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Abstract: Cloud Manufacturing (CMfg) has attracted lots of attention from scholars and practitioners. The
purpose of quality of service (QoS)-aware manufacturing cloud service composition (MCSC), as one of the key
issues in CMfg, is to combine different available manufacturing cloud services(MCSs) to generate an optimized
MCSC that can meet diverse requirements of customers. However, many available MCS, deployed in the CMfg
platform, have same function but different QoS attributes. It is a great challenge to achieve optimal MCSC
with high QoS. In order to obtain better optimization results efficiently for the QoS-MCSC problems, a whale
optimization algorithm(WOA) with adaptive weight, Lévy flight, and adaptive crossover strategies (ASWOA)
is proposed. In the proposed ASWOA, the adaptive crossover inspired by the genetic algorithm is developed
to balance the exploration and exploitation. The Lévy flight is designed to expand the search space of WOA
and accelerate the convergence of WOA with adaptive crossover. The adaptive weight is developed to extend
the search scale of the exploitation. Simulation and comparison experiments are conducted on different scale
QoS-MCSC problems. The experimental results demonstrate that the proposed ASWOA outperforms other
compared cutting-edge algorithms.

Keywords: cloud manufacturing; quality of service; manufacturing cloud service composition; whale
optimization algorithm; Lévy flight; adaptive crossover; adaptive weight

1. Introduction

Cloud manufacturing (CMfg) is an advanced service-oriented manufacturing model that uses
different advanced internet technologies to integrate different virtualized manufacturing resources
services [1, 2]. The topic has attracted lots of attention from scholars and practitioners. In CMfg,
various lifecycle-oriented manufacturing resources and capabilities, including the hard and software
capabilities for product design, production, simulation, transportation, and so on, are virtualized and
encapsulated into CMfg platform [3]. The characteristics of each MCS contain two categories
including functional and non-functional attributes [4]. The non-functional attributes are generally
called as QoS. The deployed MCSs in the CMfg platform facilitate customers to select proper MCSs
according to their requirements and QoS to complete manufacturing tasks [5]. In detail, a complex
manufacturing task can be split into different subtasks, which can be completed by selecting an MCS
from the candidate manufacturing cloud service set (CMCSS) deployed in the CMfg platform, the
selected MCSs are integrated to form a manufacturing cloud service composition (MCSC).

Large amounts of MCSs deployed in the CMfg platform with a rapid increase trend bring great
challenges to select optimal MCSs. Numerous available candidate MCSs provide the same or
analogous functions but have different QoS attributes, such as time, product performance,
manufacturing capacity and so on. It is difficult to optimize some QoS attributes at the same time
because one attribute may conflict with another. For example, a MCS may have a longer execution
time but worse manufacturing capacity whereas another MCS may have a shorter execution time but
better manufacturing capacity [5]. Meanwhile, we also have to consider the issue of service
correlations in the composition process that can influence the global QoS of the MCSC [6]. The above
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particular problems of CMfg improve the difficulty of selecting MCSs to be composed of MCSC and
is still a arduous task that attacked many researchers [7].

The problem of QoS-MCSC is that each subtask of a cloud task select the suitable MCS to
aggregate them in sequence to generate an MCSC. The MCSC can meet both functional requirements
and optimal QoS of customers. Finding the optimal composite path from the feasible solutions
distributed in a discrete space for QoS-MCSC is known as an NP-Hard problem. Various intelligent
optimization algorithms have been developed to explore the optimal composite path for this problem,
such as genetic algorithm (GA) [8], differential evolution algorithm (DE) [9], particle swarm
optimization (PSO) [10], artificial bee colony algorithm (ABC) [11] and whale optimization algorithm
(WOA) [12]. Khanouchea et al. [13] constructed a clustering-based search tree to improve global
search capability for the problem QoS-MCSC. Li et al. [14] proposed an hybrid PSO (AIWPSO) that
utiliz adaptive inertia weights to enchance global search capabilities. Deng et al. [15] developed a
hybrid DE with neighborhood mutation operators and opposition-based learning (NOBLDE).
Savsani et al. [16] developed a teaching and learning (TLBO) for non-linear large scale problems.
When solving the QoS-MCSC problem, there may be multiple local optimal solutions in the search
space, and the above-mentioned approaches are easily trapped in local optimal solutions owing to
their randomization or stochastic strategies. Achieving global optimal solutions is still a great
challenge.

WOA, as a popular bionic algorithm, is proposed by Mirjalili [12]. The principle of the WOA is
to simulate the behavior of humpback whales in hunting prey, including encircling prey, bubble-net
attacking, and searching for prey. Recently, WOA has aroused the interests of many researchers and
practitioners, and it has been employed or modified to handle diversified practical engineering
problems, such as multilevel threshold image segmentation [17], permutation flow shop scheduling
[18], microgrid operations planning [19], and so on. Experimental tests demonstrate that WOA can
achieve competitive or better results compared to other heuristic algorithms. For instance, WOA
outperforms the DE and grey wolf optimization (GWO) while solving the reactive power planning
problems [20]. However, one disadvantage of WOA is that it may easily drap into local optimization
in the later iteration, especially when the number of evolution times exceeds 600 [21]. The reason is
that the probability related to exploration attenuates along with the iterations and the exploration
ability of WOA for global optimal solution gradually decreases, while the exploitation ability
gradually increases. Some existing algorithms also does not have a strong exploration ability in the
later iteration, which might lead the approach to be trapped in the local optimal solution. Generally
speaking, the stronger the exploration ability of algorithms, the superior the solution accuracy,
especially for the NP-Hard problems.

Lévy flight is a type of generalized random walk algorithm that imitates the trajectory of
biological activity [22], and the direction of each step is completely random. Random direction search
facilitates the exploration of the global optimal solution but is not conducive to algorithm
convergence. Therefore, Lévy flight has always been integrated into other intelligent algorithms to
improve the global search capability. For example, Liu et al. [23] advances a hybrid approach by
combining quantum particle swarm optimization with Lévy flight and straight flight strategy to solve
engineering design optimization problems. Zhou et al. [24] utilized Lévy flight to enhance the global
optimization capability of ABC for the MCSC problem. Thus, Lévy flight is employed in WOA to
enlarge the search space and increase the exploration capability.

Crossover is one of the essential operators used to preserve the population diversity of GA.
Tradition crossover tries to alter a few parts of genes for each individual that is different from WOA
which changes all the whale positions at the same time. This mechanism hinders the fast convergence
of GA and causes the algorithm to easily fall into local optimal solution because traditional crossover
is more inclined to generate similar individuals at the later iteration [25]. Some studies reported that
WOA outperforms GA with traditional crossover when solving MCSC problems [26]. Thus, different
adaptive crossover strategies have been developed to balance the exploration and exploitation ability.
More competitive results have been achieved, such as an adaptive genetic algorithm for environment
monitoring data acquisition [27], a genetic algorithm adaptive homogeneous approach for
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identifying wall cracks problems [28], adaptive dimensionality reduction GA for high-dimensional
large-scale problems [29] and so on. Inspired by these ideas, an adaptive crossover strategy is
employed to balance the exploration and exploitation of WOA.

Adaptive weighting strategies are often developed to preserve population diversity and increase
the search space of algorithms. In the exploitation of the standard WOA, whales can only surround
prey in a small area, which causes whales to easily fall into local optimal solutions[21]. Recently, more
and more scholars use adaptive weights to optimize algorithms. For example, Li et al. [14] introducted
an AIWPSO, which has excellent global search capabilities. In order to classify underwater sonar
images, Wang et al. [30] introducted a new novel deep learning model that combine with adaptive
weights convolutional neural network (AW-CNN). Cao et al. [31] introducted an image classification
algorithm based on adaptive feature weight for the low classification accuracy of the single-feature
and multifeatured fusion. Inspired by these algorithms, the adaptive weight strategy is developed to
extend the search scale of the exploitation phase.

The approach developed in this research that it uses WOA, adaptive crossover, adaptive weight,
and Lévy flight strategies to improve the exploration and exploitation abilities cost-effectively. WOA
performs well in exploitation with high convergence speed [21]. The crossover strategies of GA has
been widely adopted for population diversification preservation in real and integer coded
optimization problems. Then, adaptive crossover with three crossover strategies and single point
mutation is utilized to enhance the algorithm performance and accelerate the convergence of WOA.
While Lévy flight is designed to enhance the exploration of WOA by expand the search space. Finally,
an adaptive weight strategy is used to enhance the speed at which the whale approaches the prey.
This study mainly consists of the following parts:

1. A novel WOA with adaptive crossover, adaptive weight and Lévy flight strategy (ASWOA) is
proposed.

2. The Lévy flight strategy expands the soultion space and increases the exploration ability for
global search.

3. The adaptive crossover balances the exploration and exploitation of WOA at different iterations
and enhances the WOA to escape local optimal at the later iteration.

4.  The adaptive weights are developed to accelerate the speed of approaching prey.

5. Simulation and comparison experiments conducted on different scale QoS-MCSC problems,
which prove the superiority of the proposed ASWOA compared to standard WOA.

The rest is arranged as follows. The background of QoS-MCSC and the approaches for it are
summarized in Section 2. The model of QoTS-MCSC was introduces based on aggregation formulas
in Section 3. Section 4 presents the proposed ASWOA and related techniques, including WOA,
adaptive crossover, Lévy flight, and so on. Section 5 gives simulation and comparison experiments.
Finally, Section 6 gives a summary and the future research direction.

2. Related work

CMfg is a popular research topic, relevant scholars have carried out a lot of researches on CMfg
service modeling and description [32], cloud architecture design [33], cloud service standard [34],
and so on. In our previous study, a correlation-aware MCSC model was proposed. This model can
describe the QoS dependency between different services [6].

In recent years, cloud computing and big data advanced by leaps and bounds, and many
manufacturing resources have been virtualized and encapsulated to be provided in the network
platform, thereby leading to a rapidly and constantly expanding CMfg system. As the amount of
MCS increases, how to select appropriate MCS efficiently to accomplish the functional requirements
of corresponding manufacturing tasks and how to integrate these MCS into an MCSC with optimal
QoS is the promising research issue [35]. Many novel approaches have been developed to handle the
problem of optimal selection of MCSC. There are three main methods to solve MCSC, including
salarization-based, Pareto-based and other approaches.

The MCSC problem is considered a multi-objective problem (MOP) [36]. The scalarization
method can convert a MOP into a single-objective problem(SOP). At present, There are two
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scalarization methods: the fraction-based fitness technique and the simple additive weighting (SAW)
technique [37]. Based on fraction, Canfora et al. [36] utilized GA to settle the MCSC problem. Based
on SAW, Zhou [38] proposed a hybrid TLBO for the MCSC problem. Mardukhi et al. [39] proposed a
new model, which can decompose global constraints into multiple local constraints. SKG A et al. [40]
have combined the WOA with the eagle strategy for QoS-MCSC problem Yue et al. [41] developed a
hybrid GA based on population diversity and relational matrix coding.

In addition to the declarative meta-heuristic algorithm mentioned above, non heuristic
algorithms and heuristic algorithms are also used for MCSC problems. Liu et al. [42] proposed an
adaptive MCSC based on deep reinforcement learning. Jiang et al. [43] introduced a top k query
mechanism and proposed an Key-Path-Based Loose (KPL) algorithm. But, meta-heuristic algorithms
have the most competitive performance for MCSC problems [44].

Pareto is used to solve MOP problems and is to use multi-objective optimization and optimize
multiple parameters of QoS at the same time to acquire the Pareto optimal explanation [45].
Generally, there are some famous MOP methods. For example, Wahild et al. [46] utilized the Strength
Pareto Evolutionary Algorithm (SPEA-II) to solve the MOP problem. While Deb et al. [47] utilized
Non-dominated Sorting Genetic Algorithm II (NSGA-II) for the MOP problem. Feng et al. [48]
proposed a new algorithm for MOP based on the combination of the idea of the Pareto solution,
which was developed to address the SCOS problem. Rudziniski et al. [49] presented an application of
generalized Strength Pareto Evolutionary Algorithm (SPEA) with an original multi-objective
optimization technique in the logistic facilities location problem. The proposed approach with
purpose of seeking out a set of high spread and well-balanced distribution solutions in a specific
solution space. Xie et al. [50] introduced a new algorithm that uses the differential evolution mutation
operator in directional guiding ideology and combines the NSGA-II algorithm to improve the
solution population distribution. Napoli et al. [51] proposed a trade-off negotiation strategy that can
process multiple QoS properties at the same time. NK et al. [52] developed Non-dominated Sorting
GA (NSGA-II) for composition service problem in IoT. Suciu et al. [53] introduced an adaptive
MOEA/D algorithm for QoS-MCSC problems.

When multiple objectives need to be optimized, it means that the optimization problem becomes
more comple, the efficiency of MOEAs will become lower and lower [54]. In the algorithm execution
stage, due to conflicts between different targets, multiple targets cannot be optimized at the same
time. It is possible that one goal will be strengthened and another goal will inevitably be weakened.
At the same time, the calculation amount of the above method based on Pareto optimization is much
larger than that of the salinization method. Moreover, the above method based on Pareto
optimization cannot be better to balance the exploration and exploitation.

Apart from the above two methods, many scholars use other methods to resolve this problem.
Teixeira et al. [55] introduced a new service-oriented model that can be conducted without necessarily
implementing the real system. This can accomplish QoS tasks at a lower cost. Ping et al. [56] proposed
a new vague information decision model that alleviates the bias of existing approaches through the
improved fuzzy ranking index. Zhang et al. [57] proposed an intuitionistic fuzzy entropy weight BBO
algorithm for QoS-MCSC problems. Hu et al. [58] introduced a game-theoretic power control
mechanism based on the hidden markov model (HMM).

In sum, using the above new model or Pareto to solve the MCSC problem has high
computational complexity. After increasing the computational complexity, It may not be possible to
obtain the global optimal QoS. Therefore, this article uses the salinization method to solve the QoS-
MCSC problem.

3. Problem formulation of QoS-aware MCSC

The composition of manufacturing service can be divided into task decomposition, service
discovery, and service optimal selection three stages. This process can be illustrated in Figure 1.
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Figure 1. Framework of QoS- MCSC model.

Task decomposition: the complex manufacturing task of the MCSC can be decomposed into
multiple subtasks as Task = {ST1, STy, ..., ST;, ..., STu}, where ST: represents the subtasks i, 1 is the total
number of subtasks.

Service discovery: Each subtask ST:has a candidate service set CMCSSi, CMCSSi= {MCS; ;, MCS;,
, MCS3, ..., MCS;;..., MCS; ..}, where MCS;; represents the jth candidate service that can satisfy the
functional and QoS constraints of subtask ST, mi represents the total number of MCS for ST:.

Generate composite paths: a single MCS or a composition of multiple MCSs are selected for each
subtask from CMCSS, and connected as an executable path CMSC. Pj= {MCS, ,, MCS, , MCS;y.,
MCS; ., ..., MCS, i} is taken as the j executable path, and MCS;, represents the k; candidate service
of STi. Let P={P1, P>, ..., P;, ..., Plpath}
[iL; m;. QoS-Aware MCSC is to choose an optimal path from P with a high performance of QoS.

QoS, as the non-functional attribute of MCSC, is used to evaluate the performance of service.
There are more than twenty QoS metrics in practical applications, and the four widely used QoS
metrics including time (T), cost (C), reliability (R), and availability (A) are taken to construct the QoS
evaluation model for MCSs in this study. These four metrics consider the balance of efficiency,
economy, effectiveness, and stability of service that customers care about most. The QoS metrics of
each MCS can be represented as Q(MCS;;) ={T(MCS;;), C(MCS;;), R(MCS;;), A(MCS;;)} where
MCS;; denotes the j" candidate MCSs for the ith subtask.

CMCS is composed of sequence, parallel, selective, and circular four types of composite
structures. But parallel, selective and circular composite structures are not conducive to the QoS value

representing the executable path space for task T and l,am, =

calculation. Thus, it is necessary to convert the other three composite structures into a sequence
structure, and then the QoS value of MCSC can be calculated by the sequential structure formula [57].
The four structures of formulas are given in Table 1.

Table 1. QoS aggregation formula for four basic structure.

Attributes Sequence Parallel Selective Loop
Time TT=3L, T(MCSi)  TT=Max{T(MCS))} TT=Xi., T(MCSi)xai TT=kx}%iL, T(MCS))
Cost TC=XiL, C(MCSi) TC=XIL,CMCS)) TC=xiL, C(MCSi)xai TC=kx¥iL; T(MCS:)

Reliability ~ TR=[[PR(MCS)  TR=Min{R(MCS)} TR=Y™,R(MCS)xa; TR=[]"R(MCS)
Availability ~ TA=[[PA(MCS)  TA=[[PAMCS) TA=S", AMCS)xai TA=[]" A(MCSi)
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* Note: k is the number of cycles for MCSC, n represents the number of MCS of a structure, ai is the
probability that the candidate service is selected.

The purpose of QoS-MCSC is to select the optimal combined path, and the global QoS value of
each MCSC must be taken as the optimization goal. These QoS attributes are categorized into positive
attributes (Q*) and negative attributes (Q~) two types. The optimization of QoS-MCSC tries to achieve
high value positive QoS attributes, such as availability and reliability but low value of negative QoS
attributes, such as time and cost simultaneously. The SAW is employed to convert multiple QoS
attributes into a single value. The values of QoS attributes should be normalized in the same scale [0,
1] through SAW, and then conducts a weighted sum for each scaled QoS for aggregation. SAW-based
QoS value of MCSC can be defined as the following formula:

Q(MCSCy) =
qt€Q”

Qt,max - qt(MCSCm) qt(MCSCm) - Qt,min
X 0y + X Wy 1)

Qt,max - Qt,min Qt,max - Qt,min

qteQt

where Qymax and Qmipindicates the max and min value of the tth QoS attribute respectively, w:is
the weight value of each QoS attribute, Y, wi=1, and they can be determined by the preference of
customers or the CMfg platform.

It is difficult to seek out the global solution for the QoS-MCSC because it has a large solution
space. Taking a complex task with N subtasks and each subtask with M MCSs as an example, the
solution space reaches up to MN. Thus, WOA with adaptive crossover, adaptive weight and Lévy
flight strategies is developed to optimize this challenging problem in this study.

4. The proposed ASWOA for QoS-aware MCSC problem

4.1. Encoding for QoS-aware MCSC

A n-dimension real integer vector X = [x1, x2, ..., Xi, ..., Xx] is used to represent a solution for the
QoS-aware MCSC with n subtasks, where xiis the index of MCS in the CMCSS for subtask i. The value
of xi is bounded to be in the discrete range[1, mi], where miis the number of available MCS for the ith
subtask.

4.2. Whale optimization algorithm

WOA is a swarm intelligence algorithm that mimics whale hunting. Its hunting behavior
includes three foraging behaviors: surround prey, bubble net attack, and hunt prey randomly [12].
The mathematical model characterizing the three imitation operators is discussed in details in the
following subsections.

Surround prey: Humpback whales can identify the location of nearby target prey and assume
the location of the target prey as the best position among the current whales, and then humpback
whales approach the prey by continuously updating their position. WOA presumes that the
generated feasible solutions are ‘whales’ and takes the current best candidate solution or local
optimal solution as ‘best position for prey encircling’. The operator of WOA that simulates the
encircling prey shown as follows:

Xt+)=X,,,(0)-A|C-X,,, ()~ X(1)| ©)

ihest (t)

where - is an element-by-element multiplication, is the current best position of whale in the

|C- Xy (=X (1)

tth iteration, X is the currently selected search whale, denotes the distance

between C X (1) and X(t)
updated by Equation (3) and Equation (4) respectively:

— -
, coefficient vectors A and C are dynamic variables and can be

A=2xdx?—d (3)
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2= 21ty with ‘max  as the maximum of iteration,

where @ will decrease from 2 to 0 according to
I is a random vector in [0, 1]. The introduced random vector ¥ limits the A in the range [-3,d]. And
it is noteworthy that random vector A and C facilitates the whale to update their positions for
optimal solution.

Bubble-net attacking: Humpback whales use bubble nets to push prey to the surface to catch

them. The spiral bubble net attacking process formulas is as follows:
X+ 9 X,,, ) -X(1)]." cos2rl)+ X,,,,, (1)

where b is used to characterizing the logarithmic spiral shape, I is a random number in [0, 1].

Hunt prey randomly: humpbacks randomly select a whale position and swim towards the
position to explore new target prey while searching for prey. WOA simulates the process for global
search using the following formula:

X(t+1)= X,y ()= & C- X,y )= X ()|

rand

where Xrand s the randomly selected whale position.

The selection of the three operators is determined by a random switch control parameter p in
[0,1] and the vector A is to determine the hunting method of the whale. We assume that the whale
have a 50% probability to select bubble-net attacking for their position updating during solution
exploitation, and the probability for the selection of operator search for prey or encircling prey is

further determined by the adaptive variation of the vector 4. The mathematical model for the
operator selection can be defined as follows:

Xyt 1) = A | C- Xt ()= X (1) ], if p<0O.5and |A|<1
Xt+)=1X@t+)=X,,,(O)—A|C-X,,,(6)-X@®].if p<0.5and |A[>1
| X post (1) — X (1) ] " cOs2l) + X 5, (D), if p=0.5

WOA takesA as a switch for the transition between exploration ( A |21) and exploitation
( Al ). However, exploration probability will gradually decrease as the number of iterations
increases because Al decreases as a whole according to its definition given in Equation (3) , which
will lead it to be trapped into local optimal [23].

4.3. WOA enhanced by Lévy flight

WOA renews the position of each individual according to another randomly selected individual
in a small range in the standard WOA based on Equation (6) in the exploration phase for the prey,
which limits the exploration space. Introducing the random walk mechanism of Lévy flight [59] in
Equation (6) to update position with occasionally long-distance leaps can expand the search scope
and strengthen global search capability. The global search expression enhanced by Lévy flight used
to update positions of humpback whales can be described as follows:

X@t+)=X,,, @) +ay| X, (0)— X ()| -sign[rand - %] @ Levy(s)

sign[rand — l]
where 2" is a symbolic function with three options: -1, 0, or 1. & is a step parameter for

| X g =X (1)

characterize the non-Gaussian random process, and the distribution can be expressed as the
following formula:

distance and is set to 0.05 in this study. Levy(s) is the Lévy distribution to

doi:10.20944/preprints202310.1663.v1
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Lévy(s)~|s|"*F, 0<p<2 )

the parameter s and f is the step length of Lévy flight and index respectively. The s can be defined
by two normal distributions according to Manteca’s algorithm with the following formula:
s=-", u~N(0,02),v~N(0,02) (10)
vl

where £ is set to 1.5 in this study, g,=1 and.

_ { T+ B) - sin(zB/2) }% (11)
I B -T[(1+pB)/26-1/2]

4.4. Improved WOA enhanced by adaptive crossover strategies

The decrease of Al in Equation (7) as the number of iterations increases is not conducive to
global search at the later iteration stage, which makes standard WOA not easy to escape the local
optimum for global optimal solution exploration. The adaptive crossover with three position
adjustment strategies is embedded in WOA. Most whales update their positions based on adaptive
parameters, which can improve the position diversity of whale population at the later stage. The
adaptive crossover strategies can increase information sharing among whale populations, and
strength the capability of the global search in the later stage.

The three crossover strategies adopted to enhance WOA adaptively are suitable for real integer
representation, thus they can operate the whale position vector denoting the feasible solution of
standard WOA given in Section 4.1 directly. The three crossover strategies include the multipoint
crossover with one intersection point (MCOIP), the multipoint crossover with two intersection points
(MCTIP), and the single point crossover (SPC).

For MCOIP, one intersection point is generated randomly for two search whale position vectors
P: and P, the components behind the intersection point on P: will be exchanged with the
corresponding components on P2. While MCTIP will generate two intersection points randomly for
P1 and P: and the components between the two intersection points on P: will be exchanged with the
corresponding components on P2; whereas SPC only exchanges components on the intersection point
for P1 and P2. MCOIP and MCOIP exchange many components for the two select search whales, which
means changing candidate service for more subtasks, thus it is more suitable for preventing the whale
population to become two similar at the later iteration stage. SPC exchanges only one component for
the selected search whale with a small disturbance for each individual, thus it is more suitable for
whales with quite diverse positions at the early iteration stage. Therefore, a switch control parameter
Ap is designed to guide the algorithm to select the proper crossover strategy adaptively. The adaptive
parameter Pt can be formulated as follows:

Ap — e—(maxiter—t)/maxiter (12)

where t denotes the current number of iterations, maxiter is the maximum number of iterations, and
the value of Ap is in the range [e™?,1]. The selection of crossover strategy (Cs) based on the adaptive
Ap is defined by the following formula:

SPC, Ap <0.5,
Cs ={MCOIP, Ap > 0.5,rand > 0.5 (13)
MCTIP, Ap > 0.5,rand < 0.5

When the the value of Ap is small while the value of Al is large at the early stage of iteration,
so ASWOA is more inclined to conduct global search by Equation (6), and the SPC has the high
priority to updating whale positions. ASWOA tends to conduct local search using Equation (2) and
Equation (5), whereas Ap will increase and guide algorithm to select strategy MCOIP or MCTIP for
exploration. The randomly generated number between (0, 1) for the selection of MCOIP or MCTIP is
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designed to further improve the randomness and diversity of whales. Different crossover strategies
are shown in Figure 2 below.

intersection intersection
chromosome1 ‘a|b‘c|d|e|f|g‘h|i|j‘ chromosomel ‘a|b|c‘d|e‘f|g‘h|i‘j‘
chromosome2 ‘k|l‘m|”|0|17|‘l‘r|5|t‘ chromosome2 ‘k|l|m‘"|0‘P|fI"‘|S‘f‘

¢ after intersection iafter intersection
chromosomel' ‘a|b‘0|d|€|P|lI‘r|S|t‘ chromosomel' ‘a|b|ﬂ‘d|€‘l7|4"’|i‘j‘
chromosome2’ ‘k|l‘m|”|0|f|g‘h|i|j‘ chromosome2’ ‘k|l|m‘”|0‘f|g‘h|5‘f‘

(a) crossover strategy1 (b) crossover strategy?2

intersection
chromosomel ‘a‘b|c‘d|e‘f|g‘h|i‘j‘ Mutations
chromosome2 | £] ([ m[ o p]a]r[s] 1] ¢ 1 [afeelafelrleln]]/]

. . after Mutations
after intersection

chvomosomer’ [ [[c[ae[pla[#]i[s] ~ tromosomer [a]e]c]afefeleln] ]/]
chromosome2' ‘k‘1|’”"’|"‘f|q"’|s‘t‘
(c) crossover strategy3 (d) mutation

Figure 2. Adaptive crossover strategies.

4.5. Improved WOA enhanced by adaptive weight strategies

The adaptive weight strategy is applied to preserve the population diversity [14]. At the same
time, the adaptive weight strategy can also strengthen the local search ability of WOA [60]. Therefore,
based on the above idea, this paper uses an adaptive weight strategy to increase the hunting range of
the exploitation phase. The adaptive weight strategy w is given by:

e maxlte.r3 —t3 (18)
maxiter3
where maxiter is the maximum number of iterations of the algorithm. t is the iteration number of the
current population. The value of w is in the range [0, 1], and the value of w will linearly decrease
from 1 to 0. In the exploitation phase of WOA, the adaptive weight strategy is used to accelerate the
speed of whales approaching the prey, so as to enhance the exploitation ability of the algorithm. In
addition, the adaptive weights can also accelerate the convergence speed. According to the Equation

(2) , WOA uses the following formula to update the position:
X(t+1) = Xpese () = w. A.|C. Xpese (£) — X(0)] (15)

4.6. Proposed ASWOA

The Lévy flight strategy is introduced to expand the search space and increase the exploration
ability for global search. The adaptive crossover is applied to balance the exploration and exploitation
of WOA. At the same time, it enhances the ability of WOA to jump out of local optima in late iterations.
The adaptive weight strategy is developed to expand the hunting range of the whale bubble net. The
pseudo code of the ASWOA is given in Algorithm 1. The formula and notations in Algorithm 1 can
refer to the above sections.

Algorithm 1: WOA enhanced with adaptive crossover and Lévy flight

1: Initial population Xi(i=1, 2, ..., n), initialize crossover probability p., flag=0
2: Calculate the fitness of all individuals according to Equation (1)

3: Store the best solution as Xeest

4: while (f < tma)
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5: for each search whale Xi in population
6: Updatea, C, A, p
7 ifl (p <0.5)
8: if2 (1Al <1)
9: // WOA enhanced by adaptive weight (Presented in Section 4.5)
10: Update Xi by Equation (15)
11: else if2
12: // WOA enhanced by Lévy flight (Presented in Section 4.3)
13: Update Xiby Equation (8)
14: end if2
15: else ifl (p >=0.5)
16: // Bubble-net attacking (Presented in Section 4.2)
17: Update Xi by Equation (5)
18: end ifl
19: end for
20: flag=flag+1
21: // Adaptive crossover phase (Presented in Section 4.4)
22: ifl flag> population size/2 and rand > p.
23: Update adaptive parameters Ap by Equation (12)
24: for /= 1: population size; i=i+2
25: if2 Ap>0.5
26: if3 rand > 0.5
27: Conduct the MCOIP to update Xi and Xin
28: else if3
29: Conduct the MCTIP to update Xi and Xin
30: end if3
31: else if2
32: Conduct the SCP to update Xi and Xiu
33: end if2
34: end for
35: flag=0
36: endifl

37:  Amend the updated positions that go beyond the search space
38:  Calculate the fitness of all individuals according to Equation (1)
39:  Update Xues if there is a better solution

40: t=t+1

41: end while

42: output Xeest

5. Experiment results

The solution searching ability of the proposed ASWOA in QoS-aware MCSC problem:s is verified
in a virtual application and is compared with the four cutting-edge algorithms WOA [12], AIWPSO
[14], NOBLDE [15], and TLBO [16] for QoS-aware MCSC problems in this section. AIWPSO [14] is
modified from standard PSO, in which adaptive weight parameters and a mutation threshold have
been introduced to increase the diversity of the population. NOBLDE [15], as an improved DE,
utilizes the neighborhood mutation operator and opposition-based learning to improve the
exploration capability. TLBO [16] is a swarm intelligence algorithm that simulates the traditional
classroom teaching process including teacher stage and a learner stage. The parameter settings of the
proposed ASWOA and the four comparative algorithms are presented in Table 2, in which WOA [12],
AIWPSO [14], NOBLDE [15], and TLBO [16] follow the original setting in the refereed articles. For all
the approaches, the population size is 30, the maximum iterations is 1000. The experiments are
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implemented on a PC with operating system MAC(64 bit), CPU Intel i7-6500U 2.50GHz, RAM 16GB

RAM, and MATLAB R2017a.
Table 2. Parameter settings.
Algorithm Parameter Value
WOA switch control parameter p1 random number 0 to 1
acceleration factors c1 1.494
AIWPSO acceleration factors c2 1.494
inertia weight aw related with the fitness values
mutation factor F 0.4
NOBLDE cross factor CR 0.9
opposition-based learning rate J[r 0.3
switch control p2 random number 0 to 1
ASWOA switch probability .Ap exponential increase from e to 1
crossover probability pc 0.2
adaptive weight w Relate with iteration

Four QoS attributes, including time, cost, reliability, and availability, for each MCSC are
considered. And the values of the four attributes are randomly generated in the interval [0.7, 0.95]. It
is assumed customers care more about time and cost and the weights of the difference QoS attributes
are set as wuime=0.35, Weost=0.35, wWreliabiliy=0.15, and wavaitavitity =0.15 according to the preference of
customers. And the MCS correlation is 40%.

In this section, 16 experiments with different service scales were designed. The subtask sizes are
20, 30, 40 and 50 respectively. The candidate service sizes of each subtask are 50, 100, 150 and 200
respectively. For example, T-50-100 indicates that the subtask scale is 30 and the candidate service
scale is 100.

The results of WOA, AIWPSO, NOBLDE, and ASWOA on 16 test problems are given in Table 3.
Please note that ‘Mean’, ‘Std’, and ‘Best’ indicate the average results, corresponding standard
deviation, and best result of 30 executions with the best solution as its output in each run. It can be
found that the ASWOA outperforms other compared algorithms for all the test problems according
to the average QoS fitness values. Meanwhile, ASWOA obtains the best solutions in all cases based
on the best QoS fitness values. It can be found that ASWOA has better robustness with lower “Std’
than WOA, AIWPSO, NOBLDE, and TLBO, except for T-20-100, T-20-150, T-20-200, T-30-50, T-30-200,
T-50-50, and T-50-100. The present ASWOA can hence robustly provide very good exploration not
only for small scale QoS-aware problems but also large scale problems, thus it can be taken as an
effective optimizer for the QoS-aware MCSC problem with different scales.

Table 3. Results of WOA, AIWPSO, NOBLDE, TLBO, and ASWOA on 16 test problems.

Problems Index WOA AIWPSO NOBLDE TLBO ASWOA

Mean 0.5041 0.4550 0.4616 0.5582 0.5663

T-20-50 Std 0.0108 0.0074 0.0031 0.0107 0.0017
Best 0.5129 0.4696 0.4646 0.5663 0.5684

Mean 0.4932 0.4540 0.4648 0.4693 0.5823

T-20-100 Std 0.0085 0.0086 0.0070 0.0044 0.0142
Best 0.5023 0.4660 0.4736 0.4754 0.5949

Mean 0.4966 0.4523 0.4592 0.4696 0.5713

T-20-150 Std 0.0021 0.0038 0.0025 0.0048 0.0124
Best 0.4995 0.4570 0.4610 0.4757 0.5851

Mean 0.4939 0.4580 0.4696 0.5069 0.5758

T-20-200 Std 0.0065 0.0075 0.0055 0.0129 0.0121

Best 0.5003 0.4639 0.4773 0.5169 0.5878
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Mean 0.4899 0.4216 0.4328 0.5129 0.5442

T-30-50 Std 0.0085 0.0057 0.0086 0.0126 0.0046
Best 0.5167 0.4240 0.4449 0.5242 0.5507

Mean 0.4731 0.4218 0.4319 0.4720 0.5521

T-30-100 Std 0.0041 0.0048 0.0071 0.0301 0.0038
Best 0.4867 0.4384 0.4406 0.5173 0.5686

Mean 0.4664 0.4247 0.4269 0.4905 0.5492

T-30-150 Std 0.0090 0.0068 0.0024 0.0109 0.0019
Best 0.4769 0.4382 0.4394 0.5135 0.5543

Mean 0.4581 0.4310 0.4301 0.4805 0.5389

T-30-200 Std 0.0063 0.0023 0.0042 0.0084 0.0065
Best 0.4666 0.4342 0.4459 0.5020 0.5476

Mean 0.4573 0.4125 0.4129 0.4552 0.5318

T-40-50 Std 0.0091 0.0038 0.0074 0.0097 0.0031
Best 0.4676 0.4131 0.4228 0.4636 0.5562

Mean 0.4498 0.4033 0.4102 0.5064 0.5255

T-40-100 Std 0.0059 0.0026 0.0030 0.0042 0.0019
Best 0.4572 0.4264 0.4240 0.5197 0.5391

Mean 0.4525 0.4110 0.4116 0.4888 0.5275

T-40-150 Std 0.0096 0.0023 0.0014 0.0053 0.0010
Best 0.4729 0.4228 0.4235 0.5035 0.5389

Mean 0.4569 0.4097 0.4169 0.4693 0.5336

T-40-200 Std 0.0139 0.0041 0.0086 0.0123 0.0015
Best 0.4766 0.4155 0.4376 0.4833 0.5454

Mean 0.4642 0.3929 0.3962 0.4322 0.5086

T-50-50 Std 0.0127 0.0051 0.0041 0.0132 0.0062
Best 0.4774 0.0042 0.4121 0.4470 0.5137

Mean 0.4525 0.3959 0.4013 0.4933 0.5174

T-50-100 Std 0.0047 0.0031 0.0016 0.0098 0.0116
Best 0.4580 0.3995 0.4126 0.5156 0.5308

Mean 0.4340 0.3989 0.4057 0.4577 0.5095

T-50-150 Std 0.0070 0.0036 0.0035 0.0115 0.0016
Best 0.4534 0.4037 0.4104 0.4766 0.5109

Mean 0.4363 0.4003 0.4011 0.4640 0.5141

T-50-200 Std 0.0096 0.0075 0.0092 0.0336 0.0066

Best 0.4534 0.4137 0.4179 0.5103 0.5204
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Figure 3. QoS-MCSC experiment result.

The convergence curves of the different scale QoS-MCSC problems have shown in Figure 3. It
can be seen that the average value of ASWOA is better than WOA, TLBO, AIPSO, and NOBLDE in
Table 3. Meanwhile, The global optimal QoS value obtained by the ASWOA is also better than other
compared algorithms.

According to the experimental results, The ASWOA uses adaptive crossover strategies and Lévy
to enhance ASWOA global search capability. The ASWOA uses the Pt parameters to control crossover
frequency to ensure the efficiency of the algorithm and uses the adaptive weight to expand the local
search range. Through the above optimization, ASWOA has better convergence accuracy than WOA
regardless of the convergence speed.

The execution time of the algorithm is shown in Table 4. It can be seen that the solution time of
ASWOA is longer than the WOA. This is because ASWOA strengthens the later global search
capability through crossover-mutation while reducing the operation efficiency. But compared with
product design, simulation, processing, transportation, and testing, these links can be ignored.
Finding a better solution under the condition of slightly increasing the calculation time has higher
cost performance for enterprises.

Table 4. Algorithm average time (s).

Problems WOA AIWPSO NOBLDE TLBO ASWOA

QoS_20_200 0.1726 0.6208 0.1618 0.3735 0.2714
Qo5_30_200 0.2287 0.9159 0.2037 0.72456 0.6029
Qo5_40_200 0.2705 1.1985 0.2921 0.6529 0.4575
Qo5_50_200 0.4823 1.4607 0.3482 0.7426 1.7334

The execution time of the algorithm is shown in Table 4. It can be seen that the solution time of
ASWOA is longer than the WOA. This is because ASWOA strengthens the later global search
capability through crossover-mutation while reducing the operation efficiency. But compared with
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product design, simulation, processing, transportation, and testing, these links can be ignored.
Finding a better solution under the condition of slightly increasing the calculation time has higher
cost performance for enterprises.

In summary, the ASWOA can effectively balance local search and global search.The advanced
exploration of ASWOA is due to the Pt controlling the crossover strategy. The algorithm can select
different crossover strategies according to Pt. At the same time, it not only strengthen the global
search ability but also preserve the population diversity, which can avoid the algorithm dropping
into a local optimization. Lévy distribution is applied to improve the exploration ability through
expanding search space. The Adaptive weight is developed to expand the local search range. The
experimental outcome shows that ASWOA has good performance in solving large-scale QoS-MCSC
problems.

6. Conclusions

In order to resolve the QoS-MCSC problems as one of the key issue in CMfg, the ASWOA has
proposed. In this paper, the adaptive crossover, adaptive weight, and Lévy flight strategies were
introduced to better balance global search and local search for QoS-MCSC problems. In the proposed
method, the global exploration is improved by Levy Flight, which can expand the search space of the
whale. The adaptive crossover are used to strength the exploitation ability, which can preserve the
diversity of the population. At the same time, the adaptive weight is used to enhance the exploitation
ability in the bubble net stage. The ASWOA is compared with other frontier algorithms in QoS-MCSC
problems to verify the performance of ASWOA. The tested results have illustrated that the ASWOA
outperforms the compared cutting-edge algorithms.

Even so, there is still a limitation in execution time when solving the QoS-MCSC problem. In the
future, the other versions of ASWOA are going to be developed to solve this problem by combining
reinforcement learning.
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