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Abstract: The semantic segmentation of high-resolution remote sensing images (HR-RSI) is crucial

for a wide range of applications, such as precision agriculture, urban planning, natural resource

assessment, and ecological monitoring. However, accurately classifying pixels in HR-RSI faces

challenges due to densely distributed small objects and scale variations. Existing techniques,

including Convolutional Neural Networks (CNNs) and other methods for hierarchical feature

extraction and fusion of remote sensing image, often do not achieve the desired accuracy. In this

paper, we propose a novel approach called the Hierarchical Rich-scale Fusion Network (HRFNet)

to address these challenges. HRFNet utilizes advanced information rating and image partition

techniques to extract rich-scale features within image layers. This allows for the adaptive exploration

of both local and global contextual information. Moreover, we introduce a structured intra-layer

to inter-layer feature aggregation module, which enables the adaptive extraction of fine-grained

details and high-level semantic information from multi-layer feature maps in a highly flexible manner.

Extensive experimentation has been conducted to validate the effectiveness of our proposed method.

Our results demonstrate that HRFNet outperforms existing techniques, achieving state-of-the-art

(SOTA) results on benchmark datasets, specifically the ISPRS Potsdam and Vaihingen datasets.

Keywords: high resolution; remote sensing image; Convolutional Neural Network; attention

mechanism; hierarchical rich-scale fusion

1. Introduction

In recent years, the rapid advancement of satellite and airborne remote sensing technologies

has resulted in the acquisition of a massive volume of high-resolution remote sensing images. These

images provide rich spatial details and geometric feature information, making them valuable resources

for precision agriculture [1], urban building planning [2], efficient natural resource utilization [3,4], and

disaster assessment [5,6]. Semantic segmentation, as a dense prediction task, assigns a category label

to each pixel, enabling accurate surface feature extraction and land cover classification. Consequently,

it has emerged as a critical research focus in remote sensing image interpretation.However, remote

sensing images present unique challenges that differentiate them from pixel-level classification tasks in

natural images. Firstly, these images often exhibit complex backgrounds and rich diversity within each

class. The presence of diverse environmental conditions and variations in illumination, weather, and

seasonality further complicates the interpretation and classification of remote sensing images. Secondly,

in remote sensing images, small objects are densely distributed in relation to the overall frame size.

This high object density leads to subtle differences between classes, making accurate classification

more challenging. Lastly, remote sensing images often involve a wide range of target scales, with large

targets such as buildings and water bodies coexisting with small targets like vehicles and vegetation.

The significant difference in scales further adds to the complexity of accurately segmenting and

classifying objects in remote sensing images. Due to these inherent challenges, existing image semantic

segmentation methods designed for natural images are not sufficient for effectively addressing the

unique characteristics and requirements of remote sensing images. Therefore, it is imperative to
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develop novel approaches and techniques specifically tailored for remote sensing image analysis to

achieve more accurate and reliable results.

Remote sensing image semantic segmentation encompasses both traditional methods based

on manual design and feature extraction, as well as methods utilizing deep learning techniques.

Traditional methods include unsupervised clustering [7], supervised maximum likelihood [8], and

support vector machines [9,10]. However, these methods heavily rely on the design of feature

descriptors and are sensitive to parameter settings and data, making it challenging to achieve efficient,

accurate, and dense prediction for large-scale high-resolution remote sensing images. Consequently, the

advent of deep learning technology, particularly CNNs, and the utilization of hierarchical feature map

extraction methods, such as the classic Fully Convolutional Network (FCN) [11] , have significantly

improved the effectiveness of semantic segmentation in high-resolution remote sensing images [12],

establishing them as the mainstream approaches. Nevertheless, CNNs inherently possess a local

inductive bias and lack the ability to model context and long-distance dependencies [13]. To address

these limitations, various methods have been proposed to enhance CNNs remote sensing image

segmentation. These methods include dilated convolutions [14,15], expanding the size of convolutional

kernels [16], feature pyramids [17], and the incorporation of attention [18,19] and self-attention

mechanisms [20,21]. These techniques aim to capture both local and global information, enabling more

comprehensive feature representation and improving the accuracy of semantic segmentation remote

images.

However, in the context of complex land cover analysis in high-resolution remote sensing

images, non-adaptive feature extraction at all positions within each layer of feature maps proves to be

insufficient. This inadequacy stems from the fact that the amount of information present in different

image positions varies significantly. For instance, areas with dense or sparse small targets and scale

variations pose unique challenges, as illustrated in Figure 1. Consequently, employing convolutional

kernels of the same size and shape for the original image and each layer of feature map fails to extract

the most appropriate features for pixel-level classification. To elaborate further, in regions with dense

small targets, it may be crucial to precisely capture higher-density boundary features, making it

unacceptable to lose information through downsampling. Conversely, downsampling is less sensitive

in areas with relatively larger connectivity. Thus, employing non-discriminatory downsampling and

feature extraction methods for feature maps is suboptimal. Recognizing this limitation, we propose

a novel In-Layer Rich-Scale Attention Network that adaptively extracts rich-scale features within

each layer by quantifying and classifying image information. This approach involves partitioning the

feature maps within the same layer to extract features that are more suited to the specific scales present

in the image. Additionally, we perform in-layer and inter-layer aggregation of rich-scale features,

combining global and local features to enhance the overall segmentation performance.
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Image Ground Truth Feature Layer1 Feature Layer3 Entropy

Figure 1. Activation map of different feature layers and image entropy. We found that feature maps

from different layers have different response preferences. For example, some feature maps correspond

better to edges, while others prefer to respond diffusely to regions. Meanwhile, the entropy of the

image can simultaneously indicate edges and regions. Therefore, for different positions in the image,

we choose to first use image entropy for subgraph partitioning and then fuse different layers of features

for different subgraphs to balance the overall and local aspects of the target.

In this study, we propose a comprehensive approach to address the limitations of existing

methods in remote sensing image semantic segmentation. Our proposed method consists of three

key components. Firstly, we introduce a feature extraction scheme that quantifies and grades image

information, allowing for the differentiation of features extracted from different locations within the

image. This enables the model to effectively capture the varying degrees of importance and relevance

of different image regions. Secondly, we present a partition-based in-layer rich-scale feature extraction

method. This method adapts to extract features from both large-scale sparse feature regions and

dense small targets using different-sized receptive fields. By utilizing receptive fields of varying

sizes, we can capture features at different scales, ensuring that the model can effectively represent the

diverse characteristics present in the image. Lastly, we propose a fusion-attention rich-scale feature

aggregation module. This module facilitates the fusion of feature maps with different resolutions

within the same layer and across different layers. By combining low-level features from the shallow

layers with high-level semantic features from the deep layers, the model can leverage both local

and global information to achieve more accurate and robust semantic segmentation. To evaluate

the effectiveness of our proposed method, we conducted extensive experiments on two widely-used

public datasets, namely ISPRS Potsdam and Vaihingen. The experimental results demonstrate the

superior performance of our approach. Specifically, our proposed method achieves a mean Intersection

over Union (mIoU) of 86.47 and 83.31 on the ISPRS Potsdam and Vaihingen datasets, respectively.

These results highlight the effectiveness and potential of our approach in semantic segmentation of

high-resolution remote sensing images.

To sum up, our contribution is mainly Three points:

(1) We propose an information quantification and grading strategy to evaluate and quantify the

amount of information contained in different positions within the image. This method allows us

to assess the significance and relevance of various image regions.
(2) We introduce a novel intra-layer rich-scale feature extraction module. This module is specifically

designed to perform feature extraction on targets with large-scale. By adaptively extracting

features at different we effectively capture the intricate and variations present in the image,

leading to improved segmentation performance.
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(3) We propose an intra- and inter-layer feature aggregation module, this module allows for the

refinement of feature maps and the aggregation of low-level features, such as edge features, with

high-level semantic features.
(4) Based on the above intra-layer rich-scale feature extraction module and intra- and inter-layer

feature aggregation module, we construct a network specifically designed for high-resolution

remote sensing image semantic segmentation.

The organization of the remainder of this paper is as follows. In Section 2, we introduce research

related to remote sensing image semantic segmentation and multi-scale contextual feature extraction

and fusion methods. In Section 3, we provide detailed information on the proposed method. In Section

4, we demonstrate the effectiveness of our method through extensive experiments and result analysis.

Finally, in Section 5, we draw conclusions.

2. Related Work

2.1. Remote Sensing Image Semantic Segmentation

Thanks to universal semantic segmentation methods such as FCN [11], U-Net [22], and the

DeepLab series [14,23–25], the primary focus of remote sensing image semantic segmentation research

lies in extracting features through CNN layers, with end-to-end segmentation results generated based

on the encoder-decoder architecture.

In recent years, significant efforts have been made to improve the encoder-decoder architecture

[26–29]. Many researchers have focused on modifying either the encoder or decoder and adjusting

the hierarchical feature fusion to better utilize high-level and low-level feature maps. For example,

Long et al. [26] integrated a Transformer encoder in parallel with CNN to capture fine-grained spatial

details in the remote global context. Jin et al. [28] proposed a combined void convolution with different

inflation rates to enhance the preservation of small target information in the feature maps. Tan et

al. [29] introduced feature focus (FF) and context focus (CF) modules in the decoder to enhance the

model’s multi-scale feature representation capability. Wang et al. [30] constructed a hierarchical and

lightweight Transformer decoder with global-local transformer blocks to capture multi-scale global

and local features. These methods have shown promising results in improving the feature extraction

and fusion abilities of the encoder-decoder architecture.

Moreover, there are also methods [31,32] that enhance both the feature extraction ability of the

model at the encoder side and the feature fusion ability at the decoder side. Yang et al. [33] incorporated

a dense connection and multi-scale maximum pool module at the encoder end, while adding the ECA

attention mechanism module to the decoder for simultaneous feature mapping from different coding

layers. This enables the fusion of low-level and high-level semantic information and improves the

classification ability of features, especially for small objects. Zhang et al. [34] replaced convolution with

a Focus operation on the encoder side to reduce information loss and utilized Swin Transformer and

CBAM hybrid attention for feature extraction. They also used Focus and upsampled feature maps for

feature enhancement at the decoder side. These methods further enhance the overall feature extraction

and fusion capabilities of the encoder-decoder architecture.

However, despite these advancements, current methods still perform the same operations on the

feature maps of each layer during feature extraction and fusion, as shown in Figure. 2. Moreover, they

only perform feature fusion between layers and do not fully exploit the rich-scale features within each

layer or aggregate the features within the layer. This limitation indicates the need for further research

to explore more effective methods for feature extraction, fusion, and enhancement within each layer of

the encoder-decoder architecture.
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(a) (b) (c)

Figure 2. Schematic diagram of different pyramid structures. The image pyramid and feature pyramid,

as shown in Figures (a) and (b), perform the same processing, e.i., feature extraction, on all locations

of the same layer of the image or feature map. While (c) shows a simple schematic of performing

rich-scale feature extraction within a layer in our HRFNet.

2.2. Multi-scale Context Feature

At present, the utilization methods of multi-scale context information [35–38] can be broadly

categorized into two main approaches. The first approach focuses on increasing the receptive field by

modifying the convolution operation. For example, Xiao et al. [35] proposed directional convolution

and large-field convolution to capture gradient changes in different directions and expand the receptive

field. Wu et al. [39] introduced a sample-proxy dual triplet (SPDT) loss function, in conjunction with a

multi-proxy softmax (MPS) loss function, to learn fusion features effectively. Li et al. [40] enhanced

the feature representation and extraction capabilities of convolutional layers by utilizing asymmetric

convolutions. Xie et al. [41] proposed viewpoint-robust knowledge distillation (VRKD), which focuses

on learning multi-stage features through a combination of a sophisticated teacher network and a

streamlined student network. Although these methods modify the convolution operation they do not

fundamentally address the inherent local inductive bias, as the same operation is still performed at all

locations within each layer of the feature map.

Another category of methods [42–46] utilizes attention mechanisms to model long-range

dependencies on channels or spatial dimensions. For instance, Xu et al. [42] employed an adaptive

Transformer to suppress background noise, enhance foreground saliency, and extract detailed

information through spatial attention and channel attention. Wang et al. [30] introduced Swin

Transformer as the encoder and proposed a DCFAM at the decoder side to enhance the spatial and

channel relationships of semantic features using Shared Spatial Attention (SSA) and Shared Channel

Attention (SCA). HPGN [47] proposed a pyramid graph network that focuses on exploring multi-scale

spatial structural features, which is tightly connected behind the backbone network. He et al. [48]

proposed a Swin Transformer encoder structure with a spatial interaction module (SIM) parallel to

the CNN encoder. However, current attention mechanisms do not fully leverage the existing local

contextual priors captured by convolutions and fail to effectively utilize features extracted by CNN.

Both categories of methods have made significant advancements in enhancing and fusing

contextual information. However, whether it is modifying the convolution kernel or employing

attention mechanisms, the same operation is still performed on all parts of the feature maps within the

same layer. This approach lacks the ability to adaptively extract features from positions that contain

varying amounts of information. Therefore, there is a need for further research to explore methods

that can dynamically extract features from different positions within the feature maps based on the

local contextual information.

3. Method

In this section, we present a comprehensive overview of our method, highlighting its key

components and discussing the underlying ideas. To begin with, we introduce the concept of

information quantization and rating strategy, which is realized through our Information Rating

Module. This module plays a crucial role in effectively quantifying and rating the information within
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the input data. By assigning appropriate ratings to different information elements, we can prioritize

their importance and guide subsequent processing steps. Next, we delve into the module of Intra-layer

Rich-scale Feature Enhancement, which comprises two sub-modules: Intra-layer Rich-scale Feature

Extraction and Inter- and Intra-layer Feature Fusion. The Intra-layer Rich-scale Feature Extraction

module focuses on extracting rich-scale features within each layer of the network. This allows us to

capture fine-grained details and local contextual information, enhancing the discriminative power of

the network. The Inter- and Intra-layer Feature Fusion module, on the other hand, aims to fuse the

extracted features across different layers, facilitating the integration of global and local information.

Finally, we discuss the sources of inspiration for our method and provide an overview of the overall

network structure.

3.1. Information Rating Module

According to Shannon’s information theory, entropy is a mathematical measure of uncertainty and

is commonly used to represent the probability of occurrence of discrete random events. In the context

of image analysis, the entropy value provides valuable insights into the richness of information present

in an image.In an image, when the entropy value is high, it indicates that the image contains a diverse

range of objects and densely packed elements. This implies that there are multiple types of objects

present in the image, and they are distributed in a dense manner. Such high entropy values suggest

that the image carries a significant amount of information and exhibits a high level of complexity.

In our method, we recognize the importance of entropy in quantifying the richness of information

within an image. By incorporating the concept of entropy, we can effectively evaluate and leverage the

information content for improved analysis and decision-making. The quantification of information

can be expressed as

H(xi) = − ∑
i=1

P(xi) log(P(xi)), (1)

where P(xi) denotes probability of random event xi. Generalized to the image, there is the entropy of

image I

HI(xc
i,j) = − ∑

c=1

P(xc
i,j) log P(xc

i,j). (2)

Similarly, where I(xc
i,j) represents the the category of pixels at position (i, j) in image I is c, and

P(xc
i,j) denotes the probability of I(xc

i,j).

In order to measure the amount of information contained in different positions in an image,

we propose an information quantization and classification module based on image local entropy.

Specifically, first, we calculate the entropy of the image according to formula 2 and optimize the result

to get the information quantization graph as shown in Figure 3. Then, according to the quantized

information, The information of the image is divided into several levels Rn, where n represents the

total quantity of quantized classification.

To accurately measure the information content in different positions of an image, we introduce a

novel information quantization and classification module based on local image entropy. Firstly, we

calculate the entropy of the image using a specified formula (referring to formula 2). This entropy

calculation provides us with a quantitative measure of the uncertainty or randomness present in the

image. The optimized entropy serves as the basis for generating an information quantization graph, as

shown in Figure 3, which visually represents the distribution of information across the image. Next,

based on the quantized information obtained from the information quantization graph, we partition

the information in the image into several distinct levels, denoted as Rn. The parameter n represents the

total number of quantized classifications. This step allows us to effectively categorize and classify the

information present in the image, enabling a more detailed analysis of its content. By leveraging this

information quantization and classification approach, we gain valuable insights into the distribution

and characteristics of information within the image. This enables us to identify and prioritize regions or

positions that contain significant amounts of information, as well as those that may be less informative.
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The quantized classification of information provides us with a finer-grained representation of the

image content, facilitating subsequent analysis and decision-making processes. By considering the

different levels of quantized information, we account for the varying importance and relevance of the

information in different regions of the image. In summary, our proposed method offers an effective

approach to measure and classify the information content in an image. By quantizing the information

based on local entropy and dividing it into distinct levels, we can better understand and utilize the

information available within the image.

Figure 3. Quantization of image information entropy. The first and third pictures are the input images,

and the other two pictures are their information quantization maps, i.e. entropy maps. The darker the

color, the greater the entropy value at that point, that is, the greater the difference between the pixel

value here and the neighboring point. This point may be the junction of different target categories.

For high-resolution remote sensing images, the density of objects in different locations varies

greatly, so we partition the image by Rn, and obtain sub-regions Ik
r
∈ I, r ∈ (1, R), k denotes index

of sub-regions. By partitioning the image into sub-regions, we can specifically analyze and process

the different areas based on their respective levels of quantized information. This allows us to focus

our analysis and processing efforts on specific regions that may contain important or informative

objects, while also considering the less dense or less informative areas separately. This finer-grained

analysis helps to improve the overall performance and reliability of our image processing techniques,

particularly in the context of high-resolution remote sensing images where the object density can vary

significantly.

3.2. Intra-layer Rich-scale Feature Enhancement

Both the image pyramid and the feature pyramid [17] apply the same processing to the image or

feature map at each level, which hinders the adaptive extraction of features from different positions

in the image. As a result, objects located at different positions exhibit varying levels of accuracy in

feature maps due to differences in scale and shape. To address this issue, our HRFNet quantifies and

grades the information, enabling adaptive feature enhancement. By performing hierarchical feature

extraction and fusion on subgraphs containing different amounts of information, HRFNet improves

the accuracy of prediction.

3.2.1. Intra-layer Rich-scale Feature Extraction

Through the aforementioned IRM, the image I is partitioned into k subgraphs IRn
k. These

subgraphs are then processed by the Res2Net50 encoder to extract features. Specifically, for the

subgraph with the lowest information rank IR1
k, we extract the low-level feature F0 and the-level

feature map F4, resulting in feature maps F0 IR1
k and F4 IR1

k. Similarly, for the subgraph IR2
k with

information level R2 , we extract the feature maps F0 IR2
k, F1 IR2

k, and F4 IR2
k from different layers, the

corresponding feature maps F0 IR2
k, F1 IR2

k and F4 IR2
k. This process is repeated for the remaining, IR3

k

and IR3
k, respectively.

Subsequently, all the obtained feature maps are inputted into the decoder for intra-layer inter-layer

feature fusion, as well as resolution restoration.
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3.2.2. Inter- and Intra-layer Feature Fusion

After undergoing intra-layer rich-scale feature extraction in the encoder, we obtain a hierarchical

feature map that corresponds to each sub-map. This feature map is obtained from multiple feature

layers and possesses different receptive fields. To enhance the utilization of features, we perform

both inter-layer and intra-layer feature fusion on these feature maps. This fusion process allows us to

aggregate information from different scales and spatial locations, thereby improving the efficiency of

feature utilization.

Inter-layer Feature Fusion. After applying IRM and dividing the input image into four

sub-images with varying amounts of information, we extract feature maps with different dimensions

for each sub-image in the encoder. To begin, we perform feature fusion within the same sub-image

across different layers, resulting in feature maps FIR1
k, FIR2

k, FIR3
k and FIR4

k of the four sub-images.

Taking subgraph IR1
k as an example, the feature maps F0 IR1

k and F4 IR1
k extracted by the encoder

have shapes of [B, CF0, WF0, HF0] and [B, CF4, WF4, HF4], respectively. These two feature maps are

resized to the same dimensions of W and H, and then concatenated to obtain a feature map with a of

[B, CF0 + CF4, W1, H1]. Similarly, the dimensions of feature maps FIR2
k, FIR3

k and FIR4
k obtained after

intra-layer feature fusion of sub-images IR2
k, IR3

k, and IR4
k are [B, CF0 + CF1 + CF2 + CF4, W3, H3] and

[B, CF0 + CF1 + CF2 + CF3 + CF4, W4, H4], respectively. Next attention is employed for feature fusion

in each high subgraph feature map.

Recover Spatial Position by Index. After applying IRM, the order of the sub-graphs is altered.

Therefore, following inter-layer feature fusion, it becomes necessary to restore the spatial position of

the sub-graph based on the sub-graph index k. Specifically, we rearrange the spatial positions of the

subgraphs based on the specified index k of subgraph Ir
k in IRM. This allows us to restore their original

spatial arrangement.

Intra-layer Feature Fusion. The direct splicing of the four sub-images would introduce

inconsistencies at the edges and other undesired phenomena due to the discrepancy in scales between

feature map upsampling, downsampling, and inter-layer feature fusion (as shown in Figure 4). To

overcome this challenge, we propose an intra-layer feature fusion module that effectively combines

the feature maps of the four sub-maps. The process of our proposed method is illustrated in Figure 5.

After splicing the four sub-images, a 1x1 convolution operation is applied to facilitate cross-channel

information interaction. Following this, global feature fusion is performed on the spliced image I′.

Inspired by the DeepLab v3+ architecture, we utilize two sets of 3x3 convolution layers, incorporating

batch normalization (BN) and rectified linear unit (ReLU) activations, to fuse the feature maps. Finally,

linear interpolation and upsampling techniques are employed to restore the original image size.

Figure 4. Results of Ground Truth and direct concatenation of feature maps. We zoomed in on the area

within the red box in the image and pointed to the zoomed-in result with an arrow. It can be seen that

the segmentation result after directly splicing the feature maps has the problem of uneven edges, and

some features are roughly truncated from the middle, causing loopholes in certain types of targets.
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Figure 5. Intra-layer feature fusion. After restoring the position according to the index, the attention

mechanism is used to fuse the features of the stitched image in the layer, and the incoherence in local

details when directly stitching images is bridged by long-distance modeling.

3.3. Combined with Sota Method

In this section, we present a review of the conceptual origins behind our approach, which focuses

on enhancing the representation of rich scale features within individual layers. Additionally, we

outline the overall framework of our proposed method.

3.3.1. Review Res2Net

Building upon the ResNet, one of the most prominent CNN networks, Gao et al. [49] introduced

the Res2Net network (illustrated in Figure 6). This network aims to effectively capture information

from various scales, enabling robust object classification across different scales and enhancing the

understanding of the contextual relationship with objects. The Res2Net achieves this by incorporating

hierarchical class residual links within a single residual block at a finer level of multiscale, thereby

increasing the receptive field of each layer of the feature map.

Sub1 Sub2 Sub3 Sub4

Input Image

Layer1

Layer2

Layer3

Layer4

Feature1 Feature2 Feature3 Feature4

Feature Fusion

X1 X2 X3 X4

1 × 1 conv

3x3
Conv

3x3
Conv

3x3 
Conv

Y1 Y2 Y3 Y4

1 × 1 conv

(a) (b) (c)

Figure 6. Architecture of Res2Net backbone and our HRFNet sketch inspired by it. Figure (a) shows

the bottleneck structure diagram of the Res2Net network. Figure (b) is a sketch of the intra-layer

rich-scale fusion structure we designed inspired by this. Similar to intra-layer interaction in Res2Net,

our HRFNet also performs differential feature extraction operations on images within the same layer.

Figure (c) is a schematic diagram of the feature extraction process of our method.

Let the feature map after 1x1 convolution be X, and divide it evenly into s subgraphs, setting the

set of feature subgraphs xi ∈ X, where i ∈ [1, s]. The feature subgraph feed to 3x3 convolution layer

except x1, has output
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yi =











xi,

3 × 3conv(xi),

3 × 3conv(xi + yi−1),

i = 1;

i = 2;

i > 2.

(3)

Although each 3x3 convolution has a fixed receptive field size, a significant portion of the feature

maps can receive indirect receptive fields from other locations through class residuals within the

layers. This allows for a combination of different numbers and sizes of receptive fields, thereby

implicitly capturing long-distance contextual information. By employing various operations on the

feature map of the same layer, one can effectively leverage features of multiple scales and enhance

the representation capability. Motivated by this observation, we contend that the conventional image

pyramids and feature pyramids treat images at the same layer of the feature map in a suboptimal

manner. To address this limitation, we propose a novel hierarchical rich-scale fusion method, which

elaborated in Section 3.1 and 3.2.

3.3.2. Overall of Network Architecture

As depicted in Figure 7, our proposed network begins by passing through an Image Rating

Module (IRM), which partitions and arranges the input image based on quantized and graded image

entropy. This process yields sorted sub-regions, where each sub-region corresponds to a specific image

entropy level. The backbone network is then employed to extract feature maps from different layers

for each sub-region. Subsequently, these feature maps from different layers are selectively fused based

on the image entropy level of the corresponding sub-region. Finally, the final segmentation map is

obtained through intra-layer and inter-layer feature fusion processes.

Feature_1

[B, C, WF1, HF1]

Feature_0

[B, C, WF0, HF0]

Feature_2

[B, C, WF2, HF2]

Feature_3

[B, C, WF3, HF3]

Feature_4

[B, C, WF4, HF4]

Encoder

[k,IR1]

FIR4

FIR3

FIR2

FIR1

Decoder

Inter-

Layer 

FF

Inter-

Layer 

FF

Intra-

Layer FF

Intra-

Layer FF

I

R

M

I

R

M

Input I [k,IR2]

[k,IR3]

[k,IR4]

ASPP

Figure 7. Overall of HRFNet Architecture. Given an image I, our Information rating module (IRM)

splits it into n sub-regions with image entropy. For different sub-regions, we extract feature maps of

different layers for feature fusion. Finally, Finally, the resolution is restored between layers and within

layers to obtain the final segmentation results.

4. Experiments

4.1. Dataset

To demonstrate the effectiveness of our HRFNet, we conducted experiments on several widely

used public datasets, with a particular focus on the ISPRS Potsdam and Vaihingen datasets.

Through extensive experimentation, we validate that our proposed approach outperforms existing

state-of-the-art methods in terms of performance metrics.
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Potsdam. The dataset comprises 38 patches, all of which are of the same size (6000 × 6000). These

patches were extracted from very high-resolution TOP mosaics with a ground sampling distance

(GSD) of 5 cm. The dataset covers an area of 3.42 square kilometers in Potsdam and includes complex

buildings and dense settlement structures. For the purpose of semantic segmentation research, the

dataset is annotated with six categories: car, tree, low vegetation/grass, building, impervious surfaces,

and clutter. Each image in the dataset is provided in three channel combinations: IR-R-G, R-G-B, and

R-G-B-ir, and also includes a digital surface model (DSM). Due to limitations in our computational

resources, we selected DSM-free R-G-B images for our experiments.

Vaihingen. The dataset consists of 33 TOP images of varying sizes, with the maximum image size

being 3816x2550 and the minimum size being 1388x2555. These images cover an area of 1.38 square

kilometers in Vaihingenngen. The ground sampling distance (GSD) of the dataset is approximately

9 cm. Each TOP image in the dataset includes IR, red (R), and green (G) channels. The images are

annotated with six categories for semantic segmentation. Similar to our previous experiments, we

selected DSM-free images based on the computational resources available for our experiment.

4.2. Evaluation Metrics

The average intersection over union ratio (mIoU) is recognized as the primary evaluation criterion

for segmentation tasks. It measures extent to which predicted segmentation mask overlaps with the

ground truth mask, providing an overall assessment of segmentation accuracy. The calculation formula

is

mIoU =
1

k + 1

k

∑
i=0

pii

k

∑
i=0

pij +
k

∑
i=0

pji − pii

, (4)

where k denotes foreground class, i denotes ground truth, j denotes prediction, that is, pi j denotes

the case where i is predicted to be j.

Furthermore, for the land cover classification task, there are commonly used evaluation metrics

such as overall accuracy (OA) and F1-score. The F1-score is calculated based on precision and recall,

providing a comprehensive evaluation of the classification performance.

OA =

k

∑
i=0

TP

k

∑
i=0

TP + FP + FN + TN

, (5)

F1 = 2 ·
precision · recall

precision + recall
. (6)

Moreover, the calculations for precision and recall are as follows.

precision =
TP

TP + FP
, recall =

TP

TP + FN
. (7)

Where, TP represents the number of true positive predictions for the positive class, FP represents the

number of false positive predictions where the prediction result is a positive class but the ground truth

is a negative class, and FN represents the number of false negative predictions where the prediction

result is a negative class but the ground truth is a positive class. Additionally, FP represents the number

of true negative predictions for the negative class. Therefore, the mean intersection over union (mIoU)

can also be considered equivalent to

mIoU =
1

k + 1

k

∑
i=0

TP

FN + FP + TP
. (8)
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4.3. Experiment Setting and Complement Details

The experimental environment utilized a server equipped with an Intel(R) Xeon(r) Gold 6230R

CPU @2.10GHz and an Nvidia A10 24G GPU, running on Linux version Ubuntu 20.04.4LTS. The

ResNet50 backbone, pre-trained on ImageNet, was employed in this study. For the training set, random

scaling and cropping techniques [50] were applied, with an input size of 1024 × 1024. The AdamW

optimizer was utilized with an initial learning rate of 6e−4 and a weight decay of 2.5e−4 . To manage

the learning rate, we adopted the Cosine Annealing Strategy with Warmup [51] and restart, where T-0

was set to 15 and T-mult to 2. Moreover, a batch size of 8 and 200 epochs were set for the Potsdam and

Vaihingen datasets, respectively.

4.4. Results and Analysis

4.4.1. Comparison with State-of-the-art Methods

In this study, we conducted a series of comparative experiments on three datasets and achieved

highly promising results. Our analysis primarily centered around evaluating the performance of

various methods and techniques in addressing the given problem. The experiments were meticulously

designed to compare the accuracy of different approaches and determine the most effective ones. The

obtained results clearly indicate that our proposed method surpasses the other methods in terms of

accuracy, as demonstrated in Table 1 and Table 2.

Table 1. Comparison with State-of-the-art Methods on Potsdam Dataset. The bold indicates the best

data. Since some methods did not publish the IoU of the Clutter , for the convenience of comparison,

we do not include this category when calculating mIoU.

Method
IoU

mIoU F1-Score OA
Imp.surf. Building Lowveg. Tree Car

SegNet [52] 71.69 75.64 61.71 55.40 76.51 68.19 80.79 88.94
FCN [11] 81.64 89.11 71.36 73.34 79.32 71.44 81.85 87.17

PSPNet [53] 82.68 90.17 72.72 74.00 80.56 72.67 82.75 87.90
DeepLab v3+ [25] 79.80 86.86 69.73 68.10 83.08 77.51 87.14 85.67

UNet++ [54] 83.25 83.87 74.38 78.33 73.27 80.56 - -
OCRNet [55] 85.17 90.22 75.31 76.96 89.83 83.50 - -

MACUNet [40] 86.64 90.36 73.37 76.58 80.69 84.76 - -
ANCNet [56] 86.25 92.17 76.26 74.83 83.16 85.17 - -

DMAUNet [33] 87.72 92.03 75.46 78.52 87.91 85.68 - -

HRFNet (Ours) 87.21 94.09 77.92 80.38 92.75 86.47 92.62 91.14
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Table 2. Comparison with State-of-the-art Methods on Vaihingen Dataset. The bold indicates the best

data. Since some methods did not publish the IoU of the Clutter , for the convenience of comparison,

we do not include this category when calculating mIoU.

Method
IoU

mIoU F1-Score OA
Imp.surf. Building Lowveg. Tree Car

FCN [11] 78.11 84.82 63.78 75.08 53.38 70.95 77.98 85.86
SegNet [52] 81.76 83.79 79.98 48.19 68.73 72.49 83.31 87.72

DeepLab v3+ [52] 78.62 86.07 64.47 75.43 58.69 72.66 79.41 86.27
PSPNet [53] 79.16 85.90 64.36 74.94 60.93 73.06 79.75 86.26

MAResU-Net [57] 79.58 86.05 64.31 75.69 59.68 73.06 79.51 86.52
FarSeg [58] 78.94 86.14 64.48 75.51 61.72 73.36 79.68 86.46
LANet [59] 79.41 86.17 64.47 75.87 64.29 74.04 79.84 86.59
UNet [22] 82.02 86.63 80.72 52.51 70.34 74.44 84.75 88.43

DANet [19] 82.27 89.15 71.77 73.70 81.72 79.72 - -
Unetformer [30] 86.45 90.91 73.83 82.61 79.44 82.64 90.18 90.76

HRFNet (Ours) 87.30 91.69 82.72 81.13 73.70 83.31 90.77 91.21

The tables present the Intersection over Union (IoU) values for each category and the mean IoU

(mIoU) for all categories obtained with different models. Firstly, it is evident that the classic semantic

segmentation networks, such as SegNet, FCN, and DeepLab, which were not specifically designed for

remote sensing images, yield unsatisfactory results. Particularly for low vegetation/grass and trees,

two easily confused targets, SegNet and DeepLab exhibit the lowest IoU, both below 70. Conversely,

all models specifically tailored for remote sensing achieve an IoU higher than 70 for all categories.

This can be attributed to the fact that these methods take into account the unique characteristics of

remote sensing images. Notably, the proposed HRFNet in this study attains an IoU higher than 80 for

nearly all categories, surpassing all other methods. Specifically, we achieve mIoU values of 86.47 and

83.31 on the two datasets, which are nearly 10 percentage points higher than the classic segmentation

model FCN and the DeepLab v3+ network. When compared to DANet, LANet, and other models

designed for remote sensing image segmentation, our method still demonstrates a 1-2 percentage

point improvement in mIoU. Out of these improvements, our method shows a 1.5 percentage point

enhancement for low vegetation/grass and trees. Moreover, improvements can also be observed to

varying degrees for building and car categories. We attribute these improvements to the fusion of

feature maps from different layers, as our method effectively captures local detail features such as

edges outside the discriminative region of the target.

Quantitative analysis shows the performence of the model. In addition, we also perform a visual

qualitative analysis of the segmentation effect of the model. The visualization of results in two datasets

are shown in as shown in Figure 8 and 9. Where the first column is the input image, the second

column is ground truth, the middle four columns are the segmentation results of other methods, and

the last column is our segmentation results. It can be seen that the HRFNet proposed in this article

and the models designed specifically for remote sensing images, UNetFormer and DANet, have good

segmentation results. Especially, HRFNet has excellent segmentation results on low vegetation/grass

and car. For low vegetation/grass, HRFNet has clear edges and no obvious defects inside the target.

As well as for car with clear edges and leaves little to be missed.
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(a) Input Image (b) Ground Truth (c) FCN (d) SegNet (e) DANet (f) UNetFormer (g) Ours

Figure 8. Visual comparisons of models in Potsdam dataset. Where the first column is the input image,

the second column is ground truth, the middle four columns are the segmentation results of other

methods, and the last column is our segmentation results. We use a black dotted line to mark the most

distinct regions between the HRFNET proposed in this paper and other methods.

(a) Input Image (b) Ground Truth (c) FCN (d) SegNet (e) DANet (f) UNetFormer (g) Ours

Figure 9. Visual comparisons of models in Vaihingen dataset. Where the first column is the input

image, the second column is ground truth, the middle four columns are the segmentation results of

other methods, and the last column is our segmentation results. We use a black dotted line to mark the

most distinct regions between the HRFNET proposed in this paper and other methods.

Furthermore, we extracted feature maps at different layers and visualized them, as illustrated

in Figure 10. It is evident that for the low vegetation/grass category, it predominantly occupies the

significant areas, albeit with less clear edges. In certain locations, misclassification occurred where

parts of other objects were mistakenly identified as low vegetation/grass, while in other areas, the

object was not entirely encompassed. To address these issues, our method incorporates a fusion of
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feature maps from multiple layers, thereby maximizing the exploration of discriminative regions while

preserving sharper edges.

(a) Input Image (b) CAM_ layer 2 (c) CAM_ layer 3 (d) CAM_ layer 4

(e) Ground Truth (f) FCN (h) Ours(g)DANet

Figure 10. Visual comparisons of Segmentation results from different layers of feature maps and

visualization of certain layers of feature maps. The feature maps of different layers have different

characteristics, such as some feature maps diffuse to the entire target, while others mainly indicating

edges. The most obvious difference is within the black dotted box.

4.4.2. Ablation Experiments and Analysis

In order to evaluate the performance of our proposed IRM and rich-scale intra-layer feature

enhancement methods, taking into account computational resources and experimental efficiency, we

conducted ablation experiments on the Vaihingen dataset.

Ablation experiments of IRM. The Intra-Region Mining (IRM) module within our proposed

HRFNet quantifies the information content at different locations within the image. Leveraging this

information, the subsequent intra-layer rich-scale feature enhancement method extracts features from

different locations within each layer to fuse multi-scale context. To demonstrate the effectiveness

of IRM, we conducted comprehensive experiments. Firstly, we designed ablation experiments to

investigate the impact of the number of Rn (inter-layer feature fusion modules) on the segmentation

results. When Rn=1, IRM is not utilized, and the 2-layer feature maps from DeepLab v3+ with Res2Net

as the backbone are uniformly employed for the subgraphs. In this case, only Res2Net50 is used for

multi-scale feature extraction as the baseline. Additionally, when Rn is 2 and 3, the corresponding

layer 2 and 3 feature maps, and layer 2, layer 3, and layer 4 feature maps are utilized, respectively.

The experiments demonstrated that increasing the number of Rn and fused inter-layer feature

maps has a significant positive impact on the segmentation results within a certain range. As shown in

Table 3, simply replacing the ResNet backbone network with Res2Net resulted in an improvement of

nearly 1 percentage point in the segmentation results, highlighting the effectiveness of our HRFNet

design. Specifically, by utilizing fine-grained multiple receptive fields for feature extraction from

feature maps, IoU showed improvements across all categories. For instance, IoU increased by nearly 1

percentage point for invisible surfaces, Trees, and low vegetation/grass with significant differences

in shape and range, and by 0.6 for buildings. Notably, there was a remarkable improvement in the

extraction of dense small objects, achieving a 2.3 IoU with finer-grained receptive fields. Consequently,

mIoU increased by more than 1 percentage point.
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Furthermore, the experiments confirmed that our approach, inspired by Res2Net, effectively

extracts multi-scale features from feature maps at a finer granularity. As shown in Table 3, when

the fused feature layers are fixed, the segmentation results improve to varying degrees with an

increase in Rn. Specifically, when two-layer feature maps are used for feature fusion (Rn=2),

differential feature extraction and fusion on two subgraphs with different levels of information lead to

improvements compared to ordinary two-layer feature map fusion on the entire image. This approach

involves dividing the image into two sub-images for different feature extraction. In comparison to

using two-layer feature maps for feature extraction on the entire image using the original network,

improvements were observed in buildings, cars, and low vegetation/grass, particularly in cars

where IoU increased by nearly 0.6. Similarly, when three-layer feature maps were used and the

image was divided into three sub-images for feature extraction, improvements in IoU were observed

for impermeable surfaces, buildings, and cars, particularly in cars where IoU increased by nearly

0.7. Moreover, when four-layer feature maps were employed and the image was divided into four

fine-grained subgraphs, the mIoU of feature extraction improved by nearly 0.6 and nearly 0.4 compared

to the entire image and two subgraphs, respectively. Notably, in the case of cars, IoU increased by

nearly 2 percentage points and nearly 2.4, while impermeability also increased by nearly 0.7 and 0.2,

respectively. Interestingly, when Rn is 4, simply fusing the four-layer feature maps of the entire image

yielded similar mIoU results as when Rn is 3 and different feature extraction and fusion are performed

on the feature maps. This fully demonstrates the effectiveness of differential processing on different

regions of the image.

Table 3. Ablation experiments of IRM. The bold indicates the best data.

Rn1 Layers of Feature map
IoU

mIoU
Imp.surf. Building Tree Car Lowveg. Clutter

1 2 85.87 90.98 81.45 76.60 71.90 39.83 81.362

1 2 86.76 91.59 82.33 78.92 72.81 43.60 82.48
2 2 86.56 91.61 82.27 79.55 73.04 43.74 82.61

1 3 86.75 91.36 82.83 78.73 73.80 46.41 82.69
3 3 86.89 91.63 82.35 79.47 73.22 46.67 82.71

1 4 86.64 91.72 82.45 79.19 73.62 46.26 82.72
2 4 87.18 92.16 82.84 78.72 74.00 45.74 82.98
4 4 87.30 91.69 82.72 81.13 73.70 49.49 83.31

1Rn represents the rating of the image information after quantification and rating, that is, when Rn=1,
it means that IRM is not used, and when Rn=2, it means that the entire image is divided into two
levels according to the information quantification level, and so on.
2Gray refers to ResNet and no color refers to Res2Net.

Ablation experiments of IRFE. Our IRFE module consists of two main parts: Intra-layer

Rich-scale Feature Extraction and Inter- and Intra-layer Feature Fusion. To evaluate the effectiveness of

these components, we conducted separate ablation studies on inter-layer feature fusion and intra-layer

feature fusion, as shown in Table 4 and Table 5, respectively. These experiments aimed to analyze

the impact of each component on the segmentation results and demonstrate their effectiveness in

enhancing the performance of our proposed model.

Firstly, in the evaluation of inter-layer feature fusion, we explored the impact of different fused

feature maps by varying the values of Rn. The results are presented in Table 4. We observed that feature

maps from different layers contribute differently to the segmentation results. Through experimentation,

we found that the 3rd and 4th layer feature maps had the most significant contribution, while the 1st

and 2nd layer feature maps also showed some improvement. Specifically, when using the first two

layers of feature maps, the mIoU on the Vaihingen dataset was 81.84. Replacing the first layer feature

maps with the third and fourth layers respectively resulted in an improvement of nearly 1 point in

the segmentation results. This improvement was approximately 0.5 for impervious surfaces, trees,
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and low vegetation/grass, and around 2 percentage points for buildings and cars. When the last two

layers of feature maps were used, the mIoU increased by 1.1 compared to using only the first two

layers of feature maps. For each of the five categories, the IoU for impervious surfaces increased by

approximately 0.7, while buildings, trees, and low vegetation/grass increased by approximately 1

percentage point, and cars increased by nearly 2 percentage points. Finally, when all four layers of

feature maps were utilized, the segmentation result achieved the highest mIoU of 83.31. In this case,

the IoU for impervious surfaces increased.

Table 4. Ablation experiments of IRM and Inter-layer Feature Fusion. The bold indicates the best data.

Rn represents the rating of image information after quantification and rating.

Rn Feature map
IoU

mIoU
Imp.surf. Building Tree Car Lowveg. Clutter

2 1,2 86.49 91.05 81.88 76.78 73.00 45.54 81.84
2 2,3 87.05 91.94 82.22 78.99 73.59 45.23 82.76
2 2,4 87.05 91.80 82.61 79.26 73.48 47.68 82.84
2 3,4 87.18 92.16 82.84 78.72 74.00 45.74 82.98
4 1,2,3,4 87.30 91.69 82.72 81.13 73.70 49.49 83.31

In addition, for the evaluation of intra-layer feature fusion, we first utilized the final feature map

of the subgraph and directly concatenated the intra-layer feature maps as the baseline. The results

are shown in Table 5. It was observed that the direct concatenation of subgraphs yielded the worst

segmentation results, with discontinuous edges and even some targets not forming independent

bounding boxes. However, after performing simple edge smoothing, the segmentation results

improved. Furthermore, our proposed intra-layer feature fusion module significantly improved

the results. This demonstrates the effectiveness of our proposed approach in fully preserving detailed

information in feature subgraphs during stitching. Specifically, by simply smoothing the edges, the

segmentation results for impervious surfaces improved by 0.25, the IoU for trees increased by nearly

0.7, and the results for cars and low vegetation improved by 0.44 and 46,. Ultimately, mIoU increased

by 0.33. Surprisingly the results for the building category actually decreased. This may be due to

mistakenly sliding a portion of the targets that belong to the building into non-building categories

during edge smoothing, and vice versa. However, after incorporating our intra-layer feature fusion

module, the mIoU increased by an additional 0.47. Compared to directly concatenating-layer feature

maps, our method a total of .8 percentage points in mIoU. Notably, the increase in IoU for cars was the

largest, with a surprising 2.23 improvement. Additionally, there was a 0.68 increase for low vegetation,

0.5 increase for trees, and 0.43 increase for impious surfaces Similar to the smoothing approach, the

building category have been affected by incorrect feature maps, resulting in a decrease in the results.

Table 5. Ablation experiments of Intra-layer Feature Fusion. The bold indicates the best data.

Inter-layer Feature Fusion
IoU

mIoU
Imp.surf. Building Tree Car Lowveg Clutter

w/o 86.77 92.01 81.92 78.81 73.02 54.11 82.51
Edge smoothing 87.05 91.80 82.61 79.25 73.48 47.68 82.84

w/ 87.30 91.69 82.72 81.13 73.70 49.49 83.31

5. Conclusion

In this study, we propose a novel Hierarchical Rich-scale Fusion framework (HRFNet) for semantic

segmentation of high-resolution remote sensing images. The framework addresses the challenge of

varying information content across different positions in the image by incorporating an information
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quantification and rating module, based on IRM. This module enables the adaptive extraction of

multi-layer high-level semantic features and low-level features at different positions in the image.

Additionally, our approach utilizes inter-layer and intra-layer multi-scale feature extraction and fusion

techniques to capture information in high-resolution remote sensing images. Extensive experiments

conducted on the ISPRS Vaihingen and Potsdam datasets demonstrate the effectiveness of our proposed

method. The results show that HRFNet achieves superior segmentation performance compared to

existing approaches.

In future research, we plan to extend our intra-layer rich-scale feature enhancement to networks

that utilize richer contextual information, such as Transformer graph networks. This will enable us to

achieve even better segmentation results by leveraging the enhanced feature representation provided

by our framework.
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