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Abstract: In this study, we first discover some new concept coordinated UD-convex mappings with fuzzy-
number values. After that, we look into Hermite-Hadamard type inequalities via fuzzy-number-valued
coordinated UD-convex fuzzy-number-valued mapping (coordinated UD-convex FNVM). In the case of
coordinated UD-convex FNVM, novel conclusions are derived by making particular decisions in recently
proven inequalities. Additionally, it is demonstrated that the recently discovered inequalities are expansions
of comparable findings in the literature. It is important to note that the main outcomes are validated by
nontrivial examples.
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1. Introduction

One of the most well-known concepts in the field of function theory is the Hermite-Hadamard
inequality, which was found by C. Hermite and J. Hadamard (and described in sources such as [1],
[2] p.137). This inequality has several real-world applications in addition to its geometric
interpretation.

The Hermite-Hadamard inequalities have been established by numerous mathematicians. It's
important to note that the Hermite-Hadamard inequality, which naturally follows from Jensen's
inequality, can be seen as a development of the idea of convexity. Recently, there has been renewed
interest in the Hermite-Hadamard inequality for convex functions, leading to a wide range of
improvements and expansions that have been thoroughly investigated (see, for example, publications
like [3-8]).

Interval analysis is a crucial topic since it is used in math and computer models as one method
of addressing interval uncertainty. Even though this theory has a long history going back to
Archimedes' calculation of a circle's circumference, significant research on the subject was not
published until the 1950s. The first book [9] on interval analysis was published in 1966 by Ramon E.
Moore, who is credited with developing interval calculus. After that, other academics studied the
theory and uses of interval analysis.

Furthermore, by taking into account interval-valued functions in [10-13], well-known inequality
types as Ostrowski, Minkowski, and Beckenbach, as well as some of their applications, were
supplied. Additionally, Budak et al. in [14] developed a few inequalities utilizing interval-valued
Riemann-Liouville fractional integrals. The definition of interval-valued harmonically convex
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functions was provided by Liu et al. in [15], and as a result, they are able to derive several Hermite-
Hadamard type inequalities, including interval fractional integrals. The authors provided a fuzzy
integral-based variation of Jensen's inequality for interval-valued functions in [16] and [17] and
demonstrated several integral inequalities, [18-29]. In their proofs of Hermite-Hadamard type
inequalities for set-valued functions in [30] and [31,32], Mitroi et al. made use of general forms of
interval-valued convex functions. Rom'an Flores et al. found a few Gronwal type inequalities for
interval-valued functions in [33]. Zhao et al. showed many kinds of integral inequalities for interval-
valued functions in [34,35].

In [36], Jleli and Samet discovered brand-new Hermite-Hadamard type inequality involving
fractional integrals with regard to a different function. Fractional integrals of a function with respect
to another function were first introduced by Tunc in [37]. The Riemann-Liouville and Hadamard
fractional integrals were generalized into a single form by Katugompala's novel fractional
integration. Budak and Agarwal used generalized fractional integrals, which generalize some
significant fractional integrals like the Riemann-Liouville fractional integrals, the Hadamard
fractional integrals, and the Katugampola fractional integrals in [38], to establish the Hermite-
Hadamard-type inequalities for co-ordinated convex function. Interval-valued left- and right-sided
generalized fractional double integrals were defined by Kara et al. [39]. Numerous authors have
concentrated on interval-valued functions in recent years. The authors of [40] introduced the idea of
interval-valued general convex functions and used it to demonstrate a number of novel Hermite-
Hadamard type inequalities. A fractional version of Hermite-Hadamard type inequalities for
interval-valued harmonically convex functions was also provided by the authors in [41]. Researchers
recently expanded the idea of interval-valued convexity and described various types of UD-convexity
for interval-valued functions in [42-46]. For UD-fuzzy-number-valued convex functions, they also
discovered a large number of Hermite-Hadmard type inequalities.

To express the collection of all positive fuzzy numbers over the real numbers, we introduce the
notation F, in the context of this article. The terms A4}, JA},q), and FeA,q) refer to the set of
all FNVM that are Riemann integrable real valued functions, Aumann’s integrable IV-Fs and fuzzy
Aumann’s integrable on the interval [v, d]. The following theorem draws a link between functions
that are integrable in the sense of Riemann (A-integrable) and functions that are integrable in the
sense of FA . Additionally, the sign "2f" is used to denote the up and down (UD) fuzzy inclusion
relationship for D and M belonging to F,, where M is thought of as a fuzzy subset of D. If and only
if for z-levels, the conditions [5]3 2, [rT\]3 is met, this UD-inclusion is true. Integral fuzzy inequalities
generated from FNVMs have recently attracted the attention of several academics:

Theorem 1 [35]: Assume that the UD -convex FNVM ¥:[v,d.] » F, is IVM with Y.(8) =
[Y.(8,2),Y"(8,2)] forall 8 € [v,d] and for all 3 € [0, 1]. Then there are the disparities:

¥ (52) 25 7= O (FA) [ ¥(8)d6 2, X2 (1)

We provide the ideas of generalized fractional integrals for two-variable FNVMs in order to
demonstrate Hermite-Hadmard type inequalities for convex and coordinated convex functions,
which are inspired by ongoing investigations. The main benefit of the newly established inequalities
is that they can be converted into classical Hermite-Hadamard integral inequalities for coordinated
UD-convex FNVMs as well as fuzzy Riemann-Liouville fractional Hermite-Hadamard, Hadamard,
and Katugampola fractional Hermite-Hadamard inequalities without having to prove each one
separately.

The format of this essay is as follows: A brief summary of the foundations of fuzzy-number-
valued calculus and other relevant works in this area are presented in Section 2. In Section 3, we
provide some generalized fractional integrals for UD-convex FNVM with two variables. For UD-
convex FNVM, we create a novel Hermite-Hadamard type inequality. Several Hermite-Hadamard
type inequalities for coordinated UD-convex FNVM are parented in Section 3. It is also taken into
consideration how these findings compare to findings of a similar nature in the literature. Finally,
Section 4 makes some suggestions for additional study.
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2. Preliminaries

We will go through the fundamental terminologies and findings in this section, which aid in
comprehending the ideas behind our fresh findings.

Definition 1 ([47,48]). Given D € F,, the level sets or cut sets are given by [D]* = {8 € ®| B(8) > 3}
vV 3€[0,1] and by
[B]° = {6 € % B(8) > 0}. )
These sets are known as 3-level sets or 3-cut sets of D.

Proposition 1 ([49]). Let D, M € F,. Then, relation “ <p” is given on F, by D <z M when and only
when [17)]3 < [(T\]Z, for every 3 € [0, 1], which are left- and right-order relations.

Proposition 2 ([46]). Let D, M € F,. Then, relation “ 2y ” is given on F, by D 2 M when and only
when [B]’ 2, [M]® for every 3 € [0,1], whichis the UD-order relation on F,.

Remember the approaching notions, which are offered in the literature. If B, € F, and ¢ € R,
then, for every 3 € [0,1], the arithmetic operations addition “@ ”, multiplication “® ”, and scaler
multiplication “© ” are defined by

[Bed] =B+ A ®)
[B@] = [B] x [, @
[t © B = £[B[, ©)

Equations (4) through (6) have immediate consequences for these outcomes.

Theorem 2 ([47]). The space F, dealing with a supremum metric, i.e., for B, M € F,

do(B, M) = sup dy([B)’, [m]5), (6)
<3<
is a complete metric space, where H indicates the well-known Hausdorff metric on the space of
intervals.

Theorem 3. Let ¥:[v,d] € R > F, be a FNVM, its IVMs are classified according to their 3-levels
Y;:[v,d] € R > R, are given by ¥,(8) =[Y.(8,2),¥"(8,2)] V & € [v,d] and V 3 € (0,1]. Then, ¥
is FA-integrable over [v,d] if and only if, ¥.(8,3) and Y*(8,3) are both A-integrable over [v,d].
Moreover, if Y is FA-integrable over [v,d], then

- 3

[(Fa) [ 3(®)a8] = [(4) [ ¥.(8,9d8,(4) [Y'(8,9d8] = 14) [ ¥, (8)ds, @)

V 3€(0,1]. V 3€(0,1], FA(pyq)5 denotes the collection of all FA-integrable FNVMs over
[v,d.].

Fuzzy Aumann’s and fractional calculus on coordinates

Definition 2. [16,48] Let Y:[6,n] » Rf be IVM and Y € JR[; ). Then interval Riemann-Liouville-
type integrals of Y are defined as
¥ 1 ¥ ¥—1
I ¥W) = 15y @ =07 (Dde @ >0), ©)
XYW =15 [, -9 Y ©dt @ <n), ©)

where ¥ > 0 and I’ is the gamma function.

Recently, Allahviranloo et al. [49] introduced the fuzzy version of defined the fractional integral
integrals such that:

doi:10.20944/preprints202310.1591.v1
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Definition 3. Let ¥ >0 and L([6,n],F,) be the collection of all Lebesgue measurable FNVMs
on[8, n]. Then, the fuzzyleft and right Riemann-Liouville fractional integral of ¥ € L([6,n], F,) with
order ¥ > 0 aredefinedby

YW = s @ -0 A, @ > 0), (10)

and
T-YW) =15 J,(t =90 dt, @ <n), (11)
respectively, where I'(}) = fow t¥"le~tdt is the Euler gamma function. The fuzzy left and right
Riemann-Liouville fractional integral @ based on left and right end point functions can be defined,

that is
[:zgnii(w)]Z == [ - YD de
= s W - YL (69, Y (5 9] de, > 8), (12)
where
X =1 [ @ - VLG D dt, @ > ), (13)
and
PV WD) = s MW - 0T (G dt, @ > ), (14)

The right Riemann-Liouville fractional integral, denoted by[ﬂg—\?(lp)]z, can also be defined using
the left and right end point functions.

Theorem 4. [27] Let ¥:[v,d] > F, be a UD-convex FNVM on [v,d.], whose 3-cuts set up the

sequence of IVMs Y,:[v,d] c R - R¢* are given by Y-() = [Y.(¥,2), Y (@, 2)] for all ¥ € [v,d.]
and for all z € [0,1]. If ¥ € L([v,d.], F,),then

& (v+d. ¥ v 69 d.
V(24) 26 22 1Y (@) @ 3-Y(0)] 25 YOO (15)
Theorem 5. [27] Let ¥,J : [v,d] —» F, be two UD-convex FNVMs. Then, from 3-cuts, we set up the
sequence of IVMs Y,, J,:[v,d] € R —» Rf are given by Y,(8) = [Y.(8,2),¥"(8,2)] and J,(8) =
[J.(8,%),J°(8,%)] for all & € [v,d] and for all 3€[0,1]. f Y ® J € L([v,d],Fy) is fuzzy Riemann
integrable, then

1 . ~ . ~
ZF(S: - ))T [7:¥(d) ® 3(d) B 3-Y(v) ® J(v)]
2 (3~ Frme) O D 8 () T O, (16)
d
" v+d v+d r(x+1) 9% 7
V(5)®I(%) 2r o [T V@ ® I() B T-Y») ® J )]
+ % G B (vr+1)(vr+2)) M(U d) @ ((r+1)(1r+2)) N(U‘ d), (17)

where M (v,d) = Y(0) ® J() @ ¥(d) ® J(d), N (v,d) = ¥(0) ® J(d) ® ¥(@d) ® J(v),

M,(v,d) = [M.((v,d),3),M*((v,d.),3)], and N, (v,d) = [V.((v,d),3), M ((v,d),3)]

Interval and fuzzy Aumann's type integrals are defined as follows for coordinated IVM Y(8,)
and coordinated FNVM ¥(8,v):

Theorem 6. [34] Let ¥:A[8,n] x [v,d] € R?> > F, be a FNVM on coordinates, whose 3-cuts set up
the sequence of IVMs Y, AC R? - R; are given by YZ(G,l,[J) = [Y*((ﬂ,lp), 3),Y*((8,¢), 3)] for all
(8,1) € A= [5,n] X [v,d] and for all z € [0,1]. Then ¥ is fuzzy double integrable (FD-integrable)
over A if and only if ¥,(8,3) and Y*(8,3) both are D-integrable over A. Moreover, if ¥ is FD-
integrable over A, then
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n ~ 3 n n *
[(FD) 7 190, p)dpas]| = [0 7 [ ¥.((0, %), 5)dwds, (D) [} [ ((8,1), 3)dypas]
= (D) [} [*Y,(8,¥)dyds, (18)
for all 3 € [0, 1].
The family of all FD-integrable of FNVMs over coordinates and D-integrable functions over
coordinates are denoted by FO, and D), forall 3 € [0, 1].

Here is the main definition of fuzzy Riemann-Liouville fractional integral on the coordinates of
the function ¥(8,9) by:

Definition 4. [29] Let ¥:A— F, and ¥ € FO,. The double fuzzy interval Riemann-Liouville-type
integrals :7;;6 o+ N g%, 7% _ of Y order ¥, > 0 are defined by:

ot d™ ’“n7ut’ nT,d7

RO = e fy 1 © = O @ = 9)F Yt s) dsdt, (8> 0,9 > ), (19)
RSO = g o (8 = O (s —w)F (L s)dsdt, (0> 6,y <d), (20)
7F (8,9) =- (r)lr ol [Pt - 81y — )P 1Y(t, ) dsdt, (8 <n,P > v), 1)
A (CRTES r(@lr(,;) fy fj(t — 8)" (s — )P 1Y(t, s) dsdt, (8 <np <d). (22)

Here is the newly defined concept of coordinated convexity over fuzzy number space in the
codomain via UD-relation given by:

Definition 5. [34] The FNVM Y:A- F, is referred to be coordinated UD-convex FNVM onA if

Y(eb+ (1 —)n,sv+ (1—-5)d)
25 esY(0,0) B e(1 - 5)Y(6,d) B (1 — )sY¥(n,v) B (1 — )1 —5)¥(n,d), (23)
for all (6,n), (v,d.) € A, and ¢, € [0,1], where ¥(8) > 0. If inequality (23) is reversed, then Y is
referred to be coordinate concave FNVM on A.

Lemma 1. [34] Let Y:A— F, be a coordinated FNVM on A. Then, Y is coordinated UD-convex
FNVM on A if and only if there exist two coordinated UD-convex FNVMs Yo:[v,d] > Fy, Yo(w) =

?(G: W) and ?1/) [6, n] - IF‘0/ Yw(z) = ?(Z! 1/))

Theorem 7. [34] Let ¥:A— F, bea FNVM on A. Then, from z-levels, we get the collection of IVMs
¥,:A— RS € R, are given by

¥, (8,9) = [¥.((8,9),2),¥°((8,),3)],
forall (8,¢) € A and forall z € [0,1]. Then, ¥ is coordinated UD-convex FNVM on A, if and only
if, for all 3 € [0,1], Y*((G,lp),g) and Y*((G,lp),g) are coordinated convex and concave functions,
respectively.

Example 1. We consider the FNVM ¥:[0,1] x [0,1] > F, defined by,
:_gi, o € [09,5]
Y@®) () ={6+e)(6+e¥)—0
6+e®)6+e¥)—5’
o , otherwise,

Then, for each 3€[0,1], we have Y,(8) =[(1—-2)8y +53(1—%(6+e*)(6+e¥)+53.
Since endpoint functions Y*((G,tp), 3), Y*((ﬂ, Y), 3) are coordinate concave functions for each 3 €

[0,1]. Hence, ¥(8,v) is coordinate UD-convex FNVM.

o€ (56+eM)(6+e¥)]

From Lemma 1 and Example 1, we can easily note that each UD-convex FNVM is coordinated
UD-convex FNVM. But the converse is not true.

Remark 1. If one assumes that Y*((G,lp), 3) = Y*((G,lp), 3) with 3 =1, then Y is referred to be as a
coordinated convex function if Y meets the stated inequality here, see [41]:
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Y(b+ (1 —&)n,su+ (1 —5)d)
< e&sY(6,0) + (1 —5)Y(5,d) + (1 — &)sY(n,v) + (1 — &)1 —s)¥(n,d),
Let one assumes that Y*((G,lp), 3) + Y*((G, Y), 3) with 3=1 and Y*((G,lp), 3) is affine
function and Y*((G, Y), 3) is a concave function. If the stated inequality here, see [32:]
Y(eo+ (1 —e)n,sv+ (1 —s)d,)
2esY(6,0)+e(1—95)Y(,d) + (1 —e)sY(n,v)+ (1 — )1 —5)¥(n,d),

is true.

Definition 6. Let ¥:A— F, be a FNVM on A. Then, from 3-levels, we get the collection of IVMs
Y,:A—> Rf € R, are given by

Y, (8,9) = [Y.((8,9),2), Y ((8,9),2)], (24)
for all (8,¥) € A and for all 3 € [0,1]. Then, ¥ is coordinated left-UD-convex (concave) FNVM on
A, if and only if, for all 3 € [0,1], Y*((ﬂ,lp),g) and Y*((ﬂ,l[)), 3) are coordinated convex (concave)
and affine functions on A, respectively.

Definition 7. Let ¥:A— F, be a FNVM on A. Then, from 3-levels, we get the collection of IVMs
Y,:A— Rf € R, are given by

Y,(8,9) = [Y.((8,1¥),2), ¥ ((8,9),3)], (25)
forall (8,%) € A andforall 3 € [0,1]. Then, ¥ is coordinated right-UD-convex (concave) FNVM on
A, if and only if, for all 3 € [0, 1], Y*((ﬂ, Y), 3) and Y*((ﬂ,l/)), 3) are coordinated affine and convex
(concave) functions on A, respectively.

Theorem 8. Let A be a coordinated convex set, and let ¥:A— F, be a FNVM. Then, from 3-levels,
we obtain the collection of IVMs Y,:A— R c R, are given by

Y,(8,9) = [Y.((8,1¥),2), ¥ ((8,9),3)], (26)
for all (8,3) €A and for all z € [0,1]. Then, Y is coordinated UD-concave FNVM on A, if and
only if, for all z€[0,1], Y*((G, 1Y), 3) and Y*((G,l/)),g) are coordinated concave and convex
functions, respectively.

Proof. The demonstration of proof of Theorem 8 is similar to the demonstration proof of Theorem 7.
Example 2. We consider the FNVMs ¥:[0,1] x [0,1] - F, defined by,

o—(6-e%)(6—e¥
(X)) 5 e (6 e (6 - e¥).25]

Y(®) (o) = 350y-0 (27)
3569 25" o € (25, 350Y]
0, otherwise.

Then, for each 3 € [0,1], we have Y,(8,9) =[(1—3)(6—e®)(6—e¥)+25335(1—32)0y +
253] . Since endpoint functions Y*((G, Y), 3), Y*((G,z,l}), 3) are coordinate concave and convex
functions for each 7z € [0,1]. Hence ¥(8,v) is coordinated UD-concave FNVM.

In the next results, to avoid confusion, we will not include the symbols (R), (IR), (FR), (ID),
and (FD) before the integral sign.

The main goal of this article is to develop a number of original fractional coordinated integral
inequalities for the Hermite-Hadamard types using an coordinated UD-concave FNVM. We
acquired the most recent estimates for mappings whose products are coordinated UD-concave
FNVMs using the fuzzy fractional operators.

3. Main Results

Here is first result of coordinated integral inequalities for the Hermite-Hadamard type using the
fuzzy fractional operators via coordinated UD-concave FNVMs.

doi:10.20944/preprints202310.1591.v1
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Theorem 9. Let ¥:A— F, be a coordinate UD-convex FNVM on A. Then, from z-cuts, we set up the

sequence of [VMs Y,:A— R} are given by Y,(8,1) = [Y*((G,z/;), g),Y*((G,l[J), g)] for all (8,y) €A
and for all z € [0,1].If §¥ € FD,, then following inequalities holds:

Y(@’ﬂ) op r(x+1) ;+S?( u+¢) @j‘f ~( u+¢)] D r(f+1) +Y(b+_n dp) @73 Y(b+n U)]

22 ( 4)(n (b)* ) 4(¢—u)ﬁ
Fx+1fﬂ+1
“F4(n—-0)(d— [ja‘” Y(,d) e ﬂb+ e ¥Y(n,v) ® 7 Y(b d) ® g Y0, U)]
1 7 S ~
=F % [75: ¥ (0, 0) @ 75:¥(n, d) @ 73-¥(6,0)  77-¥(6,d)]
@J(Ef_i- b [7 +¥ (@, da)@ffﬁ ¥Y(n, U)EB:] Y (n, d,)@j] Y, U)]

P(CADIYC U)EEY(O DY (n, d»). (28)

D

If Y(8) coordinated concave FNVM then,
S (0+n v+d I(x+1) S v+d, - v+d. r(p+1) o+n B o+n
V() Sr e a+Y( )697 ( )]@4(@, R +Y( )@7 Y( )]
'x+1)rp+1
1"(7r +1)
8(n —0)”
r+ 1)
8(d. —

[-‘]g+?(n: U) @ g;"'?(ni d") @ j;{_?(bt U) @ 7;{_?(6‘ d")]

19536, d) ® 95-F(0,0) © 1530, ) ® I4-(5,0)]

Cp YonSY(n, U)GzY(b DY (n, d.,). (29)

O3

Proof. Let ¥:[6,n] > F, be a coordinated UD-convex FNVM. Then, by hypothesis, we have

~(6 ; -~ ; d) 25 Y(e0+ (1 - e)n,e0 + (1 - e)d) @ Y((1 — &)+ en, (1 — &) + d,).

By using Theorem 7, for every 3 € [0, 1], we have

4 6+nv+d

Y* ( 2 ) 2 >'3

< Y*((sb +(1-¢&nev+(1- s)d.,),g) +Y. (((1 —&)o+en,(1—8)v+ Edo); 3),
4 6+n U+¢
P,

> Y*((sb +(1—-&nev+ (1 -¢)d), 3) +Y* (((1 —&)d+en,(1—8)v+ sd,,), g) .

By using Lemma 1, we have

<( U+d’) ) < Y*((G, v+ (1 —g)d), g) + Y*((G, (1 -8+ ed), 3), 0)
(( Uz ) 3) > Y*((ﬂ, v+ (1-e)d), 3) + Y*((G, (1 -8+ ed), 3),

and
((a+n ) ) < Y*((sb + (1 —-e)n,y), g) +Y. (((1 —&)6+ tn, 1/)),3), a1

2Y* ((Mn 1,[)),3) > Y*((sb + (1 —-¢e)n,y), 3) +Y (((1 —&)6+tn, lp),g).
From (30) and (31), we have

(02590239

2, [¥.((8,ev+ (1 —&)d),3), Y ((8,e0+ (1 — £)d.), 3)]
+H[Y.((8, (1 — v+ &d),3), Y ((8,(1 — &)v + &d.), 3)],

(32 (ama))

2, [Y.((ed+ A — ), 3), Y ((ed+ (1 — ©)n,9),3)]

2

and

2



https://doi.org/10.20944/preprints202310.1591.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2023 doi:10.20944/preprints202310.1591.v1

+[Y*((86 + (1 - S)D_, 1/’): 3)' Y*((‘Sb + (1 - E)D., lp)! 3)];

It follows that
Y, (e,%) 2, Y,(8, 60+ (1 — £)d) + Y, (8, (1 — &)v + &d.), (32)
and
¥y (50, 9) 2, V(e + (1 - )n,p) + Y, (ed + (1 — )n, ). (33)

Since Y,(8,.) and Y,(.,1), both are coordinated UD-convex-IVMs, then from inequality (15),
for every 3z € [0, 1], inequalities (32) and (43) we have

Yo, (50) 2 o[98y, (@) + 95 ¥, )] 25

2 I'5d-v)8

YZQ@)ZYZO@)_ 34)

and
Yw(a)wglp(n)

Vo, (55) 21 5 [0y, () + 7Y, )] 2 (35)

Since Yée(w) = Y,(8,w), then (34) can be written as

+d. r(g+1
¥: (8.5%) 20 S5 [154Y,(8,4) + 33-Y,(8,0)] 2,

9, 8,d

That is

d d
U; ) ’2(doliu)ﬁ“ (@ —$)F71Y,(8,5)ds
a L

+ f (s —U)B'le(ﬁ,s)ds] 5, :8:0) ;Yz(& )

r(n 8)¥~
n—6)%

ﬁf Y}( 0 )(D—ﬂ)" 1de

n rd
QIL ju (n—g)x—l(da—s)ﬁ—lyz(e,s)dsdﬂ+_L fv (n — 8)™ (s — v)F1Y,(8,5) dsd®

Jo (= 8)""1Y,(8,0)d® + [ (n — e)f-lyg(e, d)ds]. (37)
X(ﬂ )%~
n—06)%

ﬁjﬁnﬁ( +¢)(n—9)w 140

n rd
2; 4(n— 6;ﬁ(d¢, —0)P f f ®-0)"1d- S)‘B_lyz(@,s) dsd®
n rd
4-(1’1 _ 6;[zdp — U)B f f (8 — 6)T_1(S — U)ﬁ_lyz(e,s) dsd®

Jo (8 — 8)"71Y,(8,0)d® + [,'(8 — 8)"1Y,(9,d.)d8]. (38)

oo (5405

I+ 1)rp+1
=1 4((:1f +a))r(((f = [7§+B Y d) + 77 Y, v)]

5 I@+1) [7§+Y§(n, v) + 7§+Y3(1’l, dp)] (39)

=1 4(n-t)”
g % (075

r'(s+Drg + 1) [g ¥,(0,d) + 74, Y, (5, v)]

2 I =0y (d—
[T‘ Y, (6,0) + 73-Y,(6,d)].

Vi (e,

Multiplying double inequality (36) by “and integrating with respect to 8 over [§,n],

we have

=1 4(n- a)f[
Again, multiplying double inequality (36) by — " and integrating with respect to 8 over

[6,n], we have

2 4(o- a)r[
From (37), we have

From (38), we have

D I"(r+1)
n—06)*

(40)
Since from 3-cuts, we obtain the collection of IVMs Y,:A— R}, then we have
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F(X‘ + 1) . v+d
%3 (05|
2(n—0)"
rs+1rp+1
“F4(n—0)"(d — v)F [ . Y0d) @ 7 Y(n, U)]
rx+1) [73:¥(n,0) @ 75 ¥ (n, d,,)] (41)

=2F 4(n-d)*

And
2=V ()

F(r+1)F(/3+1)
=F I —0)"(d — [7 06,4 @ 71F, F, u)]
[73-§(6,v) @ 73-¥(5,d)]-

I“(r+1)
=2F 4(n—0)%

(42)
Similarly, since ¥y (z) = ¥(z,9) then, from the (35), (41) and (42), we have
rig+1) jﬁ 6+n 4
2@—wf |\ 2

o I D 072,200

=} Lﬁf*i; [75 ¥ (6, d) eaﬂf; y(n, ¢)].

(43)
And

FB+1) [ 5 (b+n
2(d—v)® 7¢‘Y< 2 U)]

r nr 1 ~
2F 4(fjb)l(éﬁ +U)3; [7a+ 4 ¥(n,v) ® 7:—%,—‘((6, U)]
TB+1) [1 _Y(b, v) & 75_\7@, v)].

=F 4@-vf

(44)
The second, third, and fourth inequalities of (28) will be the consequence of adding the
inequalities (41), (42), (43) and (44).
Now, for any 3 € [0, 1], we have inequality (15)'s left portion.

¥, (52 550) 2 S [0, (B2 a) + 980y, (52 0)] (45)
And 6+n v+d r(x+1) v+d - ﬂ
YE( 2’ 2 )D’ 2(n—0)° T5+ Y (n )"‘7 Yz( 2 )] - (46)

The following inequality is created by adding the two 1nequa11t1es (45 and 46):

0 () 2 e (v )+ (05

r(f+1) o+n B o5+n
+4(d,—u)5 +Y3( 2 )+7 YZ( 2’ )]
Similarly, since we obtain the set of [VMs Yy A R} for for 3 € [0,1], the inequality can be
expressed as follows:

~(0+nv+d
2 7 2
- :((:,:)1 o+Y( U+¢) 7 \7( u+d.,)] @ L6+D +Y(b+n )69 75y (“_HU)] (47)

4(d—-v)B 2

The first inequality of (28) is this one.
Now, for any 3 € [0, 1], we have inequality (15)'s right portion:

TS0, 0,0 + 7‘*— ¥,(0,0)] 2, HODEOD, (8)
, ,d.

T 0¥, (0, 4) + 9 Yy, )] 2, MRS, (49)

T [T ¥y(0,0) + T3 Yy(,0)] 2, T (50)
r(s+1) ¥ (6,d)+Y;(n.d)

o [ ¥, () + 7 ¥, (6, d)] 2, (51)
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Summing inequalities (48), (49), (50) and (51), and then taking multiplication of the resultant
with i, we have
rx+1)
8(n—0)°
rg+1n 1)
8(d — v)f

[75: ¥, (0, 0) + T-Y,(6,0) + T ¥, (0, d) + 72-Y,(5,d)]

[7 Y5(6,d) + 75y, (6,0) + 75,¥, (0, d) + T4-¥, (0, v)]

5 ¥,(6,0) +¥,(6,d) + Y, (n,0) + ¥, (n,d)
_I 0
4
Since we receive the collection of IVMs Y,:A— R from 3-cuts, we have

% (7.9 (n,0) ® 7-T(5,0) @ T ¥(n, d) @ T-F(5,d)]

1"([?+ )
8(d —

5195306, 0) ® 95-3(5,0) @ 70.¥ (0, 4) B 95-F(0,0)]

5 Y(o0OY(6,d4) DY (0,v)DY(n,d)
2 ” .

O3

(52)
This is the final inequality of (28) and the conclusion has been established.

Example 3. We assume the FNVMs ¥:[0,2] % [0,2] - F, defined by,

Pl se((2-V8)(2- V). 4]

YON@ =1 Loeniee ¢ (4,(24v8) (2 + /)
0, otherwise,
(53)
then, for each 3€[0,1], we have Y,(8,9)= [(1 - 3)(2 - \/E)(Z - ﬂ) +43,(1 - 3)(2 +
\/5)(2 + ﬂ) + 43]. Since end point functions Y*((G, 1Y), 3), Y*((G,l[}), g) are coordinate concave
functions for each z € [0,1]. Hence ¥(8,v) is coordinate concave FNVM.

Yo (55 50) = [(1—9) + 43,901 — ) + 41,
%[ I(n Y @y (s °+d”)]ea:$f:))ﬁ af+\7<6;n,¢>eaﬂd‘f—?(6;n,u)]
PRI SO AL
T S R ) @ T ¥, (00) © 775, %,0.0) © 7Y, (0,0)]
[(1—3)(——\/_—§7T+8+32)+43,(1—3)( +\/_+?n+8+3;)+43]
% [75: ¥ (0, 0) @ 75:¥ (0, d) @ 3-Y(5,0) ® 77-¥(b,d)]
B 5q T ¥(0.0) 9 ¥(n, ) © 94-¥(6,0) © 9L-¥(m, )]
_ 34«/E+(«gﬁ4)n (1_3)+43'34\/_+(«2‘\/;4)n+24(1_3)+43]
BODHED OO oD (- (2-22) + 45,1 -9 2+ 29Z) + 44]
That is
[(1—-12) +439(1 —3) + 43] 2, [(1 —3)(2 —g—grr>+43,(1—3)(2+?+gﬂ)+4g]
3, [(1—3)(%—& fn+g+3;>+4g,(1—g)<§+ﬁ+g +g+3;>+43]
S, [34«/5 + («Zé 4)m — 24 19+ 43’34\/2 + («f\/; 4 + 24 1-91+ 43]
=} —34@(5;)"‘“ (1—1) + 43,

Hence, Theorem 9 has been verified.
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Remark 2. If one assumes that ¥ =1 and f = 1, then from (28), as a result, there will be inequity,
see [27]:

~(6+n v+d
2 2
Qw%[ﬁfa‘”( )40 @SV (5 0) ] 20 i ) 196 wavao
P oy L ¥(8,0)d6 @ [7'Y(8,d)d8] @ [ [[49@ w)dy @ [T, p)dy]

5 You@¥nn®Y(0d)SY(nd)
= IF 4 .

(54)

If one assumes that ¥ =1 and f =1 and Y is coordinated left-UD-convex, then from (28), as
a result, there will be inequity, see [22]:

~(6+nv+d

Sy

1 1 (*_[(6+n 1 nord
E[n—af (05500 [ 955 "”)d‘”]SFWHY(@WW@

<F 4(n—6) U ¥(8,0) deeBJ MCE ¢)de] @4@ U (o, lp)drpEBf Y(n, z,b)dlp]
<g Yo0)BY(n, U)@Y(O ) DY (n, ¢)

/\

(55)
If ¥.((8,9),3) =Y ((8,9),3) with 3= 1 then from (28), we succeed in bringing about the
upcoming inequity, see [21]:
6+nv+d
22

rx+1) 7., v+d . v+d rig+1) 6+n g (b+n
= 4(n—0)” [75+Y< 2 ) +n Y( ) 4(d.— v)F Ty Y( > '¢> +7¢-Y< > U)]
rx+Dr+1 . .
2 4n—0y @ —v)F |77,0¥ (0 ) + 72, Y (n,0) + 77236, d) + T, -¥ (6,0)]
2 T[T Y (n,0) + T3 Y (0, d) + :7:;-3((6, V) + Y6, d)].
re + 1)

TeR Y [:7 Y(6,d) + 75-¥(5,0) + 75,¥ (0, d) + 75-Y (0, 0)]
- YUY, U)+Y(b d)+Y(n, d«)

(56)
If Y.((8,9),3) =Y ((8,¥), 3) with 3 = 1 the by (28), we succeed in bringing about the
upcoming inequity, see [20]:

()
Qi[ﬁfn‘(( u+d,)d9+_f Y(zs+n )dlp]
S oaw 6)(¢ v) N f Y(8,¥)dypde

2 S [L¥(8,0)d8 + [['Y(8,d)d8] + = [ [T Yo, w)dy + [ Y (n, p)dy |
Y(é v)+Y(n, U)+Y(ﬁ d)+Y(n, d»)

7)
If ¥ is coordinated right-UD-convex and Y.((8,9), 3) Y* ((9 1Y), 3) with 3 =1, then from
(28), we succeed in bringing about the upcoming inequity, see [23]:

y (B, v
b V(02 1y (2D LB 2.0+ ¥ (20)

2
F(r+1)1‘(,8+1)

= dor@0)f [ga+ Y d) + T Y 0) + 0 Y(6,4) + - Yo, U)]
< T (95, ¥ (0, 0)¥T5 Y0, d) + T- Y(6,0) + T ¥(5,d)].

8(n—6)*
F(ﬁ+1)

+ s [95 ¥ (b, d)FI5- Y(5,0) + 75, ¥ (0, d) + 75- Y(n,v)]
< YOO, DO V)

" . (58)
Theorem 10. Let \7,(7 :A— F, beacoordinate UD-convex FNVMson A.Then, from 3-cuts, we set up
the sequence of IVMs Y, J,;:A—> Rf are given by Y,(8,%) =[Y.((8,4),3),Y*((8,4),3)] and

doi:10.20944/preprints202310.1591.v1
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J,(8,9) = [3.((8,9),2),J°((8,9),3)] forall (8,1) €A and forall 3€[0,1].1f ¥® J € FO,, then
following inequalities holds:

1 1 . _ 3
:((rzfj‘b));;((fj' )2; [‘7a+ Y,d) ®J(n,d) BTy -¥(@0) ®J(n, U)]

rx+1Dr@+1)
4(n—6)"(d —v)F [

J(0,4) ® J(6.4) ® T,-Y(5,0) ® J(b,)]

1_ ¥ 1_ B 1 B
=F (2 (r+1)(r+2)) (2 (3+1)(/3+2)) (6n,v,d) (r+1)(7r+;)( (/3+1)(B+2)) (®n,v,d)
1 ¥ ¥ ~
® (5 - ('zr+1)(r+2)) (B+1)(B+2) M(b' n,v,d) @ (B+1)(B+2) (x+1)(x+2) N(®nv,d).
(59)

If ¥ and J areboth coordinated concave FNVMson A, then inequality above can be expressed

as follows:

G+ DI+ 1) )
56— el T ) @ I, d) & 7, Y(0,0) ® J(n,v)]

1"(7r+1)1"([>’+1) .
T = 5)*(d — 0)F F(6,d) ® J(5,d) @ 12,-F(5,0) ® J(b,)]

1 _ ¥ l B 1 B
SF (E (T+1)(T+2)) (2 (ﬁ+1)(ﬁ+z)) K(®n,0,d) ® (x+1)(r+2)( (B+1)(B+2)) L(®n,v,d)

1_ ¥ B ¥
& (2 (r+1)<v+2)) Frog 1 enud) @ (b’+1)(ﬁ+2) e N @Gnod), (60)

where
_R(o,n,0,d) = ¥(5,0) ® J(6,0) © ¥(0,0) ® J(0,0) B V(5,d) ® J(6,d) B ¥(n,d) @ J(n,d),
L(§,n,0,d) =Y(6,0) @ J(n,0) @ ¥ (n,d) ® J(6,d) @ Y(n,0) ® J(6,0) @ Y(5,d) ® J(n,d),
T (0,0,0,d) = Y(b,0) ® J(6,d) & T(n,0) ® J(n, ) B Y(5,d) @ J(b,v) B V(n,d) ® I (,v),
N(®,nv,d) =Y(60) ® I d) D Y1) ®J(bd) Y(Od) QJI(mv) D Y d) ®J(Ob,v),
and for each z€[0,1], K(,n,v,d), L(d,nv,d), M(5nv,d) and N(8,n,v,d) are defined as
follows:
K,(6,n,0,d) = [K.((6,n,0,d),3), K*((6,n,0,d),3)],
L,(5,nv,d) = [L,((6,n,0,d),3), L ((6,n,0,d),3)],
M,(5,n,0,d) = [M.((6,n,0,d),3), M*((6,n,0,d),3)],
N,(6,n,0,d) = [N.((6,n,0,d),3), V*((6,n,0,d),3)].

Proof. Let ¥ and J be two coordinated UD-convex FNVMs on [6,n] X [v,d]. Then
Y5+ (1 —e)n,su+ (1—15)d)
25 &sY(6,0) B e(1 = )Y (6,d) B (1 — )sY(n,v) B (1 —&)(1 - 5)¥(n,d),
and
J(eb+ (1 —&)n,sv+ (1 —s)d)
2 esJ(6,0) D e(1 = 5)J(6,d) B (1 —&)sJ(m,v) B (1 — &)1 —5)J(n, d).
Since ¥ and J both are coordinated UD-convex FNVMs, Lemma 1 states that
YG: [U, d"] - IFO! YG (¢) = Y(Gv ll})/ (.79: [Ur d"] - [F(]/ je(ll}) = j(ﬂ, ll)),
Since Yy, and Jy are FNVMs, then by inequality (16), we have
rg+1
Z(Ef—) [75,36(d) ® Jo(d) @ 75-Y6 (1) ® Jo ()]
1
SO -
2 (B +ﬁl)(ﬁ +2)
® (G 57s) (10 5@ @ Te@ @ Jo),
Now for all for all 3 € [0, 1], we have

(g +1
Z(Ef + ))3 |76, ¥,y (&) X 3, (&) + 7Y, (0) x J ()]

1 B
=1 (5 B m> (Y36(U) X ‘736(0) + YZs(d") X Jzﬁ(d"))

B
+ (W) (Yge(u) X Jy(d) + ¥, (d) X JSQ(U)).

) (Fo) ® 6 (0) ® Vo () ® Jo (@)

That is
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B ¢ -1 ¢ -1
a7 [ f (d — )P 1Y, (8,9) X J,(8,9) dyp + j W — 0P, (8,9) x J,(8,) d‘P]
1 B
2 (3- m) (¥:(8,0) X 3,(8,0) +¥,(8,d) x 7,(6, )

+ ((ﬁ+1)iﬁ+2)) (YZ(G' U) X ‘7}(6' d") + Yg(ﬂr do) X Jg(ﬂ, U)) (61)
¥(n—-9)*"1

Multiplying double inequality (61) by — A

and integrating with respect to €& over [§,n],

we get
rex+1Dr + 1)
4(n _ 6)7{((1; [gb+ +Y§(n d°) X Jg(n dﬂ) + gb+ 4 Y}(n' U) X (73(1')., U)]

r'x+1) /1 B . .
2 2= 5- G 1)(ﬁ+2))( 5 Y,(0,0) X ,(0,0) + 55 Y, (n,d) X J,(n, &)

D e (B, (0 0) X ,(0,4) + T Y0, d) X 3,0, ) (62)
Again, multiplying double inequality (61) by %

and integrating with respect to € over

[6,n], we gain
'+ 1Drp+1)
4(n—8)*(d.— v)B [

Y, (0,d) X J,(5,d) + T, -¥,(5,0) X J,(6,0)

1"(7r+ 1) 1 ﬁ ¥ ¥
= 2(n—a)r<§_(ﬁ+1)(ﬁ+2)>(‘7 Y, (5,0) X J,(5,0) + - ¥,(6,4) x 7,6, )
r(x+1)

Fo e (T V,(0,0) X 3,(5,4) + T Y, (8,4) X J,(5,0)), (63)
Summing (62) and (63), we have
F('Zf+ 1)F(B + 1) 6+ +Y§(n d") X Jg(n d") + 7;+¢ Yg(n U) X Jg(n U)
40 = 0)7(d — )P [177F Y, (5,d) x J,(b, &) + T2E,-¥,(6,0) X J,(5,0)

[‘('?5'+ 1) 1 .8 ¥ ks
2 S (E_ GG 2))( 5 ¥, (0,0) X 3,(0,0) + - Y, (6,0) X J,(5,0))
rx+1) /1 B ¥ ¥
s (—— FIOGT 2)) (734 Y0, 4) X J,(0, 4) + T Y, (6,) x J,(5,0))
I"(7r+ 1)

T2t ONCEDIE 7y s ¥5(0,0) X J,(0, ) + T3 Y, (0,0) X ,(,d) )

G+1) ¥
e e (5 ¥, (0,4) X 9,0, 0) + T ¥,(0,4) X 3,(5,0)). (64)

Now, once more with the aid of integral inequality (16), we obtain the following relationship for
the first two integrals on the right-hand side of (64):

rs+1) /. .
ST e (T Y (0,0) X Jy(0,0) + - Y,(5,0) X J,(6,v))

1 ¥
> (3~ i) (HOV X 0,60 + V.00 x 2,0)

+ () (%0 X 3,0 0) + ¥, (n,0) x 4, (6,0)). (65)

rx+1) /. .
TCE (T ¥, (0, 4) X (0, &) + T3 Y, (6,4) X J,(6,))

1 ¥
2 (- mTheTs) (HE® X408 +¥,0,4) x4,0,4)

) (0.4 x 3,0 d) +¥,(0,d) x 3,(6,4). (66)

I +1)
z(f 537 U5+ ¥a(n,0) X J,(n, ) + 53 Y, (5,0) x ,(5,d) )

1 ¥
2 (3 m) (¥:0,0) x 3,0,0) + ¥, (0,0) x 3,0, 1)

) (¥(5,0) X gy(0, &) + Y, (0,0) x J,(5,4)) (67)

+ ((w+1)(r+2)
And
r (r +1)

TOEr (73 ¥5(0,d) X J,(0,0) + T3 Y,(5,db) x J,(6,0)
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1 ¥
2, (E - m) (Yg(é, d.) X J5(8,0) + ¥,(n,d.) X J5(n, u))
+ () (V0.0 X 3,(0,0) + ¥, (0, d) x 3,(6,0)), (68)

From (65)-(68), inequality (64) we have
I+ DI +1) [ 5L Yy, d) x gy(n,d) + 77 " ¥,(n,0) X J,(n,v)
4(n - 6)*(d. — v)# +37 Y, (6,d) x Jy(6,d) + 17, (6,0) X J,(5,0)

1_ v 1_ B v 1_ B
= (2 (vr+1)(7r+2)) ( (,8+1)(,8+2)) K"é(b’ n,v,d) + (r+1)(r+2)( (B+1)(ﬁ+2)) L (6 n,v,d)
: y M,(6,n,0,d) +

* (5 B (r+1)(r+2)) B+D(B+2) Fog era v d).
Since we get the collection of IVMs Y., J,: A— R} from 3-cuts, the aforementioned inequality

can be expressed as an inequality (59). The conclusion has therefore been established.

Remark 3. If one assumes that ¥ =1 and f = 1, then from (59), as a result, there will be inequity,
see [28]:

1 noed_ i
m=-0)(d—-v) L f Y(0,9) ® J(8,¥)dpds

2 ;R (5,n,0,d) ® 15 [L(0,n,0,d) & J(5,n,0,d)] © 3V (5,n,0,d). (69)
If ¥ is coordinated left-UD-convex and one assumes that ¥ = 1 and f = 1, then from (59), as a
result, there will be inequity, see [22]:

m[ f Y(8,9) ® J(8,¢9)dypds

<p- K(b n,v,d) @ — [L(b n,v,d) @ M(5,n,0,d)| @ - N(é n,v,d.). (70)
If Y*((G Y), 3) Y ((9 Y), 3) with =1 then, by (59), we succeed in bringing about the
upcoming inequity, see [21]:

F(x+1)1"(,8+1)
4(n _ b)x((i [gb+ +Y( dO) X J(n do) + ‘7{3+d_, Y(n, U) X J(l’l, U)]
rx+1Dr + 1) rB

TS0y e Y X 3@ d) + 77, ¥(5,0) xﬁg](b )]

1 ¥ 1 B ¥ 1

=2 (E N (r+1)(7r+2)) (2 (ﬁ+1)(ﬁ+2)) K(d,n,0,d) + (v +1)(¥+2) (E N (ﬁ+1)(ﬁ+2)) L(d,n,v,d)

1_ ¥ B B ¥
+ (z (x+1)(r+2)) GGt On . d) + e e (G u, 4. 1)

If Y*((G,lp),g) * Y*((G,l[}), 3) with z=1, then by (59), we succeed in bringing about the
upcoming inequity, see [20]:

mj f Y(8,9) x J(8,Y)dypds
K(bnu¢)+ [L(bnu¢)+M(6nU¢)]+ N(bnud) (72)
If Y. ((6 Y), 3) Y ((G P), 3) and J*((G 1Y), g) J* ((G P), g) with 3 = 1, then from (59), we

succeed in bringing about the upcoming inequity, see [27]:
rx+1Drp+ 1)
ORIk ) [7a+ Y, 0) X J(0,4) + T, Y (0,0) x I (0,0)]
I—'(Tf + 1)F(ﬁ + 1 w3 ¥,
. 4(n — b)r(da : U)ﬁ I:-;‘]n_,U+Y(6: (jﬂ) X J(bn da) + :]n_‘d,—f((bt U) : J(bl U)]
= (E - (r+1)(7r+2)) (E B (ﬁ’+1)(ﬁ+2)) K@nv,d) + 50 (5 - (ﬁ+1)(ﬁ+2)) L®nvd)

B ¥
M(6,n,v,d.) + FIDGD (x+1)(x+2)N(b’ n,v,d). (73)

R

+ (E - (r+1)(x+2)) (B+1)(B+2)

Theorem 11. Let Y, J: A~ F, be a coordinated UD-convex FNVMs on A. Then, from 3-cuts, we set
up the sequence of IVMs Y, J,:A— R are given by Y¥,(8,9) = [Y.((8,¥),2),Y((8,%),3)] and
J,(8,9) = [J*((ﬂ,lp),g),ﬂ*((ﬂ, Y), 3)] for all (8,¢) €A and forall 3€[0,1].If Y ® J € FO,, then

following inequalities holds:
e 6+nv+d Q37 6+nv+d
¥ 27 2 J 2 72
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F(r+1)1“([3+1) ~
=2F 4(n _ 6)T(da [‘76+ +Y(H d°) ® J(n dﬂ) @ jb*’d, Y(n, U) ® J(n, U)]

rGs+ DI + 1) [g

4(n—-0)"(d -

J6,d) ® J(6,4) ® 7,-F(6,0) ® J(b,)]

¥ 4 1
© [z(x + D+ 2) B+DPB+2)\2 ( (r+ 1)(7r + 2))

]K(bnudp)

¥ ¥ ﬁ
® [2 (2 G+ D+ 2)) (x+ 1)(r+ 2)(B+ 1B+ 2)]“6 n,v,d)
]M(b n,v,d,)

)
EB[Z( B+DE+2) (w+1)(7r+2)(,8+1)(,8+2)
¥ B
5 i D [Z ) (ﬁ+1)(ﬁ+2)] N(®dn,v,d). (74)
If Y and J both are coordinate concave FNVMs on A, then the inequality above can be

expressed as follows
~(6+n v+d .{6+n v+d
4Y<2'2>®J(2'2)
I”(x+1)1"([3+1) ~
=F 4(n _ 6)T(da [‘76+ +Y( d°) ®J(1’1 dﬂ) @ jb*’d, Y(n, U) ® J(n, U)]
I"(X+1)1"(/>’+1) [g
4(n—0)"(d. —

J6,d) ® J(6,4) ® ,-F(6,0) ® J(b,)]

¥ I 1
© [z(x +D(x+ 2) B+DPB+2)\2 ( (r+ 1)(7r + 2))

]K(bnudp)

. > Lo,
69[2(2 (r+1)(r+2)) (x+1)(x+2)(ﬁ+1)(5+2)] (®,n,0,d)

B ¥ B
© [E (E "B+ DB 2)) G+DE+2)BrDE+ 2)]M(6’ n,v, d)
1 ¥ B ~
©® [Z T Gt (+2) (,B+1)(ﬁ+2)] N (5,n,0,d.), (75)

where K(6,n,v,d), L(6,n,0,d), M(5,1n,v,d) and N'(d,n,v,d.) are given in Theorem 10.

Proof. Since ¥,J : A—> F, be two UD-convex FNVMs, then from inequality (17) and for each 3 €
[0,1], h
e 6+nv+d d0+nv+d
2Y3( 2 2 )XJZ(T’ 2 )
[ - (055%) <, (0.5 %) ao
IR R
¥ v+d +¢ v+d v+d
+((x+1)(x+2))(YZ( ) ‘73( )+Y3(n'—)x‘73(n‘ 2 ))
+(-wmem) (Yz( ) Xﬂz( ) eEE)xa () e
6+nv+d 0+nv+d
(8218 (022,279
) [ () 5 oo
o —F |
"2(d - V)P +f¢(¢—0)ﬁ_1yz<62 ) J3< +n’¢>d¢

B 0+n 0+n 0+n 0+n
+(—(ﬁ+1)(ﬁ+2)) YE(T’U>X‘7§( ,U)‘I‘YZ(_,CL)XJ}(_,CL)

1 B o+n o5+n o+n o+n
+(E_(ﬁ+1)(ﬁ+z)) (YZ( 2’ ) ‘73( 2 )+Y3( 2’ ) ‘73( 2" )) (77)
Adding (76) and (77), and then taking the multiplication of the resultant one by 2, we obtain:

By adding (76) and (77), multiplying the result by 2, we arrive at:

5 0y
=12 —o)

and
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2 72 2 2
[[20-0r (024 (05

2o (02 a0

¢ 5+n b+n
B fu Z(do_lp)ﬁ_l\(g <T;¢> %X J, <T,l,b> dy

+2(¢—u)ﬁ +J¢2(¢—U)ﬁ_1Yg<6;n, )X(73<6-|2_n,1/)>d1,b
+(m><2\@( +d,,) (73( u;d»)J, 2Y3(n,02d,,)x(7§(n,v;do>>
G- ) (2625 %0 (125 +2n, (125 x5, (0259
) (2050 < (500 v (500 xa (57)
B+DEB+2) 2 2

(=t (4 ()< (2.0) 20 (20) 0, (20, o

By Lemma 1, for each integral on the right-hand side of (78) and integral inequality (17) once
more lead us to arrive at:

ﬁf 2(“‘“*‘1’@("2) FAC U;d’)de

¥ =104 _ -1
_1 4(D — b)r(¢ _ U)B [J; J; (1’1 - G) (d0 1P)B Yg(sv ll)) dlpde]

n rd
e 6;ﬁ(da —o)P U (0= 8)" (W — v, (6, ) d"”de]
N 1ﬁﬁ +2) Z(n o) f (0 — )" (Y,(8,0) X J,(8,0) + ¥,(6,d) x 7,(8,d)) d6

(- i) s = 97 (V,(0,0) X 9,8, d) + Y,(8,d) x J,(6,0)) 8,

I+ DI +1)
" 4(n-0y°(d - )P

rtx+1) B . .
WICEDS ((ﬁ D@+ 2)) (5 Ya(,0) x 3,(0,0) + 552 Y, ) x (1, )

r(s+1) (1 B . -
s G Grogr) (B Ve 0) X 3,00,4) + 75 Yy(0,4) X 3,0, 0)). (79)

ﬁf 28 =9 1Yz(9—¢) x3,(e. ;d’)dﬂ

'Kﬂ ! ¥—1 _ -1
14(n_6)x(d,_u)ﬁ[f (6 —5)"(d~ ) Yg(e,zp)dwde]

e e U f SEUNNCER R ACA2 dwde]

ﬁ T
"B DB 20— a)wf (8 = 67 (¥,(8,0) X ,(8,0) +Y,(8,d) x 3,(8,d) ) do
1 B o
+ (E _1“((B+1)(f;1%)()lgz(n f;r fb (8 —-06)y1 (Yz(e V) X J,(8,d.) + Y¥,(8,d.) X J,(8, U))
¥+ +
= T 7 ¥, 0,4) X 3,(,0) + T, ¥, (b,0) x 7,(0,0)]
F(w +1) [)’ . .
o (a5 Ya®0) X 00 + 75 Y,0,4) x J,6.0))
(- T m)) (7 ¥, (5,0) X 3,(5,d) + T~ Y,(6,d) X J,(6,0)). (80)

B

1 +n +n
2 —0)F U 2@ =) Yz( w) &( zp)dw]

0+nv+d 6+nv+d
8Y, X Jy

¥
o —
~2n-0)

|75, ¥y (0, d) X 3y (0, d) + T ¥, (0,0) X 3, (,0)
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rx+1Dre+ 1)

37 [T Yo ) X 3,0, 0) + 97 1Y, (6,4) x 3,06, 4)]

4 —-6)"(d —
rig+1) w B
2(d— v)P ((x + 1)(x n 2)) (95 ¥(0,0) x J,(0,4) + 5. Y, (0, ) x 3,(n, 4)
+ ZF(Ef—Ei? G B (T+1;(1r+2)) ( +Yz(6 d’) X Jz(n d") + 7 Yz(n d”) X "73(11 d’)) (81)

B . n +n
2= )ﬁU 20 = v)f Y3< 2 "’) JZ( ‘p)dw]

res+1Dr( + 1) .

2 S o e Y00 ¥ 3,00 + 7 Y, (0,0) x 3, 0)]
rg+1) r

2(d — )P ((r + DG+ 2)) (%8 Y500, x 3,0,) + - ¥,(0,0) x (0, )

+ ;(f_j; (% - (m;(m)) (yf_ ¥, (6,0) X J,(n,0) + 75_Y,(n,0) x J,(n, u)). (82)

6+n 6+n
ZYZ 5 L | X Jg T, )]
[:]g*' Yg(nl U) X J}(ni U) + ‘7;{_ Yg(bﬂ U) X (73(61 U)]

+m(y3(a v) X J,(0,0) + ¥,(,0) X J,(n, )
+ (l _ ) (yz(a V) X Jy(0,0) + Y, (0, 0) X J,(5, U)) (83)

2 (x+1)(7r+2)
6+n 6+n
2Y, (=) x g, (——d

[75: ¥, (0, d) X J,(n, d) + T2-Y,(5,d) x J,(5,d)]

¥
+m(§(z(b d) x J,(6,d) + ¥,(n,d) x J,(n, d,,))
+ (G- o) (0 ) x 20, d) + ¥, (n,d) x J,(5,4), (84)

6+n 6+n
2Y§< 2 'U> X J, (T;da)

[73+ ¥,(n,0) X Jy(0, ) + T3- ¥,(6,0) X J,(5,d)]

¥
+m(‘(g(6 V) X J5(8,d) + Y, (n,v) x J,(n, ¢))
+ (3 - mmey) (Y (0,0 X Z(0,d) + Y (0,0) X 3,(5,4)),

And

5 r'x+1)
“12(n-b&)

5 rx+1)
12 —-6)

5 rx+1)
12 —-6)"

2

6+n 0+n
o (50 <o ()
[75:%, (0, d) X J,(n,0) + T-Y, (8, d) X J,(5, V)]
¥.(6,d) X J,(6,0) + Y, (0, d) X Jy(n,0))
+ (% - (T+1)(r+2)) (Yé(b d) X Jy(n,0) + ¥, (n, d) x Ty (8, U)) (86)

AREURAEL

[75.¥,(5,d) x J,(5, ) + 75-¥,(5,d) x J,(5,0)]

(85)

:)1 ;((X +61))T

¥
(7r+ D>+ 2)(

L e+
~12(d—v)f

B
Y GTDGTD (¥,(6,0) X J,(6,0) + Y,(6,d) x J,(5,4))

+ (- ) (Va0 X 2,0, 0) +Y,(6,4) x 3,0,)), (57)

o (157 < (n5)

=195 ¥, (0, d) x J,(n, d) + 98- ¥, (0, &) X J,(n, V)]

G 1)
'2(d -
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g
HET DT V) X B0 + Y0 d) X 4,(0,0)

+(5- m) (¥:(n,0) X 3,(n, ) + Y (0, d) X J;(n,0)), 8)

o005 0 (n3)

1
21 ZF(Sf - )),; [75, ¥,(5,d) X Jy(n, d) + 75~ ¥,(5,d) X J,(n, V)]
m(%@(é U) X Jg(n U) + Yg(b dﬂ) X Jz(n da))

+ G N (B+1)(ﬁ+2)) (Yz(é’ U) X (73(“ d") + YZ(b d") X Jz(n U)) (89)

O

[7‘* Y, (n,d) x J,(6,d) + 75~ ¥,(n,d) x J,(5,0)]

and

_ @+
Iz(da
ﬁ

+ m (Yz(n, V) X (73(6, v) + Yg(n, d.) X ‘73(6’ do))

+ (G- gmgs) (%0 x 2,0, +V,(n,d) x J,(5,0)). (90)

From inequalities (79) to (90), inequality (78) we have

6+nv+d 6+nv+d
8Y3 2 "2 XJE 2’ 2

S I"(X + 1)[‘(ﬁ + 1) b+ +Y§(n d") X J}(n d") +gb+¢ Y}(n U) X J}(n U)
2 -0r@-v)f +77 Y,(6,d) X Jy(6,d) + I7F,-Y,(5,0) X J,(5,0)

reg+ 1)
( 2% ) 2(d.— v)P (gﬁ ¥,(8,d) x J,(6,d.) +7‘8+Yz(n d) X J,(n, d,))

"NerDE+2) LTE+D

(74- ¥,(5,0) X 3,(6,0) + T-Y, (0, 0) X J,(n, v) )

2(d —v)f
rg+1
(1 - ) Z(Ef + ))B (7%, ¥,(6,4) x J,(n,d) + 7, Y, (n,d) x J,(n,d))
yo(c—
1
2 (x+DE+2) + zr(Ef—-I-u))ﬁ (75— ¥,(6,0) X J,(n,0) + 575_ Y, (n,v) x J,(n, U))

r 1
)" ((r?jb))f (7§+ ¥, (,0) x J,(n,0) + 73+ ¥,(n,d) x J,(n, ¢)) ]

B
+2 ((/3 TDG+ 2)) TG+

2(n—0)*
rs+1) ;. §
B ) 2(n— 0)° (7a+ ¥,(0,0) X J,(n,d.) + 73+ ¥,(n, d.) x Jy(n, u))

1
t2(z-— "t
NGNS e (B Va5 ) X (0,0 + T Y (5,0) % 3,5,0)

2% B 1 ¥ 2
eI DE ) BEDE 1) rOnud+ +(2 o+ 1)('zr+2))

(32 ¥,(0,0) X 2,(5,0) + - Y,(5,d) x (5,8 ) |

GrD@pomud)

2% 1 ﬁ
(X+1)(r+2)( (ﬁ+1)([;+2))M(6,n,u.d,)
1 ¥ B
2~ mm3) G~ gy Mn ). o

By Lemma 1, for each integral on the right-hand side of (91) and integral inequality (16) once
more lead us to arrive at:

rg+1

T (0.0 X 3,00 + 9% Yy (D) % 240, 0)
Zr(ff * ‘?3 (95-¥,(6,0) x 4,(5,0) +7’3 ¥,(n,0) X J,(n,0))

rg+1

PTCREO L (7, ¥%,(6,4) x J,(n,d) + 75 ¥, (0, d) x J,(m, ¢))
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re+1
z(Ef + ))ﬁ (75_ ¥, (6,0) X 7,(n,0) + 75 ¥, (n,0) x J,(n, U))

1 B B
=21 (E (ﬁ+1)(ﬁ+2)) L,(dn,v,d) + (B+1)(B+2) N;(om, v, ). ®3)

res+1) .,
2(: ) (7b+ Y,(,0) X J,(n,0) + T+ Y,(n,d) X J,(n, d,,))
F( +1)
tom—o)r - o)y (73{— ¥, (6,0) X J,(6,0) + T3- Y, (6, d.) x J,(5, ¢))

>, (5 - — K, (bn,v,d) + L,(8,n,0,d). (94)

(r+1)(x+2)
rx+1) /. §
2(n—0)° (7 ¥,(6,0) X 3,5, ) + T3- Y, (5,d) x J,(5,0))

r(x+1)
to o)y (:_ o) (Jr_ ¥,(6,0) X 7,(8,d) + I3- Y,(6,d) X J,(5, U))

21 (l —)M (6 nv, da) +;]\/‘3(6;Dﬂv’d’)‘

2 (r+1)(¥+2) (r+1)(v+2)

(x +1)( +2) ¢

(95)
From (88) to (95), (91) we have

0+nv+d o6+nv+d
BE 2 T2 *J; 2 72
S F('zr-}— l)F([)’ + 1) b+ +Y§(n d") X J}(n d") + gé+¢ Yg(n U) X Jg(n U)
T4 -0 (d -0 (197 Ly (6,d) x J,(6,d) + TF,-¥,(5,0) X J,(6,0)

k) ﬂ 1
[2(7f+ D+ 2) B+DEB+ 2)( (x+ 1)(x+ 2))]K (6,n,v,d)

¥

[2( (»x+ 1)('zr+ 2)) (r+ 1)('zr+ 2)YB+1D(PB+2)

] L,(8,n,v,d)

B
+|:E(E (ﬂ+1)(ﬂ+2)) (X‘+ 1)('K+2) (ﬂ+1)(ﬁ+2):|M3(6,D,U,do)

1 B
+ [Z N (r+1)(‘zr+2) (ﬁ+1)(ﬁ+z)] N, (6,0, d). (96)

n 6+n v+d ~(6+n v+d
¥ 2 2 ®J 2 2
b+ +Y(n d) ®<7(n d) @ﬂb+¢ Y(H'U) ®j(n:U) l

® 7L Y(6,d) ® J(6,d) eavn P -¥(6,0) ®J(6,0)

That is

r(x+1Dr@+1)
“Fa(n—8)*(d—v)f

B 1
® [2(7r+ D+ 2) B+1D(B+2) (2 (x + 1)(r+ z))] K(dn,0,d)
k)
® [2( @+ 1)(vr+ 2)) GrDG+2) B+ 1)(3 n z)]m’ n,v,d)
GBH" - ) X i ]M(bnud,,)
22 B+ DE+2)) G+ DE+2) B+ DE+2) /0,
® [Z (r+1)(x+2) ([;’+1)(ﬁ_,_2)]]\/‘(6 n,v,d).

The conclusion has therefore been established.

Remark 4. If one assumes that ¥ =1 and f = 1, then from (74), as a result, there will be inequity,
see [28]:
~(6+n v+d ~(6+n v+d
]

=F m[ f Y(8,9) ® J(8,9)dypdd ® o2 K(b n,v,d)

O ~[L(6,0,0,d)FHM (6,0,0,d)] B 2 5 2N (51,0, d). (97)
If ¥ is coordinated left-UD-convex and one assumes that ¥ =1 and g = 1, then from (74), as a
result, there will be inequity, see [22]:

~(6+nv+d . (6+nv+d
a(ten ) g (22 22
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= mj j Y(0,9) ® J(8,9)dpde 3¢ K(é n,v,d.)

@ Z[L(,1,0,d)FM(6,0,0,d)] B 2 5 2N(6,n,0,4). (98)
If ¥.((8,9),3) # Y ((8,9),3) with 3=1, then from (74), we succeed in bringing about the

upcoming inequity, see [20]:
4 0+nv+d 6+nv+d
W22 )9\ 72

—mf f Y(®&,9) xJ(®, lp)dlpde+—K(6nu¢)

36 [L(é, n,v,d) + M(6,n,0,d)] + 9N(6, n,v,d.). (99)
If Y*((G,zp), g) * Y*((G, Y), 3) with z =1, then from (74), we succeed in bringing about the

upcoming inequity, see [21]:
A 6+nv+d « 6+nv+d
¥ 2 72 J 2 72

TG+ )re+1 N L ¥(0,d) x I(n,d) + ?t,+ o~ Y(,0) x J(n,0)
A= (d—v)F (497 Y (5,d) x J(b,d) + T3~ Y(6,0) X J(b,0)

¥ B 1 ¥
+[2(7f+ DG +2) ' B+ DG +2)\2 <" o+ 1)(7r+2))]K(6 n,v,d)

¥
[2( (7r+1)(7r+2)> (r+D(x+2) (3+1)(3+2)]L(6 n,v,d.)
[ ( < ) ¥ b ]M(b n,v,d.,)
212 B+DE+D) G+DE+DEFDE+HIT T
1 (r+1;(r+2) (B+1)(ﬁ+2)]N (6,1,0,d.). (100)

It Y.(08,9),3) =Y ((8,¥),3) and J.((8,9),%) = J"((8,),3) with 3 = 1, then from (74), we

succeed in bringing about the upcoming inequity, see [27]:

6+nv+d 6+nv+d
()55
rx+0Dr@B+1) b+ +Y(n,d) x J(n,d) + 7b+ d- ¥(n,v) X J(n,v)
<
4= 0)"(d—v)F [+77F Y(5,d) x J(b,d) + 9,2~ ¥(6,0) X J(b,0)

¥ B 1 ¥
8 Freey e R ey (sl bl ey )| RACERX
* [l (l 5 ) T eI 4 |1on0.0)
2 G+DE+2)) +DE+2) B+ 1B +2)

B
[2(2 (ﬁ+1)(ﬁ+2)) (x+1)(x+2)(/3+1)(/3+2)]]"[(6‘“"d”)

¥ B
+ [Z G +1)(+2) (ﬂ+1)(ﬁ+2)]N(b n,v,d). (101)

4. Conclusions and Future Plans

In this study, Hermite-Hadamard type inequalities for coordinated UD-convex FNVM were
established. These inequalities are very important in the field of inequalities because the findings in
this research constitute an expansion of a number of earlier findings. A coordinated fuzzy-number-
valued convexity is a novel type of class and by using this class and other fractional integrals, new
fractional inequalities can be found that is available to interested authors.
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