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Abstract: Multi-Object Tracking (MOT) is a key technology for Unmanned Aerial Vehicles (UAVs).

Traditional tracking-by-detection methods firstly employ an object detector to retrieve targets in each

image and then track them based on a matching algorithm. Recently, the popular multi-task learning

methods has been dominating this area since they can detect targets and extract Re-Identification

(Re-ID) features in a computationally efficient way. However, the detection task and the tracking task

have conflicting requirements on image features, leading to the poor performance of the joint learning

model compared to separate detection and tracking methods. The problem is more severe when it

comes to UAV images due to the presence of irregular motion of large number of small targets. In

this paper, we propose a balanced Joint Detection and Re-ID learning (JDR) network to address the

MOT problem in UAV vision. To better handle the non-uniform motion of objects in UAV videos, the

Set-Member Filter is applied which describes object state as a bounded set. An appearance matching

cascade is then proposed based on target state set. Furthermore, a Motion-Mutation module is

designed to address the challenges posed by the abrupt motion of UAV. Extensive experiments on the

VisDrone-MOT2019 dataset demonstrate that our proposed model, termed as SMFMOT, outperforms

state-of-the-arts by a large margin and achieves superior performance on the MOT tasks in UAV

videos.

Dataset: https://github.com/VisDrone/VisDrone-Dataset

Keywords: unmanned aerial vehicles; multi-object tracking; tracking-by-detection; set-membership

filter

1. Introduction

Multi-Object Tracking (MOT) has been a long-term task of computer vision[1–5]. The goal of

MOT is to estimate the trajectories of the objects of interest in videos. A successful solution to MOT

can greatly help accomplish many applications such as autonomous driving, intelligent video analysis,

human activity recognition[6], and even social computing. Recently, MOT in Unmanned Aerial

Vehicles (UAVs) has attracted a lot of interest of researchers as the convenience and flexibility of UAV.

MOT methods [3,5,7] typically follow the tracking-by-detection paradigm. It firstly obtain

potential boxes and appearance information for each object in each frame, then the matching algorithm

based on motion cues [8] and appearance information [2] is used to associate objects across adjacent

frames.

With the popularity of multi-task learning, the Joint Detection and Re-Identification (JDR)

method [3,5,9,10] is dominant in this paradigm since it allows object detection and Re-Identification

(Re-ID) feature extraction to be accomplished by a single network. It effectively reduces the

computational cost of network. However, due to the conflicting requirements of detection tasks

and Re-ID tasks on image features, the joint learning model performs poorly compared to separate

detection and tracking methods. In the UAV scene, the existence of a large number of small objects and
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the irregular movement coupled by movement of UAV and objects make the MOT model suffer from

more severe challenges. In addition, the UAV undergoes abrupt motion during flight, which makes

the matching blocked.

Frame: 10Frame: 5Frame: 0

Frame: 15 Frame: 20 Frame: 25

UAV stays stable

UAV move to left

UAV abrupt motion

Frame: 30 Frame: 35 Frame: 40

Figure 1. Irregular motion of objects in UAV video sequences. From frame 0 to frame 10, the UAV was

stationary and the object was moving in the direction of the red arrow. From frame 15 to frame 25,

the UAV was moving to the left while the object was moving in the direction of both the red and blue

arrows in the image. From frame 30 to frame 40, the UAV was moving rapidly from left to right result

in significant changes in the state of object.

In this paper, we propose a novel multi-object tracker, SMFMOT, to accomplish MOT tasks in

UAV videos. SMFMOT introduces an anchor-based JDR network, which was built by a symmetric

two-branch architecture to balance the detection task and Re-ID task, and attached to the same

backbone that extracts multi-level features from the input image. Since the anchors improve the recall

capability of network, the JDR model based on anchor-based detector can effectively deal with UAV

video scenes with a large number of small objects. However, previous work has pointed out that

anchor-based JDR network faces the problem that anchor and re-id feature cannot correspond one by

one. Therefore, the network we design learns Re-ID features for every anchor.

In the matching algorithm, to better deal with the irregular coupled movement of objects in frame,

we apply Set-Membership filter (SMF) [11] to predict and update the state of trajectory, where the

state is described by the bounded set. Based on this characteristic of SMF, we designed an appearance

matching cascade (AMC) module that improves the matching accuracy by selecting the matching

objects in the prior range of trajectory. The actual state of the object may exist at any position within the

prior range. Fortunately, we discovered that this module can effectively address matching errors caused

by similar appearances of different targets, as strict screening of candidates based on state information

was utilized. Additionally, to address the abrupt motion of UAV, we devised a motion-mutation filter

(MMF) module that incorporates diverse matching strategies contingent on the UAV motion state.

When the UAV is in an abnormal motion state, we adopted a state set match cascade method, which

utilizes different techniques at multiple scales to cope with the varying scale of motion mutations in

UAV.
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We evaluated our model on the UAV dataset Visdrone-MOT2019 [12] via the evaluation server.

The experimental results certify that our model can effectively complete the MOT task in UAV visions.

The main motivation of this work derives from the particularity of object motion in unmanned aerial

vehicle video sequences. The main contributions of this work are summarized as follows:

1. We proposed a JDR model that jointly learns an anchor-based detector and finds corresponding

Re-ID features for multi-object tracking. Fairnesss between the two tasks is achieved by a

symmetric design of the framework.
2. We employ the SMF for predict and update trajectory state, which describes the state of the

trajectory with a bounded set to address the irregular motion of object. Based on the bounded set,

the AMC is designed to accurately select candidates for appearance matching, thereby reducing

false matches.
3. We proposed a MMF module to address the abrupt movement of the UAV, which determines the

matching strategy based on the UAV motion state.

2. Related Work

The most effective methodologies for MOT typically rely on a tracking-by-detection approach [1–

3,5,10,13], which involves detecting objects in each frame and associating them using a matching

algorithm. As such, this section primarily focuses on recent advancements in multi-object detectors,

Re-ID method, matching methods, and motion model in matching methods.

2.1. Detection Method

The popular object detectors can be classified into two categories: anchor-free and anchor-based.

The anchor-based object detector generates a wide range of anchors using predefined rules that

effectively cover a large proportion of the image. The predicted box is selected by matching the anchor

to a positive sample. Faster R-CNN [14] generates anchors with varying sizes and proportions at

each point of the feature graph, before filtering these anchors through the Region Proposal network

(RPN). YOLOv1 [15] applies a clustering method to obtain anchors of different sizes in each grid of the

divided image, before obtaining prediction boxes using a sample-sample matching strategy. As anchors

improve the ability of the network to detect small objects with increased accuracy, anchor-based object

detection is a powerful approach for identifying small objects in UAV videos.

Anchor-free object detectors directly perform object classification and localization on the image

without anchors. CornerNet [16] utilizes the Keypoint-based method to detect objects by locating their

key points and then generating bounding boxes based on those points. CornerNet-Lite [17] is proposed

as an optimization, which includes the introduction of CornerNet-Saccade and CornerNet-Squeeze to

improve the speed of the detection process.

2.2. Re-ID Method

With the development of multi-task learning, the JDR model has received increasing attention, as

it completes both detection and Re-ID tasks within one network. Wang and Voigtlaender et al. [9,10]

extract detection and Re-ID features from a single network for improving inference efficiency. MOTS [9]

adds a Re-ID head in Mask R-CNN [18] and extracts the Re-ID feature while regressing to the bounding

box. JDE [10] is deployed on YOLOv3 and inference with high efficiency. FairMOT [3] adds a Re-ID

head to CenterNet [19], which achieved good performance. This method can effectively reduce the

computational cost in the MOT task, as the detection subtask and the Re-ID subtask are completed in a

single network.

2.3. Matching Method

Data association is a critical step in MOT, especially in the tracking-by-detection paradigm, which

is achieved through matching methods. It associates objects across adjacent frames and assigns the
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same ID to the same object. In general, matching algorithms mainly rely on the appearance information

and motion patterns of objects.

2.3.1. Matched based on Appearance Information

There is a large body of literature attempting to use the appearance information for tracking [2,

3,5,9,10], which feed the object region into the Re-ID network to obtain appearance feature vectors.

They then calculate the correlation between the trajectories and the detections. References [20–22] have

focused on enhancing physical features for more reliable tracking. Bae et al. [21] propose an online

appearance learning method to handle appearance variations. Tang et al. [22] utilize body postures to

enhance physical features. However, in scenarios where a large number of similar objects are present

in a single frame, relying solely on appearance information may become less reliable.

2.3.2. Matched based on Motion Sign

SORT is a classic algorithm in MOT. It first uses a Kalman filter [23] to predict the state of

trajectories, then computes the Intersection over Union (IoU) with detections. The Hungarian algorithm

is used for assigning detections to trajectories. IOU-Tracker [24] directly calculates the IoU between the

tracklet and detection without predicting the prior state of the trajectory by the motion model. Both

SORT and IOU-Tracker are widely used because of the simplicity. However, these two methods do not

perform well in crowded objects or fast-moving objects. Therefore, matching methods based solely on

location and movement information cannot address extreme scenarios.

2.3.3. Matched based on Appearance Information and Motion Sign

Many studies [2,3,5,10,25] have attempted to enhance the performance of matching methods

in multi-object tracking by incorporating both motion models and appearance information. The

DeepSORT improves upon the SORT by implementing a cascade matching process that takes advantage

of appearance information. The MOTDT [25] proposes a multi-level association strategy that utilizes the

IoU method to match detection and tracklets when appearance features are not reliable. Additionally,

the UAVMOT [5] adopts an adaptive motion filter to improve the multi-object tracking performance

under the UAV background. These methods utilize Kalman filters to predict the prior state of the

trajectory, which is considered to conform to a Gaussian distribution. However, as the motion of the

object in the image is often coupled with the motion of the UAV, the use of a Gaussian distribution

with a mean of 0 to describe the error in state representation is unreliable.

2.4. Motion Model

The Kalman filter [23] is a widely-used algorithm for state estimation and prediction in various

scientific and engineering applications. In the context of multi-object tracking, the Kalman filter is

often employed to predict the positions, sizes, and velocities of trajectories, and match them with

objects. In existing tracking algorithms, such as SORT and DeepSORT, the state of the trajectory is

assumed to follow a Gaussian distribution of which the mean is considered as the state of the trajectory.

However, the trajectory should lie within a bounded range rather than a single value.

SMF [11] is a class of nonlinear filtering algorithms that process measurements and predict the

state of a system by enclosing it within a prior range, which is represented in this paper with a

zonotope[26]. SMF can perform state estimation under both Gaussian and non-Gaussian measurement

noise, making them suitable for a wide range of applications. In this article, the SMF is utilized to

predict and update possible trajectory states, and the detection can be matched with the trajectory by

determining whether it falls within the predicted set.
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3. Methodology

3.1. Overall Framework

In this paper, our proposed model consists of two main parts. The first part is the balanced

anchor-based JDR network, which extracts appearance feature vectors of detected objects when

detecting. The second part is the matching method, which was improved by DeepSORT. It includes

a SMF module, an MC module, and a MMF module. Given a sequence
{

It ∈ RW×H×3
}T

t=1
of UAV

videos in moving, our proposed model aims to associate objects of the same category in adjacent

sequences with the aid of their position and appearance information, assigning them a unique ID. The

overall framework of our model is illustrated in Figure 2. We input the images It and It+1 of adjacent

frames into the JDR network. The detection head outputs the categories {C}N
i=1 and boxes {B}N

i=1 of N

objects, while the Re-ID head outputs the appearance vectors {ID}N
i=1 corresponding to objects. We

predict the next state of the objects using the SMF module, which describes the state of the object with

a set in UAV videos.

Backbone
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Figure 2. Overview of the proposed model. We utilize the JDR network to obtain the category, box,

and appearance feature vector of objects from the adjacent frames of input images It and It+1. In

the tracking stage, we designed the SMF module to predict trajectory states, the AMC module to

select eligible candidates for appearance matching, and the MMF module to tackle the challenge of

rapid motion of UAV. In AMC module and MMF module, rectangular boxes with numerical values

representing the size of the object or trajectory, where the red one is the trajectory and the others are

detection.

3.2. JDR Network

We designed an anchor-based JDR model to accomplish both detection and Re-ID tasks which

consist of a backbone, a detection branch, and a Re-ID branch. The overview of network is shown

in the top of Figure 2. It adopts the backbone of the YOLOv7 detector which is released in YOLOv7,

YOLOv7-tiny, and YOLOv7-W6. To strike a good balance between accuracy and speed, we employe

the version of YOLOv7. With the addition of E-ELAN, an enhanced version of ELAN, the backbone

can improve the learning ability of the network through expanding, shuffling, and merging cardinality
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without destroying the original gradient path. This is conducive to ensuring the quality of Re-ID

feature vectors while executing the detection tasks. The multiple uses of E-ELAN allow the network to

learn a variety of features at different levels.

The detection branch consists of a detection neck and three output heads corresponding to three

levels of feature maps output from backbone. The neck is used for feature transformation and feature

fusion. Each output head contains a box head, a category head and a confidence head. The box head

aim to determine the location and size of the object. The sizes of objects corresponding to the three

segregated levels are different. The higher the level is, the richer the semantics and the larger the

corresponding detection targets are. The category head outputs the belonging category for each object.

The confidence head represents the probability that the anchor serves as a positive sample, which

determines whether the anchor contains the correct target.

In order to ensure the performance balance between detection tasks and Re-ID tasks, the Re-ID

branch is designed as similar to the detection branch. Feature graphs output from different layers in

the backbone correspond to three different scale of targets. We extracted the appearance feature for

each anchor in the same level. The Re-ID features are learned through a classification task. All objects

with the same id are treated as the same category. For each predicted target, we extract its feature

vector Ei and map it to a distribution vector P = {p(k), k ∈ [1, K]} through a fully connected layer and

softmax operation. We adapted the IDs of targets into one-hot form and denoted it as Li(k). We use a

focal loss to calculate the Re-ID loss, as shown in the following.

Lid = −
N

∑
i=1

K

∑
k=1

Li(k) log p(k) (1)

Where K is the total number of identities in a single sequence and N is the total number of sequences.

3.3. Matching Model

3.3.1. Motion Module

In our model, the SMF[11] is used as a motion model to predict and update the state of

the trajectory. For each trajectory, our tracking scene is defined in an eight-dimensional space

(u, v, γ, h, ẋ, ẏ, γ̇, ḣ), which includes the central point position (u, v) of the object, the aspect ratio

r, the length h of the object box and their corresponding velocities (ẋ, ẏ, γ̇, ḣ). Set x represents the range

of each trajectory in the eight-dimensional space, which shown in the following.

∃(G, c) ∈ R
n×n ×R

n : x = {Gξ + c : ‖ξ‖∞ ≤ 1} (2)

Where the vector c is the center of set, the columns of G are the generators of set.

The motion of the trajectory is modeled as a linear system, in which the noise is independent of

the initial state. It can be described by

xk+1 = Axk + Bwk (3)

yk = Cxk + Dvk (4)

Where state transition matrix A ∈ Rn×n, control matrix B ∈ Rn×p, measurement matrix C ∈ Rm×n,

and control matrix D ∈ Rm×q. Each trajectory in the system is required to follow the following steps:

• Initialization. Set the initial prior range Jx0K.
• Prediction. For k ∈ Z+, the prior range is

Jxk |y0:k−1K = AJxk−1| y0:k−1K⊕ BJwk−1K, (5)
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where ⊕ stands for the Minkowski sum. The prior ranges will be used for matching with the

objects.
• Update. For k ∈ N0, given yk, the posterior range is

Jxk

∣∣∣y0:kK = Xk (C, yk, DJvkK)
⋂

Jxk

∣∣∣ y0:k−1K, (6)

here we define Jx0K := Jx0 | y0:−1K for consistency, and Xk (C, yk, DJvkK) = {xk : yk = Cxk +

Dvk, vk ∈ JvkK}. The update stage is performed after matching trajectories with objects, the prior

range Jxk | y0:k−1K is assumed to be infinitely large.

3.3.2. Appearance Matching Cascade Module

Since SMF describes the state of the trajectory as a set, we designed the AMC module based on

this peculiarity to select candidates for appearance matching in a precise manner. Only the detections

contained in the predicted state set are considered for calculating the appearance cost matrix and

performing the matching. Compared to the DeepSORT, which uses a threshold based on the distance

between the center points of the trajectories and detection to determine the appearance matching

candidates, our method more accurately reflects the true state of the trajectory to reduce mismatching.

As shown in Figure 3, DeepSORT selects candidates for appearance matching by judging that their

location is within the circular region. It only takes into account that the location has boundaries, and

ignores that there are also boundaries in size and speed.

1

2

3

4

8

5

6

7

11

10

9R

Figure 3. Overview of selecting candidates for appearance matching in DeepSORT. It use positional

threshold to select objects as the criterion for appearance matching. The candidates selected as

appearance matches only need to have their center positions exist within a circular range of radius R

around trajectory 1.

In the AMC module, we only select objects whose position, size and corresponding velocity are

contained within the trajectory prior range as candidates for appearance matching. As shown in

Figure 2, there are 7 appearance matching candidates in the position space of trajectory 1 which is

represented by a red box. However, some of these objects have aspect ratios that are not within the

state space of trajectory 1, and therefore these objects should be excluded. Similarly, trajectories that

are not within the other four velocity component spaces will also be excluded. Moreover, this module

can alleviate the problem of misidentification between similar objects as they frequently have diverse

states. The overall AMC module can be summarized as Algorithm 1.
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Algorithm 1 AMC algorithm

Input: Track State T = {track1, . . . , trackN}
T
t , tracki is represented by Eq. 4, Detection D =

{det1, . . . , detM}
T
t , detj = (uj, vj, γj, hj, ẋj, ẏj, γ̇j, ḣj)

Output: Matched trajectories and detectionsM = {(trackn, detm)|n ∈ N, m ∈ M}
1: Initialize candidate matrix C ← ∅
2: for track ∈ T do
3: Initialize flag matrix F ← ∅
4: for det ∈ D do
5: if det ∈ track then
6: F ← True
7: else
8: F ← False
9: end for
10: C ← { f ∈ F| f = True}
11: end for
12: Calculate the Euclidean distance E of appearance

vectors between trajectories and candidates
13: Matching using Hungarian algorithm with E, getM

3.3.3. Motion-mutation Filter Module

In UAV video sequences, as the possibility of sudden changes in UAV motion, the position of

objects in the adjacent frames can experience significant changes. The use of solely a SMF module

is insufficient to deal with such extreme motion as the state of the objects has changed dramatically

accordingly. Therefore, we propose a MMF module to address the challenges posed by abrupt motion

in UAV.

Based on the motion of the UAV, objects in UAV videos can be classified into two modes: normal

mode and anomaly mode. In normal mode, the drone flies smoothly in the sky, the coupling motion

between the object in the image and the UAV remains in a stable state. We calculate the matching

quantity by AMC module. When the matching quantity falls below a certain threshold P, it is

considered to be entering abnormal mode, where the drone performs fast movements with different

amplitudes, resulting in significant variations in the position and speed of the object in the video

sequence. Luckily, we found that the characteristic of describing states as sets with SMF allowed us to

address this challenge by dynamically challenging the range of sets. Therefore, we adopts a state set

match cascade to enlarge the state space at each level to cope with the rapid movements of drones at

different scales. For the predicted trajectory state x̂ through SMF, there exists a ∆Gk at level k such that

the trajectory state set as shown in follow.

x̂ = {(G + ∆G)ξ + c : ‖ξ‖∞ ≤ 1} . (7)

At each level, a matching process is performed between the trajectory and object by the AMC module,

and the matching result of the level with the best performance is selected as the matching result for the

current frame. In Figure 2, we demonstrate an example of MMF on the position space of objects. The

red box 1 represents the trajectory to be matched, where the (x, y) is the position of the trajectory in

the image. The blue box 1 represents the ground truth that trajectory 1 should match where location is

repesented by (x′, y′). Since the scale variance of the UAV motion, the objects that should truly match

the trajectory are at the level 2 of position, requiring a two-level state space expansion for correct

matching. In the same way as the position space, changes in the size and velocity space also occur. The

reason for changes in the velocity space is that the fast movement of the drone coupled with the object

motion, while changes in the size space are due to the slight variation in object size caused by the

movement of UAV and angle of capture. However, compared to the changes in position and velocity,

the variation in size space is minimal. Therefore, the position space and its corresponding velocity

space are the primary focuses of our attention.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2023                   doi:10.20944/preprints202310.1704.v1

https://doi.org/10.20944/preprints202310.1704.v1


9 of 14

4. Experiments

4.1. Datasets and Metrics

The data set used in this work is Visdrone-MOT2019, which has training test and verification sets.

It provides both box and identity annotations. Therefore, we can train both branches in this dataset.

The VisDrone-MOT2019 dataset contains ten categories: pedestrian, person, car, van, bus, truck, motor,

bicycle, awning-tricycle, and tricycle. During the multi-object tracking evaluation, we only consider

five object categories, i.e., pedestrian, car, van, bus, and truck. Following UAVMOT, both the training

set and the validation set of the Visdrone-MOT2019 were used to train the model, and evaluated our

approach on the testing set. We evaluate detection results by Average Precision (AP). After obtaining

the detection results, we will extract corresponding Re-ID features to facilitate the use of the tracking

stage. To evaluate our model with other state-of-the-art approaches, we adopt a variety of metrics to

assess the performance of tracking, such as multiple object tracking accuracy (MOTA), multiple object

tracking precision (MOTP), Identification F-Score (IDF1), ID switching (IDs) and other metrics.

4.2. Implementation Details

We adopt our published JDR model based on anchor-based detector YOLOv7 as the detection

model and extract appearance feature vectors. The model parameters pre-trained on the COCO

dataset [27] are used to initialize the model. We train the model with the SGD [28] optimizer for 30

epochs with a starting learning rate of 10−2. The learning rate decays to 10−3 at 15 epochs. The batch

size is set to 6. We used standard data enhancement techniques such as left-right inversion, zooming,

and color transformation. During the training, the input image is resized to 1280× 1280. The training

took about 20 hours on two RTX 3090 GPUs.

4.3. Comparison with State-of-the-arts

We compared our approach to the previous methods on the VisDrone-MOT2019 dataset. We

trained our model on the training set and verification set. We tested it on the test set using the official

VisDrone MOT toolkit. As illustrated in Table 1, our method achieves 43.6% on MOTA and 54.9% on

IDF1. The MOTP, MT, ML and FN also achieved the best performance. These experimental data shown

in Table 1 are quoted from ref. [5], where the input image is resized to 1920×1080 during the training.

Our approach achieves better performance with lower-resolution input images.

Table 1. Quantitative comparisons between our method and other methods for MOT task on

VisDrone-MOT2019 test-dev set.

DataseteMethod MOTA↑(%)MOTP↑(%)IDF1↑(%)MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓

Visdrone

MOTDT -0.8 68.5 21.6 87 1196 44548 185453 1437 3609
SORT 14.0 73.2 38.0 506 545 80845 112954 3629 4838
IOUT 28.1 74.7 38.9 467 670 36158 126549 2393 3829
GOG 28.7 76.1 36.4 346 836 17706 144657 1387 2237

MOTR 22.8 72.8 41.4 272 825 28407 147937 959 3980
TrackFormer25 73.9 30.5 385 770 25856 141526 4840 4855
UAVMOT 36.1 74.2 51.0 520 574 27983 115925 2775 7396
Ours 43.6 76.4 54.9 656 469 32599 86654 2113 4042

4.4. Ablation Study

In this section, we performed a series of ablation experiments on VisDrone-MOT2019 validation

to validate our model. In ablation experiments, we used our proposed JDR model and DeepSORT

as the baseline model. As shown in Table 2, there are three core components in our model, the SMF

module, the AMC module and the MMF module. We report the results of four critical performance
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metrics for each module on the Visdrone-MOT2019 test set. The baseline gets 42.3% on MOTA ,75.3%

on MOTP and 53.9% on IDF1. When the motion model was replaced by the SMF filter, the MOTA

increased to 42.5%, the MOTP increased to 76.6% and IDF1 get 49.7%. When the motion model is

replaced by the SMF filter and the AMC module is applied to the baseline model, the MOTA increased

to 43.3%, the MOTP achieves 76.4% and IDF1 achieves 53.9%. Add the SMF module, AMC module

and MMF module to the baseline model, the MOTA increased to 43.6%, the MOTP achieves 76.4%

and IDF1 achieves 54.9%. Due to the interdependency among the modules we designed, the ablation

experiments of each module below may be dependent on one or two modules.

Table 2. Ablation study on VisDrone-MOT2019 test set.

Baseline SMF AMC MMF MOTA↑(%)MOTP↑(%)IDF1↑(%) IDs↓ IDP↑(%) IDR↑(%)

X 42.3 75.3 53.9 2314 61.7 47.9
X X 42.5 76.6 49.7 3200 60.0 42.4
X X X 43.3 76.4 53.9 2155 63.1 47.0
X X X X 43.6 76.4 54.9 2113 64.1 48.0

4.4.1. Effectiveness of SMF Module

The SMF module can effectively predict the state of the trajectory and improve tracking accuracy.

To evaluate the effectiveness of the SMF module, we list four critical indicators(Pren, FP) on the

baseline model and the baseline +SMF model, respectively. As shown in Table 3, Prcn increased from

77.9% to 81.2% and FP from 36868 decrease to 28614. The experimental results demonstrate that SMF

has a positive impact on the matching stage, enabling accurate prediction of the object motion state,

reducing the number of tracking errors, and improving tracking accuracy.

Table 3. Ablation study on VisDrone-MOT2019 test set.

Prcn↑(%) FP↓(%)

Baseline 77.9 36868
Baseline+SMF 81.2 28614

4.4.2. Effectiveness of AMC Module

The AMC module is used to filter out objects that do not meet the trajectory state and prevent

mismatches between similar objects. To evaluate the effectiveness of AMC, we list ID association

indicators (IDF1, IDS, IDP, IDR) on the baseline+SMF model and baseline+SMF+AMC model,

respectively. As illustrated in Table 4, The IDs from 3200 decreases to 2155. The IDF1, IDP and IDR

increase from 49.7%, 60.0% and 42.4% to 53.9%, 63.1% and 47.0%, respectively. The experimental results

demonstrate that AMC has a significant impact on the matching stage, and its primary contribution

stems from a considerable reduction in ID switches.

Table 4. Ablation study on VisDrone-MOT2019 test set.

IDF1↑(%) IDs↓ IDP↑(%) IDR↑(%)

Baseline+SMF 49.7 3200 60.0 42.4
Baseline+SMF+AMC 53.9 2155 63.1 47.0

4.4.3. Effectiveness of MMF Module

The MMF module can automatically switch tracking modes based on the UAV motion state.

To evaluate the effectiveness of MMF, we list ID association indicators (IDF1, IDs, IDP, IDR) on the

baseline+SMF+AMC model and baseline+SMF+AMC+MMF model, respectively. As illustrated in
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Table 5, The IDs from 2155 decrease to 2113. The IDF1, IDP and IDR increase from 53.9%, 63.1% and

47.0% to 54.9%, 64.1% and 48.0%, respectively. The experimental results demonstrate that MMF has a

significant impact on the matching stage, it alleviated the influence of ID switching caused by mutation

motion of UAV.

Table 5. Ablation study on VisDrone-MOT2019 test set.

IDF1↑(%) IDs↓ IDP↑(%) IDR↑(%)

Baseline+SMF+AMC 53.9 2155 63.1 47.0
Baseline+SMF+AMC+MMF 54.9 2113 64.1 48.0

4.5. Visualization

In this section, we will showcase the tracking results of our model on UAV video sequences

from the Visdone-MOT2019 dataset more intuitively. As depicted in Figure 4, the UAV was in normal

motion from farm10 to farm20, while it underwent rapid motion from farm20 to farm30. Our model

can effectively track multiple objects in UAV environments with normal and fast movements. The

visualization results demonstrate that our model can accomplish most multi-object tracking tasks in

the UAV domain.

Frame: 30Frame: 20Frame: 10

Frame: 10 Frame: 20 Frame: 30

Figure 4. Visualization of tracking results on Visdrone-MOT2019.

5. Conclusions

In conclusion, a novel MOT model is proposed to MOT task in UAV, which follows the

track-by-detection paradigm. In the model, we utilized a symmetric anchor based JDR model to

accomplish both detection and Re-Identification (Re-ID) tasks. It can achieve high-performance

detection results and high-quality Re-ID features, while balancing the detection task and Re-ID task

effectively. We utilized the SMF to predict the set of trajectory states, which describe the range of

trajectory existence accurately. The AMC module is proposed to optimize the appearance-based

matching strategy using object status. The module eliminates objects that are not in the trajectory state

set and reduces the effects of appearance similarity. We proposed an MMF module to address the

sudden movement issue of UAV, which determines matching strategies based on the UAV motion

state. We conducted a series of experiments on the VisDrone-MOT2019 dataset and compared our

approach with other methods. The results show that our method achieves state-of-the-art performance

in UAV multi-object tracking tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

MOT Multi-Object Tracking

UAVs Unmanned Aerial Vehicles

Re-ID Re-Identification

JDR Joint Detection and Re-ID learning

SMF Set-Membership filter

AMC Appearance matching cascade

MMF Motion-mutation filter

RPN Region Proposal network

IoU Intersection over Union

AP Average Precision

MOTA Multiple object tracking accuracy

MOTP Multiple object tracking precision

IDF1 Identification F-Score

IDs ID switching
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