycles and pedestrians, respectively. However, it offers
a significant 47% improvement in detection speed.

Figure 4 clearly demonstrates that the AGPNet, a voxel-based 3D object detection model
proposed in this article, excels in achieving a balance between detection speed and 3D object detection
accuracy. It emerges as the top-performing voxel-based 3D object detection model.

3.3. Multi-scene continuous frame object detection experiment

To enhance the model's ability to detect three-dimensional objects under conditions resembling
real-world driving scenarios, this section presents a multi-scene continuous frame object detection
experiment. The various road scenes encompass urban roads, apartment, highway, and campus
roads, as illustrated in Figure 5. We employed the original KITTI dataset, as explained in Chapter 3,
Section 1.2.3, as our source of data. Table 4 provides pertinent details about each continuous frame's
point cloud data, with KITTI object tracking annotations available for urban areas, residential zones,
and highways. However, it's worth noting that object annotation information is not provided for the
campus road scene data. To enable our model to assess its prediction results across all four road
conditions, we manually annotated the campus road scene object frames using CloudCompare
software. These annotations encompass the dimensions and positions of all object frames requiring
detection.

Figure 5. Multiple scene road conditions.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

13
Table 4. Summary of multi-scenario data information.
Object Category
Scene Data Time/s Frames
Car Bicycle Pedestrian
Cit 2011_09_26_drive_0014 32 320 32 4 5
i
Y 2011_09_26_drive_0056 30 300 30 1 2
2011_09_26_drive_0035 13 137 13 1 2
Apartment .
2011_09_26_drive_0039 40 401 40 1 2
2011_09_26_drive_0032 39 396 39 0 0
Highway .
2011_09_26_drive_0070 42 426 42 2 2
2011_09_26_drive_0038 11 116 11 _ _
CamPUS 2011_09_26_drive_0043 15 151 15 . .
The outcomes of continuous frame object detection across various scenes, as produced by the
AGPNet model, are presented in Figure 6. We meticulously assessed the object detection results of
our AGPNet model across these diverse continuous frames, subsequently comparing them with the
detection results achieved by the widely adopted PointPillars model in the industry. A
comprehensive summary of these results can be found in Table 5.
City Apartment Highway Campus
Figure 6. Schematic diagram of the true value and prediction results of point cloud object frames in
four scenarios. a Camera image; b Reference ground truth object frame projection result; c AGPNet
model prediction result.
Table 5 reveals that when compared to the PointPillars model, our AGPNet model demonstrated
a noteworthy 21% increase in average detection accuracy across all four scenarios, accompanied by a
13% improvement in recall rate. It's also important to note that the detection time remains within the
same order of magnitude.
Table 5. Comparison of detection results between AGPNet model and Pointpillars model in
multiple scenarios.
Scenes Frames Model Time/s Precision Recal
. Pointpillars 0.18s 62.4% 79.1%
City 620 AGPNet 0.21s 76.2% 87.2%
Pointpillars 0.20s 67.5% 71.8%
Apartment 538
parimen AGPNet 0.22s 88.3% 89.3%
Pointpillars 0.19s 76.2% 89.6%
High 822
gy AGPNet 0.21s 87.2% 92.9%

Campus 267 Pointpillars 0.18s 75.1% 82.4%

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

14

AGPNet 0.21s 88.1% 92.7%

3.4. Ablation experiment

To verify the difference between the original PointPillars, which employs the Backbone network
structure for feature extraction, and our network structure utilizing the three-dimensional point
cloud Dynamic Graph CNN structure for more effective feature extraction, we conducted ablation
experiments. These experiments included the original PointPillars model, the GNN-PointPillars
model, where we removed the Backbone module and integrated the point cloud dynamic graph
convolution network into the original PointPillars model, and the AGPNet model, which
incorporates a Data Augmentation module ahead of the GNN-PointPillars model. All three models
were trained using the training dataset summarized in section 3.1.2. Once they converged, they
underwent testing on the test dataset. We evaluated the 2D mean Average Precision (mAP) and 3D
mAP results from the Bird's-Eye View (BEV) perspective, employing the Intersection over Union
(IOU) settings as described in previous sections. The results are presented in Tables 6 and 7.

Table 6. Two-dimensional IOU results from BEV perspective.

Car Bicycle Pedestrian
Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult
Pointpillars 0.21 89.45 82.26 80.86 66.99 53.61 49.97 51.90 45.26 41.55
GNN-Pointpillars 024 91.45 85.01 82.30 76.36 63.56 60.07 49.78 45.83 42.71
AGPNet 024 90.93 86.75 84.78 88.20 72.80 66.97 64.22 55.47 48.35

Model Time/s

Table 7. Three-dimensional IOU results from BEV perspective.

Car Bicycle Pedestrian
Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult
Pointpillars 0.21 80.62 67.88 65.21 61.95 48.70 45.55 47.49 40.77 36.73
GNN-Pointpillars 0.24 83.74 71.91 67.37 73.60 59.41 57.62 41.27 36.28 32.92
AGPNet 024 8494 75.51 72.76 86.80 69.99 64.99 61.47 53.61 45.94

Model Time/s

We computed the average performance across the three difficulty levels for each object category
and plotted a line graph illustrating the two-dimensional and three-dimensional Intersection over
Union (IOU) detection results from the Bird's-Eye View (BEV) perspective. This graph captures the
performance of the three models across all three categories, and it is presented in Figure 7.

Figure 7 illustrates that after replacing the Backbone module of the PointPillars model with a
Dynamic Graph CNN module, transforming it into the GNN-PointPillars model, we observed a slight
decrease in bicycle detection accuracy. However, there were notable improvements in the detection
accuracy for cars and pedestrians, with pedestrian detection accuracy showing a particularly
significant increase. Further enhancing the model by adding the Data Augmentation module to the
GNN-PointPillars configuration, creating the AGPNet model, resulted in improved detection
accuracy for all three object categories. Notably, the accuracy of bicycle and pedestrian detection saw
significant enhancements. The two-dimensional Intersection over Union (IOU) and three-
dimensional IOU results revealed an increase of approximately 20% and 10%, respectively. Therefore,
our data augmentation module effectively enhances the quality of model detection. Tables 6 and 7
also indicate that the AGPNet model improves the detection accuracy for smaller three-dimensional
objects when maintaining a detection time within the same order of magnitude as the PointPillars
model.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

15

- -~ Car

.______'———-—-""—_"_’-.- Beyce - by
& Pedestrun & Pesestran

Pntpian N Poentpaars Aoonet ontpdan N Pantpaa AoPtet
Mosel Model

a b

Figure 7. Line chart of detection results of Pointpillars, GNN-Pointpillars and AGPNet models from
BEV perspective, (a) two-dimensional IOU detection results, (b) three-dimensional IOU detection
results.

Through ablation experiments, we observed that the addition of a data enhancement module
and a GNN (Graph Neural Network) graph convolution module to the original PointPillars model
significantly enhances the quality of model detection while maintaining a detection time within the
same order of magnitude as the PointPillars model.

4. Conclusions

In this paper, we introduce AGPNet, a three-dimensional point cloud data target detection
network structure that amalgamates Data Augmentation, Dynamic Graph CNN, Pillar Feature Net,
and Detection Head(SSD). Recognizing the challenge of achieving accurate detection in the presence
of occluded or small objects within the PointPillars network model, we attribute this to limitations in
feature extraction following the conversion of point cloud data into pseudo images. Therefore, we
present a creative solution by integrating Data Augmentation and Dynamic Graph CNN modules
into the PointPillars model. Experimental results demonstrate that our proposed AGPNet network
model achieves a detection accuracy 6-7 percentage points higher than that of the PointPillars
network model, while maintaining detection time within the same order of magnitude.

While our 3D point cloud voxel-based object detection method may not achieve the same
detection accuracy as the direct object detection from point cloud data, it excels in detection speed.
This attribute makes it highly suitable for real-time object detection needs in actual driving
environments. In the future, we intend to further enhance detection accuracy and speed by
integrating additional data augmentation and point cloud object feature extraction modules as
outlined in this article.

References

1. Chen X, Ma H, Wan], et al. Multi-view 3d object detection network for autonomous driving[C].
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. IEEE, 2017: 1907-1915.

2. Ku], Mozifian M, Lee], et al. Joint 3d proposal generation and object detection from view aggregation[C].
2018 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-8

3. ZhouY, Sun P, Zhang Y, et al. End-to-end multi-view fusion for 3d object detection in lidar point clouds[C].
Conference on Robot Learning. PMLR, 2020: 923-932.

4. Shi S, Wang X, Li H. PointRCNN: 3d object proposal generation and detection from point cloud[C].
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2019: 770-779.

5. QiCR, Liu W, Wu C, et al. Frustum PointNets for 3d object detection from rgb-d data[C]. Proceedings of
the IEEE conference on computer vision and pattern recognition. IEEE, 2018: 918-927.

6. Shi W, Rajkumar R. Point-GNN: Graph neural network for 3d object detection in a point cloud[C].
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2020: 1711-
1719.

7. QiCR,SuH, MoK et al. PointNet: Deep learning on point sets for 3d classification and segmentation[C].
Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 2017: 652-660.

https://doi.org/10.20944/preprints202310.1729.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2023 doi:10.20944/preprints202310.1729.v1

16

8. QiCR YiL, SuH, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[J].
Advances in neural information processing systems, 2017:1-14.

9. Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Computer Vision-ECCV 2016:
14th European Conference, Amsterdam. Springer International Publishing, 2016: 21-37.

10. Zhou Y, Tuzel O. VoxelNet: End-to-end learning for point cloud based 3d object detection[C]. Proceedings
of the IEEE conference on computer vision and pattern recognition. IEEE, 2018: 4490-4499.

11. YanY, Mao'Y, Li B. SECOND: Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 1-17.

12. Lang A H, Vora S, Caesar H, et al. Pointpillars: Fast encoders for object detection from point clouds[C].
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2019: 12697-
12705.

13. Wang Y, Sun Y, Liu Z, et al. Dynamic graph cnn for learning on point clouds[J]. ACM Transactions on
Graphics (tog), 2019, 38(5): 1-12.

14. Zheng W, Tang W, Jiang L, et al. SE-SSD: Self-ensembling single-stage object detector from point cloud[C].
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 14494-
14503.

15. Girshick R. Fast R-CNNJ[C]. Proceedings of the IEEE international conference on computer vision. IEEE,
2015: 1440-1448.

16. Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax[J]]. arXiv preprint
arXiv:1611.01144, 2016:1-13.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202310.1729.v1

