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Abstract: Detecting rotational objects in remote sensing imagery is a significant challenge. These
images typically encompass a broad field of view, featuring diverse and intricate backgrounds, with
ground objects of various sizes densely scattered. As a result, identifying objects of interest within
these images is a daunting task. While the integration of Convolutional Neural Networks (CNN)
and Transformer networks leads to some advancements in rotational object detection, there is still
room for improvement, particularly in enhancing the extraction and utilization of information related
to smaller objects. To address this, our paper presents a multi-scale feature fusion module and a
global feature context aggregation module. Initially, we fuse original, shallow, and deep features to
reduce the loss of shallow feature information, thereby improving the detection performance of small
objects in complex backgrounds. Subsequently, we compute the correlation of contextual information
within feature maps to extract valuable insights. We name the newly proposed model the “Multiscale
Feature Context Aggregation Module” (MFCA). We evaluate our proposed methodology on three
challenging remote sensing datasets: DIOR-R, HRSC, and MAR20. Comprehensive experimental
results show that our approach surpasses baseline models by 2.07% mAP, 1.02% mAP, and 1.98%
mAP on the DIOR-R, HRSC2016, and MAR20 datasets, respectively.

Keywords: small object detection; remote sensing images; context information; multiscale feature fusion

1. Introduction

In the realm of remote sensing imagery, object detection [1-5] plays a crucial role by aiming to
ascertain the presence and precise locations of objects of interest within a given image. Its applications
hold substantial promise across diverse domains, including environmental monitoring, military
applications, national security, transportation, forestry, and the detection of oil and gas activities. These
remote-sensing images are acquired from various sources, such as aerial, satellite, and unmanned
aerial vehicle platforms. However, the complexities inherent in remote sensing imagery, including
intricate backgrounds, arbitrary object orientations, varying object densities, and differences in object
size ratios, pose formidable challenges for small object detection. As opposed to the conventional use of
horizontal bounding boxes, employing rotating bounding boxes can significantly reduce background
overlap and offer a more precise delineation of object boundaries. Consequently, there is a growing
imperative for research in the field of rotating object detection within remote sensing imagery.

In the context of remote sensing images, it’s noteworthy that the same object can exhibit substantial
differences in appearance depending on the background, leading to considerable intra-class variability.
This is particularly pertinent in the case of fine-grained remote sensing images, where distinctions
between object classes are less pronounced. In such scenarios, fully leveraging feature information
becomes critical for achieving effective detection. To address the challenge of object scale variations
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in remote sensing images, multi-level feature pyramid networks are widely employed. Within the
Feature Pyramid Network (FPN) [6] framework, higher-level feature maps contain richer semantic
information but have smaller scales, making them less adept at detecting small objects. In contrast,
lower-level feature maps have larger scales but lack distinctive object representations. To bridge this
gap, FPN adopts a top-down lateral connection structure, facilitating the propagation of semantic
information from higher-level to lower-level features, thereby enabling the detection of objects at
various scales. Consequently, numerous research efforts are dedicated to further improving FPN to
better accommodate the requirements of object detection in remote sensing images.

The DCFPN [7] leverages densely connected multi-path dilated layers to cover objects of various
sizes in remote sensing scenes. This allows for the dense and accurate extraction of multi-scale
information, further enhancing the detection capabilities for objects of varying sizes. The LFPN [8]
considers both low-frequency and high-frequency features, utilizing trainable Laplacian operators to
extract high-frequency object features from Laplacian pathways. Additionally, an attention mechanism
is introduced within the feature pyramid network to accentuate more pronounced multi-scale object
features. SPH-YOLOVS5 [9] incorporates an attention mechanism into FPN, facilitating the acquisition
of semantic information between features to emphasize crucial spatial features while suppressing
redundant ones. Info-FPN [10] introduces a PixelShuffle-based lateral connection module (PSM)
designed to fully retain channel information within the feature pyramid. Simultaneously, to alleviate
confusion resulting from feature misalignment, a feature alignment module (FAM) is proposed. FAM
employs template matching and learns feature offsets during the feature fusion stage to achieve
feature alignment. However, existing FPN-based methods often overlook the shortcomings of the
feature pyramid network structure. In particular, they do not fully leverage the original feature
information and the performance issues introduced by attention mechanisms. These limitations result
in a decreased feature representation capacity, which becomes more apparent when handling objects
with significant scale variations in remote sensing images.

In summary, we identify several issues with current pyramid networks:

¢ Original features play a reinforcing role in fused features, enhancing residual functions and
facilitating stable gradient propagation during backpropagation. However, feature pyramids fail
to fully exploit the most original feature information.

¢ Convolutional neural networks are unable to aggregate information between distant pixels in the
spatial domain, resulting in underutilization of long-range correlated information that adversely
impacts detection results.

In this paper, we present robust solutions to address the aforementioned issues. Leveraging the
RTMDet model as our baseline, we propose a multi-scale feature fusion feature pyramid to maximize
information flow across all layers in the network. Additionally, we design a feature context aggregation
module for fusing spatial context in feature maps, enabling comprehensive learning of inter-feature
relationships. These solutions can be seamlessly integrated into object detectors, enhancing detection
performance without increasing training complexity. In summary, our contributions are as follows:

¢ Within the feature pyramid, we efficiently harness original feature information to process
multi-scale features more effectively. We introduce a multi-scale fusion pyramid network that
connects original features and fused features while shortening the information transmission
paths. This connection extends from large-scale features to fused small-scale features, enabling
the module to optimally utilize features at each stage.

¢ Drawing inspiration from attention mechanisms, we design a global feature context aggregation
module to aggregate feature information within feature maps and weight them adaptively for
each pixel. Through iterative learning of semantic information between features, we fuse useful
global information into local regions, resulting in improved pixel-level attention for objects of
interest.
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* We introduce a novel object detector and conduct extensive experiments on three challenging
datasets: the DIOR-R dataset, the HRSC2016 dataset, and the MAR20 dataset confirming the
effectiveness of our approach. Experimental results demonstrate outstanding performance.

2. Releated Work

2.1. Object Detection in General Scenarios

Computer vision technology has witnessed rapid development over the past decade, and the
continuous iteration of large-scale annotated datasets has further propelled advancements in object
detection tasks. These methods can be broadly categorized into two major groups: those based on
convolutional neural networks and those leveraging attention mechanisms. Within CNN models, we
have one-stage detection models (such as SSD [11], RetinaNet [12], RZANet [13], YOLO series [9,14-17],
RTMDet [18], etc.) and two-stage models (R-CNN [19], Fast R-CNN [20], Faster R-CNN [21],
R-FCN [22], etc.). These models have achieved commendable results; however, models based on
CNN s can render very small objects undetectable due to downsampling during the process. To address
the issue of detecting small objects, FPN and their variants [23,24] were introduced, which improved
small object detection. Nonetheless, this introduced new challenges, including increased computational
complexity, the need for parameter adjustments in FPN, and the introduction of cross-level connections
that may lead to incomplete feature map matching, resulting in inaccurate predictions at the boundaries.
In addition, some researchers have introduced attention mechanisms into CNNs [9,25-27], to some
extent enhancing the accuracy of object detection. Methods combining attention with convolution
capture both static and dynamic contextual information in images. They possess self-attention
learning capabilities while incorporating contextual information. Furthermore, some researchers
have transformed temporal information into the frequency domain through techniques like wavelet
and Fourier transforms [8,28], subsequently extracting frequency domain features, which have yielded
promising results. Various approaches have been proposed from different perspectives, designing
a series of channel weight-solving methods to adaptively learn the importance of each channel and
weight each channel feature map [29-31], all of which have demonstrated favorable results.

In recent years, Transformer-based models [32-35] have shown promising results in the
field of object detection. The Vision Transformer (ViT) [32]demonstrated that Transformers can
be applied to computer vision with minimal modifications and achieve excellent performance.
The DETR [33] model provides end-to-end object detection without the need for post-processing
steps like non-maximum suppression (NMS) or prior knowledge and constraints such as anchors.
It can be parallelized and achieves results comparable to Faster R-CNN, with better performance
on large objects. However, DETR, which utilizes CNN for feature extraction and dimension
reduction before applying Transformers, still faces challenges in small object detection. To build a
comprehensive Transformer-based model, the Swin Transformer [34] adopts a strategy inspired by the
favorable properties of CNN networks. It divides the image into patches and further subdivides
them into multiple windows. Within each window, it calculates self-attention among patches
and then computes global self-attention through a sliding window mechanism. This approach
overcomes the memory and computational limitations of Transformers when dealing with large
images. Additionally, the Swin-Transformer exhibits strong scalability and performs well on large-scale
datasets. Nevertheless, it still requires relatively high computational costs compared to traditional
neural networks and has certain limitations related to input image size, which needs adjustments
based on window size and model architecture.

2.2. Object Detection in Remote Sensing Scenarios

Deep learning methods are currently widely applied in the field of object detection in remote
sensing imagery. A series of CNN-based remote sensing object detection approaches have emerged
and have yielded promising results.
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To address the challenge of multiscale detection due to varying object sizes in remote sensing
imagery, mSODANet [36] employs parallel dilated convolutions to explore a hierarchical dilation
network, enabling the learning of contextual information for different object types across multiple
scales and fields of view. The introduced hierarchical dilation network effectively captures visual
information in aerial images, enhancing the model’s detection capabilities. The Super-Yolo model [37]
integrates multimodal data, utilizes auxiliary super-resolution learning, and considers both detection
accuracy and computational cost for high-resolution object detection of multiscale objects. MFAF [38]
proposes a multiscale feature-adaptive fusion method, utilizing multiscale feature integration modules
and spatial attention weight modules to construct a feature fusion module, enabling adaptive fusion of
multiscale features. MDCT [24] introduces a single-stage object detection model based on multi-kernel
dilated convolution blocks and Transformer blocks. This enhances the intrinsic and neighboring
spatial features of small objects, and Transformer blocks are integrated into the model’s neck network
to prevent the loss of object information in complex backgrounds and dense scenes. ANSDA [39]
leverages NASFPN for feature extraction and introduces context enhancement modules and channel
attention modules to enhance the feature extraction capabilities for shallow-level features and small
object semantics. ORCNN-X [23] adopts a dynamic attention module and an efficient feature fusion
mechanism in a multiscale feature extraction network to enhance the model’s perception capabilities
and handle scale and orientation variations. DCFPN [7] designs a Dense Context Feature Pyramid
Network and Gaussian loss for rotation object detection. It uses dense multi-path dilated layers to
densely and accurately extract multiscale information, addressing the discontinuity issues in boundary
regression through the Gaussian loss function, resulting in favorable performance. ESRTMDet [40]
designs a lightweight embedded feature map super-resolution module, embedding it into PAFPN
to enhance and magnify the backbone’s output features, making it easier for the detection head
to detect small objects. HFAN [41] introduces an adjacent feature alignment module to integrate
adjacent features in the feature map using a non-parametric alignment strategy, improving detection
performance. YOLO-DCTI [42] addresses the challenge of global modeling of pixel-level information
for small objects by designing a context transformer framework and embedding it into the detection
head for small object detection. SPH-Yolo [9] incorporates the Swin-Transformer into PAFPN to more
effectively detect objects of different scales.

In addition, Some researchers explore anchor-free mechanisms as alternatives to anchors based on
rotation object detection. AOPG [43] generates coarse-oriented boxes in an anchor-free manner using
a coarse localization module and then refines them into high-quality-oriented proposals. FCOS [44]
proposes a fully convolutional single-stage object detector that solves object detection in a per-pixel
prediction manner, completely avoiding the complex computations associated with predefined anchor
boxes. CLU [45] introduces a method for training unsupervised object detection, leveraging the
characteristics of self-supervised models to “discover” objects without supervision. HZRBOX [46],
employ weakly supervised training using horizontal bounding box annotations to achieve rotation
box object detection. Specifically, they use weakly supervised learning and self-supervised learning
to predict the object’s angle by exploiting the consistency between two different views, yielding
promising results.

Sparse and dense small objects in remote sensing images occupy a significant proportion, placing
high demands on feature extraction networks. Typically, CNNs extract features with translational
invariance, excelling at capturing local information. However, they fall short in extracting contextual
information from features. On the other hand, attention mechanisms excel at global modeling to
acquire contextual information for feature maps. Therefore, combining these two approaches can
harness their respective strengths and yield features more conducive to detection. Building upon the
insights mentioned above, we propose an improved PAFPN-based single-stage object detection model,
leveraging the foundation of RTMDet. We aspire that our work will contribute to the advancement of
object detection in remote sensing imagery.
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3. Methodology

3.1. Basic Rotated Detection Method as Baseline

In previous works, the detection of rotated bounding boxes was not considered, and horizontal
bounding boxes were commonly used to delineate objects [47,48]. However, in remote sensing images,
there is a significant proportion of small objects. Traditional horizontal bounding box annotations
introduce background information that is not conducive to accurate object localization. Rotated
bounding boxes, on the other hand, enable precise object localization with minimal background
inclusion. Furthermore, rotated bounding boxes rarely overlap, allowing for clear delineation of
the objects within them. Therefore, it is imperative to investigate and utilize more accurate rotated
bounding box representations for object detection in remote sensing images. The representation of
rotated bounding boxes (RBB) is typically defined as follows:

(X,Y,W,H,8), ¢y

Where, 6 € [—71/2,71/2], represents the clockwise rotation angle from the image coordinate
system’s direction X to the bounding box’s relative coordinate system’s direction X. We adopt the
long-edge-based format [49], where the width w must be greater than the height h. We employ the
one-stage rotation object detector RTMDet [18] for detecting both sparse and dense small objects in
remote sensing images. RTMDet is an enhancement based on YOLOX [50], sharing a similar overall
macro-architecture with the YOLO series. RTMDet employs CSPDarkNet [15] as its baseline and
utilizes CSPPAFPN, composed of the same building units, for multi-scale feature fusion. Subsequently,
features are fed into different detection heads to perform tasks such as object detection, instance
segmentation, and rotation bounding box detection. The overall model structure is illustrated in
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Figure 1. Baseline macro-architecture.

In particular, RTMDet consists of CSPNeXt, CSPNeXtPAFPN, and SepBNHead, which share
convolutional weights but compute batch normalization separately. Additionally, it draws inspiration
from the practices of ConvNeXt [51] and RepLKNet [52], enhancing feature extraction capabilities with
large kernel convolutions in the Basic Block. The authors also employ a dynamic SimOTA approach for
rotation object detection, using DistanceAnglePointCoder for Bbox encoding and decoding. RTMDet
introduces a Dynamic Soft Label Assigner to implement a dynamic matching strategy for labels.
This method primarily includes the use of prior position information loss, sample regression loss,
and sample classification loss, with soft processing applied to these three losses for parameter tuning
to achieve the optimal dynamic matching effect. After calculating the sum of these three losses to
obtain the final cost matrix, SimOTA is then used to determine the number of matched samples for
each ground truth (GT) and determine the final samples.
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3.2. Multiscale Feature Fusion Network

In remote sensing images, objects often vary significantly in size, necessitating that the feature
maps output by neural networks cover a range of receptive field scales to extract comprehensive
object features. PAFPN [53] first employs a bottom-up structure to extract feature maps at different
scales and then upsamples these feature maps using a top-down structure. Finally, it combines the
downsampled and upsampled results through lateral connections, ultimately outputting feature maps
at higher pyramid levels to incorporate stronger semantic information. However, the PAFPN model
has certain limitations in detecting small objects. Due to the small feature regions of such objects,
the PAFPN model partitions the image into multiple scales via feature pyramids, potentially leading to
the neglect or misclassification of small objects during feature extraction. Moreover, multiple fusions
can dilute crucial features since feature fusion reduces the clarity of feature maps. Diluted features
cannot provide sufficient information for small object detection. Hence, there is a need to optimize and
adjust the feature fusion mechanism of the PAFPN model to enhance its performance.

Figure 2 illustrates the model structure we propose. Firstly, this model introduces lateral skip
connections to establish direct connections between the original features and the fused feature maps,
enabling more effective utilization of features from the original feature maps to enhance the model’s
performance. Secondly, we introduce two connections to fuse top and bottom pyramid information,
reducing the path length for information transfer and effectively extracting feature information from
low-resolution feature maps. Since both of these methods are based on feature fusion, combining them
essentially does not increase computational costs. The whole process is described as follows.

Py = f3(g3(ra(fa(ga(r5(Cs) + C4))) +C3) + C3) + G5
Py = f4(84(f1(84(r5(Cs) 4 Cy)) + h3(P3)) + C4) 4 C4 )
Ps = f5(85(C5 + hg(Py)) +C5) + C3+Cs

Where C3, C4, and C5 represent the features extracted by the backbone, while P3, P4, and P5
correspond to the results of feature fusion. Function f signifies the CSPLayer operation, function
g represents channel-wise concatenation, function r represents 2x nearest-neighbor upsampling
and function h denotes downsampling achieved using a 3x3 convolution kernel with a stride of

2. The subscripts accompanying 'f,” ‘g, ', and "h” denote the respective layers, with values ranging
from 3 to 5.
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Figure 2. The multiscale feature fusion network. The red solid line represents the residual connection,
fusing the original output features with the intermediate and final outputs of PAFPN. The deep
red dashed line indicates the fusion of shallow information from bottom to top with deep-layer
information. The deep yellow dashed line represents the fusion of intermediate-level information with
deep-layer information. 1x1 convolutional kernels are used for channel dimension adjustment. 4x4/4
convolutional kernels perform downsampling with a stride of 4. 3x3/2 convolutional kernels perform
downsampling with a stride of 2.

3.3. Global Feature Content Aggregation Module

The feature pyramid retains local information after aggregating feature maps from different
levels. To address this, the Non-local neural networks [54] incorporate attention modules into the
convolution to achieve a global receptive field. However, in the context of small object detection in
remote sensing images, this design may introduce some irrelevant background information, thus
increasing the detection difficulty. Therefore, we have devised the Global Feature Context Aggregation
Module (GFCAM)), as illustrated in Figure 3. This module employs three 1x1 convolutions to obtain
three matrices from the input features, followed by feature context relevance calculation based on
attention mechanisms. This process enhances the feature by learning the global feature context within
each level. Given the effectiveness of residual structures in models such as ResNet and DenseNet, we
have incorporated residual connections into the structure to effectively fuse local and global features
while reducing information confounding.
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Figure 3. GFCAM, convlxl represents a convolutional kernel of size 1, which reshapes the tensor
dimensions after the convolution operation. Softmax, Batch Normalization (BN), and SiLU are
employed for normalization purposes. Three 1x1 convolutions are used to adjust the tensor dimensions
and perform normalization, followed by matrix operations to obtain relevant information on the global
feature context.

GFCAM is mathematically described as follows:

Y =X+ (A (X) @g(£7(X)) © o(BN(f(X))) (©)

Where, X represents input feature values, while C, H, and W respectively denote the number
of channels, height, and width of the feature map. The symbol o (-) represents the activation
function SiLU, and BN (-) stands for Batch Normalization. The function f signifies the convolution
operation, where the superscript indicates the kernel size, and the subscript distinguishes convolution
operations aimed at generating different dimensions. The symbol & denotes matrix multiplication, ®
represents the standard multiplication operation within tensors, and the '+’ symbol signifies tensor
addition operations.

3.4. MFCA

Figure 4 illustrates the overall architecture of our proposed multi-scale feature context aggregation
network, which is based on RTMDet. In essence, it consists of a feature extraction module, a feature
pyramid module, and prediction heads. The backbone network extracts features at three different
scales to handle objects of various sizes in the context of object detection. We integrate the original
features with the output features on the basis of PAFPN. Additionally, to minimize feature information
loss during propagation, connections from C3 to C5 and from C4 to C5 are introduced. Finally,
the fused feature information undergoes context aggregation through our designed GFCAM, aiming
to obtain information that better reflects real features.
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Figure 4. The architecture of MFCA. In comparison with the original version, the red and yellow lines
represent the fusion of original features and the reduction of information loss during the propagation
process. GFCAM is employed to perform context aggregation on the fused global feature information.

4. Experiments

In this subsection, we assess the effectiveness of our proposed model through training and testing
on three widely used datasets: DIOR-R, HRSC2016, and MAR20. We present a comprehensive overview
of our experiments, including experimental design and parameter configurations, and compare our
model with current state-of-the-art models and experimental results. Furthermore, we conducted an
ablation study on the DIOR-R dataset to demonstrate the effectiveness of each module. Our software
environment comprises CUDA11.8, Python 3.8.10, PyTorch 2.0, mmdetection3.1.0, and mmrotatel.x,
while our hardware setup includes an Intel(R) Xeon(R) Platinum 8350C @ 2.60GHz, NVIDIA GeForce
RTX 3090, and 80GB of memory. We employ a two-stage training approach, initially using Mosaic and
MixUp [12] without rotation for training. In the final 10 epochs, we fine-tune the model with a smaller
learning rate under weaker augmentation. All experiments utilize the AdamW optimizer with a base
learning rate of 0.00025, a momentum of 0.9, and a weight decay of 0.05.

4.1. Datasets and Evaluation Metrics

4.1.1. Datasets

DIOR-R: [55] The DIOR-R dataset serves as an extended iteration of the DIOR dataset, featuring
reannotation with directional attributes. This dataset holds a prominent position as a standard
benchmark for the evaluation of rotated object detection capabilities within remote sensing applications.
The DIOR-R dataset is systematically organized into training, validation, and testing subsets. It
comprises 20 distinct categories, each denoted by specific labels such as Expressway-Toll-Station
(ETS), Chimney (CHI), Baseball-Field (BF), Vehicle (VE), Harbor (HA), Basketball-Court (BC),
Golf-Field (GF), Tennis-Court (TC), Storage-Tank (ST), Windmill (WM), Train-Station (TS), Bridge
(BR), Ground-Track-Field (GTF), Ship (SH), Airport (APO), Airplane (APL), Expressway-Service-Area
(ESA), Dam (DA), Stadium (STA), and Overpass (OP). In total, the DIOR-R dataset encompasses
23,463 images, collectively representing the 20 designated categories, amounting to 192,472 distinct
instances. The training and validation datasets jointly consist of 11,725 images, incorporating
68,073 individual instances. Meanwhile, the test dataset comprises 11,738 images and encompasses
124,445 distinct instances. All images adhere to a consistent size of 800x800 pixels, with pixel resolutions
ranging from 0.5 meters to 30 meters.

HRSC2016 [56] is another widely-used arbitrary-oriented object detection benchmark. It contains
1061 images with sizes ranging from 300x300 to 1500x900. The training set (436 images) and validation
set (181 images) are used for training and the remaining for testing. For the evaluation metrics on the
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HRSC2016, we report the COCO style means average precision (mAP) as well as the average precision
under the 0.5 and 0.75 thresholds (AP50 and AP75).

MAR20[57] is currently the largest publicly available dataset for military aircraft target recognition
in remote sensing imagery. It comprises 3842 images, featuring 20 different military aircraft models
with a total of 22341 instances. The majority of the images have a resolution of 800x800 pixels. These
instances were collected from 60 military airfields located in the United States, Russia, and other
countries, utilizing Google Earth imagery. The MAR20 dataset includes a specific set of 20 aircraft
models. Among them, six are Russian aircraft, including the SU-35 fighter, TU-160 bomber, TU-22
bomber, TU-95 bomber, SU-34 fighter-bomber, and SU-24 fighter bomber. The remaining 14 aircraft
models consist of U.S. aircraft, such as the C-130 transport plane, C-17 transport plane, C-5 transport
plane, F16 fighter, E-3 AWACS (Airborne Warning and Control System) aircraft, B-52 bomber, P-3C
anti-submarine warfare aircraft, B-1B bomber, E-8 Joint Surveillance Target Attack Radar System (Joint
STARS) aircraft, F-15 fighter, KC-135 aerial refueling aircraft, F-22 fighter, F/ A-18 fighter-attack aircraft,
and KC-10 aerial refueling aircraft. These aircraft model types are represented by abbreviations Al
to A20. The training set consists of 1331 images and 7870 instances, while the test set comprises
2511 images and 14471 instances.

4.1.2. Evaluation Metrics

In the experiment, various commonly used RSOD (Remote Sensing Object Detection) metrics are
employed to assess the effectiveness of the proposed model. This paper employs Average Precision
(AP) as the performance evaluation metric for the object detection model. The calculation formula for
AP is as follows:

_ _TP
P= TP+FP
_ _ TP
"= TPyFIN @)

AP = fol p(r)dr

TP represents the number of correctly classified targets, FP is the count of background
identifications as targets, and FN signifies the number of object identifications misclassified as
background. Precision (p) indicates the ratio of correctly identified targets among all detected results.
Recall (r) represents the ratio of correctly identified targets to the true values of all targets. The area
enclosed by the curve with p on the vertical axis, r on the horizontal axis, and the coordinate axes is the
AP value. The AP metric takes into account both precision and recall, and a higher AP value indicates
higher detection accuracy. The mean Average Precision (mAP) for each class is calculated using the
following formula:

1Nt
mAP — ﬁz; /O Pi(R;) dR,; )

Here, N refers to the number of object categories. mAP@0.5 denotes the mean average precision
for all classes at an Intersection over the Union (IoU) threshold of 0.5. mAP@0.5:0.95 signifies the
average mAP across IoU thresholds ranging from 0.5 to 0.95. IoU, which stands for Intersection over
Union, is a metric used to assess the degree of overlap between two regions. The computation formula

is as follows:
area(X) Narea(Y)

1 =
ou area(X) Uarea(Y)

(6)

In the equation, X represents the object box predicted by the model, and Y represents the real
object box in the image.

4.2. Implementation Details

We conduct experiments using RTMDet [18] from the MMRotate toolbox [58]. Our experiments
adhere to the configuration employed in RTMDet, where CSPNetXtBlock serves as the backbone and
CSPNetXt-PAFPN functions as the neck. During the initial stages of model training, we apply various
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data augmentation techniques, including random flipping, rotation, CachedMosaic, and CachedMixUp.
In the final 10 epochs, we modify the augmentation strategy, eliminating CachedMosaic and
CachedMixUp while retaining the remaining original RTMDet model training configuration. No
augmentation techniques are used during the testing and inference phases. In comparative experiments,
we maintain consistent hyperparameter settings throughout the training process to ensure a fair
comparison with other state-of-the-art methods. The learning rate undergoes linear decay in the first
half of training and cosine decay in the second half.

Regarding the processing of the HRSC2016 and MAR20 datasets, we crop the original images
into patches of 800x800 pixels with a 200-pixel overlap between adjacent patches. We use the training
portion for training, the test portion for validation, and inference. As for the DIOR-R dataset, the image
sizes remain unchanged, all being 800x800 pixels. We utilize the trainval portion for training, the val
portion for validation, and the test portion for inference. We conduct training for 50 epochs on the
DIOR-R and MAR?20 datasets, while the HRSC2016 dataset is trained for 100 epochs to obtain the
inference model.

4.3. Comparisons with State-of-the-Art

We compare our proposed method with other SOTA approaches on the DIOR-R, HRSC2016,
and MAR20 datasets. As shown in the table, without unnecessary elaboration, our method
demonstrates superior performance compared to the SOTA approaches.

4.3.1. Results on DIOR-R

DIOR-R is a large-scale dataset characterized by an extensive array of categories and complex
scenes. We have compared our approach to several SOTA detectors on the DIOR-R dataset.
The proposed model extracts high-quality feature maps, enabling effective category recognition and
precise learning of object bounding boxes. We have chosen various categories of objects at different
scales and scenes with both dense and sparse object arrangements for visualization. The detection
results are illustrated in the Figures 5. It can be observed from the figures that the proposed method
accurately detects densely arranged objects. Table 1 presents the specific performance metrics for each
object category. Thanks to the utilization of large kernel convolutions in RTMDet, CSPNextBlock,
and data augmentation strategies during training, our baseline accuracy surpasses the current SOTA
by a significant margin. For individual categories like DA, TS, and ST, the detection results are
still subject to considerable improvement due to the limited number of training instances for each
class, which is less than 1500. Similarly, some small object categories (e.g., BR and VE) have not
achieved optimal performance due to their small size, which is less than 80 pixels, making accurate
detection challenging. Overall, our approach outperforms most categories and achieves an outstanding
performance of 74.51%.

Table 1. Detection Accuracy of Different Detection Methods on the DIOR-R Dataset. The color red is
indicative of the highest value, while blue represents the second-highest value.

Method Backbone GF VE ETS TS CHI ST SH HA  APL TC mAP
Rol Trans [59] R-50 69.0 433 787 549 72.6 70.3 812 477 633 816
AOPG [43] R-50 732 524 654  60.0 72.5 71.3 81.2 423 624 815
ROIF [60] R-50 747 494 695 550 73.8 63.9 824 474 721 82.7
ROIF [60] ConvNext-50 78,6  50.6 749  63.2 72.7 71.2 81.3 511 722 898
AOPG SGIoU [61] R-50 795 559 729 626 77.4 78.3 89.7 526 696 815
RTMDet [18] CSPNext-52 758 573 761 638 79.8 79.6 89.8 532 904  90.5
Ours CSPNext-52 779 611 791 649 80.7 80.2 90.1 543 90.7  90.7
Method Backbone GTF DA BC ESA STA APO BF BR WM orP
Rol Trans [59] R-50 827 269 875 681 78.2 37.9 71.8 407 655 556 63.87
AOPG [43] R-50 819 311 876 780 72.7 37.8 71.6 409 70.0 545 6441
ROIF [60] R-50 840 292 826 781 80.7 39.0 729 408 674 555 6512
ROIF [60] ConvNext-50  84.7 341 89.7 887  83.0 44.0 722 439 665 575 6849
AOPG SGIoU [61] R-50 825 361 887 828 75.6 53.0 717  46.6 71.0 596  69.37
RTMDet [18] CSPNext-52 846 358 903 892 85.0 49.0 848 463 659 61.7 7244

Ours CSPNext-52 848 420 905 89.1 86.6 53.0 88.5 502 7312 62.8 7451
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Figure 5. Here are some detection results of our proposed MFCA model on DIOR-R. Each color
represents a distinct category, and the displayed results include six classes: ships, harbors, airplanes,
vehicles, windmills, and expressway toll stations. It is evident that the MFCA module excels at
identifying dense small targets amidst complex backgrounds.

As shown in Figure 6, the CSPPAFPN model in the baseline fails to extract sufficient features for
the objects of interest. In contrast, the inclusion of our proposed module results in an enhancement of
its feature extraction capabilities, thereby conferring a distinct advantage in the detection of various
targets within remote sensing images. The extracted features exhibit greater prominence, enhanced
spatial clarity, and improved localization precision, substantiating the efficacy of our approach in
acquiring more robust feature information and achieving performance improvements.
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Figure 6. In DIOR-R, we conduct a comparative visualization of feature maps between the baseline
and the MFCA module. After the Backbone extracts features and PAFPN fuses them, we visualize
feature maps from various layers. The color blue represents the background, while brighter regions in
red and yellow indicate heightened attention responses. A comparison reveals that the MFCA model,
as proposed, effectively suppresses background information and focuses more on densely packed small
target regions.

4.3.2. Results on HRSC2016

HRSC2016 dataset consists of vessels with high aspect ratios, sailing in arbitrary directions,
presenting a significant challenge for precise object localization. Our proposed model possesses robust
feature extraction capabilities, emphasizing global information within the feature maps, effectively
identifying class-specific features, thus yielding superior performance. As demonstrated in the Table 2,
our approach achieves commendable results, attaining evaluation scores of 90.05% and 97.53% for
the VOC2007 and VOC2012 benchmarks, respectively. Figure 7 showcases the visual outcomes of our
method on the HRSC2016 dataset.
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Table 2. Detection Accuracy of Different Detection Methods on the HRSC2016 Dataset. The color red is
indicative of the highest value, while blue represents the second-highest value.

Method Backbone mAP (07)(%)  mAP (12)(%)
S2ANet[62] R-101 90.17 95.01
AOGC [63] R-50 89.80 95.20
MSSDet [64] R-101 76.60 95.30

R3Det — KLD[7] R-101 89.97 95.57
MSSDet [64] R-152 77.30 95.80
R3Det[65] R-101 89.26 96.01
DCFPN [7] R-101 89.98 96.12
RTMDet [18] CSPNext-52 89.10 96.51
Ours CSPNext-52 90.05 97.53

Figure 7. We present a selection of detection results achieved by our proposed MFCA on the HRSC2016

dataset. These outcomes emphasize MFCA’s capacity to accurately extract target features, even when
dealing with complex backgrounds, ultimately leading to precise results.

4.3.3. Results on MAR20

MAR20 is a fine-grained dataset designed for military aircraft detection, encompassing a wide
range of target scales. This dataset contains remote sensing images captured under various climatic
conditions, different seasons, and varying lighting scenarios. Thanks to the robust feature extraction
and information learning capabilities within our proposed model, our model’s inference outperforms
all existing detectors, achieving a top mAP of 92.41%. The results of our approach to the MAR20
dataset are presented in Table 3. The detection results are illustrated in the Figure 8.


https://doi.org/10.20944/preprints202310.1631.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 October 2023 do0i:10.20944/preprints202310.1631.v1

15 of 20

Table 3. Detection Accuracy of Different Detection Methods on the MAR20 Dataset. The color red is
indicative of the highest value, while blue represents the second-highest value.

Method Al A2 A3 A4 A5 A6 A7 A8 A9 Al0  mAP

S2A — Net[57] 826 816 8.2 808 769 900 847 857 887 90.8
Faster R-CNN [57] 85.0 816 85 707 796 906 897 8.8 904 910
Oriented R-CNN [57] 861 817 881 696 756 899 905 895 898 909

Rol Trans [57] 854 815 876 783 805 905 902 876 879 909
RTMDet [18] 855 960 946 909 860 909 951 987 909 909
Ours 886 987 984 907 875 951 949 992 909  99.0
Method All  Al12  A13 Al4 Al15 Al6e Al7  A18 A19 A20
S2A — Net[57] 817 8.1 696 823 477 881 902 620 836 798 81.1

Faster R-CNN [57] 855 881 634 883 424 89 905 622 783 777 81.4
Oriented R-CNN [57] 876 884 675 885 463 883 906 705 787 803 81.9

Rol Trans [57] 859 893 672 882 479 8.1 905 746 813 800 82.7
RTMDet [18] 828 907 888 901 846 905 907 948 86.6 894 9043
Ours 89.6 907 8.7 903 891 905 906 976 872 899 9241

20

A9
EXR TN

Al19

Figure 8. The results predicted by our proposed method on the MAR20 dataset, which comprises 20
different categories, are presented in the image. The displayed detection results pertain to classes A2,
A3, A9, Al1, A12, A14, A16, and A17, with their corresponding bounding box colors and categories as
illustrated in the figure.

4.4. Ablation Study

4.4.1. Ablation Test with Different Feature Fusion Methods in MFFM

To offer an in-depth analysis of the augmented function of original features within the fusion
process involving PAFPN features, we undertake an ablation experiment on the skip connections
within the Multi-Feature Fusion Module (MFFEM). In Figure 2, skip connections of varying colors
serve as modules for the ablation experiment, designated in red, orange, and purple. We compare
the variances in the fusion of original features with PAFPN concerning the baseline RTMDet on the
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MAR20 dataset.

4.4.2. Ablation Test of MFCA

To validate the effectiveness of each module proposed in this study, we compared the original
CSPNext-PAFPN with each enhancement module on the MAR20 dataset, considering RTMDet as the
baseline for detection. The evaluation primarily focuses on the Average Precision (AP) and mean
Average Precision (mAP) of typical object categories, including A3, A6, A10, A11, A15, and A18. Given
the similarity among fine-grained objects in remote sensing images and the complexity of backgrounds
under different seasons and lighting conditions, their detection becomes challenging.

Through the ablation experiments conducted for each enhancement, the recognition performance
of some challenging targets is presented in Table 5. By comparing experiments one and two, our
proposed multi-scale feature fusion network demonstrates a superior ability to represent multi-scale
target features compared to the baseline PAFPN. This superiority stems from our comprehensive
utilization of original features for enhanced feature fusion, resulting in improved model performance.
Comparing experiments one and three, it becomes evident that GFCAM significantly enhances the
model’s detection capabilities. The Global Feature Context Aggregation Module filters out background
interference and enriches target feature information, thus augmenting the model’s sensitivity to targets.

Table 4. In our research, we conduct an ablation study on various fusion methods for combining original
features with PAFPN within the MFFM framework, utilizing the MAR20 dataset. The distinctive fusion
methods are represented by the colors red, orange, and purple. These colors align with the fusion
methods illustrated in Figure 2. As each fusion method is introduced independently, it results in
an improvement in detection accuracy when compared to the baseline. Remarkably, the collective
combination of all fusion methods leads to a noteworthy enhancement in detection accuracy.

Baseline Red Orange Purple Al A2 A3 A4 A5 Ab A7 A8 A9 A10  mAP

v 855 960 946 909 860 909 951 987 909 909
v v 877 981 935 909 862 908 937 991 90.8 943
4 4 v 863 908 987 906 872 922 953 993 909 99.7
4 v 4 4 881 907 970 908 865 977 959 993 909 98.6

Baseline Red Orange Purple All Al12 Al13 Al4 Al5 Al6 Al7 Al8 Al9 A20

4 828 907 888 90.1 846 905 907 948 86.6 894 9043
v 4 886 908 8.5 903 879 905 906 942 8.8 892 9117
4 4 v 854 904 897 905 834 905 908 960 90.0 903 9140
4 v v 4 883 907 896 900 867 903 908 959 882 892 9176

Table 5. Ablation studies of the individual modules proposed by us on the MAR20 dataset. When each
module is added independently, the detection accuracy is improved compared to the baseline. Notably,
when all modules are combined, there is a substantial increase in detection accuracy.

Baseline MFFN  GFCAM Al A2 A3 A4 A5 A6 A7 A8 A9 A10  mAP

v 855 960 946 909 8.0 909 951 987 909 909
4 4 881 907 970 908 865 977 959 993 909 986
v v 877 971 933 908 864 909 925 986 909 999
4 v 4 88.6 987 984 907 875 951 949 992 909  99.0

Baseline MFFN GFCAM All Al2 A13 Al4 Al15 Al6 Al17 A18 A19 A20

4 828 907 888 90.1 846 905 907 948 866 894 9043
v v 883 907 8.6 900 867 903 908 959 882 892 9176
v v 870 908 8.7 901 824 906 9.6 970 8.9 901 9132
v v v 89.6 907 8.7 903 891 905 906 976 872 899 9241

5. Conclusions

In addressing the challenging problem of detecting densely distributed small targets in remote
sensing images with complex backgrounds, we propose a novel algorithm for remote sensing image
target detection. Leveraging our devised multiscale feature fusion method, we effectively integrate
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information from the original feature maps with the results of the FPN. This integration mitigates the
issue of shallow feature information loss, consequently enhancing the detection capability of small
targets in complex backgrounds. Additionally, we introduce a global feature space context aggregation
module designed to augment valuable features in each layer of the FPN. Extensive validation and
ablation studies are conducted on three publicly available datasets. Experimental results demonstrate
that the proposed approach outperforms existing detectors on these three challenging datasets,
substantiating the effectiveness and generalizability of the introduced modules. However, it is worth
noting that our approach still has limitations in detecting densely occluded targets. In future research,
we intend to explore scenarios involving dense target occlusion and refine our network model to better
handle such cases.
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