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Article

Magnetic Fields and Asymptotic Limits of Current
Loops

Nadiya Rodriguez

Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79401

Abstract: This article theoretically derives the magnetic field and vector potential produced by a 
steady current I flowing in an arbitrary plane loop at an arbitrary point r. Numerical examples are 
presented to demonstrate the behavior of the magnetic field produced by loops of various shapes 
such as polygons, circles, ellipses, and p-norm balls. Taking the limit as the loop shrinks to a point 
and the current I grows to infinity so that the magnetic dipole moment m of the loop (defined as the 
current I times the vector area of the loop) is kept constant, the magnetic field and vector potential 
are shown to converge to those of an ideal point magnetic dipole m.

Keywords: magnetic dipole; current loop; vector potential; electromagnetic field

1. Introduction

Ever since the Danish physicist Hans Christian Ørsted discovered [1] that a current carrying wire
deflects a magnetic needle kept in its vicinity, philosophers and natural scientists have researched [2]
on the connection between magnetic fields as observed near bar magnets and lodestones [4], and electric
currents. Laplace, Biot, Savart, Ampère, and others experimentally observed [5] that the magnetic field
B(r) produced by a steady current density J(r′) distributed over a set r′ ∈ D is given by

B(r) =
µ0

4π

∫

D

J × (r − r′)

‖r − r′‖3 dV
′. (1)

This result, commonly known as the Biot–Savart law, was used by Maxwell to formulate the so-called
Ampère’s circuital law [6,7], which states that the circulation of the magnetic field B produced by a
steady (time-invariant) current over a closed loop is proportional to the total current flowing through
the surface, or, equivalently in differential form, ∇× B = µ0J, where J is the volume current density
and ∇× A for a vector field A(r) ≡ Ax(r)x̂ + Ay(r)ŷ + Az(r)ẑ is defined as

∇× A :=
(

∂Az

∂y
− ∂Ay

∂z

)

x̂ +

(

∂Ax

∂z
− ∂Az

∂x

)

ŷ +

(

∂Ay

∂x
− ∂Ax

∂y

)

ẑ.

With Maxwell’s unification of electromagnetism [8], Ampère’s circuital law was incorporated as part
of Maxwell’s equations. Maxwell’s work also comprehensively laid out the exact connections between
sources and fields, as well as electric and magnetic fields [9]. Further unification was achieved with
the advent of special relativity [10,12], when it was shown that electric and magnetic fields are in fact
components of a rank-2 tensor field, the electromagnetic field [13], through the work of Einstein [12],
Lorentz [14], Poincaré [15], and others. During this period, several experiments designed to test
various hypotheses around the so-called luminiferous ether [17] also failed and thereby experimentally
confirmed the validity of this unification [18,19]. One of the most notable of these experiments was
that conducted by Michelson and Morley in 1887 [20,22]. The Michelson–Morley experiment aimed
to measure the velocity of the earth relative to the luminiferous ether and involved some of the most
precise measurements ever made in physics till then. A state of the art interferometer [23] was used for
the measurement, and this remarkably well-designed experiment further contributed in retrospect to
the demise of the ether theory [24].
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The rest of the paper is organized as follows. Section 2.1 presents the magnetic field and vector
potential produced at an arbitrary point by a steady current flowing in a circular loop of finite radius
a. Section 2.2 generalizes this result to an arbitrary closed loop on a plane and numerically examines
the behavior of the magnetic fields produced by loops of various shapes. Section 3.1 theoretically
establishes that the magnetic field and vector potential due to a circular current loop approach that of
an ideal magnetic dipole as the loop shrinks to a point while keeping the magnetic moment fixed, and
Section 3.2 generalizes the convergence result to an arbitrary closed and differentiable loop on a plane.
Section 4 concludes the paper.

2. Field of a loop current

In this section, we use the Biot–Savart law (1) to derive the magnetic field B produced by a plane
current loop carrying a steady current I. Without loss of generality, we can take the current loop to be
in the xy-plane.

2.1. Circular current loop

We first consider the case of a circular loop of radius a, centered at the origin. With our choice of
coordinates, the current distribution has azimuthal symmetry, i.e., for any coordinate transformation
φ → φ+ c for any constant c ∈ R, the form of the current distribution remains unchanged. This implies
that the magnetic field at any point r will be independent of φ and will not have any component along
the φ̂ direction. We can therefore take the point r to be on the zx-plane without loss of generality. The
differential magnetic field produced at this point r = xx̂ + zẑ by a differential element dl = a dφ of the
current loop located at r′ = a cos φx̂ + a sin φŷ is given, using (1), by

dB =
µ0aI

4π

(

φ̂ (r′)× (r − a cos φx̂ − a sin φŷ)

‖r − a cos φx̂ − a sin φŷ‖3

)

dφ

=
µ0aI

4π

(

(− sin φx̂ + cos φŷ)× ((x − a cos φ)x̂ − a sin φŷ + zẑ)

‖(x − a cos φ)x̂ − a sin φŷ + zẑ‖3

)

dφ

=
µ0aI

4π

(

z cos φx̂ + z sin φŷ + (a − x cos φ)ẑ

(x2 + z2 + a2 − 2ax cos φ)
3/2

)

dφ. (2)

We can integrate (2) to obtain the magnetic field B at the point r. As mentioned earlier, due to the
azimuthal symmetry of the problem, the φ component (or since r is chosen to be in the zx-plane, the y

component) of B should be zero. We arrive at the same conclusion from (2) by seeing that

By =
µ0azI

4π

∫ 2π

0

sin φ

(x2 + z2 + a2 − 2ax cos φ)
3/2 dφ

(a)
=

µ0azI

4π

∫ π

−π

sin φ

(x2 + z2 + a2 − 2ax cos φ)
3/2 dφ

(b)
= 0,
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where (a) follows since trigonometric functions are periodic with period 2π, and (b) follows since the
integrand is odd. We can write the x component of B as

Bx =
µ0azI

4π

∫ 2π

0

cos φ

(x2 + z2 + a2 − 2ax cos φ)
3/2 dφ

=
µ0azI

4π

∫ π

−π

cos φ

(x2 + z2 + a2 − 2ax cos φ)
3/2 dφ

(a)
=

2µ0azI

4π

∫ π

0

cos φ

(x2 + z2 + a2 − 2ax cos φ)
3/2 dφ

=
2µ0azI

4π (x2 + z2 + a2)
3/2

∫ π

0

cos φ
(

1 − 2ax
x2+z2+a2 cos φ

)3/2 dφ

(b)
=

µ0zm

4π (x2 + z2 + a2)
3/2 · 2

πa

∫ π

0

cos φ
(

1 − 2ax
x2+z2+a2 cos φ

)3/2 dφ

=
µ0zm

4π (x2 + z2 + a2)
3/2 · 2

πa
f (1)

(

2ax/(x2 + z2 + a2)
)

, (3)

where
f (1)(t) :=

∫ π

0

cos φ

(1 − t cos φ)3/2 dφ.

Here, (a) follows since the integrand in the previous step is an even function, and in (b), m is the
magnetic dipole moment πa2 I. Following similar steps, we can integrate the z component of (2) to
write

Bz =
µ0m

4π (x2 + z2 + a2)
3/2 · 2

π

(

f (2)
(

2ax/(x2 + z2 + a2)
)

− x

a
f (1)

(

2ax/(x2 + z2 + a2)
))

, (4)

where

f (2)(t) :=
∫ π

0

1

(1 − t cos φ)3/2 dφ.

Using (3) and (4) and taking t := 2ax/(x2 + z2 + a2), we can write the magnetic field B(r) as

B(r) =
µ0m

4π (x2 + z2 + a2)
3/2 · 2

π

[ z

a
f (1)(t)x̂ +

(

f (2)(t)− x

a
f (1)(t)

)

ẑ
]

. (5)

Converting to spherical polar coordinates with x2 + z2 = r2, z = r cos θ, x = r sin θ, x̂ = sin θr̂ + cos θθ̂,
and ẑ = cos θr̂ − sin θθ̂, (5) becomes

B(r) =
µ0m

4π (r2 + a2)
3/2 · 2

π

[

f (2)(t) cos θr̂ +

(

r f (1)(t)

a
− f (2)(t) sin θ

)

θ̂

]

.

We thus have the following lemma.

Lemma 1. The magnetic field B at a point r (with spherical polar coordinates (r, θ, φ)) produced by a circular

loop of radius a and magnetic moment m placed on the xy-plane with its center at the origin, is given by

B(r) =
µ0m

4π (r2 + a2)
3/2 · 2

π

[

f (2)(t) cos θr̂ +

(

r f (1)(t)

a
− f (2)(t) sin θ

)

θ̂

]

, (6)
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where

f (1)(t) :=
∫ π

0

cos φ

(1 − t cos φ)3/2 dφ, (7)

f (2)(t) :=
∫ π

0

1

(1 − t cos φ)3/2 dφ, and (8)

t :=
2ar sin θ

r2 + a2 . (9)

Remark 1. The integrals in eqns (7) and (8) are referred to as elliptic integrals [26]. They have no finite closed

form expressions in terms of elementary functions.

Fig. 1 illustrates the magnetic field lines on a vertical plane (i.e., containing the z axis) obtained in
accordance with Lemma 1. The red line segment represents the diameter of the current loop. The field
lines form closed loops and all of them cross the current loop.

Figure 1. Magnetic field lines.

Remark 2. When the field point r is on the xy-plane (i.e., θ = π/2), (6) yields

B =
µ0

4π (r2 + a2)
3/2 · 2

π

(

f (2)
(

2ar

r2 + a2

)

− r

a
f (1)

(

2ar

r2 + a2

))

m, (10)

which shows that the field on the plane of the loop is always perpendicular to the plane, as one can expect from

the form of the Biot–Savart law.
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Remark 3. Lemma 1 has a specialization which is commonly derived in freshman physics classes. For a point r

on the z axis (i.e., θ = 0), eqn (6) yields

B(r) =
µ0m

4π (r2 + a2)
3/2 · 2

π

(

f (2)(0)r̂ +
r f (1)(0)

a
θ̂

)

=
µ0

4π

(

2m

(r2 + a2)
3/2

)

.

We can also establish the magnetic vector potential for the current loop, as presented in the
following lemma.

Lemma 2. The magnetic vector potential A at a point r (with spherical polar coordinates (r, θ, φ)) produced by

a circular loop of radius a and magnetic moment m placed on the x − y plane with its center at the origin, is

given by

A(r) =
µ0

4π (r2 + a2)
1/2 · 2

πa sin θ
f (3)

(

2ar sin θ

r2 + a2

)

(m × r̂) , (11)

where

f (3)(t) :=
∫ π

0

cos φ

(1 − t cos φ)1/2 dφ. (12)

Proof. The magnetic vector potential A(r) produced by a steady current density J(r′) distributed over
a set r′ ∈ D can be written as (see, for example, [32])

A(r) =
µ0

4π

∫

D

J

‖r − r′‖ dV
′. (13)

Similar to (2), the differential vector potential at a point r = xx̂ + zẑ by a differential element dl = a dφ

of the current loop located at r′ = a cos φx̂ + a sin φŷ is given, using (13), by

dA =
µ0aI

4π

(

1
‖r − a cos φx̂ − a sin φŷ‖

)

dφφ̂

=
µ0aI

4π

(

− sin φx̂ + cos φŷ

(x2 + z2 + a2 − 2ax cos φ)
1/2

)

dφ. (14)

We can integrate (14) to calculate the vector potential A. We have

Ax = −µ0aI

4π

∫ 2π

0

sin φ

(x2 + z2 + a2 − 2ax cos φ)
1/2 dφ

(a)
= −µ0aI

4π

∫ π

−π

sin φ

(x2 + z2 + a2 − 2ax cos φ)
1/2 dφ

(b)
= 0,
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where (a) follows since trigonometric functions are periodic with period 2π, and (b) follows since the
integrand in the previous step is an odd function. We similarly have

Ay =
µ0aI

4π

∫ 2π

0

cos φ

(x2 + z2 + a2 − 2ax cos φ)
1/2 dφ

(a)
=

µ0aI

4π

∫ π

−π

cos φ

(x2 + z2 + a2 − 2ax cos φ)
1/2 dφ

(b)
=

2µ0aI

4π

∫ π

0

cos φ

(x2 + z2 + a2 − 2ax cos φ)
1/2 dφ

=
2µ0aI

4π (x2 + z2 + a2)
1/2

∫ π

0

cos φ
(

1 − 2ax
x2+z2+a2 cos φ

)1/2 dφ

=
µ0m

4π (x2 + z2 + a2)
1/2 · 2

πa
f (3)

(

2ax

x2 + z2 + a2

)

, (15)

where f (3)(·) is as defined in (12). Here, (a) follows since trigonometric functions are periodic with
period 2π, and (b) follows since the integrand in the previous step is an even function.Converting to
spherical polar coordinates with x2 + z2 = r2, x = r sin θ, and ŷ = φ̂, (15) becomes

A(r) =
µ0m

4π (r2 + a2)
1/2 · 2

πa
f (3)

(

2ar sin θ

r2 + a2

)

φ̂

(a)
=

µ0m

4π (r2 + a2)
1/2 · 2

πa sin θ
f (3)

(

2ar sin θ

r2 + a2

)

(ẑ × r̂)

=
µ0

4π (r2 + a2)
1/2 · 2

πa sin θ
f (3)

(

2ar sin θ

r2 + a2

)

(m × r̂) .

This establishes the result. Here, (a) follows from the observation that

φ̂ = r̂ × θ̂

= − 1
sin θ

r̂ ×
(

cos θr̂ − sin θθ̂
)

=
1

sin θ
(ẑ × r̂) .

In the following subsection, we generalize Lemmas 1 and 2 to general planar loops.

2.2. General current loop on a plane

Consider a current loop on the xy-plane described in polar coordinates (ρ, φ) as ρ = λ · γ (φ/2π) ,
where γ : [0, 1] → R

+ is continuously differentiable almost everywhere in [0, 1], bounded below (i.e.,
infu∈[0,1] γ(u) > 0), satisfies γ(0) = γ(1), and

∫ 1

0
γ(u)2 du =

1
π

. (16)

Eqn (16) defines the scale of the loop, since the area enclosed by the loop is given by

1
2

∫ 2π

0
r2 dφ =

λ2

2

∫ 2π

0
γ (φ/2π)2 dφ = λ2.
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Thus, L(λ; γ) := {(x, y) : x = λγ(u) cos(2πu), y = λγ(u) sin(2πu), u ∈ [0, 1]} defines a family of
“similar” loops parametrized by λ, where the area enclosed by L(λ; γ) is given by λ2. Henceforth,
we refer to “the loop L(λ; γ)” to refer to a loop in the shape given by L(λ; γ). The following lemma
establishes the magnetic field and vector potential produced by a uniform steady current I flowing in
the loop L(λ; γ).

Lemma 3. The magnetic vector potential A at a point r (with spherical polar coordinates (r, θ, φ)) produced by

a loop L(λ; γ) with magnetic moment m = mẑ placed on the xy-plane is given by

A(r, λ; γ) =
µ0

4πλ
m×

(

(

r̂ sin θ + θ̂ cos θ
)

∫ 1

0

2πγ(u) cos(2πu − φ) + γ′(u) sin(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
1/2 du

+ φ̂

∫ 1

0

2πγ(u) sin(2πu − φ)− γ′(u) cos(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
1/2 du

)

. (17)

The magnetic field at the point r is given by

B(r, λ; γ) =
µ0m

4πλ

(

2πλ cos θr̂

∫ 1

0

γ(u)2

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du

+ θ̂

∫ 1

0

2πrγ(u) cos(2πu − φ) + rγ′(u) sin(2πu − φ)− 2πλ sin θγ(u)2

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du

+ r cos θφ̂

∫ 1

0

2πγ(u) sin(2πu − φ)− γ′(u) cos(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du

)

. (18)

The proof of Lemma 3 follows immediately from the Biot–Savart Law (1) and the vector potential
expression (13) very similarly to the proofs of Lemmas 1 and 2, and is omitted.

Remark 4. One can easily see that Lemma 3 recovers the results of Lemmas 1 and 2 by setting γ ≡ 1/
√

π

and λ = a · √π.

Remark 5. Similarly to Remark 3, Lemma 3 can be specialized to the case θ = 0 (i.e., the field at a point on the

z-axis) to obtain

B(r, λ; γ) =
µ0m

2

∫ 1

0

γ(u)2

(λ2γ(u)2 + r2)
3/2 du

+
µ0m

4πλ

(

x̂

∫ 1

0

2πrγ(u) cos(2πu) + rγ′(u) sin(2πu)

(λ2γ(u)2 + r2)
3/2 du

+ ŷ

∫ 1

0

2πrγ(u) sin(2πu)− rγ′(u) cos(2πu)

(λ2γ(u)2 + r2)
3/2 du

)

. (19)

Remark 6. For a point r on the xy-plane, similarly to Remark 2, Lemma 3 reduces to

B(r, λ; γ) =
µ0m

4πλ

∫ 1

0

2πλγ(u)2 − 2πrγ(u) cos(2πu − φ)− rγ′(u) sin(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) cos(2πu − φ) + r2)
3/2 du. (20)

We now study some examples of commonly encountered families of loops L(λ; γ) and examine
the magnetic fields and vector potentials produced by steady currents flowing in such loops.
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Example 1 (Polygon). A polygonal loop with N vertices may be defined in terms of the vertex coordinates

{(ri, φi), i = 1, . . . , N}, where 0 ≤ φi < 2π for each i, and the coordinates are sorted such that φ1 < φ2 <

· · · < φN , as

γ(N)(u) =

(

2

∑
N
j=1 rjrj+1 sin

(

φj+1 − φj

)

)1/2

·
(

riri+1 sin (φi+1 − φi)

ri sin (2πu − φi) + ri+1 sin (φi+1 − 2πu)

)

,

u ∈
[

φi

2π
,

φi+1

2π

]

(21)

for i = 1, 2, . . . , N, where we choose the convention φN+1 ≡ φ1. As a special case, if ri = a/ (2 sin (π/N)) for

each i and φi = (i − 1/2) 2π/N for i = 1, 2, . . . , N, the polygon becomes regular and (21) reduces to

γ
(N)
reg. (u) = 2 sin

( π

N

)

(

2
a2N sin (2π/N)

)1/2

×
(

a

2 sin (π/N)

)

×
(

sin (2π/N)

sin (2πu − (i − 1/2) 2π/N) + sin ((i + 1/2) 2π/N − 2πu)

)

=

(

1
N tan (π/N)

)1/2

·
(

1
cos (2π (u − i/N))

)

(22)

for u ∈
[

i−1/2
N , i+1/2

N mod 1
]

, i = 1, 2, . . . , N. Fig. 2a geometrically depicts γ
(N)
reg. for N = 5 (i.e., a

regular pentagon). A common special case of (22) can be obtained by setting N = 4 (i.e., a square). We have

γ
(4)
reg.(u) =

1
2 cos (2πu − iπ/2)

=



























1
2 sin(2πu)

, u ∈ [1/8, 3/8],

− 1
2 cos(2πu)

, u ∈ [3/8, 5/8],

− 1
2 sin(2πu)

, u ∈ [5/8, 7/8],
1

2 cos(2πu)
, u ∈ [7/8, 1] ∪ [0, 1/8].

(23)

A different special case of (21) can be obtained by setting N = 4, φ1 = α, φ2 = π − α, φ3 = π + α,
φ4 = 2π − α, and r1 = r2 = r3 = r4 = a > 0, for some α ∈ (0, π/2). The reader may recognize this loop as a

rectangle, with α = π/4 corresponding to the square (23). We then have

γ
(α)
rect.(u) =















































(

(tan α)1/2

2

)

1
sin(2πu)

, u ∈
[

α
2π , 1

2 − α
2π

]

,

−
(

1
2(tan α)1/2

)

1
cos(2πu)

, u ∈
[

1
2 − α

2π , 1
2 + α

2π

]

,

−
(

(tan α)1/2

2

)

1
sin(2πu)

, u ∈
[

1
2 + α

2π , 1 − α
2π

]

,
(

1
2(tan α)1/2

)

1
cos(2πu)

, u ∈
[

1 − α
2π , 1

]

∪
[

0, α
2π

]

.

(24)

One can verify that both the square (23) and the rectangle (24) have unit area, by noting that the square has side

length 1, while the rectangle has side lengths (tan α)1/2 and 1/ (tan α)1/2 . Fig. 2b geometrically depicts γ
(α)
rect.

for α = π/6 and π/3.
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(a) γ
(5)
reg. (b) γrect.

Figure 2. Polygons.

Example 2 (Ellipse). An elliptical loop with eccentricity ǫ and major axis of length 2a with one focus at the

origin and another focus at (r, φ) = (2aǫ, 0), may be defined as the locus of a point which moves such that the

distances of the point from the two foci sums to 2a. When ǫ = 0, the two foci coincide and the ellipse reduces to a

circle of radius a. We have, for any point (r, φ) on the ellipse,

r +

√

r2 + (2aǫ)2 − 4raǫ cos φ = 2a

=⇒ r2 + (2aǫ)2 − 4raǫ cos φ = (2a − r)2

=⇒ 4ra(1 − ǫ cos φ) = 4a2(1 − ǫ2)

=⇒ r =
a
(

1 − ǫ2)

1 − ǫ cos φ
.

We therefore have

γ
(ǫ)
ellipse(u) =

K

1 − ǫ cos(2πu)
, (25)

where K is a constant to be determined from the normalization condition
∫ 1

0 γ(u)2 du = 1/π. We have

∫ 1

0
γ
(ǫ)
ellipse(u)

2 du = K2
∫ 1

0

(

1
1 − ǫ cos(2πu)

)2

du

=
K2

π

∫ π

0

1

(1 − ǫ cos t)2 dt (26)
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Using the substitution v := tan(t/2), (26) reduces to

∫ 1

0
γ
(ǫ)
ellipse(u)

2 du =
2K2

π

∫ ∞

0

1 + v2

(1 + v2 − ǫ(1 − v2))
2 dv

=
2K2

π(1 + ǫ)2

∫ ∞

0

v2 + 1−ǫ
1+ǫ +

2ǫ
1+ǫ

(

v2 + 1−ǫ
1+ǫ

)2 dv

=
2K2

π(1 + ǫ)2







∫ ∞

0

1

v2 + 1−ǫ
1+ǫ

dv +

(

2ǫ

1 + ǫ

)

∫ ∞

0

1
(

v2 + 1−ǫ
1+ǫ

)2 dv






.

Finally, substituting v :=
√

(1 − ǫ)/(1 + ǫ) tan ξ lets us write

∫ 1

0
γ
(ǫ)
ellipse(u)

2 du =
2K2

π(1 + ǫ)2

(

(

1 + ǫ

1 − ǫ

)1/2 ∫ π/2

0
dξ +

(

2ǫ

1 + ǫ

)

·
(

1 + ǫ

1 − ǫ

)3/2 ∫ π/2

0
cos2 ξ dξ

)

=
K2

(1 + ǫ)2

(

1 + ǫ

1 − ǫ

)1/2 (

1 +
ǫ

1 − ǫ

)

=
K2

(1 − ǫ2)
3/2 , (27)

which implies that

K =

(

1 − ǫ2)3/4

π1/2 ,

letting us update (25) as

γ
(ǫ)
ellipse(u) =

(

1 − ǫ2)3/4

π1/2 (1 − ǫ cos(2πu))
. (28)

Fig. 3 depicts 2 such ellipses with eccentricites ǫ1 = 1/2 and ǫ2 = 4/5. As shown in the figure, the ellipses

share a common focus at the origin, while the other focus moves away from the origin as ǫ increases. One can

can show that the other focus lies on the x-axis at a distance 2ǫ/
(

π1/2 (1 − ǫ2)1/4
)

from the origin.
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Figure 3. γ
(ǫ)
ellipse.

Example 3 (Norm ball). A loop in the form of a p-norm ball for p ∈ R
+ may be defined as the set of points

(x, y) satisfying |x|p + |y|p = 1. We have, for any point (x, y) ≡ (r cos φ, r sin φ) on the p-norm ball,

rp | cos φ| p + rp | sin φ| p = 1

=⇒ r =
1

(| cos φ|p + | sin φ|p)1/p
.

We therefore have

γ
(p)
norm(u) =

Kp

(| cos(2πu)|p + | sin(2πu)|p)1/p
, (29)

where

Kp =

(

π
∫ 1

0

du

(| cos(2πu)|p + | sin(2πu)|p)2/p

)−1/2

. (30)

Fig. 4a plots Kp as a function of p, and Fig. 4b depicts γ
(p)
norm for several values of p.
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(a) Kp as a function of p. (b) γ
(p)
norm for different values of p.

Figure 4. p-norm balls.

Remark 7. Using (30), one can write Kp as

Kp =

(

π · 1
2π

· 8 ·
∫ 1

0
(1 + xp)−2/p dx

)−1/2

(31)

=
1
2

(

1 +
∫ 1

0

(

∞

∑
l=1

(−1)l xpl

l!

l−1

∏
q=0

(

2
p
+ q

)

)

dx

)−1/2

=







1/
√

2, p = 1,

1
2

(

1 + ∑
∞
l=1(−1)l 1

l!(pl+1) ∏
l−1
q=0

(

2
p + q

))−1/2
, otherwise.

(32)

Closed forms of Kp for various values of p can be obtained using the integral form (31) or the series form (32).
For example, for p = 1, (31) leads to

K1 =
1
2

(

∫ 1

0

dx

(1 + x)2

)−1/2

=
1
2

(

1
2

)−1/2

= 1/
√

2.

For p = 2, (32) yields

K2 =
1
2

(

1 +
∞

∑
l=1

(−1)l 1
l!(2l + 1)

l−1

∏
q=0

(q + 1)

)−1/2

=
1
2

(

1 +
∞

∑
l=1

(−1)l

2l + 1

)−1/2

(a)
=

1
2
(π/4)−1/2

= 1/
√

π,

where (a) follows from the special case of Gregory’s series [27] for π/4, also known as the Leibniz formula for π.
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For p = 4, (31) yields

K4 =
1
2

(

∫ 1

0

dx√
1 + x4

)−1/2

.

The expression I :=
∫ 1

0

(

1/
√

1 + x4
)

dx can be evaluated through the following sequence of steps.

First, through the substitution u := 1/x, we have I =
∫ ∞

1

(

1/
√

1 + u4
)

du, whence, we have I =

(1/2)
∫ ∞

0

(

1/
√

1 + x4
)

dx. The substitution u := 1/
(

1 + x4) leads to

1√
1 + x4

dx = − 1

4u3/2
(

1
u − 1

)3/4 du = −1
4

u−3/4(1 − u)−3/4,

and therefore, we have

I =
1
2
· 1

4

∫ 1

0
u−3/4(1 − u)−3/4 du

(a)
=

1
8

B (1/4, 1/4)

(b)
=

Γ (1/4)2

8 · √π
,

where in (a), the beta function B(m, n) is defined, for (m, n) ∈ R
+, as

B(m, n) =
∫ 1

0
um−1(1 − u)n−1 du =

∫ 1

0
un−1(1 − u)m−1 du,

and in (b), the gamma function Γ(n) is defined, for n ∈ R
+, as

Γ(n) =
∫ ∞

0
un−1 exp (−u) du,

with the well-known identity (see, for example, [28])

B(m, n) = Γ(m) · Γ(n)/Γ(m + n).

We therefore have K4 = 21/2π1/4/Γ(1/4).
Finally, using (32), we have

lim
p→∞

Kp = 1/2.

All these results agree with the plot shown in Fig. 4a.

We now examine the magnetic fields produced by various loops defined in Examples 1, 2, and
3, as predicted by Lemma 3, as a function of the scaling parameter λ. To this end, we consider loops
L(λ; γ) with magnetic moment m = mẑ and calculate the magnitude of the magnetic field produced
at three different fixed points A1, A2, and A3, as demonstrated in Fig. 5. In Fig. 6, we plot the magnetic
field (in ¯T) as a function of the scale λ, for λ ∈ (0, 1/2], when the magnetic moment magnitude equals
1A · m2 and the distance of the observation point from the origin is r = 1m.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2023                   doi:10.20944/preprints202310.1699.v1

https://doi.org/10.20944/preprints202310.1699.v1


14 of 21

Figure 5. Magnetic field B calculated at three points A1, A2, A3.

(a) Magnetic field at point A1. (b) Magnetic field at point A2. (c) Magnetic field at point A3.
Figure 6. Magnetic field as function of scale λ.

From Figs. 6a, 6b, and 6c, we observe that loops of different shapes produce different magnetic

fields at the same point for the same λ, as expected; in particular, the fields for γ
(0.8)
ellipse and γ

(0.5)
ellipse show

the largest variation with λ, since the position of the center of symmetry of the loop is a function of λ,
while all the other classes of loops examined have their center of symmetry at the origin. In spite of the
different magnetic fields produced by the different loops for a finite λ, however, the magnetic field
magnitudes converge to the same value for every loop as λ approaches zero, for each of the points A1,
A2, and A3. This is a general result that will be theoretically established in Section 3.2 (Theorem 1).
As a special case of Theorem 1, the convergence points in Figs. 6a, 6b, and 6c can be inferred to be
(
√

2/10) ¯T, 0.1 ¯T, and 0.2 ¯T, respectively.

3. Current loop to ideal magnetic dipole

In this section, we demonstrate that the magnetic field and vector potential due to a plane current
loop approach that of an ideal magnetic dipole as the loop shrinks to a point. We first establish
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the result for a circular loop in Section 3.1 and generalize the result to an arbitrary loop L(λ; γ) in
Section 3.2.

3.1. Circular loop

We will show that the magnetic field in Lemma 1 and the vector potential in Lemma 2 approach
that of an ideal magnetic dipole as the radius a becomes small. To this end, we first prove the following
lemma.

Lemma 4. For f (1) as defined in (7), we have

lim
a→0

1
a

f (1)
(

2ar sin θ

r2 + a2

)

=
3π sin θ

2r
.

Proof. Since the integrand cos φ/ (1 − t cos φ)3/2 is bounded on the integration interval [0, π] for
0 < t < 1, we have, by the dominated convergence theorem [28],

lim
t→0

f (1)(t) = lim
t→0

∫ π

0

cos φ

(1 − t cos φ)3/2 dφ

=
∫ π

0
lim
t→0

cos φ

(1 − t cos φ)3/2 dφ

=
∫ π

0
cos φ dφ

= 0. (33)

Further, since the integrand cos φ/ (1 − t cos φ)3/2 is continuously differentiable in both φ and t, we
have

lim
t→0

f (1)′(t)
(a)
=

3
2

lim
t→0

∫ π

0

cos2 φ

(1 − t cos φ)5/2 dφ

(b)
=

3
2

∫ π

0
lim
t→0

cos2 φ

(1 − t cos φ)5/2 dφ

=
3
2

∫ π

0
cos2 φ dφ

=
3π

4
. (34)

Here, (a) follows from Leibniz’s theorem on differentiation under the integral sign [29] and (b) again
follows by the application of the dominated convergence theorem. Eqns (33), (34) and L’Hôpital’s
rule [31] yields

lim
t→0

f (1)(t)

t
= lim

t→0
f (1)′(t) =

3π

4
.

We then have

lim
a→0

1
a

f (1)
(

2ar sin θ

r2 + a2

)

(a)
=

(

lim
a→0

2r sin θ

r2 + a2

)

·
(

lim
t→0

f (1)(t)

t

)

=
2 sin θ

r
· 3π

4

=
3π sin θ

2r
,

where (a) follows from the substitution t := 2ar sin θ/
(

r2 + a2) in the second factor. This establishes
the result.
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We are now ready to examine the behavior of the magnetic field obtained in Lemma 1 as the
radius a grows small. We first note that from (8), application of the dominated convergence theorem
yields

lim
a→0

f (2)
(

2ar sin θ

r2 + a2

)

=
∫ π

0
dφ = π. (35)

We then have, using (6),

lim
a→0

B(r) =

(

lim
a→0

µ0m

4π (r2 + a2)
3/2

)

· 2
π

[

cos θ

(

lim
a→0

f (2)
(

2ar sin θ

r2 + a2

))

r̂

+

(

r

(

lim
a→0

1
a

f (1)
(

2ar sin θ

r2 + a2

))

− sin θ

(

lim
a→0

f (2)
(

2ar sin θ

r2 + a2

)))

θ̂

]

(a)
=

µ0m

4πr3 · 2
π

[

π cos θr̂ +

(

3π sin θ

2
− π sin θ

)

θ̂

]

=
µ0m

4πr3

(

2 cos θr̂ + sin θθ̂
)

(36)

=
µ0

4πr3 (3 (m · r̂) r̂ − m) . (37)

Eqn (36) and (37) are the standard expressions for the field of an ideal magnetic dipole m placed at the
origin (see, for example, [32,34]). Here, (a) follows from Lemma 4 and (35). We have thus established
that a loop of steady current I creates the same field as an ideal magnetic dipole in the limit when the
size of the loop goes to zero and the current I goes to ∞, the magnetic moment m = πa2 I being kept
fixed.

Remark 8. The limiting behavior of the vector potential in (11) can also be readily established. We first note

that, using similar reasoning as in the proof of Lemma 4, we have

lim
a→0

2
πa sin θ

f (3)
(

2ar sin θ

r2 + a2

)

= lim
a→0





(

2
πa sin θ

)

·
(

2ar sin θ

r2 + a2

)

·
f (3)

(

2ar sin θ
r2+a2

)

2ar sin θ
r2+a2





=
4

πr
f (3)′(0)

=
4

πr

∫ π

0

[

∂

∂t

(

cos u

(1 − t cos u)1/2

)]

t→0

du

=
2

πr

∫ π

0
cos2 u du

=
1
r

.

Using (11), we then have

lim
a→0

A(r) =

[

lim
a→0

µ0

4π (r2 + a2)
1/2

]

·
[

lim
a→0

2
πa sin θ

f (3)
(

2ar sin θ

r2 + a2

)]

(m × r̂)

=
µ0

4πr2 (m × r̂) , (38)

which is the vector potential produced by a point magnetic dipole m placed at the origin (see, for example, [37]).
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3.2. Arbitrary loop

We now turn to the case of an arbitrary loop L(λ; γ) where γ is continuously differentiable almost
everywhere in [0, 1] and satisfies γ(0) = γ(1). We have the following result.

Theorem 1. For r > 0, the magnetic field B(r, λ; γ) and the vector potential A(r, λ; γ) as defined in Lemma 3

satisfy

lim
λ→0

B(r, λ; γ) =
µ0m

4πr3

(

2 cos θr̂ + sin θθ̂
)

=
µ0

4πr3 (3(m · r̂)r̂ − m) ,

lim
λ→0

A(r, λ; γ) =
µ0

4πr2 (m × r̂) .

Proof. Using (18), we can write

B(r, λ; γ) =
µ0m

4πλ

(

2πλ cos θ · I1(r, λ; γ)r̂ + (I2(r, λ; γ)− 2πλ sin θ · I1(r, λ; γ)) θ̂

+ r cos θ · I3(r, λ; γ)φ̂
)

, (39)

where

I1(r, λ; γ) :=
∫ 1

0

γ(u)2

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du, (40)

I2(r, λ; γ) :=
∫ 1

0

2πrγ(u) cos(2πu − φ) + rγ′(u) sin(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du, (41)

I3(r, λ; γ) :=
∫ 1

0

2πγ(u) sin(2πu − φ)− γ′(u) cos(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du. (42)

At a high level, the proof will follow a similar overall approach as in the derivation in Section 3.1.
We will first invoke the dominated convergence theorem evaluate the limit of the r̂ term directly,
as well as to show that the quantities I2(r, λ; γ) and r cos θ · I3(r, λ; γ) each approach zero as λ → 0.
We will then use L’Hôpital’s rule and Leibniz’s theorem on differentiation under the integral sign to
evaluate the limits of the θ̂ and φ̂ terms. Let S ⊆ [0, 1] be a set of Lebesgue measure 1 such that γ is
continuously differentiable everywhere on S . Then γ and γ′ are bounded almost everywhere on S (see,
for example, [28]) and therefore, almost everywhere on [0, 1]. Let M1 and M2 be these upper bounds on
|γ(u)| and |γ′(u)| , respectively. Then, for λ < r/2M1, the integrands in (40), (41), and (42) are bounded

(uniformly in λ) by 8M2
1/r3, 8

(

4π2M2
1 + M2

2
)1/2 /r2, and 8

(

4π2M2
1 + M2

2
)1/2 /r3, respectively, each

of which is a finite constant and therefore yields a finite integral on [0, 1]. Thus, using the dominated
convergence theorem, we have

lim
λ→0

I1(r, λ; γ) =
∫ 1

0
lim
λ→0

γ(u)2

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du

=
1
r3

∫ 1

0
γ(u)2 du

=
1

πr3 . (43)
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Similarly, we have

lim
λ→0

I2(r, λ; γ) =
∫ 1

0
lim
λ→0

2πrγ(u) cos(2πu − φ) + rγ′(u) sin(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du

=
1
r2

∫ 1

0

(

2πγ(u) cos(2πu − φ) + γ′(u) sin(2πu − φ)
)

du

=
1
r2 [γ(u) sin(2πu − φ)]1u=0

= 0,

since γ(0) = γ(1), and

lim
λ→0

r cos θ · I3(r, λ; γ) = cos θ ·
∫ 1

0
lim
λ→0

2πrγ(u) sin(2πu − φ)− rγ′(u) cos(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
3/2 du

=
cos θ

r2

∫ 1

0

(

2πγ(u) sin(2πu − φ)− γ′(u) cos(2πu − φ)
)

du

=
cos θ

r2 [−γ(u) cos(2πu − φ)]1u=0

= 0.

We then have, using L’Hôpital’s rule,

lim
λ→0

I2(r, λ; γ)

λ

= lim
λ→0

∂I2(r, λ; γ)

∂λ

(a)
= −3

2
lim
λ→0

∫ 1

0

(

2πrγ(u) cos(2πu − φ) + rγ′(u) sin(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
5/2

×
(

2λγ(u)2 − 2rγ(u) sin θ cos(2πu − φ)
)

)

du

(b)
=

3 sin θ

r3

∫ 1

0

(

2πγ(u) cos(2πu − φ) + γ′(u) sin(2πu − φ)
)

γ(u) cos(2πu − φ) du

=
3 sin θ

2r3

∫ 1

0

(

2πγ(u)2(1 + cos(4πu − 2φ)) + γ(u)γ′(u) sin(4πu − 2φ)
)

du

(c)
=

3π sin θ

r3

∫ 1

0
γ(u)2 du +

3 sin θ

4r3

∫ −γ(1)2 sin(2φ)

−γ(0)2 sin(2φ)
dv

=
3 sin θ

r3 , (44)
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where (a) follows from Leibniz’s theorem, since the integrand is continuously differentiable in both λ

and u, (b) follows from the dominated convergence theorem (taking the limit inside the integral), and
(c) follows from the substitution v := γ(u)2 sin(4πu − 2φ). Following very similar steps, we have

lim
λ→0

r cos θ · I3(r, λ; γ)

λ

= lim
λ→0

r cos θ
∂I3(r, λ; γ)

∂λ

= −3 cos θ

2
lim
λ→0

∫ 1

0

(

2πrγ(u) sin(2πu − φ)− rγ′(u) cos(2πu − φ)

(λ2γ(u)2 − 2λrγ(u) sin θ cos(2πu − φ) + r2)
5/2

×
(

2λγ(u)2 − 2rγ(u) sin θ cos(2πu − φ)
)

)

du

=
3 cos θ sin θ

r3

∫ 1

0

(

2πγ(u) sin(2πu − φ)− γ′(u) cos(2πu − φ)
)

γ(u) cos(2πu − φ) du

=
3 cos θ sin θ

2r3

∫ 1

0

(

2πγ(u)2 sin(4πu − 2φ)− γ(u)γ′(u)(1 + cos(4πu − 2φ))
)

du

=
3 cos θ sin θ

4r3

(

∫ −γ(1)2 cos(2φ)

−γ(0)2 cos(2φ)
dv −

∫ γ(1)2

γ(0)2
dz

)

= 0. (45)

Finally, using (39), we have

lim
λ→0

B(r, λ; γ) =
µ0m

2

(

lim
λ→0

I1(r, λ; γ)

)

(cos θr̂ − sin θθ̂) +
µ0m

4π

(

lim
λ→0

I2(r, λ; γ)

λ

)

θ̂

+
µ0m

4π

(

lim
λ→0

r cos θ · I3(r, λ; γ)

λ

)

φ̂

(a)
=

µ0m

2πr3 (cos θr̂ − sin θθ̂) +
3µ0m

4πr3 sin θθ̂

=
µ0m

4πr3 (2 cos θr̂ + sin θθ̂),

which establishes the limit for B(r, λ; γ). Here, (a) follows by plugging in (43), (44), and (45). The limit
of A(r, λ; γ) can be demonstrated through a similar sequence of steps.

Remark 9. It can be shown that the limiting behavior established in Sections 3.1 and 3.2 holds for any loop

with a piecewise continuous boundary, provided it can be continuously deformed to a point. We refer the reader

to [35] for further reading.

Remark 10. As remarked in Section 2.2, the limiting magentic field at the points A1, A2, and A3 in Fig. 5 can

be computed as a special case of Theorem 1. To see this, note that using Theorem 1, we have, for r > 0,

lim
λ→0

‖B(r, λ; γ)‖ =
µ0m

4πr3

√

4 cos2 θ + sin2 θ =
µ0m

4πr3

√

3 cos2 θ + 1.

The values of cos2 θ for A1, A2, and A3 are, respectively, 1/3, 0, and 1, which, along with the numerical values

m = 1A · m2, r = 1m, and µ0/4π = 10−7 T · m · A−1, immediately yields the desired limiting values of the

magnetic field magnitudes.

4. Discussions

The deep connection between currents and magnetic fields has been explored in great depth and
its mysteries gradually revealed through extensive research since Ørsted’s experiment, culminating
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in Maxwell’s equations [8] and beyond. For a historical perspective of this gradual development, we
refer the reader to [38] and references therein.

A popular current area of research specifically related to magnetic fields, is the search for the
magnetic monopole [42] and the building of a theoretical framework [43] to study the consequences of
the existence of the same [45].
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