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Abstract: In the realm of autonomous vehicle environment perception, the primary objective of point cloud 

target detection is to swiftly and accurately identify three-dimensional objects from point cloud data. To meet 

this requirement, the prevalent network architecture employed in the industry is the voxel-based PointPillars 

model. Nonetheless, this model faces challenges in maintaining detection accuracy when objects are obscured 

or diminutive in size. In response to this issue, we introduce AGPNet, a novel model that seamlessly integrates 

four key modules: Data Augmentation, Dynamic Graph CNN, Pillar Feature Net, and Detection Head (SSD). 

The Data Augmentation module enhances the adaptability of point cloud data to complex and ever-changing 

real-world environments. The Dynamic Graph CNN module endows the network structure with geometric 

features, which encapsulate not only the point itself but also its adjacent points. The Pillar Feature Net module 

translates three-dimensional point cloud data into pseudo-image data through the utilization of voxels. 

Subsequently, the Detection Head (SSD) module leverages this pseudo-image data to conduct target detection 

of three-dimensional objects. Our experiments, conducted on the KITTI dataset, demonstrate that our proposed 

method boosts object detection accuracy by 6-7 percentage points compared to the PointPillars model, while 

maintaining similar detection times. 

Keywords: 3D object detection; point cloud; voxel; deep learning 

 

1. Introduction 

The detection of three-dimensional objects constitutes a vital component within the autonomous 

driving environment perception system. It offers crucial reference information about objects in the 

vehicle's vicinity for subsequent processes. Common methods for three-dimensional object detection 

rely on both image data and three-dimensional point cloud data. Owing to its robust resistance to 

interference and its capability to capture the three-dimensional nature and spatial characteristics of 

the object's environment, three-dimensional point cloud data has emerged as a fundamental 

approach for achieving high-quality 3D object detection. 

In recent years, with deep learning yielding remarkable outcomes in the field of two-

dimensional image analysis in computer vision, an increasing number of researchers have turned 

their attention to the integration of deep learning techniques with three-dimensional point clouds. 

This integration capitalizes on the wealth of spatial information provided by point clouds to enhance 

the computer's capacity to process and understand complex three-dimensional data, ultimately 

elevating its environmental awareness. Nevertheless, owing to the irregular and disordered nature 

of point cloud data, researchers often face challenges when attempting to extract relevant local 

features through convolution, unlike the relatively structured two-dimensional images. Current 

three-dimensional object detection methods employing point cloud deep learning can be categorized 

into three main approaches: multi-view fusion, point-based methods, and voxel-based methods. 

Within the multi-view fusion category, notable examples include MV3D [1], AVOD [2], and MVF [3]. 

These methods involve projecting 3D point clouds into multi-view images, enabling the use of 2D 

object detection techniques to perform 3D object detection tasks. However, the process of converting 

from three-dimensional to two-dimensional representation results in dimension reduction, limiting 

the ability of multi-view fusion methods to capture fine-grained point cloud features, which can affect 
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their overall detection accuracy. In contrast, point-based methods, such as PointRCNN [4], Frustum 

PointNet [5], and Point-GNN [6], utilize PointNet and PointNet++ [7,8] networks for direct feature 

learning from the original point cloud data. They predict object frame positions and sizes for selected 

points in the object point cloud and employ the non-maximum suppression technique used in two-

dimensional object detection models like SSD (Single Shot MultiBox Detector, SSD) [9] to obtain final 

three-dimensional object frame regression and classification results. While point-based methods offer 

high detection accuracy without issues like resolution loss resulting from point cloud grouping, they 

are computationally intensive and have slower detection speeds, making them less suitable for real-

time detection in autonomous driving scenarios. On the other hand, voxel-based methods, including 

VoxelNet [10], SECOND [11], and PointPillars [12], employ a uniform voxelization process to encode 

irregular point cloud data into a regular, grid-like format akin to images. The encoded data is 

subsequently fed into traditional convolutional neural networks for feature extraction, which leads 

to the acquisition of voxel-based features. Finally, these voxel features are utilized to generate object 

frame prediction results through two-dimensional target detection algorithms. Voxel-based methods 

strike a balance between detection accuracy and speed, making them a prominent choice for three-

dimensional object detection in this study. 

In this paper, we introduce the AGPNet model, a network structure that combines Data 

Augmentation, Dynamic Graph CNN, Pillars Feature Net, and Detection Head (SSD). As illustrated 

in Figure 1, the AGPNet model comprises four stages: (i) Data Augmentation Stage: Through 

occlusion, exchange, and sparsity operations, the point cloud data can be brought closer to the real-

world point cloud data in a genuine environment. (ii) Dynamic Graph CNN Stage: Utilizing point 

cloud convolution network operations, we can extract pertinent geometric information for each point 

within the point cloud and its neighboring points, and integrate it into the dimension of each point. 

(iii) Pillars Feature Net Stage: By employing PointPillars-related processing operations, we can 

transform relevant point cloud data into pseudo-image information. (iv) Detection Head (SSD) Stage: 

The SSD detection module processes the pseudo-image information from the previous stage to obtain 

pertinent information for object detection. Experiments demonstrate that, compared to the commonly 

used PointPillars model architecture in the industry, our AGPNet model enhances 3D object detection 

accuracy by approximately 6-7%, while maintaining detection times within the same order of 

magnitude as PointPillars. This meets the real-time 3D object detection requirements for autonomous 

vehicles. 

 

Figure 1. AGPNet Module Overview: The primary components of the network encompass Data 

Augmentation, Dynamic Graph CNN, Pillar Feature Net, and Detection Head (SSD) . Data 

Augmentation serves to enhance data diversity, while Dynamic Graph CNN conduct high-

dimensional operations on point cloud data. The Pillar Feature Net transforms the initial elevated 

point cloud into a two-dimensional pseudo-image, and the Detection Head (SSD) utilizes the pseudo-

image features to predict the three-dimensional bounding box of the object. 
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1.1. Related Work 

1.1.1. Data Augmentation 

To address challenges such as occlusion, proximity, varying shapes of objects within the same 

category encountered in real road conditions, and to enhance the model's capacity to understand the 

unique circumstances of objects, as well as improve the common detection results of current 3D object 

detection models that often exhibit limited accuracy, particularly for distant or sparse object point 

clouds, we employed data augmentation techniques. In this study, we drew inspiration from the data 

enhancement operations introduced in [12]. However, our approach, embodied in the AGPNet 

model's Data Augmentation module, diverges from the original method in an important way. Rather 

than using the farthest point sampling method, as proposed in [12], during the sparsification 

operation, we opted for a voxel-based approach. In this method, we randomly selected a point within 

each voxel's range as the representative point for that voxel. This modification serves to bring our 

point cloud data closer to real-world conditions, while simultaneously reducing the computational 

load for subsequent point cloud data processing. 

1.1.2. Dynamic Graph CNN 

When it comes to extracting geometric features from point clouds, this paper adopts the ball 

query method from the point cloud Dynamic Graph convolutional neural network (Dynamic Graph 

CNN) [13]. This method involves identifying all points within a specified radius of each point and 

combining the resulting vectors, which consist of the central point and its neighboring points. These 

combined vectors are utilized for graph convolution-based feature learning. Through a series of 

operations, the model learns the pertinent geometric relationships between the central point and the 

neighboring points within the sphere. The learned features, along with the three-dimensional 

coordinates of the corresponding point, are then utilized as feature dimensions for that point. 

1.1.3. Differences from Pointpillars Model 

Our AGPNet network model was developed in response to the PointPillars [12] network model's 

limitations in accurately detecting occluded or small objects. While AGPNet draws inspiration from 

the PointPillars network structure, it differs significantly in several key aspects. Firstly, our AGPNet 

model omits the Backbone (2D CNN) module found in the PointPillars model, opting instead for 

point cloud processing using the Dynamic Graph CNN module before voxelizing the features within 

the Pillar Feature Net. Secondly, we introduce a Data Augmentation module to our model to address 

the challenges posed by occlusion in point cloud data within real-world environments, as well as 

variations in point cloud data distances. Lastly, in the Pillar Feature Net module, the PointPillars 

model voxelizes the input point data, including three-dimensional coordinates (x, y, z), reflectivity 

(r), the distance of three-dimensional coordinates from the column's center point (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐), and the 

offset distance from the center of the column's xy-plane (𝑥𝑝 , 𝑦𝑝). These parameters make up the nine-

dimensional feature space for each point. In contrast, our Pillar Feature Net module in AGPNet takes 

as input the three-dimensional coordinates of the point cloud (x, y, z) and the features obtained after 

learning from the corresponding point cloud convolutional neural network, resulting in a feature 

space with C dimensions. 

1.2. Contributions 

The Key contributions of this paper are as follows: 

• We introduce the AGPNet network framework, which offers a novel integration of Data 

Augmentation and Dynamic Graph CNN modules with PointPillars. This innovative approach 

not only enhances the diversity of point cloud data but also transforms it into pseudo-image 

data, resulting in a notable acceleration in the detection process; 

• Our proposed model effectively addresses the issue of inadequate detection accuracy 

encountered when dealing with obstructed or small-sized objects, a common limitation in the 
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current industry-standard PointPillars model. Importantly, our model strikes a balance between 

detection speed and accuracy; 

• Experimental results demonstrate that our method achieves a detection accuracy approximately 

6-7% higher than that of the PointPillars model when evaluated on the KITTI dataset. 

Remarkably, it accomplishes this without sacrificing detection speed, ensuring it meets the 

stringent requirements for both accuracy and speed in a real-world autonomous driving 

environment. 

2. Proposed 3D Object Detection  

The AGPNet network model, as illustrated in Figure 1, addresses the transformation of discrete 

point cloud data P = {p1, . . . , pn} ⊆ R3 . Our primary objective is to convert this data into a more 

representative form, one that better captures the geometric characteristics of the surrounding point 

cloud data, ultimately enhancing the accuracy of three-dimensional object detection within point 

clouds. As explained in the initial section, our approach to converting point cloud data into pseudo 

images entails several key steps P = {p1, . . . , pn} ⊆ R3  to F (H × W × C) . Firstly, we apply Data 

Augmentation module to the point cloud data P = {p1, . . . , pn} ⊆ R3  to obtain enhanced three-

dimensional point cloud data P̃ = {p1, . . . , pN} ⊆ R3 (N ≠ n) . Subsequently, we employ Dynamic 

Graph CNN module to upgrade the point cloud data’s dimensions P̂ = {p1, . . . , pN} ⊆ Rc (N ≠ n), and 

then pass it through the Pillar Feature Net module, which transforms it into pseudo image F (H × W × C). The pseudo image is then processed by the Detection Head (SSD) module to facilitate 

three-dimensional object detection, ultimately producing prediction results. P → P̃ → P̂ → F (1) 

As depicted in Figure 1, the implementation process of equation (1) primarily comprises four 

modules: 

• The Data Augmentation module augments point cloud data diversity, facilitating the acquisition 

of more varied point cloud features; 

• The Dynamic Graph CNN module performs dimension expansion on each point, encompassing 

its three-dimensional coordinates and pertinent geometric relationships with nearby points; 

• The Pillar Feature Net module voxels the dimension-expanded point cloud data and conducts 

related processing to convert it into pseudo-image information representing the point cloud data; 

• The Detection Head (SSD) module processes the two-dimensional pseudo-image features and 

generates three-dimensional detection results. 

The quality of the pseudo-image data produced by the last two modules is directly influenced 

by the data processing outcomes from the initial two modules, which subsequently impacts the object 

detection results from the fourth module. 

2.1. Data Augmentation 

In Figure 1, our shape enhancement scheme is illustrated within the Data Augmentation module 

as per the design. The object point cloud is divided into six regions based on the diagonal connections 

of the real bounding box, as it is often encountered in Lidar point cloud scans on object surfaces. This 

division into six areas enhances our point cloud data's ability to mimic real-world point cloud data. 

Our data augmentation process is specifically executed in three steps: 

• Regional Ensemble Point Cloud Pruning: A certain probability is applied to randomly remove 

point cloud data from one of the six regions, as depicted in the blue section in the figure. This 

action simulates point cloud occlusion experienced in real-world environments. 

• Inter-Region Point Cloud Exchange: With a specified probability, an area is randomly selected 

from the six regional point cloud sets in the current frame. Corresponding point cloud data is 

then exchanged with another region on the same side of objects belonging to the same category. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2023                   doi:10.20944/preprints202310.1729.v1

https://doi.org/10.20944/preprints202310.1729.v1


 5 

 

This exchange is illustrated by the yellow and green portions in the figure. It serves to enrich the 

point cloud data's ability to capture the diversity among objects of the same category. 

• Subsequent Sparsification: For the point cloud data involved in the second step, a voxel-based 

method is used to randomly select a point within non-empty voxels. This point serves as a 

representative feature of the voxel area, and downsampling is applied, as seen in the yellow part 

of the point cloud in the figure. This operation simulates the variation in point cloud density in 

real environments. 

Through these operations, we transform the initial point cloud data P = {p1, . . . , pn} ⊆ R3 into 

enhanced point cloud data P̃ = {p1, . . . , pN} ⊆ R3 (N ≠ n) . Our data augmentation procedure 

significantly reduces the computational cost of subsequent point cloud data processing while 

effectively mimicking the characteristics of point cloud data in real-world scenarios. 

2.2. Dynamic Graph CNN 

In view of the close-to-distant characteristics of 3D point cloud data in the real environment, we 

use the Ball Query method to perform graph convolution operations on point clouds. The 

implementation steps are shown in the Dynamic Graph CNN module in Figure 1. Definition P̃ ={p1, . . . , pN} ⊆ R3 (N ≠ n), P̃ is a set of N points in the point cloud, where 𝑝𝑖∈{1...𝑁} = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) means 

that each point includes its three-dimensional coordinate value. The discrete graph structure 

composed of points and adjacent points can be expressed as G = (P̃, E), where: E = {(pi, pj)| ∥ pi − pj ∥< r, i = {1, . . . , N}, j = {1, . . . , m}} (2) 

In other words, this involves the set of m neighboring points located within a radius r of the 

given point and within the sphere. Next, we process the matrix consisting of point coordinates and 

coordinates of neighboring points through a shared multi-layer perceptron (MLP) to perform a 

dimensionality transformation, yielding the resulting feature 𝑒𝑖𝑗: eij = ReLU(θm ∙ (pi − pj) + ∅m ∙ pi) (3) 

which Θ = (θ1, . . . θm, ∅1, . . . ∅m)  represents the learnable parameter of the shared multi-layer 

perceptron (MLP). 

Finally, the corresponding features are aggregated through the max pooling operation: xim = max(i,j)∈E(eij) (4) 

By employing the point cloud graph convolutional neural network operation, we acquire high-

dimensional point cloud data P̂ = {p1, . . . , pN} ⊆ Rc (N ≠ n)  that includes the three-dimensional 

coordinates of each point and the characteristics of its neighboring points. 

2.3. Pillar Feature Net 

Following the preceding operation of the point cloud convolutional neural network, we've 

obtained point cloud data P̂ = {p1, . . . , pN} ⊆ Rc (N ≠ n)  with dimension C. The first three 

dimensions of each point represent the x, y, and z-axis coordinates of the point cloud data. Next, we 

will execute Pointpillar operations on these points to transform them into pseudo-image data. The 

operational details are depicted in the Pillar Feature Net module in Figure 1. 

• Firstly, we discretize the point cloud by uniformly dividing it into a grid(0.162𝑚2) on the x-y 

plane, generating a collection of columns, denoted as P, which function as voxels with infinite 

spatial extent along the z-coordinate.  

• Secondly, we construct a dense tensor with dimensions (C, P, N)  by imposing specific 

constraints on the number of non-empty bins per sample, P, and the number of points per bin, 

N. In cases where a sample or pillar contains an excessive number of points, we downsample 

the data by randomly selecting P points or, if needed, apply zero padding to ensure 

completeness.  
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• Thirdly, we employ a simplified version of PointNet to produce a tensor with dimensions (C, P, N) . Subsequently, a maximum operation is applied to create an output tensor with 

dimensions (C, P).  

• Fourthly, we disperse these features back to their original pillar positions, effectively generating 

pseudo-image data denoted as F(H × W × C), with H and W representing the height and width 

of the canvas. 

2.4. Detection Head (SSD) 

In the Detection Head (SSD) module, we employ a two-dimensional object detection network 

based on SSD to conduct object frame matching detection on the pseudo-picture features after feature 

compression and conversion. In the final layer of the network, height regression prediction 

parameters for the object frame are output through the fully connected layer, restoring the z-axis 

height information of the object frame. 

2.5. Loss Function 

In the context of the three-dimensional object detection model, the model's output must provide 

information about the size, orientation, and precise object classification results. Consequently, our 

loss function primarily consists of a weighted sum of the object frame regression loss function and 

the classification loss function. 

2.5.1. Object frame regression loss function 

The object frame regression part needs to predict the center position coordinates of the object's 

three-dimensional object frame, the length, width and height of the frame (l, w, h) and the direction 

angle of the frame θ . In order to facilitate effective training of the model and enable rapid 

convergence, the predicted object frame parameters (x, y, z, l, w, ℎ, θ)  are normalized. For 

convenience of description, the following definitions are given: 

(1) (xgt , ygt, zgt, lgt, wgt, hgt,θgt) represents the real object frame parameter; 

(2) (xa, ya, za, la, wa, ha,θa)  denotes the object frame parameter of the positive sample in the 

prediction; 

(3) {aipos}i=1...Npos stands for the set of positive sample object frames in the prediction, with a total of Npos; 

(4) {aineg}i=1...Nneg signifies the set of negative sample object frames in the prediction, with a total of Nneg. 

The regression residual between the actual object frame and the predicted object frame is 

calculated as follows: ∆x = xgt − xada , ∆y = ygt − yada , ∆z = zgt − zaha  (5) 

∆ω = logωgt
ω

a , ∆l = log lgtla , ∆h = log hgtha  (6) 

∆θ = sin (θgt −θa) (7) 

Among them, da = √(ωa)2 + (la)2 is the diagonal length of the matrix where the length and 

width of the positive sample object frame are predicted. 

Object frame regression loss function We use the Smooth L1 [15] function to calculate the object 

frame regression loss, including the regression loss value of ∆x, ∆y, ∆z, ∆w, ∆l, ∆ℎ, ∆θ. Define ℒloc as 

the position regression loss function (the subscript loc represents location, that is, the position of the 

object frame), and the formula is as follows: 
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ℒloc = ∑ smoothL1  (∆b)b∈(x,y,z,ω,l,h,θ)  (8) 

smoothL1(x) = { 0.5x2  if |x| < 1|x| − 0.5   if |x| ≥ 1 (9) 

While the ℒloc loss function calculates the object frame angle loss ∆θ, it does not address the 

specific orientation problem of the object frame. We approach the task of determining the specific 

orientation of the object frame as a two-class problem with mutually exclusive outcomes. Once the 

rotation angle ∆θ of the object frame is established, there are only two possible orientations: the 

current orientation and the orientation after a 180° rotation. To determine the specific orientation of 

the object frame, we introduce a direction regression loss function ℒdir (where the subscript 'dir' 

denotes direction, representing the orientation of the object frame). In this context, we utilize the 

softmax classification loss function [16], denoted as ℒdir loss function in Formula (10). We assign a 

direction category, denoted as category 'i,' with i=1 corresponding to the current orientation and i=2 

to the orientation after a 180° rotation. The value predicted by the model for category 'i' is represented 

as xi. ℒdir(xi) = 11 + exj−xi (10) 

Among them, i = 1, 2;  j = 1, 2;  j ≠i. 

2.5.2. Classification loss function 

For the object classification task, we are confronted with the challenge of categorizing three 

distinct types of objects in the dataset. Additionally, the object categories exhibit an issue of 

imbalanced sample distribution. To address this issue, we employ the focal loss [3] classification 

function to tackle the multi-classification problem within the context of imbalanced samples. 

The classification loss function ℒcls (the subscript cls represents class, that is, the object frame 

category) is defined as follows: ℒcls = −αa(1 − pa)γlogpa (11) 

Among them, a ∈ {0,1,2} represents three types of objects respectively, 0 represents the car 

category, 1 represents the pedestrian category, and 2 represents the bicycle category. pa is the object 

frame category confidence. In the article, α is set to 0.25 and γ is set to 2. 

2.5.3. Overall loss function 

The overall loss function of the model is expressed as follows: ℒ = 1Npos  (βloc1ℒloc1 + βloc2ℒloc2 + βclsℒcls + βdirℒdir) (12) 

Considering the challenge of imbalanced object categories, we introduce different scale 

parameters for large and small objects: βloc1  is the position regression loss function for the 'car' 

object category, set to 1; βloc2 is the position regression loss function for the 'bicycle' and 'pedestrian' 

object categories, set to 2; βcls is the object category loss function, set to 1; and βdir is the object 

direction loss function, set to 0.2. This strategic parameter adjustment strengthens the weight 

attributed to small objects. As a result, the model prioritizes the accuracy of small object detection 

during training. 
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3. Evaluations 

3.1. Implementation Details 

3.1.1. Experiment platform 

All experiments in this paper were conducted within the following hardware environment: Intel 

Xeon (R) CPU E5-2603, GTX 1050 Ti GPU graphics card; and software environment: 64-bit Ubuntu 

18.04 LTS, Python 3.7, PyTorch 1.3.0, OpenPCDet 0.5.2, CUDA 10.0, cuDNN 7.5.0, PCL 1.11, MATLAB 

R2019b, numpy, tensorboardX, and numba. OpenPCDet is a 3D object detection code library for lidar 

point cloud analysis developed by the Open-MMLab team. It is commonly employed for 3D object 

detection based on lidar data. The Point Cloud Library (PCL) is a comprehensive library that provides 

various commonly used point cloud processing functions. 

3.1.2. Experimental data 

The KITTI dataset was established jointly by the Karlsruhe Institute of Technology (KIT) in 

Germany and the Toyota Technical Institute of Chicago (TTIC) in 2012, specifically for autonomous 

driving tasks. This dataset comprises data collected from various sensors, including optical cameras, 

lidar, and others, mounted on a Volkswagen Passat, as depicted in Figure 3. It includes a total of 

14,999 images along with their corresponding point cloud data. Out of these, 7,481 groups were 

allocated for training, while 7,518 groups were designated for testing. The KITTI dataset offers 

annotations for a grand total of 80,256 objects within the three primary categories: cars, pedestrians, 

and bicycles, making it valuable for tasks related to environmental perception in autonomous 

driving, including 2D and 3D detection. It's essential to note that the KITTI 3D object detection test 

set does not provide object labels. Consequently, to acquire evaluation data, detection results must 

be submitted to the official website. In our research, we divided the official KITTI 3D object detection 

training dataset into a training set and a validation set, with 3,712 samples assigned to training and 

3,769 samples allocated for validation, following the guidelines in [3]. Additionally, the KITTI dataset 

has been categorized into three difficulty levels based on different occlusion conditions, as presented 

in Table 1: 'simple,' 'medium,' and 'difficult.' This classification helps in assessing the object detection 

performance under varying complexities. 

 

Figure 2. KITTI data set collection equipment, the sensors used by vehicles include: inertial navigation 

system (GPS/IMU), lidar (Velodyne HDL-64E), grayscale and color cameras. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 October 2023                   doi:10.20944/preprints202310.1729.v1

https://doi.org/10.20944/preprints202310.1729.v1


 9 

 

 

Figure 3. Visualization of the verification results of the AGPNet model under the verification set 0006 

data set, (a) simulated verification set 0006 camera image. (b) Simulation verification set of two-digit 

image detection situation and sum. (c) Simulation verification set 3D point cloud detection situation 

Table 1. Description of difficulty of data set detection 

Difficulty 
Bounding box 

Minimum Height 

Object occlusion 

level 

The maximum degree of truncation of an 

object 

Simple 40px 0, fully visible 15% 

Medium 25px 1, partial occlusion 30% 

Difficult 25px 2, hard to see 50% 

3.1.3. Evaluation index 

In this article, we calculate the target detection evaluation metrics using the prediction of 

positive samples (TP - True Positives), the prediction of negative samples (FP - False Positives), and 

the absence of true positive samples (FN - False Negatives) to derive accuracy (precision) and recall. 

Furthermore, we compute the average accuracy (AP - Average Precision) and mAP (Mean Average 

Precision) based on accuracy and recall values. 
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First, we predict the IOU (Intersection over Union) of the area or volume of the object frame and 

the real object frame. During the experiment, we set the IOU of the car category object to 0.7, and the 

pedestrian and bicycle category object IOU to 0.5; IOU = area(Bp⋂Bgt)area(Bp⋃Bgt) (13) 

where Bp is the predicted object box (predict bounding box) and Bgt is the ground truth bounding 

box. 

If IOU is greater than the threshold, the object frame result is determined to be TP. If it is less 

than the threshold, it is determined to be FP. For the true value of the object frame that does not 

intersect with the object frame prediction result, it is determined to be FN. It can be performed 

through TP, FP, and FN. Calculation of precision and recall; precision = TPTP + FP (14) 

recall = TPTP + FN (15) 

Finally, mAP is calculated using the precision corresponding to the 40recall value: mAP|R = 1|R| ∑ ρinterp(r)r∈R  (16) 

Which takes R = { 140 , 240 , 340 , . . . ,1}. 

In the multi-scene continuous frame detection process, first, a frame of point cloud data is 

extracted from the scene continuous frame data set in chronological order, and put into the trained 

model to obtain the object frame result predicted by the model; the prediction result and KITTI 

tracking result are compared with the object frame true Compare the value results, calculate the two-

dimensional IOU value from the BEV perspective, and obtain the TP, FP, and FN values of the point 

cloud data of the frame. Traverse all frame point cloud data in chronological order; count the number 

of TP, FP, and FN of all object frames; finally, calculate the evaluation indicators precision, recall, and 

average detection time based on the number of TP, FP, and FN. precision = ∑ TPini=1∑ TPini=1 + ∑ FPini=1  (17) 

recall = ∑ TPini=1∑ TPini=1 + ∑ FNini=1  (18) 

3.2. Comparison with state-of-the-art methods 

To validate the efficacy of our voxel-based 3D object detection model, we conducted a 

comparative analysis with two top-performing 3D object detection models, PointPillars and 

SECOND, which currently hold the highest rankings for voxel detection accuracy on the KITTI 

official website. Additionally, we included PointRCNN, known for achieving the highest detection 

accuracy based on point cloud data, for a comprehensive evaluation. To ensure a fair comparison, we 

partitioned the training and testing datasets for the models according to the data set classification 

described in Section 3.1.2. Throughout the training and testing phases, we utilized the two-

dimensional Intersection over Union (2D IOU) and three-dimensional Intersection over Union (3D 

IOU) thresholds as specified in Section 2. The visual representation of AGPNet's verification results 

is presented in Figure 3. Following the convergence of all three models after their respective training 

processes, we present the experimental results for the test set in Tables 2 and 3. To provide a 

comprehensive overview, we computed the average detection results for both two-dimensional and 

three-dimensional IOU for each object category with varying levels of difficulty. These results are 

visualized in the scatter plot for the three object types, as depicted in Figure 4. 
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From the two-dimensional Intersection over Union (2D IOU) detection results (a, b, c) shown in 

Figure 4, it is evident that the AGPNet model proposed in this article exhibits a negligible time 

difference, being only 0.03 seconds slower than the PointPillars model, which boasts the shortest 

detection time. Moreover, the mean Average Precision (mAP) of AGPNet surpasses that of all other 

voxel-based three-dimensional object detection models, with the exception of the 'Bicycle' category. 

Specifically, for relatively small objects like bicycles and pedestrians, AGPNet achieves a 14% and 

15% higher mAP than the PointPillars model. When it comes to detecting larger objects such as cars, 

AGPNet outperforms the PointRCNN model, currently the highest-accuracy point-based method on 

KITTI, by 4%. On average, AGPNet enhances the detection accuracy of the three object categories by 

11% compared to the PointPillars network. While our AGPNet model's detection accuracy on the 

pedestrian and bicycle datasets remains slightly lower than the PointRCNN network model, which 

directly operates on point cloud data, it achieves a 15% and 5% lower accuracy on bicycles and 

pedestrians, respectively, while offering a 47% improvement in detection speed. 

Table 2. Two-dimensional IOU results from BEV perspective. 

Method Model Time/s 
Car Bicycle Pedestrian 

Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult 

Voxel 

Pointpillars 0.21 89.45 82.26 80.86 66.99 53.61 49.97 51.90 45.26 41.55 

SECOND 0.31 88.77 82.40 78.91 76.36 63.56 60.07 49.78 45.83 42.71 

AGPNet 0.24 90.93 86.75 84.78 77.99 59.86 55.97 59.14 52.51 47.40 

Point PointRCNN 0.45 89.91 86.49 80.11 88.20 72.80 66.97 64.22 55.47 48.35 

Table 3. Three-dimensional IOU results from BEV perspective. 

Method Model Time/s 
Car Bicycle Pedestrian 

Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult 

Voxel 

Pointpillars 0.21 80.62 67.88 65.21 61.95 48.70 45.55 47.49 40.77 36.73 

SECOND 0.31 84.68 71.89 68.31 71.60 59.41 57.62 41.27 36.28 32.92 

AGPNet 0.24 84.94 75.51 72.76 73.60 55.57 51.54 54.64 47.72 42.72 

Point PointRCNN 0.45 89.56 78.24 75.79 86.80 69.99 64.99 61.47 53.61 45.94 

 

Figure 4. Detection results of three objects in two-dimensional and three-dimensional states of 

AGPNet's KITTI data set. 

Analyzing the three-dimensional Intersection over Union (3D IOU) results presented in Figure 

4d–f, we observe that the voxel-based AGPNet model, introduced in this article, exhibits lower 
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detection accuracy when compared to the SECOND network, especially in the context of bicycle 

object detection. It also demonstrates reduced accuracy in detecting cars and pedestrians. 

Nonetheless, AGPNet's detection accuracy surpasses the current leading three-dimensional object 

detection method based on voxel analysis. Specifically, the mean Average Precision (mAP) of the 

AGPNet network, in the case of relatively small objects such as bicycles and pedestrians, is 16% 

higher than that of the PointPillars model. When it comes to detecting larger objects, including cars, 

AGPNet outperforms the PointRCNN model, which is currently the highest-accuracy point-based 

method on KITTI, by 9% compared to PointPillars. On average, the detection accuracy for all three 

object types improves by 14% compared to the PointPillars network. It's important to note that 

although the detection accuracy of our AGPNet model on pedestrian and bicycle datasets remains 

slightly lower than the PointRCNN network model, which operates directly on point cloud data, it 

exhibits a 22% and 11% lower accuracy on bicycles and pedestrians, respectively. However, it offers 

a significant 47% improvement in detection speed. 

Figure 4 clearly demonstrates that the AGPNet, a voxel-based 3D object detection model 

proposed in this article, excels in achieving a balance between detection speed and 3D object detection 

accuracy. It emerges as the top-performing voxel-based 3D object detection model. 

3.3. Multi-scene continuous frame object detection experiment 

To enhance the model's ability to detect three-dimensional objects under conditions resembling 

real-world driving scenarios, this section presents a multi-scene continuous frame object detection 

experiment. The various road scenes encompass urban roads, apartment, highway, and campus 

roads, as illustrated in Figure 5. We employed the original KITTI dataset, as explained in Chapter 3, 

Section 1.2.3, as our source of data. Table 4 provides pertinent details about each continuous frame's 

point cloud data, with KITTI object tracking annotations available for urban areas, residential zones, 

and highways. However, it's worth noting that object annotation information is not provided for the 

campus road scene data. To enable our model to assess its prediction results across all four road 

conditions, we manually annotated the campus road scene object frames using CloudCompare 

software. These annotations encompass the dimensions and positions of all object frames requiring 

detection. 

 

 

Figure 5. Multiple scene road conditions. 
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Table 4. Summary of multi-scenario data information. 

Scene Data Time/s Frames 
Object Category 

Car Bicycle Pedestrian 

City 
2011_09_26_drive_0014 32 320 32 4 5 

2011_09_26_drive_0056 30 300 30 1 2 

Apartment 
2011_09_26_drive_0035 13 137 13 1 2 

2011_09_26_drive_0039 40 401 40 1 2 

Highway 
2011_09_26_drive_0032 39 396 39 0 0 

2011_09_26_drive_0070 42 426 42 2 2 

Campus 
2011_09_26_drive_0038 11 116 11 _ _ 

2011_09_26_drive_0043 15 151 15 _ _ 

The outcomes of continuous frame object detection across various scenes, as produced by the 

AGPNet model, are presented in Figure 6. We meticulously assessed the object detection results of 

our AGPNet model across these diverse continuous frames, subsequently comparing them with the 

detection results achieved by the widely adopted PointPillars model in the industry. A 

comprehensive summary of these results can be found in Table 5. 

 

Figure 6. Schematic diagram of the true value and prediction results of point cloud object frames in 

four scenarios. a Camera image; b Reference ground truth object frame projection result; c AGPNet 

model prediction result. 

Table 5 reveals that when compared to the PointPillars model, our AGPNet model demonstrated 

a noteworthy 21% increase in average detection accuracy across all four scenarios, accompanied by a 

13% improvement in recall rate. It's also important to note that the detection time remains within the 

same order of magnitude. 

Table 5. Comparison of detection results between AGPNet model and Pointpillars model in 

multiple scenarios. 

Scenes Frames Model Time/s Precision Recal 

City 620 
Pointpillars 0.18s 62.4% 79.1% 

AGPNet 0.21s 76.2% 87.2% 

Apartment 538 
Pointpillars 0.20s 67.5% 71.8% 

AGPNet 0.22s 88.3% 89.3% 

Highway 822 
Pointpillars 0.19s 76.2% 89.6% 

AGPNet 0.21s 87.2% 92.9% 

Campus 267 Pointpillars 0.18s 75.1% 82.4% 
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AGPNet 0.21s 88.1% 92.7% 

3.4. Ablation experiment 

To verify the difference between the original PointPillars, which employs the Backbone network 

structure for feature extraction, and our network structure utilizing the three-dimensional point 

cloud Dynamic Graph CNN structure for more effective feature extraction, we conducted ablation 

experiments. These experiments included the original PointPillars model, the GNN-PointPillars 

model, where we removed the Backbone module and integrated the point cloud dynamic graph 

convolution network into the original PointPillars model, and the AGPNet model, which 

incorporates a Data Augmentation module ahead of the GNN-PointPillars model. All three models 

were trained using the training dataset summarized in section 3.1.2. Once they converged, they 

underwent testing on the test dataset. We evaluated the 2D mean Average Precision (mAP) and 3D 

mAP results from the Bird's-Eye View (BEV) perspective, employing the Intersection over Union 

(IOU) settings as described in previous sections. The results are presented in Tables 6 and 7. 

Table 6. Two-dimensional IOU results from BEV perspective. 

Model Time/s 
Car Bicycle Pedestrian 

Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult 

Pointpillars 0.21 89.45 82.26 80.86 66.99 53.61 49.97 51.90 45.26 41.55 

GNN-Pointpillars 0.24 91.45 85.01 82.30 76.36 63.56 60.07 49.78 45.83 42.71 

AGPNet 0.24 90.93 86.75 84.78 88.20 72.80 66.97 64.22 55.47 48.35 

Table 7. Three-dimensional IOU results from BEV perspective. 

Model Time/s 
Car Bicycle Pedestrian 

Simple Medium Difficult Simple Medium Difficult Simple Medium Difficult 

Pointpillars 0.21 80.62 67.88 65.21 61.95 48.70 45.55 47.49 40.77 36.73 

GNN-Pointpillars 0.24 83.74 71.91 67.37 73.60 59.41 57.62 41.27 36.28 32.92 

AGPNet 0.24 84.94 75.51 72.76 86.80 69.99 64.99 61.47 53.61 45.94 

We computed the average performance across the three difficulty levels for each object category 

and plotted a line graph illustrating the two-dimensional and three-dimensional Intersection over 

Union (IOU) detection results from the Bird's-Eye View (BEV) perspective. This graph captures the 

performance of the three models across all three categories, and it is presented in Figure 7. 

Figure 7 illustrates that after replacing the Backbone module of the PointPillars model with a 

Dynamic Graph CNN module, transforming it into the GNN-PointPillars model, we observed a slight 

decrease in bicycle detection accuracy. However, there were notable improvements in the detection 

accuracy for cars and pedestrians, with pedestrian detection accuracy showing a particularly 

significant increase. Further enhancing the model by adding the Data Augmentation module to the 

GNN-PointPillars configuration, creating the AGPNet model, resulted in improved detection 

accuracy for all three object categories. Notably, the accuracy of bicycle and pedestrian detection saw 

significant enhancements. The two-dimensional Intersection over Union (IOU) and three-

dimensional IOU results revealed an increase of approximately 20% and 10%, respectively. Therefore, 

our data augmentation module effectively enhances the quality of model detection. Tables 6 and 7 

also indicate that the AGPNet model improves the detection accuracy for smaller three-dimensional 

objects when maintaining a detection time within the same order of magnitude as the PointPillars 

model. 
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Figure 7. Line chart of detection results of Pointpillars, GNN-Pointpillars and AGPNet models from 

BEV perspective, (a) two-dimensional IOU detection results, (b) three-dimensional IOU detection 

results. 

Through ablation experiments, we observed that the addition of a data enhancement module 

and a GNN (Graph Neural Network) graph convolution module to the original PointPillars model 

significantly enhances the quality of model detection while maintaining a detection time within the 

same order of magnitude as the PointPillars model. 

4. Conclusions 

In this paper, we introduce AGPNet, a three-dimensional point cloud data target detection 

network structure that amalgamates Data Augmentation, Dynamic Graph CNN, Pillar Feature Net, 

and Detection Head(SSD). Recognizing the challenge of achieving accurate detection in the presence 

of occluded or small objects within the PointPillars network model, we attribute this to limitations in 

feature extraction following the conversion of point cloud data into pseudo images. Therefore, we 

present a creative solution by integrating Data Augmentation and Dynamic Graph CNN modules 

into the PointPillars model. Experimental results demonstrate that our proposed AGPNet network 

model achieves a detection accuracy 6-7 percentage points higher than that of the PointPillars 

network model, while maintaining detection time within the same order of magnitude. 

While our 3D point cloud voxel-based object detection method may not achieve the same 

detection accuracy as the direct object detection from point cloud data, it excels in detection speed. 

This attribute makes it highly suitable for real-time object detection needs in actual driving 

environments. In the future, we intend to further enhance detection accuracy and speed by 

integrating additional data augmentation and point cloud object feature extraction modules as 

outlined in this article. 
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