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Abstract: This paper presents three types of tensor Conjugate-Gradient methods for solving
large-scale linear discrete ill-posed problems based on the t-product between third-order tensors. An
automatical determination strategy of a suitable regularization parameter is proposed for the tensor
conjugate gradient (tCG) method. A truncated version and a preprocessed verion of the tCG method
are further presented. The discrepancy principle is employed to determine a suitable regularization
parameter. Several numerical examples are given to show the effectiveness of the proposed tCG
methods in image and video restoration.

Keywords: linear discrete ill-posed problems; tensor Conjugate-Gradient method; t-product;
discrepancy principle; Tikhonov regularization

1. Introduction

Tensors are high-dimensional arrays that have many applications in science and engineering,
including in image, video and signal processing, computer vision, and network analysis [11,12,16-
20,26]. A new t-product based on third-order tensors proposed by Kilmer et al [1,2]. When using
high-dimensional data, t-product shows a greater potential value than matricization, see [2,6,11,
12,21,22,24,25,27]. The t-product has been found to have special value in many application fields,
including image deblurring problems [1,6,11,12], image and video compression [26], facial recognition
problems [2], etc.

In this paper, we consider the solution of large minimization problems of the form

_min [|Ax X~ B|lp, A = (a2, € R B e R 1)
FXeRmx1xn s

The Frobenius norm of singular tube of A rapidly attenuates to zero with the increase of the index
number. In particular, A has ill-determined tubal rank. Many of its singular tubes are nonvanishing
with tiny Frobenius norm of different orders of magnitude. Problems (1) with such a tensor is called
the tensor discrete linear ill-posed problems. They arise from the restoration of color image and video,
see e.g., [1,11,12]. Throughout this paper, the operation * represents tensor t-product and ||-||r denotes
the tensor Frobenius norm or the spectral matrix norm.

We assume that the observed tensor B € R"*1x" ig polluted by an error tensor E e Rmx1xn jo

g = Btrue + g/ (2)

where gtrue € R™*1X1 jg an unknown and unavailable error-free tensor related to 5. Etme is
determined by A * X' = By, where X}y, represents the explicit solution of problems (1) that is
to be found. We assume that the upper bound of the Frobenius norm of £ is known, i.e,
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IENF < 6. ®)

Straightforward solution of (1) is usually meanless to get an approximation of gt,ue because of the
illposeness of A = [a]ﬁ’ﬁil and the error £ will be amplified severely. We use Tikhonov regularization

to reduce this effect in this paper and replace (1) with penalty least-squares problems

min {[|Ax 2= B} +ul| X[}, @)

A eRmx1xn

where y is a regularization parameter. We assume that
NA)NN(T) =0, &)

where N (A) denotes the null space of A, Z is the identity tensor and O e R™* 1% jg 4 lateral slice
whose elements are all zero. The normal equation of minimization problem (4) is

(AT« A+ uZ)« X = AT % B, (6)

then .
fy:(AT*A—FyI) « AT« B (7)

is the unique solution of the Tikhonov minimization problem (4) under the assumption (5).

There are many techniques to determine the regularization parameter y, such as the L-curve
criterion, generalized cross validation (GCV), and the discrepancy principle. We refer to [4,5,8-10] for
more details. In this paper, the discrepancy principle is extended to tensors based on t-product and is
employed to determine a suitable u in (4). The solution “?M of (4) satisfies

| A X, — Blp < 7o, ®)

where 77 > 1 is usually a user-specified constant and is independent of 4 in (3). When ||| is smaller
enough, and ¢ approaches 0, result in )?V — ftrue. For more details on the discrepancy principle, see
e.g., [7].

In this paper, we also consider the expansion of minimization problem (1) of the form

omin A =Bl xR )
where B € R"*P*", p > 1.

There are many methods for solving large-scale discrete linear ill-posed problems (1). Recently, a
tensor Golub- Kahan bidiagonalization method [11] and a GMRES method [12] were introduced for
solving large-scale linear ill-posed problems (4). The randomized tensor singular value decomposition
(rt-SVD) method in [3] was presented for computing super large data sets, and has prospects in image
data compression and analysis. Ugwu and Reichel [23] proposed a new random tensor singular value
decomposition (R-tSVD), which improves the truncated tensor singular value decomposition (T-tSVD)
in []] Kilmer et al. [2] presented a tensor Conjugate-Gradient (t-CG) method for tensor linear systems
AxX =B corresponding to the least-squares problems. The regularization parameter in the t-CG
method is user-specified. In this paper, we further discuss the automatical determinization of suitable
regularization parameters of the tCG method by the discrepancy principle. The proposed method is
called the tCG method with automatical determination of regularization parameters (auto-tCG). We
also present a truncated auto-tCG method (auto-ttCG) to improve the auto-tCG method by reducing
the computation. At last, a preprocessed version of the auto-ttCG method is proposed, which is
abbreviated as auto-ttpCG.
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The rest of this paper is organized as follows. Section 2 introduces some symbols and preliminary
knowledge that will be used in the context. Section 3 presents the auto-tCG, auto-ttCG and auto-ttpCG
methods for solving the minimization problems (4) and (9). Section 4 gives several examples on image
and video restoration and Section 5 draws some conclusions.

2. Preliminaries

This section gives some notations and definitions, and briefly summarizes some results that will
be used later. For a third-order tensor A € R!*"*" Figure 1 shows the frontal slices A(..x), lateral
slices A, ;. and tube fibers A, ; .. We abbreviate Ay = A(. . for simplication. An In x m matrix is
obtained by the operator unfold(.A), whereas the operator fold folds this matrix back to the tensor A,
ie.,

Ay

A
unfold (A) = ,2 ,fold (unfold (A)) = A.
An

Definition 1. Let A € RI*™*" then g block-circulant matrix of A is denoted by beirc(A), i.e.,

A A, A
Ay A o As

bceirc (A) = :
A Ay e A

N\
N\

I

Figure 1. (a) frontal slices A(. . ), (b) lateral slices A, ;. and (c) tube fibers A, ;

el
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Definition 2. ([1]) Given two tensors A € R>™*" gnd B € R"<P*", the t-product A B is defined as
A x B = fold(bcirc(A)unfold(B)) =C, (10)

where C € RIXPxn,

The following remarks will be used in Section 3.
Remark 1. ([14]) For suitable tensors A and B, it holds that

(1). beirc(A x B) = beirc(A) x beire(B).

(2). beirc(AT) = beirc(A)T.

(3). beirc(A + B) = beirc(A) + beire(B).

Let F,; be an n-by-n unitary discrete Fourier transform matrix, i.e,
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1 1 1 e 1
1 w w? w1
E, = A1 W w* w2(r=1) ,
VAT
1 a)”fl wZ(Tl*l) A w(nfl)(”fl)
where w = e 1", then we get the tensor A generated by using FFT along each tube of A, i.e,
Ay
. Ay
bdiag (A) = ) = (E, ® I;) beire (A) (F} @ L), (11)

~

An

where ® is the Kronecker product, F; is the conjugate transposition of F, and A; denetes the frontal
slices of A. Thus the t-product of A and B in (10) can be expressed by

AxB=fold ((F; ® I) (F, ® I) beire (A) (Ef ® L)) (Fy ® I,) unfold (B)), (12)

and (10) is reformulated as

Aq By G
Az Bz éz
=1 | (13)
Al’l Bl’l C?’l
It is easy to calculate (12) in MATLAB.
For a non-zero tensor X € R"*1*" we can decompose it in the form
X =Dxd, (14)

where D € R"*1%" ig a normalized tensor; see, eg.,[6]andd € RI¥1x" j5 a tube scalar. Algorithm 1
summarizes the decomposition in (14).

Algorithm 1 Normalization

Input: ¥ € R"*1*" is a nonzero tensor
Output:D, d with ¥ = D« d, | D|| =1
D « (X[ 1,3)
forj=1,2,...,ndo
di + ||ﬁ]||2 (ﬁj is a vector)
if d]‘_‘> tol th_e;n
Dj + 7D
else
ﬁ] — randn(m,l); d] — Hﬁ]Hz, 'Z_j] “— dl] _’]‘; d] +~0
end if
end for
D « ifft(D,[ 1,3); d « ifft(d,[ 1,3)

Given a tensor A € R>"*"_ the singular value decomposition (tSVD) of A is expressed as

A=UxSxVT,
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where U € RI*>X"and V € R"™*™"*" are orthogonal under t-product,
S = diag[s1,52, s Smin{1,m}] € R X
is an upper triangular tensor with the singular tubes s; satisfying

Isille > Is2lle = -+ = smingt,m) |l -

The operators squeeze and twist [13] are expressed by

—

X = squeeze(X;) = X(i,j) = /'_V’(i,lrj),twist(squeeze(f)) = X.

Figure 2 illustrates the transformation between a matrix and a tensor column by using squeeze
and twist. Generally, the operators multi_squeeze and multi_twist are defined for a third-order
tensor to make it squeezed or twisted. For a tensor D € R™*P*" with p > 1, C = multi_squeeze(D)
means that all side slices of D are squeezed and stacked as front slices of C, the operator multi_twist
is the reverse operation of multi_squeeze. Thus multi_twist(multi_squeeze(D)) = D. We refer
to Table 1 for more notations and definitions.

N
—
| .‘
|

.

Figure 2. twist-squeeze

twist
R — —»
———
squeeze

Table 1. Description of notations

Notation Interpretation

AT transpose of tensors

Al inverse of tensor, A~ T = (A~1)T = (AT)~1

A FFT of A along the third mode

unfold(A) the block column matrix of A

bcirc(A) the block-circulant matrix

VA identity tensor

A matrix

I identity matrix

I Al the Frobenius norm of tensors A, i.e, | Al|r = \/Zle Z;-":l Yiq az‘zjk'
* t-product

.Zj, A the jthtensor column of A, jth lateral slice of A
) the jth frontal slice of tensor A

d tube

(A, B) (A, B) = Lijk aijkbiji

< A, B> <A, 1§> = ik aitkbirk
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3. Tensor Conjugate-Gradient methods

This section first discusses the automatical determination of a suitable regularization parameter
for the tensor conjugate gradient (tCG) method presented by Kilmer et al. in [13]. We abbreviate the
improved method as auto-tCG. A truncated auto-tCG method is developed to improve the auto-tCG
method and is abbreviated as auto-ttCG. A preprocessed version of the auto-ttCG method is presented,
which is abbreviated as auto-ttpCG.

3.1. The auto-tCG Method

The tensor Conjugate-Gradient (t- CG) method is presented in [2] for the least-squares solution
of the tensor linear systems A * X = B. The regularization parameter in the t-CG method was not
discussed and was user-specified. This subsection improves the t-CG method by employing the
discrepancy principle to determine a suitable regularization parameter under the assumption (3) and
uses it to solve the normal equation (6). We consider the polynomial function

e = pogt k=0,1,..., (15)

where g € (0,1). We set jip = || A||r, and obtain an optimal regularization parameter by continuously
reducing the parameter. An effective method to deal with the general problems (9) is to regard it as p
independent subproblems (4), i.e.,

min {[| A& =B} +ull G} =1...p, (16)

)E}ER"’XlX”

where B}- is the tensor column of the tensor B and is polluted by the noise g'] Ej,t,ug represents
unknown error-free tensor. Assume the noise tensor

can be used or the norm of fj’] can be estimated, i.e.,

IEilF < &:j=1,....p.

Algorithm 2 summarizes the auto-tCG method for solving (9). The initial tensor of Algorithm 2 is
set as zero tensor. The iteration is stopped when the Frobenius norm of the residual tensor

—AT*B (AT % A+ 1 T) * X!

]/P‘k JrHk

is small enough, where 7_?:; e denotes the residual generated by the i-th iterative solution /li}ji e of the

normal equation with j of the j-th independent subproblem. Let X;,; = .J?;k be the initial tensor of
the normal equation of py1. When y = yj with m iterations for the CG-process, the affine space is

Xﬁk + K (AT * A+ mZ, rgk), where rgk AT« B - (AT« A+ Z) = /'?P?k.
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Algorithm 2 The auto-tCG method for sloving (9).

Input:A € R"™"<" B, e RMWIX1 5 j =1, p, o, n > 1.
Output: Approximate solution X'* of problem (9).
forj=1,2,.pdo
ﬁm_Ok_o
while dol| A« X B 12 > 172(52
k= k+1(A6A*A+ykI)*X AT *B],eg ik = pHoq"
[Ro, a] < Normalize(AT « B (AT % A+ i Z) * Xiy); Po < Ro.

i=0,0 > tol.
while o > tol do
i=i+1

c= (PTl * (AT*A'f—]lkI) *Pl 1) ' * (7_?,'?_1 *7_?:1'_1>.
X Xi_q+ Pl 1*C.
Ri= Ry~ (AT At )+ (Praa ).
o= Rl = Ricalel.,
d_anl*R,J *@g*RJ
Pi=R;i+Pi_qxd.
end while
X j’;‘k =X, xa (%Tﬂk is the solution of the normal equation about i of the j-th independent

subproblem (4)).
Xl?’ll’ - X‘]Tyk
end while
X =X
) ™ i
end for ‘

3.2. The truncated tensor Conjugate-Gradient method

Frommer and Maass in [15] proposed a good condition that can roughly judge some inappropriate
value of p. We introduce this condition to improve Algorithm 2 by excluding some unsuitable value of
, and present a truncated tensor conjugate-gradient method for solving (9). We first give the following
results.

Theorem 1. Given A € R™*", define a t-linear operator T: R"™* VX1 — RIX1x1 o T(X) = Ax X with
X e Rm<1xn [ o X;f be the exact solution of the normal equations

(AT« A+ uZ)« X = AT« B,
then for an arbitrary X € R™ 1" e have

. | _ ﬂ
HA*%f—MﬁZHA*X—B%—ZQWH*B—CH*A+VQ*Xﬁw

Proof. For an arbitrary X' € R™*1%" set Z = X* — X. Let the singular value decomposition of A be

A=UxS VT, then

Y *
M
AxZ =UxS+x VT x Z.

Suppose VT « Z = D € R™1%" then

|| A * ZH% = [|U xS * VT« 2”% = ||S % ﬁH% = ||bcirc(8)unfold(ﬁ)||%. (17)
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Thus
I(AT * A+ uT) « 2|7
=V (ST« S+ul)« VT« Z|2 = |[V* (ST+ S+ uI) «D|?
=|[(87# S +uT) + DI} = |[(beire(ST « §) + pbeire(Z))unfold (D)3
=||(bcire(S) beire(S) + ybcirc(I))unfold(ﬁ) 5.

(18)

Denote beirc(S) = S € R™*"" peire(Z) = I € R">"" and unfold(D) = d € R"*1, then
|A* Z|2 = ||Sd|3 and ||(AT * A+ puZ) x Z||% = ||(STS + u1)d||3. Thus we transform the tensor
norm into the equivalent matrix norm. Let the singular value decomposition of S be S = ULVT, where
X = diag (01,02,...,0¢),v < min{nl,nm}, U = [uj,uy, ..., u,] and V = [vq, vy, ..., v;] are orthogonal
matrices with orthogonal columns u; € R"*! and v; € R"*1, respectively. Thus we have

Sd = Z O <d,vk>uk.

>0
Using the equation s? = (s + s~ 1) 72(s? 4 u)? with the estimate

1

1
< 0
s+pus—1 — 2\/ﬁ'(s'y >0),
we have
2 2 2
Isdl3 = ¥ ?ldon* = ¥ (e +popt) " (R +n) [(dooP
0 >0 0. >0 (19)
1 2 2 2
o Ukz‘;o( 2+ 1) 1(dog)]
Note that )
2
I(s"s+u)dlf= Y (o2 +n) (oo, 20)
>0
It results from (19) and (20) that
1
2 o L y(gT 2
ISdl < g lI(S™s + uT) dlf:
Note that || A Z|2 = |Sd||3 and || (AT x A + uZ) * Z|2 =|(sTSs + uI)d||2, we have
. 1 .
A 2|7 < @H(AT*AJFVI)*ZH%- (21)
Thus
| A By = Bl = A+ X - B+ Ax (X - %)}
> [|A* X —BlIf — [ Ax Z||? (22)
L. 1 N o
2 A X = Bt = | (AT A+ T) 2]}
Note that

—

(AT # A+ pZ) « 2 = (AT s A+ pZ) = (X — X) = AT 5 B— (AT 5 A+ pZ) + X, (23)
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then (23) and (22) result in

L AT B (AT 4 A4 puT) + B2

A= Xy =Bl = | AxX - B - I

O

We will apply Theorem 1 to predict in advance whether the exact solution /?Jk satisfies the
discrepancy principle in Algorithm 2. We add the condition

L L 1 . .
IA* X, — B} - TM\IRLkII% > 1i%6? (24)

in steps 9-16 of Algorithm 2. If the i-th iteration solution of the normal equation with py is )?;lk and its
residual 7_?,);4]( satisfies (24), then ||.A * /'?]jk — BJ|%2 > %62. This indicates that the exact solution of the
normal equation with yy does not satisfy the discrepancy principle, so continue to solve next normal
equation with p 1. Therefore, we obtain a truncated tensor conjugate-gradient method of automatical
determination of a suitable regularization parameter, which is abbreviated as auto-ttCG. Algorithm 3
summarizes the auto-ttCG method.

Algorithm 3 The auto-ttCG method for sloving (9)

Input:A € Rmxmxn,gj € Rmx1xn 0i,j=1,..,p, o, 1 >1, tol.
Output: Approximate solution X* of problem (9).
forj=1,2,.pdo
ﬁm_Ok_o
while || A % XZ - B 2 > 1725]2 do
k= k—l—l(AT*.A—i—ykI)*X AT *B],egyk poq~.
0);

[Ro,a] Normahze(AT By — (AT % A+ 1 Z) x Xiy); Po < Ro.

i =0, c=10to], X = mt

whlleai;ol and |.A* —B||%—4im||72i*a\|%<17252 do
i=i

= (PTl*(AT*A—i—ykI)*Pl 1) L (ﬁ?—1*7€i—1>'

AP A, = T
Ri=Ri1— (AT« AL pyT) » (ml )
o =Rillr = [IRi_1}fel- .
d=(RT « Ri_1> « (RI+R;).
Pi=Ri+Pi_q1+d.
end while
Xint = Xlik'
end while
* _ pi
Xl = Ve
end for

3.3. A preconditioned truncated tensor Conjugate-Gradient method

In this section, we consider the acceleration of Algorithm 3 by preconditioning. When the tensor
M is symmetric positive definite under the t-product structure, we can get its tensor approximate
Cholesky decomposition (tChol) by Algorithm 4.
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Algorithm 4 Tensor Cholesky decomposition (tChol)

Input: M € R™*™*" o£ O
Output: H € R™ ™" and M = H + HT.
M — fft(M,[1,3)
forj=1,2,..,ndo
H + chol(M( .j)), H is the lower triangular matrix, which is obtained by approximate

o

Cholesky decomposition.
7:[(:/:’]‘) < H.

7: end for

M < ifft(H,[ 1,3).

.0.\

o]

In Algorithm 3, the coefficient tensor A7 x A + 1, Z of the k—th normal equation
(AT« A+ )« X = AT« B (25)

is symmetric and positive definite. We set M = AT x A + 4T and apply Algorithm 4 to obtain the
decomposition of M = H * HT, where each frontal slice of H is a fully sparse lower triangular matrix.
After the normal equation (25) is preconditioned by M, we solve the preconditioned normal equations

~ =

AxX =B, (26)

instead of equations (25) in Algorithm 3, where A = H '« (AT« A+ i, Z) « H T, X = HT « X,
B=H 1+ AT+B. 3

Applying Algorithm 3 to solve (26) instead of (25). Let /?i and 2‘?1 denote the solution of (25) and
(26), respectively. Then we have

Ri=B— Ax X 27)
=H AT« B~ (H s (ATx A+ D)« H D)« HT + X,
=H 1 (AT B— (AT« A+ 1 T) 5 X)) (28)
=H T« R, (29)
Let W, = H 1% R,, 751-_1 = HT % P;_1, then we have
d= (731{1 * ﬁi,l)_l * (7:?1T * 7:31) (30)
= (H Y Ri_)TsH T Ris) e (T +R)T« H 1+ Ry)
= WL+ W) 7H = OV« W), (31)
and
e=(PLyx AxPiq) '+ (RL *Ri 1)
= (HT+Pi)T s H s (AT A D)« H T (T Piy)) P (BT Ric) T M1 Ryg)
= (H"*Pi) T« 1 s (AT At )+ Prg) W« Wiy
= (7_51{1 * (.AT « A+ Z) * 731-_1)*1 * V_ViT_l * Wi_l. (32)
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In addition, we have the iteration
./1? = X: 1+ P _1*C
HTx X =HT Xy +HT« Py x¢C
V=X 1+ P %6, (33)
and
7%1 = 7%1—1 _vzi*ﬁl-&-l *C
HV«R=H 1 xR —H 1« (.AT*A—I—]ikI) *H‘T*’HT*ﬁiH xC
Ri=Ri1— (ATx A+ uZ) « P 58, (34)
together with
B Ryt P
'HT*'ﬁi = Hil*ﬁi—l—HT*'ﬁi,l*t{
_‘1’ :H_T*H_l*ﬁi—l-//_ji,l *J:H_T*Wi+73i,1*d~. (35)

Taking the preprocessing procedure (27)-(35) into Algorithm 3, we obtain the improved auto-ttCG
method, which is called the truncated tensor preconditioned conjugate-gradient method of automatical
determination of a suitable regularization parameter, and is abbreviated as auto-ttpCG. Algorithm 5
summarizes the auto-ttpCG method. Numerical experiments in Section show Algorighm 5 converges
faster than Algorithm 3.

Algorithm 5 The auto-ttpCG method for sloving (9)

Input:A € R™ <1 B e RMAX1 5, j=1,..,p, po, 7 > 1, tol.
Output: Approximate solution X'* of problem (9).
forj=1,2,..pdo
X =0,k =0
while || A * ff,yk —Bj||? > 7?67 do
k=k+1, = ]/loqk.
H = tChol (AT x A+ w D).
[Ro,a] Normahze(.AT * B (AT % A+ i T) * Xyy).
Wo=H"1xRo, Po=H" T
i =0, 0=10tol, X = *mt
while o > tol and || A x X

1~ BillE = g [Rixallf < 6% do

end while

Kot = X
end while
= Xi

( g T e
end for
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4. Numerical Examples

This section presents three examples to show the application of Algorithms 2, 3 and 5 on the
restoration of image and video. All calculations are performed in MATLAB R2018a on computers with
intel core i7 and 16GB ram.

Suppose &} is the k-th approximate solution to the minimization problem (9). The quality of the
approximate solution X} is defined by the relative error

||Xk - Xtrue”P
Erty = —————
k HXtrueHF ’

and the signal-to-noise ratio (SNR)

HXtrue - E(XtVME)H%

SNR(&;) = 101o ,
( ) B10 HXk - Xtrue”%

where X}y, denotes the uncontaminated data tensor and E( X}y ) is the average gray-level of Xpye.
The observed data B in (9) is contaminated by a "noise" tensor &£, i.e., B = Byye + €. £ is determined
as follows. Let g'] be the j—th transverse slice of £, whose entries are scaled and normally distributed
with a mean of zero, i.e.,

—

. Eio= .
8]- = V—»LHBtrue,jHF/] =L..p (36)
1€l

where the data of g,,j is generated according to N(0, 1).

Example 4.1 (Gray image) This example considers the restoration of the blurred and noised
cameraman image with the size of 256 x 1 x 256. For the operator A, its front slices .A(:,:,Z-),i =1,...,256,
are generated by using the MATLAB function blur, i.e.,

z = [exp(—([0 : band — 1))/ (20?)), zeros(1, N — band)],

1 ) ) ) (37)
toeplitz ([z (1) fliplr (z (2 : end))],z), A..;) =A@, 1) A

A=

oV 21

with N = 256, ¢ = 4 and band = 12. The condition numbers of A are cond(A.q)) =

cond(A..r4)) = ... = cond(A(,.05)) = 11.1559, while he condition numbers of the remaining

slices are infinite. Let Xy, denote the original undaminated cameraman image. The operator twist

converts Xy, into tensor column Q?tmg € R26x1x25% {4y storage. The noised tensor Eis generated

by (36) with different noise level v = 10~/,i = 2,3. The blurred and noisy images are generated by
g: A*)?true‘|'5-

The auto-tCG, auto-ttCG and auto-ttpCG methods are used to solve the tensor discrete linear
ill-posed problems (1). The discrepancy principle is employed to determine a suitable regularization
parameter by using i = pog* with g = ||A|p and g = 1. We set 7 = 1.05 in (8).

Figure 3 shows the convergence of relative errors verus (a) the iteration number k and (b) the CPU
time for the auto-tCG, auto-ttCG and auto-ttpCG methods with the noise level v = 1073 corresponding
in the Table 2. The iteration process is terminated when the discrepancy principle is satisfied. From
Figure 3 (a), we can see that the auto-ttCG and auto-ttpCG methods do not need to solve the normal
equation for all yi(k < 8). This shows that the auto-ttCG and auto-ttpCG methods improve the
auto-tCG method by the condition (24). Figure 3 (b) shows that the auto-ttpCG method converges
fastest among three methods.
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Figure 3. Example 4.1: Comparison of convergence between (a) relative errors verus the iteration
number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG

methods with the noise level v = 1073.

Table 2 lists the regularization parameter, the iteration number, the relative error, SNR and the
CPU time of the optimal solution obtained by using the auto-tCG, auto-ttCG and auto-ttpCG methods

with different noise levels v = 107*,i = 2, 3. It can be seen from Table 2 that the auto-ttpCG method
has the lowest relative error, highest SNR and the least CPU time for different noise level.

Table 2. Example 4.1: Comparison of relative error, SNR, and CPU time between the auto-tCG,
auto-ttCG and auto-ttpCG methods with different noise level v = 107%,i=2,3.

Noise level Method k Ui Relative error SNR  CPU (secs)
auto-tCG 15  1.96e-05 3.54e-02 22.36 109.87
1073 auto-ttCG 15  1.96e-05 3.52e-02 22.41 80.93
auto-ttpCG 15  1.96e-05 3.49¢e-02 22.48 33.98
auto-tCG 11  3.14e-04 8.74e-02 14.51 81.94
102 auto-ttCG 11  3.14e-04 8.64e-02 14.61 26.42
auto-ttpCG 11  3.14e-04 8.54e-02 14.72 18.50

Figure 4 shows the reconstructed images obtained by using the auto-tCG, auto-ttCG and
auto-ttpCG methods on the blurred and noised image with the noise level v = 1073 in Table 2.
From Figure 4 we can see that the restored image by the auto-ttpCG method looks a bit better than
others but the least CPU time.
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Figure 4. Example 4.1: (a) The blurred and noised image and reconstructed images by (b) the auto-tCG
method (SNR=22.36, CPU=109.87), (c) the auto-ttCG method (SNR=22.41, CPU=80.93) and (d) the
auto-ttpCG method (SNR=22.48, CPU=33.98) according to the noise level v = 102 in Table 2.

Example 4.2 (Color image) This example shows the restoration of a blurred Lena color image
by Algorithms 2, 3 and 5. The original Lena image X,,; € R256%x256x3 g stored as a tensor Xjue €
[R256x3x256 through the MATLAB function multi_twist. We set N = 256, = 3 and band=12, and get
A € R256x256x256 py;

z= [exp(—([O s band — 1] 2)/(20%)), zeros(1, N — band)} ,

A = toeplitz(z), A..;) = ﬁA (i,1)A,i=1,..,256.
Then cond(Ay..1)) = ... = cond(A(,.12)) = 4.68¢ + 07, and the condition number of other tensor slices
of A is infinite. The noise tensor £ is defined by (36). The blurred and noised tensor is derived by
B = A Xyye + €, which is shown in Figure 6 (a).

We set the color image B to be divided into multiple lateral slices and independently process
each slice through (1) by using the auto-tCG, auto-ttCG and auto-ttpCG methods. Figure 5 shows the
convergence of relative errors verus (a) the iteration number k and (b) the CPU time for the auto-tCG,
auto-ttCG and auto-ttpCG methods when dealing with the first tensor lateral slice B, . of B with
v = 1073, Similar results can be derived as that in Example 5.1 from Figure 5. We can see that the
auto-ttCG and auto-ttpCG methods need less iterations than the auto-tCG method from Figure 5 (a)
and the auto-ttpCG method converges fastest among all methods from Figure 5 (b).
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Figure 5. Example 4.2: Comparison of convergence between (a) relative errors verus the iteration
number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG
methods with the noise level v = 1073.

Table 3 lists the relative error, SNR and the CPU time of the optimal solution obtained by using
the auto-tCG, auto-ttCG and auto-ttpCG methods with different noise levels v = 10’i,i = 2,3. The
results are very similar to that in Table 2 for different noise level.

Table 3. Example 4.2: Comparison of relative error, SNR, and CPU time between the auto-tCG,
auto-ttCG and auto-ttpCG methods with different noise level v = 107%,i=2,3.

Noise level Method Relative error SNR  time (secs)
auto-tCG 5.90e-02 14.62 314.73
103 auto-ttCG 5.90e-02 14.62 262.81
auto-ttpCG 5.43e-02 15.37 103.41
auto-tCG 7.64e-02 12.37 117.48
102 auto-ttCG 7.48e-02 12.55 62.01
auto-ttpCG 7.01e-02 13.13 54.85

Figure 6 shows the recovered images by the auto-tCG, auto-ttCG and auto-ttpCG methods
corresponding to the results with noise level v = 1073. The results are very similar to that in Figure 6.
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Figure 6. Example 4.2: (a) The blurred and noised Lena image and reconstructed images by (b) the
auto-tCG method, (c) the auto-ttCG and (d) the auto-ttpCG method according to the noise level
v = 1072 in Table 3.

Example 4.3 (Video) We recover the first 10 consecutive frames of blurred and noised Rhinos
video from MATLAB. Each frame has 240 x 240 pixels. We store 10 pollution- and noise-free frames of
the original video in the tensor Xy, € R240%10x240 et 7 be defined by (37) with N = 240, ¢ = 2 and
band = 12. The coefficient tensor A is defined as follows:

1
2702

A= toeplitz (z) , A..i) = A(i,1)Ai=1,..,240.

1
V2o
The condition number of the frontal slices of A is cond(Ay..;) = 7.4484e + 09(i < 12), and the
condition number of the remaining frontal sections of A is infinite. The suitable regularization
parameter is determined by using the discrepancy principle with 7 = 1.1. The blurred- and noised
tensor B is generated by B = A * Xpyye + € with € € R120%30x120 heing defined by (36).

Figure 7 shows the convergence of relative errors verus the iteration number k and relative errors
verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG methods when the second frame
of the video with v = 1072 is restored. Very similar results can be derived from Figure 7 to that in
Example 5.1.
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Figure 7. Example 4.3: Comparison of convergence between (a) relative errors verus the iteration
number k and (b) relative errors verus the CPU time for the auto-tCG, auto-ttCG and auto-ttpCG

methods with the noise level v = 1073.

Table 4 displays the relative error, SNR and the CPU time of the optimal solution obtained by
using the auto-tCG, auto-ttCG and auto-ttpCG methods for the second frame with different noise

levels v =107",i = 2,3. We can see that the auto-ttpCG method has the largest SNR and the lowest
CPU time for different noise level v = 107%,i = 2, 3.

Table 4. Example 4.3: Comparison of relative error, SNR, and CPU time between the auto-tCG,
auto-ttCG and auto-ttpCG methods with different noise level v = 107%,i=2,3.

Noise level Method Relative error SNR  time (secs)
auto-tCG 2.94e-02 23.17 697.78
10~3 auto-ttCG 2.92e-02 23.23 487.35
auto-ttpCG 2.66e-02 24.05 214.16
auto-tCG 5.24e-02 18.15 480.75
1072 auto-ttCG 5.10e-02 18.38 281.54
auto-ttpCG 4.74e-02 19.02 156.44

Figure 8 shows the original video, blurred and noised video, and the recovered video of the

second frame of the video for the auto-tCG, auto-ttCG and the auto-ttpCG methods with noise level
v = 1072 corresponding to the results in Table 4. The recovered frame by the auto-ttpCG method looks
best among all recovered frames.
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Figure 8. Example 4.3: (a) Original image, (b) the blurred and noisy image and recovered images by (c)
the auto-tCG method, (d) the auto-ttCG and (e) the auto-ttpCG method according to the noise level
v =10"3 in Table 4.

5. Conclusion

This paper presents three types of tensor Conjugate-Gradient methods for solving large-scale
linear discrete ill-posed problems in tensor form. We first present an automatical determination strategy
of a suitable regularization parameter for the tensor conjugate gradient (tCG) method. Furthermore,
we develop a truncated version and a preprocessed verion of the tCG method. The proposed methods
are used to different examples in image and video restoration.
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