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Abstract: Cloud Manufacturing (CMfg) has attracted lots of attention from scholars and practitioners. The 
purpose of quality of service (QoS)-aware manufacturing cloud service composition (MCSC), as one of the key 
issues in CMfg, is to combine different available manufacturing cloud services(MCSs) to generate an optimized 
MCSC that can meet diverse requirements of customers. However, many available MCS, deployed in the CMfg 
platform, have  same function but different QoS attributes. It is a great challenge to achieve optimal MCSC 
with high QoS. In order to obtain better optimization results efficiently for the QoS-MCSC problems, a whale 
optimization algorithm(WOA) with adaptive weight, Lévy flight, and adaptive crossover  strategies (ASWOA) 
is proposed. In the proposed ASWOA, the adaptive crossover inspired by the genetic algorithm is developed 
to balance the exploration and exploitation. The Lévy flight is designed to expand the search space of WOA 
and accelerate the convergence of WOA with adaptive crossover. The adaptive weight is developed to extend 
the search scale of the exploitation. Simulation and comparison experiments are conducted on different scale 
QoS-MCSC problems. The experimental results demonstrate that the proposed ASWOA outperforms other 
compared cutting-edge algorithms. 

Keywords: cloud manufacturing; quality of service; manufacturing cloud service composition; whale 
optimization algorithm; Lévy flight; adaptive crossover; adaptive weight  

 

1. Introduction 

Cloud manufacturing (CMfg) is an advanced service-oriented manufacturing model that uses 
different advanced internet technologies to integrate different virtualized manufacturing resources 
services [1, 2]. The topic has attracted lots of attention from scholars and practitioners. In CMfg, 
various lifecycle-oriented manufacturing resources and capabilities, including the hard and software 
capabilities for product design, production, simulation, transportation, and so on, are virtualized and 
encapsulated into CMfg platform [3]. The characteristics of each MCS contain two categories 
including functional and non-functional attributes [4]. The non-functional attributes are generally 
called as QoS. The deployed MCSs in the CMfg platform facilitate customers to select proper MCSs 
according to their requirements and QoS to complete manufacturing tasks [5]. In detail, a complex 
manufacturing task can be split into different subtasks, which can be completed by selecting an MCS 
from the candidate manufacturing cloud service set (CMCSS) deployed in the CMfg platform, the 
selected MCSs are integrated to form a manufacturing cloud service composition (MCSC). 

Large amounts of MCSs deployed in the CMfg platform with a rapid increase trend bring great 
challenges to select optimal MCSs. Numerous available candidate MCSs provide the same or 
analogous functions but have different QoS attributes, such as time, product performance, 
manufacturing capacity and so on. It is difficult to optimize some QoS attributes at the same time 
because one attribute may conflict with another. For example, a MCS may have a longer execution 
time but worse manufacturing capacity whereas another MCS may have a shorter execution time but 
better manufacturing capacity [5]. Meanwhile, we also have to consider the issue of service 
correlations in the composition process that can influence the global QoS of the MCSC [6]. The above 
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particular problems of CMfg improve the difficulty of selecting MCSs to be composed of MCSC and 
is still a arduous task that attacked many researchers [7].  

The problem of QoS-MCSC is that each subtask of a cloud task select the suitable MCS to 
aggregate them in sequence to generate an MCSC. The MCSC can meet both functional requirements 
and optimal QoS of customers. Finding the optimal composite path from the feasible solutions 
distributed in a discrete space for QoS-MCSC is known as an NP-Hard problem. Various intelligent 
optimization algorithms have been developed to explore the optimal composite path for this problem, 
such as genetic algorithm (GA) [8], differential evolution algorithm (DE) [9], particle swarm 
optimization (PSO) [10], artificial bee colony algorithm (ABC) [11] and whale optimization algorithm 
(WOA) [12]. Khanouchea et al. [13] constructed a clustering-based search tree to improve global 
search capability for the problem QoS-MCSC. Li et al. [14] proposed an hybrid PSO (AIWPSO) that 
utiliz adaptive inertia weights to enchance global search capabilities. Deng et al. [15] developed a 
hybrid DE with neighborhood mutation operators and opposition-based learning (NOBLDE). 
Savsani et al. [16] developed a teaching and learning (TLBO) for non-linear large scale problems. 
When solving the QoS-MCSC problem, there may be multiple local optimal solutions in the search 
space, and the above-mentioned approaches are easily trapped in local optimal solutions owing to 
their randomization or stochastic strategies. Achieving global optimal solutions is still a great 
challenge. 

WOA, as a popular bionic algorithm, is proposed by Mirjalili [12]. The principle of the WOA is 
to simulate the behavior of humpback whales in hunting prey, including encircling prey, bubble-net 
attacking, and searching for prey. Recently, WOA has aroused the interests of many researchers and 
practitioners, and it has been employed or modified to handle diversified practical engineering 
problems, such as multilevel threshold image segmentation [17], permutation flow shop scheduling 
[18], microgrid operations planning [19], and so on. Experimental tests demonstrate that WOA can 
achieve competitive or better results compared to other heuristic algorithms. For instance, WOA 
outperforms the DE and grey wolf optimization (GWO) while solving the reactive power planning 
problems [20]. However, one disadvantage of WOA is that it may easily drap into local optimization 
in the later iteration, especially when the number of evolution times exceeds 600 [21]. The reason is 
that the probability related to exploration attenuates along with the iterations and the exploration 
ability of WOA for global optimal solution gradually decreases, while the exploitation ability 
gradually increases. Some existing algorithms also does not have a strong exploration ability in the 
later iteration, which might lead the approach to be trapped in the local optimal solution. Generally 
speaking, the stronger the exploration ability of algorithms, the superior the solution accuracy, 
especially for the NP-Hard problems. 

Lévy flight is a type of generalized random walk algorithm that imitates the trajectory of 
biological activity [22], and the direction of each step is completely random. Random direction search 
facilitates the exploration of the global optimal solution but is not conducive to algorithm 
convergence. Therefore, Lévy flight has always been integrated into other intelligent algorithms to 
improve the global search capability. For example, Liu et al. [23] advances a hybrid approach by 
combining quantum particle swarm optimization with Lévy flight and straight flight strategy to solve 
engineering design optimization problems. Zhou et al. [24] utilized Lévy flight to enhance the global 
optimization capability of ABC for the MCSC problem. Thus, Lévy flight is employed in WOA to 
enlarge the search space and increase the exploration capability. 

Crossover is one of the essential operators used to preserve the population diversity of GA. 
Tradition crossover tries to alter a few parts of genes for each individual that is different from WOA 
which changes all the whale positions at the same time. This mechanism hinders the fast convergence 
of GA and causes the algorithm to easily fall into local optimal solution because traditional crossover 
is more inclined to generate similar individuals at the later iteration [25]. Some studies reported that 
WOA outperforms GA with traditional crossover when solving MCSC problems [26]. Thus, different 
adaptive crossover strategies have been developed to balance the exploration and exploitation ability. 
More competitive results have been achieved, such as an adaptive genetic algorithm for environment 
monitoring data acquisition [27], a genetic algorithm adaptive homogeneous approach for 
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identifying wall cracks problems [28], adaptive dimensionality reduction GA for high-dimensional 
large-scale problems [29] and so on. Inspired by these ideas, an adaptive crossover strategy is 
employed to balance the exploration and exploitation of WOA. 

Adaptive weighting strategies are often developed to preserve population diversity and increase 
the search space of algorithms. In the exploitation of the standard WOA, whales can only surround 
prey in a small area, which causes whales to easily fall into local optimal solutions[21]. Recently, more 
and more scholars use adaptive weights to optimize algorithms. For example, Li et al. [14] introducted 
an AIWPSO, which has excellent global search capabilities. In order to classify underwater sonar 
images, Wang et al. [30] introducted a new novel deep learning model that combine with adaptive 
weights convolutional neural network (AW-CNN). Cao et al. [31] introducted an image classification 
algorithm based on adaptive feature weight for the low classification accuracy of the single-feature 
and multifeatured fusion. Inspired by these algorithms, the adaptive weight strategy is developed to 
extend the search scale of the exploitation phase. 

The approach developed in this research that it uses WOA, adaptive crossover, adaptive weight, 
and Lévy flight strategies to improve the exploration and exploitation abilities cost-effectively. WOA 
performs well in exploitation with high convergence speed [21]. The crossover strategies of GA has 
been widely adopted for population diversification preservation in real and integer coded 
optimization problems. Then, adaptive crossover with three crossover strategies and single point 
mutation is utilized to enhance the algorithm performance and accelerate the convergence of WOA. 
While Lévy flight is designed to enhance the exploration of WOA by expand the search space. Finally, 
an adaptive weight strategy is used to enhance the speed at which the whale approaches the prey. 
This study mainly consists of the following parts: 
1. A novel WOA with adaptive crossover, adaptive weight and Lévy flight strategy (ASWOA) is 

proposed. 
2. The Lévy flight strategy expands the soultion space and increases the exploration ability for 

global search.  

3. The adaptive crossover balances the exploration and exploitation of WOA at different iterations 
and enhances the WOA to escape local optimal at the later iteration.  

4. The adaptive weights are developed to accelerate the speed of approaching prey. 
5. Simulation and comparison experiments conducted on different scale QoS-MCSC problems, 

which prove the superiority of the proposed ASWOA compared to standard WOA. 
The rest is arranged as follows. The background of QoS-MCSC and the approaches for it are 

summarized in Section 2. The model of QoTS-MCSC was introduces based on aggregation formulas 
in Section 3. Section 4 presents the proposed ASWOA and related techniques, including WOA, 
adaptive crossover, Lévy flight, and so on. Section 5 gives simulation and comparison experiments. 
Finally, Section 6 gives a summary and the future research direction.  

2. Related work 

CMfg is a popular research topic, relevant scholars have carried out a lot of researches on CMfg 
service modeling and description [32], cloud architecture design [33], cloud service standard [34], 
and so on. In our previous study, a correlation-aware MCSC model was proposed. This model can 
describe the QoS dependency between different services [6]. 

In recent years, cloud computing and big data advanced by leaps and bounds, and many 
manufacturing resources have been virtualized and encapsulated to be provided in the network 
platform, thereby leading to a rapidly and constantly expanding CMfg system. As the amount of 
MCS increases, how to select appropriate MCS efficiently to accomplish the functional requirements 
of corresponding manufacturing tasks and how to integrate these MCS into an MCSC with optimal 
QoS is the promising research issue [35]. Many novel approaches have been developed to handle the 
problem of optimal selection of MCSC. There are three main methods to solve MCSC, including 
salarization-based, Pareto-based and other approaches. 

The MCSC problem is considered a multi-objective problem (MOP) [36]. The scalarization 
method can convert a MOP into a single-objective problem(SOP). At present, There are two 
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scalarization methods: the fraction-based fitness technique and the simple additive weighting (SAW) 
technique [37]. Based on fraction, Canfora et al. [36] utilized GA to settle the MCSC problem. Based 
on SAW, Zhou [38] proposed a hybrid TLBO for the MCSC problem. Mardukhi et al. [39] proposed a 
new model, which can decompose global constraints into multiple local constraints. SKG A et al. [40] 
have combined the WOA with the eagle strategy for QoS-MCSC problem Yue et al. [41] developed a 
hybrid GA based on population diversity and relational matrix coding.  

In addition to the declarative meta-heuristic algorithm mentioned above, non heuristic 
algorithms and heuristic algorithms are also used for MCSC problems. Liu et al. [42] proposed an 
adaptive MCSC based on deep reinforcement learning. Jiang et al. [43] introduced a top k query 
mechanism and proposed an Key-Path-Based Loose (KPL) algorithm. But, meta-heuristic algorithms 
have the most competitive performance for MCSC problems [44]. 

Pareto is used to solve MOP problems and is to use multi-objective optimization and optimize 
multiple parameters of QoS at the same time to acquire the Pareto optimal explanation [45]. 
Generally, there are some famous MOP methods. For example, Wahild et al. [46] utilized the Strength 
Pareto Evolutionary Algorithm (SPEA-II) to solve the MOP problem. While Deb et al. [47] utilized 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) for the MOP problem. Feng et al. [48] 
proposed a new algorithm for MOP based on the combination of the idea of the Pareto solution, 
which was developed to address the SCOS problem. Rudziński et al. [49] presented an application of 
generalized Strength Pareto Evolutionary Algorithm (SPEA) with an original multi-objective 
optimization technique in the logistic facilities location problem. The proposed approach with 
purpose of seeking out a set of high spread and well-balanced distribution solutions in a specific 
solution space. Xie et al. [50] introduced a new algorithm that uses the differential evolution mutation 
operator in directional guiding ideology and combines the NSGA-II algorithm to improve the 
solution population distribution. Napoli et al. [51] proposed a trade-off negotiation strategy that can 
process multiple QoS properties at the same time. NK et al. [52] developed Non-dominated Sorting 
GA (NSGA-II) for composition service problem in IoT. Suciu et al. [53] introduced an adaptive 
MOEA/D algorithm for QoS-MCSC problems. 

When multiple objectives need to be optimized, it means that the optimization problem becomes 
more complex, the efficiency of MOEAs will become lower and lower [54]. In the algorithm execution 
stage, due to conflicts between different targets, multiple targets cannot be optimized at the same 
time. It is possible that one goal will be strengthened and another goal will inevitably be weakened. 
At the same time, the calculation amount of the above method based on Pareto optimization is much 
larger than that of the salinization method. Moreover, the above method based on Pareto 
optimization cannot be better to balance the exploration and exploitation. 

Apart from the above two methods, many scholars use other methods to resolve this problem. 
Teixeira et al. [55] introduced a new service-oriented model that can be conducted without necessarily 
implementing the real system. This can accomplish QoS tasks at a lower cost. Ping et al. [56] proposed 
a new vague information decision model that alleviates the bias of existing approaches through the 
improved fuzzy ranking index. Zhang et al. [57] proposed an intuitionistic fuzzy entropy weight BBO 
algorithm for QoS-MCSC problems. Hu et al. [58] introduced a game-theoretic power control 
mechanism based on the hidden markov model (HMM). 

In sum, using the above new model or Pareto to solve the MCSC problem has high 
computational complexity. After increasing the computational complexity, It may not be possible to 
obtain the global optimal QoS. Therefore, this article uses the salinization method to solve the QoS-
MCSC problem. 

3. Problem formulation of QoS-aware MCSC 

The composition of manufacturing service can be divided into task decomposition, service 
discovery, and service optimal selection three stages. This process can be illustrated in Figure 1. 
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Figure 1. Framework of QoS- MCSC model. 

Task decomposition: the complex manufacturing task of the MCSC can be decomposed into 
multiple subtasks as Task = {ST1, ST2, ..., STi, ..., STn}, where STi represents the subtasks i, n is the total 
number of subtasks. 

Service discovery: Each subtask STi has a candidate service set CMCSSi, CMCSSi = {MCSi,1, MCSi,2 
, MCSi,3, ..., MCSi,j..., MCSi,mi}, where MCSi,j represents the jth candidate service that can satisfy the 
functional and QoS constraints of subtask STi, mi represents the total number of MCS for STi.  

Generate composite paths: a single MCS or a composition of multiple MCSs are selected for each 
subtask from CMCSS, and connected as an executable path CMSC. Pj = {MCS1,k1, MCS2,k2, MCS3,k3, MCSi,ki, ..., MCSn,kn} is taken as the j executable path, and MCSi,ki represents the ki candidate service 
of STi. Let P = {P1, P2, ..., Pi, ..., Plpath} representing the executable path space for task T and lpath =∏ mini=1 . QoS-Aware MCSC is to choose an optimal path from P with a high performance of QoS. 

QoS, as the non-functional attribute of MCSC, is used to evaluate the performance of service. 
There are more than twenty QoS metrics in practical applications, and the four widely used QoS 
metrics including time (T), cost (C), reliability (R), and availability (A) are taken to construct the QoS 
evaluation model for MCSs in this study. These four metrics consider the balance of efficiency, 
economy, effectiveness, and stability of service that customers care about most. The QoS metrics of 
each MCS can be represented as Q(MCSi,j) = {T(MCSi,j) , C (MCSi,j) , R(MCSi,j) , A(MCSi,j) } where MCSi,j denotes the jth candidate MCSs for the ith subtask. 

CMCS is composed of sequence, parallel, selective, and circular four types of composite 
structures. But parallel, selective and circular composite structures are not conducive to the QoS value 
calculation. Thus, it is necessary to convert the other three composite structures into a sequence 
structure, and then the QoS value of MCSC can be calculated by the sequential structure formula [57]. 
The four structures of formulas are given in Table 1. 

Table 1. QoS aggregation formula for four basic structure. 

Attributes Sequence  Parallel  Selective  Loop 

Time TT=∑ Tni=1 (MCSi) TT=Max{T(MCSi)} TT=∑ 𝑇ni=1 (MCSi)×αi TT=k×∑ 𝑇ni=1 (MCSi) 
Cost TC=∑ Cni=1 (MCSi) TC=∑ Cni=1 MCSi) TC=∑ Cni=1 (MCSi)×αi TC=k×∑ Tni=1 (MCSi) 

Reliability TR=∏ Rni (MCSi) TR=Min{R(MCSi)} TR=∑ Rni=1 (MCSi)×αi TR=∏ Rni (MCSi) 
Availability TA=∏ Ani (MCSi) TA=∏ Ani (MCSi) TA=∑ Ani=1 (MCSi)×αi TA=∏ Ani (MCSi) 
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* Note: k is the number of cycles for MCSC, n represents the number of MCS of a structure, αi is the 
probability that the candidate service is selected. 

The purpose of QoS-MCSC is to select the optimal combined path, and the global QoS value of 
each MCSC must be taken as the optimization goal. These QoS attributes are categorized into positive 
attributes (Q+) and negative attributes (Q−) two types. The optimization of QoS-MCSC tries to achieve 
high value positive QoS attributes, such as availability and reliability but low value of negative QoS 
attributes, such as time and cost simultaneously. The SAW is employed to convert multiple QoS 
attributes into a single value. The values of QoS attributes should be normalized in the same scale [0, 
1] through SAW, and then conducts a weighted sum for each scaled QoS for aggregation. SAW-based 
QoS value of MCSC can be defined as the following formula: Q(MCSCm) = ∑ Qt,max − qt(MCSCm)Qt,max − Qt,min × ωt + ∑ qt(MCSCm) − Qt,minQt,max − Qt,minqt∈Q+ × ωtqt∈Q−  (1) 

where Qt,max and Qt,minindicates the max and min value of the tth QoS attribute respectively, wt is 
the weight value of each QoS attribute, ∑ ωiti=1 =1, and they can be determined by the preference of 
customers or the CMfg platform. 

It is difficult to seek out the global solution for the QoS-MCSC because it has a large solution 
space. Taking a complex task with N subtasks and each subtask with M MCSs as an example, the 
solution space reaches up to MN. Thus, WOA with adaptive crossover, adaptive weight and Lévy 
flight strategies is developed to optimize this challenging problem in this study. 

4. The proposed ASWOA for QoS-aware MCSC problem 

4.1. Encoding for QoS-aware MCSC 

A n-dimension real integer vector X = [x1, x2, ..., xi, ..., xn] is used to represent a solution for the 
QoS-aware MCSC with n subtasks, where xi is the index of MCS in the CMCSS for subtask i. The value 
of xi is bounded to be in the discrete range[1, mi], where mi is the number of available MCS for the ith 
subtask.  

4.2. Whale optimization algorithm 

WOA is a swarm intelligence algorithm that mimics whale hunting. Its hunting behavior 
includes three foraging behaviors: surround prey, bubble net attack, and hunt prey randomly [12]. 
The mathematical model characterizing the three imitation operators is discussed in details in the 
following subsections. 

Surround prey: Humpback whales can identify the location of nearby target prey and assume 
the location of the target prey as the best position among the current whales, and then humpback 
whales approach the prey by continuously updating their position. WOA presumes that the 
generated feasible solutions are ‘whales’ and takes the current best candidate solution or local 
optimal solution as ‘best position for prey encircling’. The operator of WOA that simulates the 
encircling prey shown as follows: 

( 1) ( ) | ( ) ( ) |best bestX t X t A C X t X t+ = −   −  (2) 

where ∙ is an element-by-element multiplication, ( )bestX t  is the current best position of whale in the 

tth iteration,  X  is the currently selected search whale, | ( ) ( ) |bestC X t X t −   denotes the distance 

between ( )bestC X t   and ( )X t  , coefficient vectors  A⃗⃗   and C⃗   are dynamic variables and can be 
updated by Equation (3) and Equation (4) respectively: 𝐴 = 2 × 𝑎 × 𝑟 − 𝑎   (3) 
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𝐶 = 2 × 𝑟  (4) 

where a⃗  will decrease from 2 to 0 according to max2 2 /t t−  with maxt  as the maximum of iteration, r  is a random vector in [0, 1]. The introduced random vector r  limits the A⃗⃗  in the range [-a⃗ , a⃗ ]. And 
it is noteworthy that random vector A⃗⃗   and C⃗   facilitates the whale to update their positions for 
optimal solution. 

Bubble-net attacking: Humpback whales use bubble nets to push prey to the surface to catch 
them. The spiral bubble net attacking process formulas is as follows: 

( 1) | ( ) ( ) | . cos(2 ) ( )bl
best bestX t X t X t e l X t+ = − +  (5) 

where b is used to characterizing the logarithmic spiral shape, l is a random number in [0, 1]. 
Hunt prey randomly: humpbacks randomly select a whale position and swim towards the 

position to explore new target prey while searching for prey. WOA simulates the process for global 
search using the following formula: 

( 1) ( ) | ( ) ( ) |rand randX t X t A C X t X t+ = −   −  (6) 

where randX  is the randomly selected whale position. 
The selection of the three operators is determined by a random switch control parameter p in 

[0,1] and the vector A⃗⃗  is to determine the hunting method of the whale. We assume that the whale 
have a 50% probability to select bubble-net attacking for their position updating during solution 
exploitation, and the probability for the selection of operator search for prey or encircling prey is 

further determined by the adaptive variation of the vector A  . The mathematical model for the 
operator selection can be defined as follows: 

( ) | ( ) ( ) |,   <0.5 and | | 1

( 1) ( 1) ( ) | ( ) ( ) |,  <0.5 and | | 1

| ( ) ( ) | . cos(2 ) ( ),                      0.5

best best

rand rand

bl
best best

X t A C X t X t if p A

X t X t X t A C X t X t if p A

X t X t e l X t if p

 −   − 
+ = + = −   − 


− + 

 (7) 

WOA takes A   as a switch for the transition between exploration (  | | 1A   ) and exploitation 

(  | | 1A   ). However, exploration probability will gradually decrease as the number of iterations 

increases because  | |A  decreases as a whole according to its definition given in Equation (3) , which 
will lead it to be trapped into local optimal [23].  

4.3. WOA enhanced by Lévy flight 
WOA renews the position of each individual according to another randomly selected individual 

in a small range in the standard WOA based on Equation (6) in the exploration phase for the prey, 
which limits the exploration space. Introducing the random walk mechanism of Lévy flight [59] in 
Equation (6) to update position with occasionally long-distance leaps can expand the search scope 
and strengthen global search capability. The global search expression enhanced by Lévy flight used 
to update positions of humpback whales can be described as follows: 

0

1
( 1) ( ) | ( ) ( ) | [ ] ( )

2
rand randX t X t X t X t sign rand Levy s+ = +  −  −   (8) 

where 
1

[ ]
2

sign rand −
 is a symbolic function with three options: -1, 0, or 1. 0 is a step parameter for 

distance | ( ) ( ) |randX t X t−   and is set to 0.05 in this study. ( )Levy s  is the Lévy distribution to 
characterize the non-Gaussian random process, and the distribution can be expressed as the 
following formula: 
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𝐿é𝑣𝑦(𝑠)~|𝑠|−1−𝛽,   0 < 𝛽 ≤ 2 (9) 

the parameter s and 𝛽 is the step length of Lévy flight and index respectively. The s can be defined 
by two normal distributions according to Manteca’s algorithm with the following formula: 𝐬 = 𝛍|𝛖|𝟏𝛃， 𝜇~𝑁(0, 𝜎𝜇2), 𝜐~𝑁(0, 𝜎𝜐2) (10) 

where 𝛽 is set to 1.5 in this study, 𝜎𝜐=1 and. 

𝜎𝜇 = { 𝒯(1 + 𝛽) ∙ 𝑠𝑖𝑛(𝜋𝛽 2⁄ )𝛽 ∙ 𝒯[(1 + 𝛽) 2(𝛽−1) 2⁄⁄ ]}1𝛽
 (11) 

4.4. Improved WOA enhanced by adaptive crossover strategies 

The decrease of  | |A  in Equation (7) as the number of iterations increases is not conducive to 
global search at the later iteration stage, which makes standard WOA not easy to escape the local 
optimum for global optimal solution exploration. The adaptive crossover with three position 
adjustment strategies is embedded in WOA. Most whales update their positions based on adaptive 
parameters, which can improve the position diversity of whale population at the later stage. The 
adaptive crossover strategies can increase information sharing among whale populations, and 
strength the capability of the global search in the later stage. 

The three crossover strategies adopted to enhance WOA adaptively are suitable for real integer 
representation, thus they can operate the whale position vector denoting the feasible solution of 
standard WOA given in Section 4.1 directly. The three crossover strategies include the multipoint 
crossover with one intersection point (MCOIP), the multipoint crossover with two intersection points 
(MCTIP), and the single point crossover (SPC).  

For MCOIP, one intersection point is generated randomly for two search whale position vectors 
P1 and P2, the components behind the intersection point on P1 will be exchanged with the 
corresponding components on P2. While MCTIP will generate two intersection points randomly for 
P1 and P2 and the components between the two intersection points on P1 will be exchanged with the 
corresponding components on P2; whereas SPC only exchanges components on the intersection point 
for P1 and P2. MCOIP and MCOIP exchange many components for the two select search whales, which 
means changing candidate service for more subtasks, thus it is more suitable for preventing the whale 
population to become two similar at the later iteration stage. SPC exchanges only one component for 
the selected search whale with a small disturbance for each individual, thus it is more suitable for 
whales with quite diverse positions at the early iteration stage. Therefore, a switch control parameter 
Ap is designed to guide the algorithm to select the proper crossover strategy adaptively. The adaptive 
parameter Pt can be formulated as follows: Ap = e−(maxiter−t)/maxiter

 (12) 

where t denotes the current number of iterations, maxiter is the maximum number of iterations, and 
the value of Ap is in the range [e−1,1]. The selection of crossover strategy (Cs) based on the adaptive 
Ap is defined by the following formula: 

𝐶𝑠 = { 𝑆𝑃𝐶,     𝐴𝑝 < 0.5，        𝑀𝐶𝑂𝐼𝑃, 𝐴𝑝 > 0.5, 𝑟𝑎𝑛𝑑 > 0.5𝑀𝐶𝑇𝐼𝑃, 𝐴𝑝 > 0.5, 𝑟𝑎𝑛𝑑 < 0.5 (13) 

When the the value of Ap is small while the value of  | |A  is large at the early stage of iteration, 
so ASWOA is more inclined to conduct global search by Equation (6), and the SPC has the high 
priority to updating whale positions. ASWOA tends to conduct local search using Equation (2) and 
Equation (5), whereas Ap will increase and guide algorithm to select strategy MCOIP or MCTIP for 
exploration. The randomly generated number between (0, 1) for the selection of MCOIP or MCTIP is 
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designed to further improve the randomness and diversity of whales. Different crossover strategies 
are shown in Figure 2 below. 

 

Figure 2. Adaptive crossover strategies. 

4.5. Improved WOA enhanced by adaptive weight strategies 

The adaptive weight strategy is applied to preserve the population diversity [14]. At the same 
time, the adaptive weight strategy can also strengthen the local search ability of WOA [60]. Therefore, 
based on the above idea, this paper uses an adaptive weight strategy to increase the hunting range of 
the exploitation phase. The adaptive weight strategy w is given by: 𝑤 = 𝑚𝑎𝑥𝑖𝑡𝑒𝑟3 − 𝑡3𝑚𝑎𝑥𝑖𝑡𝑒𝑟3  (14) 

where maxiter is the maximum number of iterations of the algorithm. t is the iteration number of the 
current population. The value of w is in the range [0, 1], and the value of w will linearly decrease 
from 1 to 0. In the exploitation phase of WOA, the adaptive weight strategy is used to accelerate the 
speed of whales approaching the prey, so as to enhance the exploitation ability of the algorithm. In 
addition, the adaptive weights can also accelerate the convergence speed. According to the Equation 
(2) , WOA uses the following formula to update the position: 𝑋 (𝑡 + 1) = 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑤. 𝐴 . |𝐶 . 𝑋 𝑏𝑒𝑠𝑡(𝑡) − 𝑋 (𝑡)| (15) 

4.6. Proposed ASWOA 

The Lévy flight strategy is introduced to expand the search space and increase the exploration 
ability for global search. The adaptive crossover is applied to balance the exploration and exploitation 
of WOA. At the same time, it enhances the ability of WOA to jump out of local optima in late iterations. 
The adaptive weight strategy is developed to expand the hunting range of the whale bubble net. The 
pseudo code of the ASWOA is given in Algorithm 1. The formula and notations in Algorithm 1 can 
refer to the above sections. 

Algorithm 1: WOA enhanced with adaptive crossover and Lévy flight 
1:  Initial population Xi (i = 1, 2, ..., n), initialize crossover probability pc, flag=0 

  2:  Calculate the fitness of all individuals according to Equation (1) 
3:  Store the best solution as Xbest 

4:  while (t < tmax) 

a b c d e f g h i j

k l m n o p q r s t

a b c d e p q r s t

k l m n o f g h i j

chromosome1

chromosome2

chromosome1'

chromosome2 '

intersection

after intersection

(a) crossover strategy1 (b) crossover strategy2

a b c d e f g h i j

k l m n o p q r s t

a b c d e p q r i j

k l m n o f g h s t

chromosome1

chromosome2

chromosome1'

chromosome2 '

intersection

after intersection

a b c d e f g h i j

a b c d e z g h i j

chromosome1

chromosome1'

Mutations

after Mutations

a b c d e f g h i j

k l m n o p q r s t

a b c d e p g h i j

k l m n o f q r s t

chromosome1

chromosome2

chromosome1'

chromosome2'

intersection

after intersection

(c) crossover strategy3 (d) mutation
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  5:     for each search whale Xi in population 

  6:       Update a, C, A, p 

7:       if1 (p < 0.5) 
8:          if2 (|A| < 1) 
9:              // WOA enhanced by adaptive weight (Presented in Section 4.5) 

 10:              Update Xi by Equation (15)    

 11:          else if2 

 12:              // WOA enhanced by Lévy flight (Presented in Section 4.3) 
 13:              Update Xi by Equation (8)    

 14:          end if2 

 15:       else if1 (p >= 0.5) 
 16:          // Bubble-net attacking (Presented in Section 4.2) 
 17:          Update Xi by Equation (5)  

 18:       end if1 

 19:     end for 

 20:     flag = flag + 1 

 21:     // Adaptive crossover phase (Presented in Section 4.4) 
 22:     if1 flag> population size/2 and rand > pc 

 23:     Update adaptive parameters Ap by Equation (12)  

 24:       for i= 1: population size; i=i+2 

 25:         if2 Ap > 0.5 

 26:            if3 rand > 0.5 

 27:               Conduct the MCOIP to update Xi and Xi+1  

 28:            else if3  

 29:               Conduct the MCTIP to update Xi and Xi+1 

 30:            end if3 

 31:         else if2  

 32:            Conduct the SCP to update Xi and Xi+1 

 33:         end if2 

 34:       end for 

 35:       flag = 0 

 36:   end if1 

 37:   Amend the updated positions that go beyond the search space  

 38:   Calculate the fitness of all individuals according to Equation (1) 
 39:   Update Xbest if there is a better solution 

 40:   t = t + 1 

 41: end while   

 42: output Xbest 

5. Experiment results 

The solution searching ability of the proposed ASWOA in QoS-aware MCSC problems is verified 
in a virtual application and is compared with the four cutting-edge algorithms WOA [12], AIWPSO 
[14], NOBLDE [15], and TLBO [16] for QoS-aware MCSC problems in this section. AIWPSO [14] is 
modified from standard PSO, in which adaptive weight parameters and a mutation threshold have 
been introduced to increase the diversity of the population. NOBLDE [15], as an improved DE, 
utilizes the neighborhood mutation operator and opposition-based learning to improve the 
exploration capability. TLBO [16] is a swarm intelligence algorithm that simulates the traditional 
classroom teaching process including teacher stage and a learner stage. The parameter settings of the 
proposed ASWOA and the four comparative algorithms are presented in Table 2, in which WOA [12], 
AIWPSO [14], NOBLDE [15], and TLBO [16] follow the original setting in the refereed articles. For all 
the approaches, the population size is 30, the maximum iterations is 1000. The experiments are 
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implemented on a PC with operating system MAC(64 bit), CPU Intel i7-6500U 2.50GHz, RAM 16GB 
RAM, and MATLAB R2017a. 

Table 2. Parameter settings. 

Algorithm Parameter Value 

WOA switch control parameter p1 random number 0 to 1 

AIWPSO 

acceleration factors c1 1.494 

acceleration factors c2 1.494 

inertia weight aw related with the fitness values 

NOBLDE 

mutation factor F 0.4 

cross factor CR 0.9 

opposition-based learning rate Jr 0.3 

ASWOA 

switch control p2 random number 0 to 1 

switch probability Ap exponential increase from e-1 to 1 

crossover probability pc 0.2 

adaptive weight w Relate with iteration 

Four QoS attributes, including time, cost, reliability, and availability, for each MCSC are 
considered. And the values of the four attributes are randomly generated in the interval [0.7, 0.95]. It 
is assumed customers care more about time and cost and the weights of the difference QoS attributes 
are set as wtime=0.35, wcost=0.35, wreliability=0.15, and wavailability =0.15 according to the preference of 
customers. And the MCS correlation is 40%. 

In this section, 16 experiments with different service scales were designed. The subtask sizes are 
20, 30, 40 and 50 respectively. The candidate service sizes of each subtask are 50, 100, 150 and 200 
respectively. For example, T-50-100 indicates that the subtask scale is 30 and the candidate service 
scale is 100. 

The results of WOA, AIWPSO, NOBLDE, and ASWOA on 16 test problems are given in Table 3. 
Please note that ‘Mean’, ‘Std’, and ‘Best’ indicate the average results, corresponding standard 
deviation, and best result of 30 executions with the best solution as its output in each run. It can be 
found that the ASWOA outperforms other compared algorithms for all the test problems according 
to the average QoS fitness values. Meanwhile, ASWOA obtains the best solutions in all cases based 
on the best QoS fitness values. It can be found that ASWOA has better robustness with lower ‘Std’ 
than WOA, AIWPSO, NOBLDE, and TLBO, except for T-20-100, T-20-150, T-20-200, T-30-50, T-30-200, 
T-50-50, and T-50-100. The present ASWOA can hence robustly provide very good exploration not 
only for small scale QoS-aware problems but also large scale problems, thus it can be taken as an 
effective optimizer for the QoS-aware MCSC problem with different scales. 

Table 3. Results of WOA, AIWPSO, NOBLDE, TLBO, and ASWOA on 16 test problems. 

Problems Index WOA AIWPSO NOBLDE TLBO ASWOA 

T-20-50 

Mean 0.5041 0.4550 0.4616 0.5582 0.5663 

Std 0.0108 0.0074 0.0031 0.0107 0.0017 

Best 0.5129 0.4696 0.4646 0.5663 0.5684 

T-20-100 

Mean 0.4932 0.4540 0.4648 0.4693 0.5823 

Std 0.0085 0.0086 0.0070 0.0044 0.0142  

Best 0.5023 0.4660 0.4736 0.4754 0.5949 

T-20-150 

Mean 0.4966 0.4523 0.4592 0.4696 0.5713 

Std 0.0021 0.0038 0.0025 0.0048 0.0124  

Best 0.4995 0.4570 0.4610 0.4757 0.5851 

T-20-200 

Mean 0.4939 0.4580 0.4696 0.5069 0.5758 

Std 0.0065 0.0075 0.0055 0.0129 0.0121 

Best 0.5003 0.4639 0.4773 0.5169 0.5878 
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T-30-50 

Mean 0.4899 0.4216 0.4328 0.5129 0.5442 

Std 0.0085 0.0057 0.0086 0.0126 0.0046 

Best 0.5167 0.4240 0.4449 0.5242 0.5507 

T-30-100 

Mean 0.4731 0.4218 0.4319 0.4720 0.5521 

Std 0.0041 0.0048 0.0071 0.0301 0.0038 

Best 0.4867 0.4384 0.4406 0.5173 0.5686 

T-30-150 

Mean 0.4664 0.4247 0.4269 0.4905 0.5492 

Std 0.0090 0.0068 0.0024 0.0109 0.0019 

Best 0.4769 0.4382 0.4394 0.5135 0.5543 

T-30-200 

Mean 0.4581 0.4310 0.4301 0.4805 0.5389 

Std 0.0063 0.0023 0.0042 0.0084 0.0065 

Best 0.4666 0.4342 0.4459 0.5020 0.5476 

T-40-50 

Mean 0.4573 0.4125 0.4129 0.4552 0.5318 

Std 0.0091  0.0038 0.0074 0.0097 0.0031 

Best 0.4676 0.4131 0.4228 0.4636 0.5562 

T-40-100 

Mean 0.4498 0.4033 0.4102 0.5064 0.5255 

Std 0.0059 0.0026 0.0030 0.0042 0.0019 

Best 0.4572 0.4264 0.4240 0.5197 0.5391 

T-40-150 

Mean 0.4525 0.4110 0.4116 0.4888 0.5275 

Std 0.0096 0.0023 0.0014 0.0053 0.0010 

Best 0.4729 0.4228 0.4235 0.5035 0.5389 

T-40-200 

Mean 0.4569 0.4097 0.4169 0.4693 0.5336 

Std 0.0139 0.0041 0.0086 0.0123 0.0015 

Best 0.4766 0.4155 0.4376 0.4833 0.5454 

T-50-50 

Mean 0.4642 0.3929 0.3962 0.4322 0.5086 

Std 0.0127 0.0051 0.0041 0.0132 0.0062 

Best 0.4774 0.0042 0.4121 0.4470 0.5137 

T-50-100 

Mean 0.4525 0.3959 0.4013 0.4933 0.5174 

Std 0.0047 0.0031 0.0016 0.0098 0.0116 

Best 0.4580 0.3995 0.4126 0.5156 0.5308 

T-50-150 

Mean 0.4340 0.3989 0.4057 0.4577 0.5095 

Std 0.0070 0.0036 0.0035 0.0115 0.0016 

Best 0.4534 0.4037 0.4104 0.4766 0.5109 

T-50-200 

Mean 0.4363 0.4003 0.4011 0.4640 0.5141 

Std 0.0096 0.0075 0.0092 0.0336 0.0066 

Best 0.4534 0.4137 0.4179 0.5103 0.5204 
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Figure 3. QoS-MCSC experiment result. 

The convergence curves of the different scale QoS-MCSC problems have shown in Figure 3. It 
can be seen that the average value of ASWOA is better than WOA, TLBO, AIPSO, and NOBLDE in 
Table 3. Meanwhile, The global optimal QoS value obtained by the ASWOA is also better than other 
compared algorithms. 

According to the experimental results, The ASWOA uses adaptive crossover strategies and Lévy 
to enhance ASWOA global search capability. The ASWOA uses the Pt parameters to control crossover 
frequency to ensure the efficiency of the algorithm and uses the adaptive weight to expand the local 
search range. Through the above optimization, ASWOA has better convergence accuracy than WOA 
regardless of the convergence speed. 

The execution time of the algorithm is shown in Table 4. It can be seen that the solution time of 
ASWOA is longer than the WOA. This is because ASWOA strengthens the later global search 
capability through crossover-mutation while reducing the operation efficiency. But compared with 
product design, simulation, processing, transportation, and testing, these links can be ignored. 
Finding a better solution under the condition of slightly increasing the calculation time has higher 
cost performance for enterprises. 

Table 4. Algorithm average time (s). 

Problems WOA AIWPSO NOBLDE TLBO ASWOA 

QoS_20_200 0.1726 0.6208 0.1618 0.3735 0.2714 

QoS_30_200 0.2287 0.9159 0.2037 0.72456 0.6029 

QoS_40_200 0.2705 1.1985 0.2921 0.6529 0.4575 

QoS_50_200 0.4823 1.4607 0.3482 0.7426 1.7334 

The execution time of the algorithm is shown in Table 4. It can be seen that the solution time of 
ASWOA is longer than the WOA. This is because ASWOA strengthens the later global search 
capability through crossover-mutation while reducing the operation efficiency. But compared with 
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product design, simulation, processing, transportation, and testing, these links can be ignored. 
Finding a better solution under the condition of slightly increasing the calculation time has higher 
cost performance for enterprises. 

In summary, the ASWOA can effectively balance local search and global search.The advanced 
exploration of ASWOA is due to the Pt controlling the crossover strategy. The algorithm can select 
different crossover strategies according to Pt. At the same time, it not only strengthen the global 
search ability but also preserve the population diversity, which  can avoid the algorithm dropping 
into a local optimization. Lévy distribution is applied to improve the exploration ability through 
expanding search space. The Adaptive weight is developed to expand the local search range. The 
experimental outcome shows that ASWOA has good performance in solving large-scale QoS-MCSC 
problems. 

6. Conclusions 

In order to resolve the QoS-MCSC problems as one of the key issue in CMfg, the ASWOA has 
proposed. In this paper, the adaptive crossover, adaptive weight, and Lévy flight strategies were 
introduced to better balance global search and local search for QoS-MCSC problems. In the proposed 
method, the global exploration is improved by Levy Flight, which can expand the search space of the 
whale. The adaptive crossover are used to strength the exploitation ability, which can preserve the 
diversity of the population. At the same time, the adaptive weight is used to enhance the exploitation 
ability in the bubble net stage. The ASWOA is compared with other frontier algorithms in QoS-MCSC 
problems to verify the performance of ASWOA. The tested results have illustrated that the ASWOA 
outperforms the compared cutting-edge algorithms. 

Even so, there is still a limitation in execution time when solving the QoS-MCSC problem. In the 
future, the other versions of ASWOA are going to be developed to solve this problem by combining 
reinforcement learning. 
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