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Abstract: This paper presents three types of tensor Conjugate-Gradient methods for solving

large-scale linear discrete ill-posed problems based on the t-product between third-order tensors. An

automatical determination strategy of a suitable regularization parameter is proposed for the tensor

conjugate gradient (tCG) method. A truncated version and a preprocessed verion of the tCG method

are further presented. The discrepancy principle is employed to determine a suitable regularization

parameter. Several numerical examples are given to show the effectiveness of the proposed tCG

methods in image and video restoration.

Keywords: linear discrete ill-posed problems; tensor Conjugate-Gradient method; t-product;

discrepancy principle; Tikhonov regularization

1. Introduction

Tensors are high-dimensional arrays that have many applications in science and engineering,

including in image, video and signal processing, computer vision, and network analysis [11,12,16–

20,26]. A new t-product based on third-order tensors proposed by Kilmer et al [1,2]. When using

high-dimensional data, t-product shows a greater potential value than matricization, see [2,6,11,

12,21,22,24,25,27]. The t-product has been found to have special value in many application fields,

including image deblurring problems [1,6,11,12], image and video compression [26], facial recognition

problems [2], etc.

In this paper, we consider the solution of large minimization problems of the form

min
~X∈Rm×1×n

‖A ∗ ~X − ~B‖F,A = [a]l,m,n
i,j,k=1 ∈ R

l×m×n, ~B ∈ R
l×1×n. (1)

The Frobenius norm of singular tube of A rapidly attenuates to zero with the increase of the index

number. In particular, A has ill-determined tubal rank. Many of its singular tubes are nonvanishing

with tiny Frobenius norm of different orders of magnitude. Problems (1) with such a tensor is called

the tensor discrete linear ill-posed problems. They arise from the restoration of color image and video,

see e.g., [1,11,12]. Throughout this paper, the operation ∗ represents tensor t-product and ‖·‖F denotes

the tensor Frobenius norm or the spectral matrix norm.

We assume that the observed tensor ~B ∈ R
m×1×n is polluted by an error tensor ~E ∈ R

m×1×n, i.e.,

~B = ~Btrue + ~E , (2)

where ~Btrue ∈ R
m×1×n is an unknown and unavailable error-free tensor related to ~B. ~Btrue is

determined by A ∗ ~X = ~Btrue, where ~Xtrue represents the explicit solution of problems (1) that is

to be found. We assume that the upper bound of the Frobenius norm of ~E is known, i.e,
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‖~E‖F ≤ δ. (3)

Straightforward solution of (1) is usually meanless to get an approximation of ~Btrue because of the

illposeness of A = [a]l,m,n
i,j,k=1 and the error ~E will be amplified severely. We use Tikhonov regularization

to reduce this effect in this paper and replace (1) with penalty least-squares problems

min
~X∈Rm×1×n

{

‖A ∗ ~X − ~B‖2
F + µ‖ ~X‖2

F

}

, (4)

where µ is a regularization parameter. We assume that

N (A) ∩N (I) = ~O, (5)

where N (A) denotes the null space of A, I is the identity tensor and ~O ∈ R
m×1×n is a lateral slice

whose elements are all zero. The normal equation of minimization problem (4) is

(AT ∗ A+ µI) ∗ ~X = AT ∗ ~B, (6)

then

~Xµ =
(

AT ∗ A+ µI
)−1
∗ AT ∗ ~B (7)

is the unique solution of the Tikhonov minimization problem (4) under the assumption (5).

There are many techniques to determine the regularization parameter µ, such as the L-curve

criterion, generalized cross validation (GCV), and the discrepancy principle. We refer to [4,5,8–10] for

more details. In this paper, the discrepancy principle is extended to tensors based on t-product and is

employed to determine a suitable µ in (4). The solution ~Xµ of (4) satisfies

‖A ∗ ~Xµ − ~B‖F ≤ ηδ, (8)

where η > 1 is usually a user-specified constant and is independent of δ in (3). When ‖~E‖F is smaller

enough, and δ approaches 0, result in ~Xµ → ~Xtrue. For more details on the discrepancy principle, see

e.g., [7].

In this paper, we also consider the expansion of minimization problem (1) of the form

min
X∈Rm×p×n

{

‖A ∗ X − B‖2
F + µ‖X ‖2

F

}

, (9)

where B ∈ R
m×p×n, p > 1.

There are many methods for solving large-scale discrete linear ill-posed problems (1). Recently, a

tensor Golub- Kahan bidiagonalization method [11] and a GMRES method [12] were introduced for

solving large-scale linear ill-posed problems (4). The randomized tensor singular value decomposition

(rt-SVD) method in [3] was presented for computing super large data sets, and has prospects in image

data compression and analysis. Ugwu and Reichel [23] proposed a new random tensor singular value

decomposition (R-tSVD), which improves the truncated tensor singular value decomposition (T-tSVD)

in [1]. Kilmer et al. [2] presented a tensor Conjugate-Gradient (t-CG) method for tensor linear systems

A ∗ ~X = ~B corresponding to the least-squares problems. The regularization parameter in the t-CG

method is user-specified. In this paper, we further discuss the automatical determinization of suitable

regularization parameters of the tCG method by the discrepancy principle. The proposed method is

called the tCG method with automatical determination of regularization parameters (auto-tCG). We

also present a truncated auto-tCG method (auto-ttCG) to improve the auto-tCG method by reducing

the computation. At last, a preprocessed version of the auto-ttCG method is proposed, which is

abbreviated as auto-ttpCG.
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The rest of this paper is organized as follows. Section 2 introduces some symbols and preliminary

knowledge that will be used in the context. Section 3 presents the auto-tCG, auto-ttCG and auto-ttpCG

methods for solving the minimization problems (4) and (9). Section 4 gives several examples on image

and video restoration and Section 5 draws some conclusions.

2. Preliminaries

This section gives some notations and definitions, and briefly summarizes some results that will

be used later. For a third-order tensor A ∈ R
l×m×n, Figure 1 shows the frontal slices A(:,:,k), lateral

slices A(:,j,:) and tube fibers A(i,j,:). We abbreviate Ak = A(:,:,k) for simplication. An ln×m matrix is

obtained by the operator unfold(A), whereas the operator fold folds this matrix back to the tensor A,

i.e.,

unfold (A) =













A1

A2
...

An













, fold (unfold (A)) = A.

Definition 1. Let A ∈ R
l×m×n, then a block-circulant matrix of A is denoted by bcirc(A), i.e.,

bcirc (A) =













A1

A2
...

An

An

A1
...

An−1

· · ·
· · ·
. . .

· · ·

A2

A3
...

A1













.

Figure 1. (a) frontal slices A(:,:,k), (b) lateral slices A(:,j,:) and (c) tube fibers A(i,j,:)

Definition 2. ([1]) Given two tensors A ∈ R
l×m×n and B ∈ R

m×p×n, the t-product A ∗ B is defined as

A ∗ B = fold(bcirc(A)unfold(B)) = C, (10)

where C ∈ R
l×p×n.

The following remarks will be used in Section 3.

Remark 1. ([14]) For suitable tensors A and B, it holds that

(1). bcirc(A ∗ B) = bcirc(A) ∗ bcirc(B).
(2). bcirc(AT) = bcirc(A)T .

(3). bcirc(A+ B) = bcirc(A) + bcirc(B).

Let Fn be an n-by-n unitary discrete Fourier transform matrix, i.e,
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Fn =
1√
n

















1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

















,

where ω = e
−2πi

n , then we get the tensor Â generated by using FFT along each tube of A, i.e,

bdiag
(

Â
)

=













Â1

Â2

. . .

Ân













= (Fn ⊗ Il) bcirc (A) (F∗n ⊗ Im) , (11)

where ⊗ is the Kronecker product, F∗n is the conjugate transposition of Fn and Âi denetes the frontal

slices of Â. Thus the t-product of A and B in (10) can be expressed by

A ∗ B = fold ((F∗n ⊗ Il) ((Fn ⊗ Il) bcirc (A) (F∗n ⊗ Im)) (Fn ⊗ Im) unfold (B)) , (12)

and (10) is reformulated as













Â1

Â2

. . .

Ân

























B̂1

B̂2
...

B̂n













=













Ĉ1

Ĉ2
...

Ĉn













. (13)

It is easy to calculate (12) in MATLAB.

For a non-zero tensor ~X ∈ R
m×1×n, we can decompose it in the form

~X = ~D ∗ d, (14)

where ~D ∈ R
m×1×n is a normalized tensor; see, e.g., [6] and d ∈ R

1×1×n is a tube scalar. Algorithm 1

summarizes the decomposition in (14).

Algorithm 1 Normalization

Input: ~X ∈ R
m×1×n is a nonzero tensor

Output:~D, d with ~X = ~D ∗ d, ‖~D‖ = 1
~D ← fft( ~X ,[ ],3)

for j = 1, 2, . . . , n do

dj ← ‖ ~Dj‖2 (~Dj is a vector)

if dj > tol then
~Dj ← 1

dj
~Dj

else
~Dj ← randn(m, 1); dj ← ‖ ~Dj‖2; ~Dj ← 1

dj
~Dj; dj ← 0

end if

end for
~D ← ifft(~D,[ ],3); d← ifft(d,[ ],3)

Given a tensor A ∈ R
l×m×n, the singular value decomposition (tSVD) of A is expressed as

A = U ∗ S ∗ VT ,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2023                   doi:10.20944/preprints202310.1696.v1

https://doi.org/10.20944/preprints202310.1696.v1


5 of 20

where U ∈ R
l×l×n and V ∈ R

m×m×n are orthogonal under t-product,

S = diag[s1, s2, ..., smin{l,m}] ∈ R
m×l×n

is an upper triangular tensor with the singular tubes sj satisfying

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖smin{l,m}‖F.

The operators squeeze and twist [13] are expressed by

X = squeeze( ~Xj) =⇒ X(i, j) = ~X(i,1,j), twist(squeeze( ~X )) = ~X .

Figure 2 illustrates the transformation between a matrix and a tensor column by using squeeze

and twist. Generally, the operators multi−squeeze and multi−twist are defined for a third-order

tensor to make it squeezed or twisted. For a tensor D ∈ R
m×p×n with p > 1, C = multi−squeeze(D)

means that all side slices of D are squeezed and stacked as front slices of C, the operator multi−twist

is the reverse operation of multi−squeeze. Thus multi−twist(multi−squeeze(D)) = D. We refer

to Table 1 for more notations and definitions.

Figure 2. twist-squeeze

Table 1. Description of notations

Notation Interpretation

AT transpose of tensors

A−1 inverse of tensor,A−T = (A−1)T = (AT)−1

Â FFT of A along the third mode
unfold(A) the block column matrix of A
bcirc(A) the block-circulant matrix
I identity tensor
A matrix
I identity matrix

‖A‖F the Frobenius norm of tensors A, i.e, ‖A‖F =
√

∑
l
i=1 ∑

m
j=1 ∑

n
k=1 a2

ijk.

∗ t-product
~Aj, A(:,j,:) the jth tensor column of A, jth lateral slice of A
A(:,:,j) the jth frontal slice of tensor A
d tube
〈A,B〉 〈A,B〉 = ∑ijk aijkbijk
〈

~A, ~B
〉 〈

~A, ~B
〉

= ∑ik ai1kbi1k
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3. Tensor Conjugate-Gradient methods

This section first discusses the automatical determination of a suitable regularization parameter

for the tensor conjugate gradient (tCG) method presented by Kilmer et al. in [13]. We abbreviate the

improved method as auto-tCG. A truncated auto-tCG method is developed to improve the auto-tCG

method and is abbreviated as auto-ttCG. A preprocessed version of the auto-ttCG method is presented,

which is abbreviated as auto-ttpCG.

3.1. The auto-tCG Method

The tensor Conjugate-Gradient (t-CG) method is presented in [2] for the least-squares solution

of the tensor linear systems A ∗ ~X = ~B. The regularization parameter in the t-CG method was not

discussed and was user-specified. This subsection improves the t-CG method by employing the

discrepancy principle to determine a suitable regularization parameter under the assumption (3) and

uses it to solve the normal equation (6). We consider the polynomial function

µk = µ0qk, k = 0, 1, . . . , (15)

where q ∈ (0, 1). We set µ0 = ‖A‖F, and obtain an optimal regularization parameter by continuously

reducing the parameter. An effective method to deal with the general problems (9) is to regard it as p

independent subproblems (4), i.e.,

min
~Xj∈Rm×1×n

{

‖A ∗ ~Xj − ~Bj‖2
F + µ‖ ~Xj‖2

F

}

, j = 1, . . . , p, (16)

where ~Bj is the tensor column of the tensor B and is polluted by the noise ~Ej. ~Bj,true represents

unknown error-free tensor. Assume the noise tensor

~Ej = ~Bj − ~Bj,true

can be used or the norm of ~Ej can be estimated, i.e.,

‖~Ej‖F ≤ δj, j = 1, . . . , p.

Algorithm 2 summarizes the auto-tCG method for solving (9). The initial tensor of Algorithm 2 is

set as zero tensor. The iteration is stopped when the Frobenius norm of the residual tensor

~Ri
j,µk

= AT ∗ ~Bj − (AT ∗ A+ µkI) ∗ ~X i
j,µk

is small enough, where ~Ri
j,µk

denotes the residual generated by the i-th iterative solution ~X i
j,µk

of the

normal equation with µk of the j-th independent subproblem. Let ~Xint = ~X ∗µk
be the initial tensor of

the normal equation of µk+1. When µ = µk with m iterations for the CG-process, the affine space is

~X 0
µk

+Km

(

AT ∗ A+ µkI , r0
µk

)

, where r0
µk

= AT ∗ ~B −
(

AT ∗ A+ µkI
)

∗ ~X 0
µk

.
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Algorithm 2 The auto-tCG method for sloving (9).

Input:A ∈ R
m×m×n, ~Bj ∈ R

m×1×n, δj, j = 1, ..., p, µ0, η > 1.

Output: Approximate solution X ∗ of problem (9).

for j = 1, 2, ...p do
~Xint = 0, k = 0.

while do‖A ∗ ~X ∗j,µk
− ~Bj‖2

F > η2δ2
j

k = k + 1, (AT ∗ A+ µkI) ∗ ~Xj = AT ∗ ~Bj, e.g., µk = µ0qk

[~R0, a]← Normalize(AT ∗ ~Bj − (AT ∗ A+ µkI) ∗ ~Xint); ~P0 ← ~R0.

i = 0, σ > tol.

while σ > tol do

i = i + 1.

c =
(

~PT
i−1 ∗ (AT ∗ A+ µkI) ∗ ~Pi−1

)−1
∗
(

~RT
i−1 ∗ ~Ri−1

)

.
~Xi = ~Xi−1 + ~Pi−1 ∗ c.
~Ri = ~Ri−1 − (AT ∗ A+ µkI) ∗

(

~Pi+1 ∗ c
)

.

σ = |‖~Ri‖F − ‖~Ri−1‖F|.
d =

(

~RT
i−1 ∗ ~Ri−1

)−1
∗
(

~RT
i ∗ ~Ri

)

.
~Pi = ~Ri + ~Pi−1 ∗ d.

end while
~X ∗j,µk

= ~Xi ∗ a ( ~X ∗j,µk
is the solution of the normal equation about µk of the j-th independent

subproblem (4)).
~Xint = ~X ∗j,µk

.

end while

X ∗(:,j,:) = ~X ∗j,µk
.

end for

3.2. The truncated tensor Conjugate-Gradient method

Frommer and Maass in [15] proposed a good condition that can roughly judge some inappropriate

value of µ. We introduce this condition to improve Algorithm 2 by excluding some unsuitable value of

µ, and present a truncated tensor conjugate-gradient method for solving (9). We first give the following

results.

Theorem 1. Given A ∈ R
l×m×n, define a t-linear operator T: Rm×1×n → R

l×1×n, i.e., T( ~X ) = A ∗ ~X with
~X ∈ R

m×1×n. Let ~X ∗µ be the exact solution of the normal equations

(AT ∗ A+ µI) ∗ ~X = AT ∗ ~B,

then for an arbitrary X ∈ R
m×1×n, we have

‖A ∗ ~X ∗µ − ~B‖2
F ≥ ‖A ∗ ~X − ~B‖2

F −
1

4µ
‖AT ∗ ~B − (AT ∗ A+ µI) ∗ ~X‖2

F.

Proof. For an arbitrary ~X ∈ R
m×1×n, set ~Z = ~X ∗µ − ~X . Let the singular value decomposition of A be

A = U ∗ S ∗ VT , then

A ∗ ~Z = U ∗ S ∗ VT ∗ ~Z .

Suppose VT ∗ ~Z = ~D ∈ R
m×1×n, then

‖A ∗ ~Z‖2
F = ‖U ∗ S ∗ VT ∗ ~Z‖2

F = ‖S ∗ ~D‖2
F = ‖bcirc(S)unfold(~D)‖2

2. (17)
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Thus

‖(AT ∗ A+ µI) ∗ ~Z‖2
F

=‖V ∗ (ST ∗ S + µI) ∗ VT ∗ ~Z‖2
F = ‖V ∗ (ST ∗ S + µI) ∗ ~D‖2

F

=‖
(

ST ∗ S + µI
)

∗ ~D‖2
F = ‖(bcirc(ST ∗ S) + µbcirc(I))unfold(~D)‖2

2

=‖(bcirc(S)Tbcirc(S) + µbcirc(I))unfold(~D)‖2
2.

(18)

Denote bcirc(S) = S ∈ R
nl×nm, bcirc(I) = I ∈ R

nm×nm and unfold(~D) = d ∈ R
nm×1, then

‖A ∗ ~Z‖2
F = ‖Sd‖2

2 and ‖(AT ∗ A + µI) ∗ ~Z‖2
F = ‖(STS + µI)d‖2

2. Thus we transform the tensor

norm into the equivalent matrix norm. Let the singular value decomposition of S be S = UΣVT , where

Σ = diag (σ1, σ2, ..., σr) , r ≤ min {nl, nm}, U = [u1, u2, ..., ur] and V = [v1, v2, ..., vr] are orthogonal

matrices with orthogonal columns uk ∈ R
nl×1 and vk ∈ R

nm×1, respectively. Thus we have

Sd = ∑
σk>0

σk 〈d, vk〉uk.

Using the equation s2 = (s + µs−1)−2(s2 + µ)2 with the estimate

1

s + µs−1
≤ 1

2
√

µ
, (s, µ > 0),

we have

‖Sd‖2
2 = ∑

σk>0

σ2
k |〈d,vk〉|

2
= ∑

σk>0

(

σk + µσ−1
k

)−2 (

σ2
k + µ

)2
|〈d,vk〉|2

≤ 1

4µ ∑
σk>0

(

σ2
k + µ

)2
|〈d,vk〉|2.

(19)

Note that

‖
(

STS + µI
)

d‖2
2 = ∑

σk>0

(

σ2
k + µ

)2
|〈d,vk〉|

2

, (20)

It results from (19) and (20) that

‖Sd‖2
2 ≤

1

4µ
‖
(

STS + µI
)

d‖2
2.

Note that ‖A ∗ ~Z‖2
F = ‖Sd‖2

2 and ‖(AT ∗ A+ µI) ∗ ~Z‖2
F = ‖(STS + µI)d‖2

2, we have

‖A ∗ ~Z‖2
F ≤

1

4µ
‖(AT ∗ A+ µI) ∗ ~Z‖2

F. (21)

Thus

‖A ∗ ~X ∗µ − ~B‖2
F = ‖A ∗ ~X − ~B +A ∗

(

~X ∗µ − ~X
)

‖2
F

≥ ‖A ∗ ~X − ~B‖2
F − ‖A ∗ ~Z‖2

F

≥ ‖A ∗ ~X − ~B‖2
F −

1

4µ
‖
(

AT ∗ A+ µ~I
)

~Z‖2
F

(22)

Note that

(AT ∗ A+ µI) ∗ ~Z = (AT ∗ A+ µI) ∗ ( ~X ∗µ − ~X ) = AT ∗ ~B − (AT ∗ A+ µI) ∗ ~X , (23)
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then (23) and (22) result in

‖A ∗ ~X ∗µ − ~B‖2
F ≥ ‖A ∗ ~X − ~B‖2

F −
1

4µ
‖AT ∗ ~B − (AT ∗ A+ µI) ∗ ~X‖2

F.

We will apply Theorem 1 to predict in advance whether the exact solution ~X ∗µk
satisfies the

discrepancy principle in Algorithm 2. We add the condition

‖A ∗ ~X i
µk
− ~B‖2

F −
1

4µk
‖~Ri

µk
‖2

F > η2δ2 (24)

in steps 9-16 of Algorithm 2. If the i-th iteration solution of the normal equation with µk is ~X i
µk

and its

residual ~Ri
µk

satisfies (24), then ‖A ∗ ~X ∗µk
− ~B‖2

F > η2δ2. This indicates that the exact solution of the

normal equation with µk does not satisfy the discrepancy principle, so continue to solve next normal

equation with µk+1. Therefore, we obtain a truncated tensor conjugate-gradient method of automatical

determination of a suitable regularization parameter, which is abbreviated as auto-ttCG. Algorithm 3

summarizes the auto-ttCG method.

Algorithm 3 The auto-ttCG method for sloving (9)

Input:A ∈ R
m×m×n, ~Bj ∈ R

m×1×n, δj, j = 1, ..., p, µ0, η > 1, tol.

Output: Approximate solution X ∗ of problem (9).

for j = 1, 2, ...p do
~Xint = 0, k = 0

while ‖A ∗ ~X i
j,µk
− ~Bj‖2

F > η2δ2
j do

k = k + 1, (AT ∗ A+ µkI) ∗ ~Xj = AT ∗ ~Bj, e.g.µk = µ0qk.

[~R0, a]← Normalize(AT ∗ ~Bj − (AT ∗ A+ µkI) ∗ ~Xint); ~P0 ← ~R0.

i = 0, σ=10tol, ~X 0
j,µk

= ~Xint.

while σ > tol and ‖A ∗ ~X i
j,µk
− ~B‖2

F − 1
4µk
‖~Ri ∗ a‖2

F < η2δ2 do

i = i + 1.

c =
(

~PT
i−1 ∗ (AT ∗ A+ µkI) ∗ ~Pi−1

)−1
∗
(

~RT
i−1 ∗ ~Ri−1

)

.
~Xi = ~Xi−1 + ~Pi−1 ∗ c, ~X i

j,µk
= ~Xi ∗ a.

~Ri = ~Ri−1 − (AT ∗ A+ µkI) ∗
(

~Pi+1 ∗ c
)

σ = |‖~Ri‖F − ‖~Ri−1‖F|.
d =

(

~RT
i−1 ∗ ~Ri−1

)−1
∗
(

~RT
i ∗ ~Ri

)

.
~Pi = ~Ri + ~Pi−1 ∗ d.

end while
~Xint = ~X i

µk
.

end while

X ∗(:,j,:) = ~X i
j,µk

.

end for

3.3. A preconditioned truncated tensor Conjugate-Gradient method

In this section, we consider the acceleration of Algorithm 3 by preconditioning. When the tensor

M is symmetric positive definite under the t-product structure, we can get its tensor approximate

Cholesky decomposition (tChol) by Algorithm 4.
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Algorithm 4 Tensor Cholesky decomposition (tChol)

1: Input:M ∈ R
m×m×n 6= O

2: Output: H ∈ R
m×m×n andM = H ∗HT .

3: M̂ ← fft(M,[ ],3)

4: for j = 1, 2, ..., n do

5: H ← chol(M̂(:,:,j)), H is the lower triangular matrix, which is obtained by approximate

Cholesky decomposition.

6: Ĥ(:,:,j) ← H.

7: end for

8: H ← ifft(Ĥ,[ ],3).

In Algorithm 3, the coefficient tensor AT ∗ A+ µkI of the k−th normal equation

(AT ∗ A+ µkI) ∗ ~X = AT ∗ ~B (25)

is symmetric and positive definite. We setM = AT ∗ A+ µkI and apply Algorithm 4 to obtain the

decomposition ofM = H ∗HT , where each frontal slice ofH is a fully sparse lower triangular matrix.

After the normal equation (25) is preconditioned byM, we solve the preconditioned normal equations

Ã ∗ ~̃X = ~̃B, (26)

instead of equations (25) in Algorithm 3, where Ã = H−1 ∗ (AT ∗ A + µkI) ∗ H−T , ~̃X = HT ∗ ~X ,

~̃B = H−1 ∗ AT ∗ ~B.

Applying Algorithm 3 to solve (26) instead of (25). Let ~Xi and ~̃Xi denote the solution of (25) and

(26), respectively. Then we have

~̃Ri = ~̃B − Ã ∗ ~̃Xi (27)

= H−1 ∗ AT ∗ ~B − (H−1 ∗ (AT ∗ A+ µkI) ∗ H−T) ∗ HT ∗ ~Xi

= H−1 ∗ (AT ∗ ~B − (AT ∗ A+ µkI) ∗ ~Xi) (28)

= H−1 ∗ ~Ri, (29)

Let ~Wi = H−1 ∗ ~Ri, ~̃Pi−1 = HT ∗ ~Pi−1, then we have

d̃ = ( ~̃RT
i−1 ∗ ~̃Ri−1)

−1 ∗ ( ~̃RT
i ∗ ~̃Ri) (30)

= ((H−1 ∗ ~Ri−1)
T ∗ H−1 ∗ ~Ri−1)

−1 ∗ ((H−1 ∗ ~Ri)
T ∗ H−1 ∗ ~Ri)

= ( ~WT
i−1 ∗ ~Wi−1)

−1 ∗ ( ~WT
i ∗ ~Wi), (31)

and

c̃ = ( ~̃PT
i−1 ∗ Ã ∗ ~̃Pi−1)

−1 ∗ ( ~̃RT
i−1 ∗ ~̃Ri−1)

= ((HT ∗ ~Pi−1)
T ∗ H−1 ∗ (AT ∗ A+ µkI) ∗ H−T ∗ (HT ∗ ~Pi−1))

−1 ∗ ((H−1 ∗ ~Ri−1)
T ∗ H−1 ∗ ~Ri−1)

= ((HT ∗ ~Pi−1)
T ∗ H−1 ∗ (AT ∗ A+ µkI) ∗ ~Pi−1)

−1 ∗ ~WT
i−1 ∗ ~Wi−1

= (~PT
i−1 ∗ (AT ∗ A+ µkI) ∗ ~Pi−1)

−1 ∗ ~WT
i−1 ∗ ~Wi−1. (32)
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In addition, we have the iteration

~̃Xi = ~̃Xi−1 + ~̃Pi−1 ∗ c̃

HT ∗ ~Xi = HT ∗ ~Xi−1 +HT ∗ ~Pi−1 ∗ c̃

~Xi = ~Xi−1 + ~Pi−1 ∗ c̃, (33)

and

~̃Ri = ~̃Ri−1 − Ã ∗ ~̃Pi+1 ∗ c̃

H−1 ∗ ~Ri = H−1 ∗ ~Ri−1 −H−1 ∗
(

AT ∗ A+ µkI
)

∗ H−T ∗ HT ∗ ~Pi+1 ∗ c̃

~Ri = ~Ri−1 −
(

AT ∗ A+ µkI
)

∗ ~Pi+1 ∗ c̃, (34)

together with

~̃Pi = ~̃Ri + ~̃Pi−1 ∗ d̃

HT ∗ ~Pi = H−1 ∗ ~Ri +HT ∗ ~Pi−1 ∗ d̃

~Pi = H−T ∗ H−1 ∗ ~Ri + ~Pi−1 ∗ d̃ = H−T ∗ ~Wi + ~Pi−1 ∗ d̃. (35)

Taking the preprocessing procedure (27)-(35) into Algorithm 3, we obtain the improved auto-ttCG

method, which is called the truncated tensor preconditioned conjugate-gradient method of automatical

determination of a suitable regularization parameter, and is abbreviated as auto-ttpCG. Algorithm 5

summarizes the auto-ttpCG method. Numerical experiments in Section show Algorighm 5 converges

faster than Algorithm 3.

Algorithm 5 The auto-ttpCG method for sloving (9)

Input:A ∈ R
m×m×n, ~Bj ∈ R

m×1×n, δj, j = 1, ..., p, µ0, η > 1, tol.

Output: Approximate solution X ∗ of problem (9).

for j = 1, 2, ...p do
~Xint = 0, k = 0

while ‖A ∗ ~X i
j,µk
− ~Bj‖2

F > η2δ2
j do

k = k + 1, µk = µ0qk.

H = tChol(AT ∗ A+ µkI).

[~R0, a]← Normalize(AT ∗ ~Bj − (AT ∗ A+ µkI) ∗ ~Xint).
~W0 = H−1 ∗ ~R0, ~P0 = H−T ∗ ~W0.

i = 0, σ=10tol, ~X 0
j,µk

= ~Xint.

while σ > tol and ‖A ∗ ~X i
j,µk
− ~Bj‖2

F − 1
4µk
‖~Ri ∗ a‖2

F < η2δ2 do

i = i + 1.

c̃ = (~PT
i−1 ∗ (AT ∗ A+ µkI) ∗ ~Pi−1)

−1 ∗ ~WT
i−1 ∗ ~Wi−1.

~Xi = ~Xi−1 + ~Pi−1 ∗ c̃, ~X i
j,µk

= ~Xi ∗ a.
~Ri = ~Ri−1 −

(

AT ∗ A+ µkI
)

∗ ~Pi+1 ∗ c̃, ~Wi = H−1 ∗ ~Ri

σ = |‖~Ri‖F − ‖~Ri−1‖F|.
d̃ = ( ~WT

i−1 ∗ ~Wi−1)
−1 ∗ ( ~WT

i ∗ ~Wi).
~Pi = H−T ∗ ~Wi + ~Pi−1 ∗ d̃.

end while
~Xint = ~X i

µk
.

end while

X ∗(:,j,:) = ~X i
j,µk

.

end for
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4. Numerical Examples

This section presents three examples to show the application of Algorithms 2, 3 and 5 on the

restoration of image and video. All calculations are performed in MATLAB R2018a on computers with

intel core i7 and 16GB ram.

Suppose Xk is the k-th approximate solution to the minimization problem (9). The quality of the

approximate solution Xk is defined by the relative error

Errk =
‖Xk −Xtrue‖F

‖Xtrue‖F
,

and the signal-to-noise ratio (SNR)

SNR(Xk) = 10 log10

‖Xtrue − E(Xtrue)‖2
F

‖Xk −Xtrue‖2
F

,

where Xtrue denotes the uncontaminated data tensor and E(Xtrue) is the average gray-level of Xtrue.

The observed data B in (9) is contaminated by a "noise" tensor E , i.e., B = Btrue + E . E is determined

as follows. Let ~Ej be the j−th transverse slice of E , whose entries are scaled and normally distributed

with a mean of zero, i.e.,

~Ej = ν
~Er,j

‖~Er,j‖F

‖~Btrue,j‖F, j = 1, ..., p, (36)

where the data of ~Er,j is generated according to N(0, 1).

Example 4.1 (Gray image) This example considers the restoration of the blurred and noised

cameraman image with the size of 256× 1× 256. For the operator A, its front slices A(:,:,i), i = 1, ..., 256,

are generated by using the MATLAB function blur, i.e.,

z = [exp(−([0 : band− 1].2)/(2σ2)), zeros(1, N − band)],

A =
1

σ
√

2π
toeplitz ([z (1) f liplr (z (2 : end))] , z) , A(:,:,i) = A (i, 1) A

(37)

with N = 256, σ = 4 and band = 12. The condition numbers of A(i) are cond(A(:,:,1)) =

cond(A(:,:,246)) = ... = cond(A(:,:,256)) = 11.1559, while he condition numbers of the remaining

slices are infinite. Let Xtrue denote the original undaminated cameraman image. The operator twist

converts Xtrue into tensor column ~Xtrue ∈ R
256×1×256 for storage. The noised tensor ~E is generated

by (36) with different noise level ν = 10−i, i = 2, 3. The blurred and noisy images are generated by
~B = A ∗ ~Xtrue + ~E .

The auto-tCG, auto-ttCG and auto-ttpCG methods are used to solve the tensor discrete linear

ill-posed problems (1). The discrepancy principle is employed to determine a suitable regularization

parameter by using µk = µ0qk with µ0 = ‖A‖F and q = 1
2 . We set η = 1.05 in (8).

Figure 3 shows the convergence of relative errors verus (a) the iteration number k and (b) the CPU

time for the auto-tCG, auto-ttCG and auto-ttpCG methods with the noise level ν = 10−3 corresponding

in the Table 2. The iteration process is terminated when the discrepancy principle is satisfied. From

Figure 3 (a), we can see that the auto-ttCG and auto-ttpCG methods do not need to solve the normal

equation for all µk(k < 8). This shows that the auto-ttCG and auto-ttpCG methods improve the

auto-tCG method by the condition (24). Figure 3 (b) shows that the auto-ttpCG method converges

fastest among three methods.
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Figure 3. Example 4.1: Comparison of convergence between (a) relative errors verus the iteration

number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG

methods with the noise level ν = 10−3.

Table 2 lists the regularization parameter, the iteration number, the relative error, SNR and the

CPU time of the optimal solution obtained by using the auto-tCG, auto-ttCG and auto-ttpCG methods

with different noise levels ν = 10−i, i = 2, 3. It can be seen from Table 2 that the auto-ttpCG method

has the lowest relative error, highest SNR and the least CPU time for different noise level.

Table 2. Example 4.1: Comparison of relative error, SNR, and CPU time between the auto-tCG,

auto-ttCG and auto-ttpCG methods with different noise level ν = 10−i, i = 2, 3.

Noise level Method k µk Relative error SNR CPU (secs)

10−3
auto-tCG 15 1.96e-05 3.54e-02 22.36 109.87
auto-ttCG 15 1.96e-05 3.52e-02 22.41 80.93

auto-ttpCG 15 1.96e-05 3.49e-02 22.48 33.98

10−2
auto-tCG 11 3.14e-04 8.74e-02 14.51 81.94
auto-ttCG 11 3.14e-04 8.64e-02 14.61 26.42

auto-ttpCG 11 3.14e-04 8.54e-02 14.72 18.50

Figure 4 shows the reconstructed images obtained by using the auto-tCG, auto-ttCG and

auto-ttpCG methods on the blurred and noised image with the noise level ν = 10−3 in Table 2.

From Figure 4 we can see that the restored image by the auto-ttpCG method looks a bit better than

others but the least CPU time.
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Figure 4. Example 4.1: (a) The blurred and noised image and reconstructed images by (b) the auto-tCG

method (SNR=22.36, CPU=109.87), (c) the auto-ttCG method (SNR=22.41, CPU=80.93) and (d) the

auto-ttpCG method (SNR=22.48, CPU=33.98) according to the noise level ν = 10−3 in Table 2.

Example 4.2 (Color image) This example shows the restoration of a blurred Lena color image

by Algorithms 2, 3 and 5. The original Lena image Xori ∈ R
256×256×3 is stored as a tensor Xtrue ∈

R
256×3×256 through the MATLAB function multi−twist. We set N = 256, σ = 3 and band=12, and get

A ∈ R
256×256×256 by

z =
[

exp(−([0 : band− 1] .2)/(2σ2)), zeros(1, N − band)
]

,

A = toeplitz(z),A(:,:,i) =
1

2πσ
A (i, 1) A, i = 1, ..., 256.

Then cond(A(:,:,1)) = ... = cond(A(:,:,12)) = 4.68e + 07, and the condition number of other tensor slices

of A is infinite. The noise tensor E is defined by (36). The blurred and noised tensor is derived by

B = A ∗ Xtrue + E , which is shown in Figure 6 (a).

We set the color image B to be divided into multiple lateral slices and independently process

each slice through (1) by using the auto-tCG, auto-ttCG and auto-ttpCG methods. Figure 5 shows the

convergence of relative errors verus (a) the iteration number k and (b) the CPU time for the auto-tCG,

auto-ttCG and auto-ttpCG methods when dealing with the first tensor lateral slice B(:,1,:) of B with

ν = 10−3. Similar results can be derived as that in Example 5.1 from Figure 5. We can see that the

auto-ttCG and auto-ttpCG methods need less iterations than the auto-tCG method from Figure 5 (a)

and the auto-ttpCG method converges fastest among all methods from Figure 5 (b).
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Figure 5. Example 4.2: Comparison of convergence between (a) relative errors verus the iteration

number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG

methods with the noise level ν = 10−3.

Table 3 lists the relative error, SNR and the CPU time of the optimal solution obtained by using

the auto-tCG, auto-ttCG and auto-ttpCG methods with different noise levels ν = 10−i, i = 2, 3. The

results are very similar to that in Table 2 for different noise level.

Table 3. Example 4.2: Comparison of relative error, SNR, and CPU time between the auto-tCG,

auto-ttCG and auto-ttpCG methods with different noise level ν = 10−i, i = 2, 3.

Noise level Method Relative error SNR time (secs)

10−3
auto-tCG 5.90e-02 14.62 314.73
auto-ttCG 5.90e-02 14.62 262.81

auto-ttpCG 5.43e-02 15.37 103.41

10−2
auto-tCG 7.64e-02 12.37 117.48
auto-ttCG 7.48e-02 12.55 62.01

auto-ttpCG 7.01e-02 13.13 54.85

Figure 6 shows the recovered images by the auto-tCG, auto-ttCG and auto-ttpCG methods

corresponding to the results with noise level ν = 10−3. The results are very similar to that in Figure 6.
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Figure 6. Example 4.2: (a) The blurred and noised Lena image and reconstructed images by (b) the

auto-tCG method, (c) the auto-ttCG and (d) the auto-ttpCG method according to the noise level

ν = 10−3 in Table 3.

Example 4.3 (Video) We recover the first 10 consecutive frames of blurred and noised Rhinos

video from MATLAB. Each frame has 240× 240 pixels. We store 10 pollution- and noise-free frames of

the original video in the tensor Xtrue ∈ R
240×10×240. Let z be defined by (37) with N = 240, σ = 2 and

band = 12. The coefficient tensor A is defined as follows:

A =
1√
2πσ

toeplitz (z) ,A(:,:,i) =
1

2πσ2
A (i, 1) A, i = 1, ..., 240.

The condition number of the frontal slices of A is cond(A(:,:,i)) = 7.4484e + 09(i ≤ 12), and the

condition number of the remaining frontal sections of A is infinite. The suitable regularization

parameter is determined by using the discrepancy principle with η = 1.1. The blurred- and noised

tensor B is generated by B = A ∗ Xtrue + E with E ∈ R
120×30×120 being defined by (36).

Figure 7 shows the convergence of relative errors verus the iteration number k and relative errors

verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG methods when the second frame

of the video with ν = 10−3 is restored. Very similar results can be derived from Figure 7 to that in

Example 5.1.
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Figure 7. Example 4.3: Comparison of convergence between (a) relative errors verus the iteration

number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG

methods with the noise level ν = 10−3.

Table 4 displays the relative error, SNR and the CPU time of the optimal solution obtained by

using the auto-tCG, auto-ttCG and auto-ttpCG methods for the second frame with different noise

levels ν = 10−i, i = 2, 3. We can see that the auto-ttpCG method has the largest SNR and the lowest

CPU time for different noise level ν = 10−i, i = 2, 3.

Table 4. Example 4.3: Comparison of relative error, SNR, and CPU time between the auto-tCG,

auto-ttCG and auto-ttpCG methods with different noise level ν = 10−i, i = 2, 3.

Noise level Method Relative error SNR time (secs)

10−3
auto-tCG 2.94e-02 23.17 697.78
auto-ttCG 2.92e-02 23.23 487.35

auto-ttpCG 2.66e-02 24.05 214.16

10−2
auto-tCG 5.24e-02 18.15 480.75
auto-ttCG 5.10e-02 18.38 281.54

auto-ttpCG 4.74e-02 19.02 156.44

Figure 8 shows the original video, blurred and noised video, and the recovered video of the

second frame of the video for the auto-tCG, auto-ttCG and the auto-ttpCG methods with noise level

ν = 10−3 corresponding to the results in Table 4. The recovered frame by the auto-ttpCG method looks

best among all recovered frames.
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Figure 8. Example 4.3: (a) Original image, (b) the blurred and noisy image and recovered images by (c)

the auto-tCG method, (d) the auto-ttCG and (e) the auto-ttpCG method according to the noise level

ν = 10−3 in Table 4.

5. Conclusion

This paper presents three types of tensor Conjugate-Gradient methods for solving large-scale

linear discrete ill-posed problems in tensor form. We first present an automatical determination strategy

of a suitable regularization parameter for the tensor conjugate gradient (tCG) method. Furthermore,

we develop a truncated version and a preprocessed verion of the tCG method. The proposed methods

are used to different examples in image and video restoration.
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