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Abstract: Detecting rotational objects in remote sensing imagery is a significant challenge. These

images typically encompass a broad field of view, featuring diverse and intricate backgrounds, with

ground objects of various sizes densely scattered. As a result, identifying objects of interest within

these images is a daunting task. While the integration of Convolutional Neural Networks (CNN)

and Transformer networks leads to some advancements in rotational object detection, there is still

room for improvement, particularly in enhancing the extraction and utilization of information related

to smaller objects. To address this, our paper presents a multi-scale feature fusion module and a

global feature context aggregation module. Initially, we fuse original, shallow, and deep features to

reduce the loss of shallow feature information, thereby improving the detection performance of small

objects in complex backgrounds. Subsequently, we compute the correlation of contextual information

within feature maps to extract valuable insights. We name the newly proposed model the “Multiscale

Feature Context Aggregation Module” (MFCA). We evaluate our proposed methodology on three

challenging remote sensing datasets: DIOR-R, HRSC, and MAR20. Comprehensive experimental

results show that our approach surpasses baseline models by 2.07% mAP, 1.02% mAP, and 1.98%

mAP on the DIOR-R, HRSC2016, and MAR20 datasets, respectively.

Keywords: small object detection; remote sensing images; context information; multiscale feature fusion

1. Introduction

In the realm of remote sensing imagery, object detection [1–5] plays a crucial role by aiming to

ascertain the presence and precise locations of objects of interest within a given image. Its applications

hold substantial promise across diverse domains, including environmental monitoring, military

applications, national security, transportation, forestry, and the detection of oil and gas activities. These

remote-sensing images are acquired from various sources, such as aerial, satellite, and unmanned

aerial vehicle platforms. However, the complexities inherent in remote sensing imagery, including

intricate backgrounds, arbitrary object orientations, varying object densities, and differences in object

size ratios, pose formidable challenges for small object detection. As opposed to the conventional use of

horizontal bounding boxes, employing rotating bounding boxes can significantly reduce background

overlap and offer a more precise delineation of object boundaries. Consequently, there is a growing

imperative for research in the field of rotating object detection within remote sensing imagery.

In the context of remote sensing images, it’s noteworthy that the same object can exhibit substantial

differences in appearance depending on the background, leading to considerable intra-class variability.

This is particularly pertinent in the case of fine-grained remote sensing images, where distinctions

between object classes are less pronounced. In such scenarios, fully leveraging feature information

becomes critical for achieving effective detection. To address the challenge of object scale variations
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in remote sensing images, multi-level feature pyramid networks are widely employed. Within the

Feature Pyramid Network (FPN) [6] framework, higher-level feature maps contain richer semantic

information but have smaller scales, making them less adept at detecting small objects. In contrast,

lower-level feature maps have larger scales but lack distinctive object representations. To bridge this

gap, FPN adopts a top-down lateral connection structure, facilitating the propagation of semantic

information from higher-level to lower-level features, thereby enabling the detection of objects at

various scales. Consequently, numerous research efforts are dedicated to further improving FPN to

better accommodate the requirements of object detection in remote sensing images.

The DCFPN [7] leverages densely connected multi-path dilated layers to cover objects of various

sizes in remote sensing scenes. This allows for the dense and accurate extraction of multi-scale

information, further enhancing the detection capabilities for objects of varying sizes. The LFPN [8]

considers both low-frequency and high-frequency features, utilizing trainable Laplacian operators to

extract high-frequency object features from Laplacian pathways. Additionally, an attention mechanism

is introduced within the feature pyramid network to accentuate more pronounced multi-scale object

features. SPH-YOLOv5 [9] incorporates an attention mechanism into FPN, facilitating the acquisition

of semantic information between features to emphasize crucial spatial features while suppressing

redundant ones. Info-FPN [10] introduces a PixelShuffle-based lateral connection module (PSM)

designed to fully retain channel information within the feature pyramid. Simultaneously, to alleviate

confusion resulting from feature misalignment, a feature alignment module (FAM) is proposed. FAM

employs template matching and learns feature offsets during the feature fusion stage to achieve

feature alignment. However, existing FPN-based methods often overlook the shortcomings of the

feature pyramid network structure. In particular, they do not fully leverage the original feature

information and the performance issues introduced by attention mechanisms. These limitations result

in a decreased feature representation capacity, which becomes more apparent when handling objects

with significant scale variations in remote sensing images.

In summary, we identify several issues with current pyramid networks:

• Original features play a reinforcing role in fused features, enhancing residual functions and

facilitating stable gradient propagation during backpropagation. However, feature pyramids fail

to fully exploit the most original feature information.
• Convolutional neural networks are unable to aggregate information between distant pixels in the

spatial domain, resulting in underutilization of long-range correlated information that adversely

impacts detection results.

In this paper, we present robust solutions to address the aforementioned issues. Leveraging the

RTMDet model as our baseline, we propose a multi-scale feature fusion feature pyramid to maximize

information flow across all layers in the network. Additionally, we design a feature context aggregation

module for fusing spatial context in feature maps, enabling comprehensive learning of inter-feature

relationships. These solutions can be seamlessly integrated into object detectors, enhancing detection

performance without increasing training complexity. In summary, our contributions are as follows:

• Within the feature pyramid, we efficiently harness original feature information to process

multi-scale features more effectively. We introduce a multi-scale fusion pyramid network that

connects original features and fused features while shortening the information transmission

paths. This connection extends from large-scale features to fused small-scale features, enabling

the module to optimally utilize features at each stage.
• Drawing inspiration from attention mechanisms, we design a global feature context aggregation

module to aggregate feature information within feature maps and weight them adaptively for

each pixel. Through iterative learning of semantic information between features, we fuse useful

global information into local regions, resulting in improved pixel-level attention for objects of

interest.
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• We introduce a novel object detector and conduct extensive experiments on three challenging

datasets: the DIOR-R dataset, the HRSC2016 dataset, and the MAR20 dataset confirming the

effectiveness of our approach. Experimental results demonstrate outstanding performance.

2. Releated Work

2.1. Object Detection in General Scenarios

Computer vision technology has witnessed rapid development over the past decade, and the

continuous iteration of large-scale annotated datasets has further propelled advancements in object

detection tasks. These methods can be broadly categorized into two major groups: those based on

convolutional neural networks and those leveraging attention mechanisms. Within CNN models, we

have one-stage detection models (such as SSD [11], RetinaNet [12], R2ANet [13], YOLO series [9,14–17],

RTMDet [18], etc.) and two-stage models (R-CNN [19], Fast R-CNN [20], Faster R-CNN [21],

R-FCN [22], etc.). These models have achieved commendable results; however, models based on

CNNs can render very small objects undetectable due to downsampling during the process. To address

the issue of detecting small objects, FPN and their variants [23,24] were introduced, which improved

small object detection. Nonetheless, this introduced new challenges, including increased computational

complexity, the need for parameter adjustments in FPN, and the introduction of cross-level connections

that may lead to incomplete feature map matching, resulting in inaccurate predictions at the boundaries.

In addition, some researchers have introduced attention mechanisms into CNNs [9,25–27], to some

extent enhancing the accuracy of object detection. Methods combining attention with convolution

capture both static and dynamic contextual information in images. They possess self-attention

learning capabilities while incorporating contextual information. Furthermore, some researchers

have transformed temporal information into the frequency domain through techniques like wavelet

and Fourier transforms [8,28], subsequently extracting frequency domain features, which have yielded

promising results. Various approaches have been proposed from different perspectives, designing

a series of channel weight-solving methods to adaptively learn the importance of each channel and

weight each channel feature map [29–31], all of which have demonstrated favorable results.

In recent years, Transformer-based models [32–35] have shown promising results in the

field of object detection. The Vision Transformer (ViT) [32]demonstrated that Transformers can

be applied to computer vision with minimal modifications and achieve excellent performance.

The DETR [33] model provides end-to-end object detection without the need for post-processing

steps like non-maximum suppression (NMS) or prior knowledge and constraints such as anchors.

It can be parallelized and achieves results comparable to Faster R-CNN, with better performance

on large objects. However, DETR, which utilizes CNN for feature extraction and dimension

reduction before applying Transformers, still faces challenges in small object detection. To build a

comprehensive Transformer-based model, the Swin Transformer [34] adopts a strategy inspired by the

favorable properties of CNN networks. It divides the image into patches and further subdivides

them into multiple windows. Within each window, it calculates self-attention among patches

and then computes global self-attention through a sliding window mechanism. This approach

overcomes the memory and computational limitations of Transformers when dealing with large

images. Additionally, the Swin-Transformer exhibits strong scalability and performs well on large-scale

datasets. Nevertheless, it still requires relatively high computational costs compared to traditional

neural networks and has certain limitations related to input image size, which needs adjustments

based on window size and model architecture.

2.2. Object Detection in Remote Sensing Scenarios

Deep learning methods are currently widely applied in the field of object detection in remote

sensing imagery. A series of CNN-based remote sensing object detection approaches have emerged

and have yielded promising results.
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To address the challenge of multiscale detection due to varying object sizes in remote sensing

imagery, mSODANet [36] employs parallel dilated convolutions to explore a hierarchical dilation

network, enabling the learning of contextual information for different object types across multiple

scales and fields of view. The introduced hierarchical dilation network effectively captures visual

information in aerial images, enhancing the model’s detection capabilities. The Super-Yolo model [37]

integrates multimodal data, utilizes auxiliary super-resolution learning, and considers both detection

accuracy and computational cost for high-resolution object detection of multiscale objects. MFAF [38]

proposes a multiscale feature-adaptive fusion method, utilizing multiscale feature integration modules

and spatial attention weight modules to construct a feature fusion module, enabling adaptive fusion of

multiscale features. MDCT [24] introduces a single-stage object detection model based on multi-kernel

dilated convolution blocks and Transformer blocks. This enhances the intrinsic and neighboring

spatial features of small objects, and Transformer blocks are integrated into the model’s neck network

to prevent the loss of object information in complex backgrounds and dense scenes. ANSDA [39]

leverages NASFPN for feature extraction and introduces context enhancement modules and channel

attention modules to enhance the feature extraction capabilities for shallow-level features and small

object semantics. ORCNN-X [23] adopts a dynamic attention module and an efficient feature fusion

mechanism in a multiscale feature extraction network to enhance the model’s perception capabilities

and handle scale and orientation variations. DCFPN [7] designs a Dense Context Feature Pyramid

Network and Gaussian loss for rotation object detection. It uses dense multi-path dilated layers to

densely and accurately extract multiscale information, addressing the discontinuity issues in boundary

regression through the Gaussian loss function, resulting in favorable performance. ESRTMDet [40]

designs a lightweight embedded feature map super-resolution module, embedding it into PAFPN

to enhance and magnify the backbone’s output features, making it easier for the detection head

to detect small objects. HFAN [41] introduces an adjacent feature alignment module to integrate

adjacent features in the feature map using a non-parametric alignment strategy, improving detection

performance. YOLO-DCTI [42] addresses the challenge of global modeling of pixel-level information

for small objects by designing a context transformer framework and embedding it into the detection

head for small object detection. SPH-Yolo [9] incorporates the Swin-Transformer into PAFPN to more

effectively detect objects of different scales.

In addition, Some researchers explore anchor-free mechanisms as alternatives to anchors based on

rotation object detection. AOPG [43] generates coarse-oriented boxes in an anchor-free manner using

a coarse localization module and then refines them into high-quality-oriented proposals. FCOS [44]

proposes a fully convolutional single-stage object detector that solves object detection in a per-pixel

prediction manner, completely avoiding the complex computations associated with predefined anchor

boxes. CLU [45] introduces a method for training unsupervised object detection, leveraging the

characteristics of self-supervised models to “discover” objects without supervision. H2RBOX [46],

employ weakly supervised training using horizontal bounding box annotations to achieve rotation

box object detection. Specifically, they use weakly supervised learning and self-supervised learning

to predict the object’s angle by exploiting the consistency between two different views, yielding

promising results.

Sparse and dense small objects in remote sensing images occupy a significant proportion, placing

high demands on feature extraction networks. Typically, CNNs extract features with translational

invariance, excelling at capturing local information. However, they fall short in extracting contextual

information from features. On the other hand, attention mechanisms excel at global modeling to

acquire contextual information for feature maps. Therefore, combining these two approaches can

harness their respective strengths and yield features more conducive to detection. Building upon the

insights mentioned above, we propose an improved PAFPN-based single-stage object detection model,

leveraging the foundation of RTMDet. We aspire that our work will contribute to the advancement of

object detection in remote sensing imagery.
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3. Methodology

3.1. Basic Rotated Detection Method as Baseline

In previous works, the detection of rotated bounding boxes was not considered, and horizontal

bounding boxes were commonly used to delineate objects [47,48]. However, in remote sensing images,

there is a significant proportion of small objects. Traditional horizontal bounding box annotations

introduce background information that is not conducive to accurate object localization. Rotated

bounding boxes, on the other hand, enable precise object localization with minimal background

inclusion. Furthermore, rotated bounding boxes rarely overlap, allowing for clear delineation of

the objects within them. Therefore, it is imperative to investigate and utilize more accurate rotated

bounding box representations for object detection in remote sensing images. The representation of

rotated bounding boxes (RBB) is typically defined as follows:

(X, Y, W, H, θ), (1)

Where, θ ∈ [−π/2, π/2], represents the clockwise rotation angle from the image coordinate

system’s direction X to the bounding box’s relative coordinate system’s direction X. We adopt the

long-edge-based format [49], where the width w must be greater than the height h. We employ the

one-stage rotation object detector RTMDet [18] for detecting both sparse and dense small objects in

remote sensing images. RTMDet is an enhancement based on YOLOX [50], sharing a similar overall

macro-architecture with the YOLO series. RTMDet employs CSPDarkNet [15] as its baseline and

utilizes CSPPAFPN, composed of the same building units, for multi-scale feature fusion. Subsequently,

features are fed into different detection heads to perform tasks such as object detection, instance

segmentation, and rotation bounding box detection. The overall model structure is illustrated in

Figure 1.

Figure 1. Baseline macro-architecture.

In particular, RTMDet consists of CSPNeXt, CSPNeXtPAFPN, and SepBNHead, which share

convolutional weights but compute batch normalization separately. Additionally, it draws inspiration

from the practices of ConvNeXt [51] and RepLKNet [52], enhancing feature extraction capabilities with

large kernel convolutions in the Basic Block. The authors also employ a dynamic SimOTA approach for

rotation object detection, using DistanceAnglePointCoder for Bbox encoding and decoding. RTMDet

introduces a Dynamic Soft Label Assigner to implement a dynamic matching strategy for labels.

This method primarily includes the use of prior position information loss, sample regression loss,

and sample classification loss, with soft processing applied to these three losses for parameter tuning

to achieve the optimal dynamic matching effect. After calculating the sum of these three losses to

obtain the final cost matrix, SimOTA is then used to determine the number of matched samples for

each ground truth (GT) and determine the final samples.
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3.2. Multiscale Feature Fusion Network

In remote sensing images, objects often vary significantly in size, necessitating that the feature

maps output by neural networks cover a range of receptive field scales to extract comprehensive

object features. PAFPN [53] first employs a bottom-up structure to extract feature maps at different

scales and then upsamples these feature maps using a top-down structure. Finally, it combines the

downsampled and upsampled results through lateral connections, ultimately outputting feature maps

at higher pyramid levels to incorporate stronger semantic information. However, the PAFPN model

has certain limitations in detecting small objects. Due to the small feature regions of such objects,

the PAFPN model partitions the image into multiple scales via feature pyramids, potentially leading to

the neglect or misclassification of small objects during feature extraction. Moreover, multiple fusions

can dilute crucial features since feature fusion reduces the clarity of feature maps. Diluted features

cannot provide sufficient information for small object detection. Hence, there is a need to optimize and

adjust the feature fusion mechanism of the PAFPN model to enhance its performance.

Figure 2 illustrates the model structure we propose. Firstly, this model introduces lateral skip

connections to establish direct connections between the original features and the fused feature maps,

enabling more effective utilization of features from the original feature maps to enhance the model’s

performance. Secondly, we introduce two connections to fuse top and bottom pyramid information,

reducing the path length for information transfer and effectively extracting feature information from

low-resolution feature maps. Since both of these methods are based on feature fusion, combining them

essentially does not increase computational costs. The whole process is described as follows.















P3 = f3(g3(r4( f4(g4(r5(C5) + C4))) + C3) + C3) + C3

P4 = f4(g4( f4(g4(r5(C5) + C4)) + h3(P3)) + C4) + C4

P5 = f5(g5(C5 + h4(P4)) + C5) + C3 + C5

(2)

Where C3, C4, and C5 represent the features extracted by the backbone, while P3, P4, and P5

correspond to the results of feature fusion. Function f signifies the CSPLayer operation, function

g represents channel-wise concatenation, function r represents 2x nearest-neighbor upsampling

and function h denotes downsampling achieved using a 3x3 convolution kernel with a stride of

2. The subscripts accompanying ’f,’ ’g,’ ’r,’ and ’h’ denote the respective layers, with values ranging

from 3 to 5.
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Figure 2. The multiscale feature fusion network. The red solid line represents the residual connection,

fusing the original output features with the intermediate and final outputs of PAFPN. The deep

red dashed line indicates the fusion of shallow information from bottom to top with deep-layer

information. The deep yellow dashed line represents the fusion of intermediate-level information with

deep-layer information. 1x1 convolutional kernels are used for channel dimension adjustment. 4x4/4

convolutional kernels perform downsampling with a stride of 4. 3x3/2 convolutional kernels perform

downsampling with a stride of 2.

3.3. Global Feature Content Aggregation Module

The feature pyramid retains local information after aggregating feature maps from different

levels. To address this, the Non-local neural networks [54] incorporate attention modules into the

convolution to achieve a global receptive field. However, in the context of small object detection in

remote sensing images, this design may introduce some irrelevant background information, thus

increasing the detection difficulty. Therefore, we have devised the Global Feature Context Aggregation

Module (GFCAM), as illustrated in Figure 3. This module employs three 1x1 convolutions to obtain

three matrices from the input features, followed by feature context relevance calculation based on

attention mechanisms. This process enhances the feature by learning the global feature context within

each level. Given the effectiveness of residual structures in models such as ResNet and DenseNet, we

have incorporated residual connections into the structure to effectively fuse local and global features

while reducing information confounding.
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Figure 3. GFCAM, conv1x1 represents a convolutional kernel of size 1, which reshapes the tensor

dimensions after the convolution operation. Softmax, Batch Normalization (BN), and SiLU are

employed for normalization purposes. Three 1x1 convolutions are used to adjust the tensor dimensions

and perform normalization, followed by matrix operations to obtain relevant information on the global

feature context.

GFCAM is mathematically described as follows:

Y = X + f 1x1
1 ( f 1x1

2 (X)⊗ g( f 1x1
3 (X)))⊙ σ(BN( f 1x1

4 (X))) (3)

Where, X represents input feature values, while C, H, and W respectively denote the number

of channels, height, and width of the feature map. The symbol σ (·) represents the activation

function SiLU, and BN (·) stands for Batch Normalization. The function f signifies the convolution

operation, where the superscript indicates the kernel size, and the subscript distinguishes convolution

operations aimed at generating different dimensions. The symbol ⊗ denotes matrix multiplication, ⊙

represents the standard multiplication operation within tensors, and the ’+’ symbol signifies tensor

addition operations.

3.4. MFCA

Figure 4 illustrates the overall architecture of our proposed multi-scale feature context aggregation

network, which is based on RTMDet. In essence, it consists of a feature extraction module, a feature

pyramid module, and prediction heads. The backbone network extracts features at three different

scales to handle objects of various sizes in the context of object detection. We integrate the original

features with the output features on the basis of PAFPN. Additionally, to minimize feature information

loss during propagation, connections from C3 to C5 and from C4 to C5 are introduced. Finally,

the fused feature information undergoes context aggregation through our designed GFCAM, aiming

to obtain information that better reflects real features.
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Figure 4. The architecture of MFCA. In comparison with the original version, the red and yellow lines

represent the fusion of original features and the reduction of information loss during the propagation

process. GFCAM is employed to perform context aggregation on the fused global feature information.

4. Experiments

In this subsection, we assess the effectiveness of our proposed model through training and testing

on three widely used datasets: DIOR-R, HRSC2016, and MAR20. We present a comprehensive overview

of our experiments, including experimental design and parameter configurations, and compare our

model with current state-of-the-art models and experimental results. Furthermore, we conducted an

ablation study on the DIOR-R dataset to demonstrate the effectiveness of each module. Our software

environment comprises CUDA11.8, Python 3.8.10, PyTorch 2.0, mmdetection3.1.0, and mmrotate1.x,

while our hardware setup includes an Intel(R) Xeon(R) Platinum 8350C @ 2.60GHz, NVIDIA GeForce

RTX 3090, and 80GB of memory. We employ a two-stage training approach, initially using Mosaic and

MixUp [12] without rotation for training. In the final 10 epochs, we fine-tune the model with a smaller

learning rate under weaker augmentation. All experiments utilize the AdamW optimizer with a base

learning rate of 0.00025, a momentum of 0.9, and a weight decay of 0.05.

4.1. Datasets and Evaluation Metrics

4.1.1. Datasets

DIOR-R: [55] The DIOR-R dataset serves as an extended iteration of the DIOR dataset, featuring

reannotation with directional attributes. This dataset holds a prominent position as a standard

benchmark for the evaluation of rotated object detection capabilities within remote sensing applications.

The DIOR-R dataset is systematically organized into training, validation, and testing subsets. It

comprises 20 distinct categories, each denoted by specific labels such as Expressway-Toll-Station

(ETS), Chimney (CHI), Baseball-Field (BF), Vehicle (VE), Harbor (HA), Basketball-Court (BC),

Golf-Field (GF), Tennis-Court (TC), Storage-Tank (ST), Windmill (WM), Train-Station (TS), Bridge

(BR), Ground-Track-Field (GTF), Ship (SH), Airport (APO), Airplane (APL), Expressway-Service-Area

(ESA), Dam (DA), Stadium (STA), and Overpass (OP). In total, the DIOR-R dataset encompasses

23,463 images, collectively representing the 20 designated categories, amounting to 192,472 distinct

instances. The training and validation datasets jointly consist of 11,725 images, incorporating

68,073 individual instances. Meanwhile, the test dataset comprises 11,738 images and encompasses

124,445 distinct instances. All images adhere to a consistent size of 800x800 pixels, with pixel resolutions

ranging from 0.5 meters to 30 meters.

HRSC2016 [56] is another widely-used arbitrary-oriented object detection benchmark. It contains

1061 images with sizes ranging from 300×300 to 1500×900. The training set (436 images) and validation

set (181 images) are used for training and the remaining for testing. For the evaluation metrics on the
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HRSC2016, we report the COCO style means average precision (mAP) as well as the average precision

under the 0.5 and 0.75 thresholds (AP50 and AP75).

MAR20 [57] is currently the largest publicly available dataset for military aircraft target recognition

in remote sensing imagery. It comprises 3842 images, featuring 20 different military aircraft models

with a total of 22341 instances. The majority of the images have a resolution of 800×800 pixels. These

instances were collected from 60 military airfields located in the United States, Russia, and other

countries, utilizing Google Earth imagery. The MAR20 dataset includes a specific set of 20 aircraft

models. Among them, six are Russian aircraft, including the SU-35 fighter, TU-160 bomber, TU-22

bomber, TU-95 bomber, SU-34 fighter-bomber, and SU-24 fighter bomber. The remaining 14 aircraft

models consist of U.S. aircraft, such as the C-130 transport plane, C-17 transport plane, C-5 transport

plane, F16 fighter, E-3 AWACS (Airborne Warning and Control System) aircraft, B-52 bomber, P-3C

anti-submarine warfare aircraft, B-1B bomber, E-8 Joint Surveillance Target Attack Radar System (Joint

STARS) aircraft, F-15 fighter, KC-135 aerial refueling aircraft, F-22 fighter, F/A-18 fighter-attack aircraft,

and KC-10 aerial refueling aircraft. These aircraft model types are represented by abbreviations A1

to A20. The training set consists of 1331 images and 7870 instances, while the test set comprises

2511 images and 14471 instances.

4.1.2. Evaluation Metrics

In the experiment, various commonly used RSOD (Remote Sensing Object Detection) metrics are

employed to assess the effectiveness of the proposed model. This paper employs Average Precision

(AP) as the performance evaluation metric for the object detection model. The calculation formula for

AP is as follows:














P = TP
TP+FP

r = TP
TP+FN

AP =
∫ 1

0 p(r) dr

(4)

TP represents the number of correctly classified targets, FP is the count of background

identifications as targets, and FN signifies the number of object identifications misclassified as

background. Precision (p) indicates the ratio of correctly identified targets among all detected results.

Recall (r) represents the ratio of correctly identified targets to the true values of all targets. The area

enclosed by the curve with p on the vertical axis, r on the horizontal axis, and the coordinate axes is the

AP value. The AP metric takes into account both precision and recall, and a higher AP value indicates

higher detection accuracy. The mean Average Precision (mAP) for each class is calculated using the

following formula:

mAP =
1

N

N

∑
i=1

∫ 1

0
Pi(Ri) dRi (5)

Here, N refers to the number of object categories. mAP@0.5 denotes the mean average precision

for all classes at an Intersection over the Union (IoU) threshold of 0.5. mAP@0.5:0.95 signifies the

average mAP across IoU thresholds ranging from 0.5 to 0.95. IoU, which stands for Intersection over

Union, is a metric used to assess the degree of overlap between two regions. The computation formula

is as follows:

IoU =
area(X) ∩ area(Y)

area(X) ∪ area(Y)
(6)

In the equation, X represents the object box predicted by the model, and Y represents the real

object box in the image.

4.2. Implementation Details

We conduct experiments using RTMDet [18] from the MMRotate toolbox [58]. Our experiments

adhere to the configuration employed in RTMDet, where CSPNetXtBlock serves as the backbone and

CSPNetXt-PAFPN functions as the neck. During the initial stages of model training, we apply various
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data augmentation techniques, including random flipping, rotation, CachedMosaic, and CachedMixUp.

In the final 10 epochs, we modify the augmentation strategy, eliminating CachedMosaic and

CachedMixUp while retaining the remaining original RTMDet model training configuration. No

augmentation techniques are used during the testing and inference phases. In comparative experiments,

we maintain consistent hyperparameter settings throughout the training process to ensure a fair

comparison with other state-of-the-art methods. The learning rate undergoes linear decay in the first

half of training and cosine decay in the second half.

Regarding the processing of the HRSC2016 and MAR20 datasets, we crop the original images

into patches of 800x800 pixels with a 200-pixel overlap between adjacent patches. We use the training

portion for training, the test portion for validation, and inference. As for the DIOR-R dataset, the image

sizes remain unchanged, all being 800x800 pixels. We utilize the trainval portion for training, the val

portion for validation, and the test portion for inference. We conduct training for 50 epochs on the

DIOR-R and MAR20 datasets, while the HRSC2016 dataset is trained for 100 epochs to obtain the

inference model.

4.3. Comparisons with State-of-the-Art

We compare our proposed method with other SOTA approaches on the DIOR-R, HRSC2016,

and MAR20 datasets. As shown in the table, without unnecessary elaboration, our method

demonstrates superior performance compared to the SOTA approaches.

4.3.1. Results on DIOR-R

DIOR-R is a large-scale dataset characterized by an extensive array of categories and complex

scenes. We have compared our approach to several SOTA detectors on the DIOR-R dataset.

The proposed model extracts high-quality feature maps, enabling effective category recognition and

precise learning of object bounding boxes. We have chosen various categories of objects at different

scales and scenes with both dense and sparse object arrangements for visualization. The detection

results are illustrated in the Figures 5. It can be observed from the figures that the proposed method

accurately detects densely arranged objects. Table 1 presents the specific performance metrics for each

object category. Thanks to the utilization of large kernel convolutions in RTMDet, CSPNextBlock,

and data augmentation strategies during training, our baseline accuracy surpasses the current SOTA

by a significant margin. For individual categories like DA, TS, and ST, the detection results are

still subject to considerable improvement due to the limited number of training instances for each

class, which is less than 1500. Similarly, some small object categories (e.g., BR and VE) have not

achieved optimal performance due to their small size, which is less than 80 pixels, making accurate

detection challenging. Overall, our approach outperforms most categories and achieves an outstanding

performance of 74.51%.

Table 1. Detection Accuracy of Different Detection Methods on the DIOR-R Dataset. The color red is

indicative of the highest value, while blue represents the second-highest value.

Method Backbone GF VE ETS TS CHI ST SH HA APL TC mAP

RoI Trans [59] R-50 69.0 43.3 78.7 54.9 72.6 70.3 81.2 47.7 63.3 81.6
AOPG [43] R-50 73.2 52.4 65.4 60.0 72.5 71.3 81.2 42.3 62.4 81.5
ROIF [60] R-50 74.7 49.4 69.5 55.0 73.8 63.9 82.4 47.4 72.1 82.7
ROIF [60] ConvNext-50 78.6 50.6 74.9 63.2 72.7 71.2 81.3 51.1 72.2 89.8

AOPG SGIoU [61] R-50 79.5 55.9 72.9 62.6 77.4 78.3 89.7 52.6 69.6 81.5
RTMDet [18] CSPNext-52 75.8 57.3 76.1 63.8 79.8 79.6 89.8 53.2 90.4 90.5

Ours CSPNext-52 77.9 61.1 79.1 64.9 80.7 80.2 90.1 54.3 90.7 90.7

Method Backbone GTF DA BC ESA STA APO BF BR WM OP

RoI Trans [59] R-50 82.7 26.9 87.5 68.1 78.2 37.9 71.8 40.7 65.5 55.6 63.87
AOPG [43] R-50 81.9 31.1 87.6 78.0 72.7 37.8 71.6 40.9 70.0 54.5 64.41
ROIF [60] R-50 84.0 29.2 82.6 78.1 80.7 39.0 72.9 40.8 67.4 55.5 65.12
ROIF [60] ConvNext-50 84.7 34.1 89.7 88.7 83.0 44.0 72.2 43.9 66.5 57.5 68.49

AOPG SGIoU [61] R-50 82.5 36.1 88.7 82.8 75.6 53.0 71.7 46.6 71.0 59.6 69.37
RTMDet [18] CSPNext-52 84.6 35.8 90.3 89.2 85.0 49.0 84.8 46.3 65.9 61.7 72.44

Ours CSPNext-52 84.8 42.0 90.5 89.1 86.6 53.0 88.5 50.2 73.2 62.8 74.51

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2023                   doi:10.20944/preprints202310.1631.v1

https://doi.org/10.20944/preprints202310.1631.v1


12 of 20

Figure 5. Here are some detection results of our proposed MFCA model on DIOR-R. Each color

represents a distinct category, and the displayed results include six classes: ships, harbors, airplanes,

vehicles, windmills, and expressway toll stations. It is evident that the MFCA module excels at

identifying dense small targets amidst complex backgrounds.

As shown in Figure 6, the CSPPAFPN model in the baseline fails to extract sufficient features for

the objects of interest. In contrast, the inclusion of our proposed module results in an enhancement of

its feature extraction capabilities, thereby conferring a distinct advantage in the detection of various

targets within remote sensing images. The extracted features exhibit greater prominence, enhanced

spatial clarity, and improved localization precision, substantiating the efficacy of our approach in

acquiring more robust feature information and achieving performance improvements.
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Figure 6. In DIOR-R, we conduct a comparative visualization of feature maps between the baseline

and the MFCA module. After the Backbone extracts features and PAFPN fuses them, we visualize

feature maps from various layers. The color blue represents the background, while brighter regions in

red and yellow indicate heightened attention responses. A comparison reveals that the MFCA model,

as proposed, effectively suppresses background information and focuses more on densely packed small

target regions.

4.3.2. Results on HRSC2016

HRSC2016 dataset consists of vessels with high aspect ratios, sailing in arbitrary directions,

presenting a significant challenge for precise object localization. Our proposed model possesses robust

feature extraction capabilities, emphasizing global information within the feature maps, effectively

identifying class-specific features, thus yielding superior performance. As demonstrated in the Table 2,

our approach achieves commendable results, attaining evaluation scores of 90.05% and 97.53% for

the VOC2007 and VOC2012 benchmarks, respectively. Figure 7 showcases the visual outcomes of our

method on the HRSC2016 dataset.
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Table 2. Detection Accuracy of Different Detection Methods on the HRSC2016 Dataset. The color red is

indicative of the highest value, while blue represents the second-highest value.

Method Backbone mAP (07)(%) mAP (12)(%)

S2 ANet[62] R-101 90.17 95.01
AOGC [63] R-50 89.80 95.20

MSSDet [64] R-101 76.60 95.30
R3Det − KLD[7] R-101 89.97 95.57

MSSDet [64] R-152 77.30 95.80
R3Det[65] R-101 89.26 96.01

DCFPN [7] R-101 89.98 96.12
RTMDet [18] CSPNext-52 89.10 96.51

Ours CSPNext-52 90.05 97.53

Figure 7. We present a selection of detection results achieved by our proposed MFCA on the HRSC2016

dataset. These outcomes emphasize MFCA’s capacity to accurately extract target features, even when

dealing with complex backgrounds, ultimately leading to precise results.

4.3.3. Results on MAR20

MAR20 is a fine-grained dataset designed for military aircraft detection, encompassing a wide

range of target scales. This dataset contains remote sensing images captured under various climatic

conditions, different seasons, and varying lighting scenarios. Thanks to the robust feature extraction

and information learning capabilities within our proposed model, our model’s inference outperforms

all existing detectors, achieving a top mAP of 92.41%. The results of our approach to the MAR20

dataset are presented in Table 3. The detection results are illustrated in the Figure 8.
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Table 3. Detection Accuracy of Different Detection Methods on the MAR20 Dataset. The color red is

indicative of the highest value, while blue represents the second-highest value.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 mAP

S2 A − Net[57] 82.6 81.6 86.2 80.8 76.9 90.0 84.7 85.7 88.7 90.8
Faster R-CNN [57] 85.0 81.6 87.5 70.7 79.6 90.6 89.7 89.8 90.4 91.0

Oriented R-CNN [57] 86.1 81.7 88.1 69.6 75.6 89.9 90.5 89.5 89.8 90.9
RoI Trans [57] 85.4 81.5 87.6 78.3 80.5 90.5 90.2 87.6 87.9 90.9
RTMDet [18] 85.5 96.0 94.6 90.9 86.0 90.9 95.1 98.7 90.9 90.9

Ours 88.6 98.7 98.4 90.7 87.5 95.1 94.9 99.2 90.9 99.0

Method A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

S2 A − Net[57] 81.7 86.1 69.6 82.3 47.7 88.1 90.2 62.0 83.6 79.8 81.1
Faster R-CNN [57] 85.5 88.1 63.4 88.3 42.4 88.9 90.5 62.2 78.3 77.7 81.4

Oriented R-CNN [57] 87.6 88.4 67.5 88.5 46.3 88.3 90.6 70.5 78.7 80.3 81.9
RoI Trans [57] 85.9 89.3 67.2 88.2 47.9 89.1 90.5 74.6 81.3 80.0 82.7
RTMDet [18] 82.8 90.7 88.8 90.1 84.6 90.5 90.7 94.8 86.6 89.4 90.43

Ours 89.6 90.7 89.7 90.3 89.1 90.5 90.6 97.6 87.2 89.9 92.41

Figure 8. The results predicted by our proposed method on the MAR20 dataset, which comprises 20

different categories, are presented in the image. The displayed detection results pertain to classes A2,

A3, A9, A11, A12, A14, A16, and A17, with their corresponding bounding box colors and categories as

illustrated in the figure.

4.4. Ablation Study

4.4.1. Ablation Test with Different Feature Fusion Methods in MFFM

To offer an in-depth analysis of the augmented function of original features within the fusion

process involving PAFPN features, we undertake an ablation experiment on the skip connections

within the Multi-Feature Fusion Module (MFFM). In Figure 2, skip connections of varying colors

serve as modules for the ablation experiment, designated in red, orange, and purple. We compare

the variances in the fusion of original features with PAFPN concerning the baseline RTMDet on the
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MAR20 dataset.

4.4.2. Ablation Test of MFCA

To validate the effectiveness of each module proposed in this study, we compared the original

CSPNext-PAFPN with each enhancement module on the MAR20 dataset, considering RTMDet as the

baseline for detection. The evaluation primarily focuses on the Average Precision (AP) and mean

Average Precision (mAP) of typical object categories, including A3, A6, A10, A11, A15, and A18. Given

the similarity among fine-grained objects in remote sensing images and the complexity of backgrounds

under different seasons and lighting conditions, their detection becomes challenging.

Through the ablation experiments conducted for each enhancement, the recognition performance

of some challenging targets is presented in Table 5. By comparing experiments one and two, our

proposed multi-scale feature fusion network demonstrates a superior ability to represent multi-scale

target features compared to the baseline PAFPN. This superiority stems from our comprehensive

utilization of original features for enhanced feature fusion, resulting in improved model performance.

Comparing experiments one and three, it becomes evident that GFCAM significantly enhances the

model’s detection capabilities. The Global Feature Context Aggregation Module filters out background

interference and enriches target feature information, thus augmenting the model’s sensitivity to targets.

Table 4. In our research, we conduct an ablation study on various fusion methods for combining original

features with PAFPN within the MFFM framework, utilizing the MAR20 dataset. The distinctive fusion

methods are represented by the colors red, orange, and purple. These colors align with the fusion

methods illustrated in Figure 2. As each fusion method is introduced independently, it results in

an improvement in detection accuracy when compared to the baseline. Remarkably, the collective

combination of all fusion methods leads to a noteworthy enhancement in detection accuracy.

Baseline Red Orange Purple A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 mAP

✓ 85.5 96.0 94.6 90.9 86.0 90.9 95.1 98.7 90.9 90.9
✓ ✓ 87.7 98.1 93.5 90.9 86.2 90.8 93.7 99.1 90.8 94.3
✓ ✓ ✓ 86.3 90.8 98.7 90.6 87.2 92.2 95.3 99.3 90.9 99.7
✓ ✓ ✓ ✓ 88.1 90.7 97.0 90.8 86.5 97.7 95.9 99.3 90.9 98.6

Baseline Red Orange Purple A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

✓ 82.8 90.7 88.8 90.1 84.6 90.5 90.7 94.8 86.6 89.4 90.43
✓ ✓ 88.6 90.8 89.5 90.3 87.9 90.5 90.6 94.2 86.8 89.2 91.17
✓ ✓ ✓ 85.4 90.4 89.7 90.5 83.4 90.5 90.8 96.0 90.0 90.3 91.40
✓ ✓ ✓ ✓ 88.3 90.7 89.6 90.0 86.7 90.3 90.8 95.9 88.2 89.2 91.76

Table 5. Ablation studies of the individual modules proposed by us on the MAR20 dataset. When each

module is added independently, the detection accuracy is improved compared to the baseline. Notably,

when all modules are combined, there is a substantial increase in detection accuracy.

Baseline MFFN GFCAM A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 mAP

✓ 85.5 96.0 94.6 90.9 86.0 90.9 95.1 98.7 90.9 90.9
✓ ✓ 88.1 90.7 97.0 90.8 86.5 97.7 95.9 99.3 90.9 98.6
✓ ✓ 87.7 97.1 93.3 90.8 86.4 90.9 92.5 98.6 90.9 99.9
✓ ✓ ✓ 88.6 98.7 98.4 90.7 87.5 95.1 94.9 99.2 90.9 99.0

Baseline MFFN GFCAM A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

✓ 82.8 90.7 88.8 90.1 84.6 90.5 90.7 94.8 86.6 89.4 90.43
✓ ✓ 88.3 90.7 89.6 90.0 86.7 90.3 90.8 95.9 88.2 89.2 91.76
✓ ✓ 87.0 90.8 89.7 90.1 82.4 90.6 90.6 97.0 89.9 90.1 91.32
✓ ✓ ✓ 89.6 90.7 89.7 90.3 89.1 90.5 90.6 97.6 87.2 89.9 92.41

5. Conclusions

In addressing the challenging problem of detecting densely distributed small targets in remote

sensing images with complex backgrounds, we propose a novel algorithm for remote sensing image

target detection. Leveraging our devised multiscale feature fusion method, we effectively integrate
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information from the original feature maps with the results of the FPN. This integration mitigates the

issue of shallow feature information loss, consequently enhancing the detection capability of small

targets in complex backgrounds. Additionally, we introduce a global feature space context aggregation

module designed to augment valuable features in each layer of the FPN. Extensive validation and

ablation studies are conducted on three publicly available datasets. Experimental results demonstrate

that the proposed approach outperforms existing detectors on these three challenging datasets,

substantiating the effectiveness and generalizability of the introduced modules. However, it is worth

noting that our approach still has limitations in detecting densely occluded targets. In future research,

we intend to explore scenarios involving dense target occlusion and refine our network model to better

handle such cases.
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