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Abstract: The semantic segmentation of high-resolution remote sensing images (HR-RSI) is crucial
for a wide range of applications, such as precision agriculture, urban planning, natural resource
assessment, and ecological monitoring. However, accurately classifying pixels in HR-RSI faces
challenges due to densely distributed small objects and scale variations. Existing techniques,
including Convolutional Neural Networks (CNNs) and other methods for hierarchical feature
extraction and fusion of remote sensing image, often do not achieve the desired accuracy. In this
paper, we propose a novel approach called the Hierarchical Rich-scale Fusion Network (HRFNet)
to address these challenges. HRFNet utilizes advanced information rating and image partition
techniques to extract rich-scale features within image layers. This allows for the adaptive exploration
of both local and global contextual information. Moreover, we introduce a structured intra-layer
to inter-layer feature aggregation module, which enables the adaptive extraction of fine-grained
details and high-level semantic information from multi-layer feature maps in a highly flexible manner.
Extensive experimentation has been conducted to validate the effectiveness of our proposed method.
Our results demonstrate that HRFNet outperforms existing techniques, achieving state-of-the-art
(SOTA) results on benchmark datasets, specifically the ISPRS Potsdam and Vaihingen datasets.

Keywords: high resolution; remote sensing image; Convolutional Neural Network; attention
mechanism; hierarchical rich-scale fusion

1. Introduction

In recent years, the rapid advancement of satellite and airborne remote sensing technologies
has resulted in the acquisition of a massive volume of high-resolution remote sensing images. These
images provide rich spatial details and geometric feature information, making them valuable resources
for precision agriculture [1], urban building planning [2], efficient natural resource utilization [3,4], and
disaster assessment [5,6]. Semantic segmentation, as a dense prediction task, assigns a category label
to each pixel, enabling accurate surface feature extraction and land cover classification. Consequently,
it has emerged as a critical research focus in remote sensing image interpretation.However, remote
sensing images present unique challenges that differentiate them from pixel-level classification tasks in
natural images. Firstly, these images often exhibit complex backgrounds and rich diversity within each
class. The presence of diverse environmental conditions and variations in illumination, weather, and
seasonality further complicates the interpretation and classification of remote sensing images. Secondly,
in remote sensing images, small objects are densely distributed in relation to the overall frame size.
This high object density leads to subtle differences between classes, making accurate classification
more challenging. Lastly, remote sensing images often involve a wide range of target scales, with large
targets such as buildings and water bodies coexisting with small targets like vehicles and vegetation.
The significant difference in scales further adds to the complexity of accurately segmenting and
classifying objects in remote sensing images. Due to these inherent challenges, existing image semantic
segmentation methods designed for natural images are not sufficient for effectively addressing the
unique characteristics and requirements of remote sensing images. Therefore, it is imperative to
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develop novel approaches and techniques specifically tailored for remote sensing image analysis to
achieve more accurate and reliable results.

Remote sensing image semantic segmentation encompasses both traditional methods based
on manual design and feature extraction, as well as methods utilizing deep learning techniques.
Traditional methods include unsupervised clustering [7], supervised maximum likelihood [8], and
support vector machines [9,10]. However, these methods heavily rely on the design of feature
descriptors and are sensitive to parameter settings and data, making it challenging to achieve efficient,
accurate, and dense prediction for large-scale high-resolution remote sensing images. Consequently, the
advent of deep learning technology, particularly CNNs, and the utilization of hierarchical feature map
extraction methods, such as the classic Fully Convolutional Network (FCN) [11] , have significantly
improved the effectiveness of semantic segmentation in high-resolution remote sensing images [12],
establishing them as the mainstream approaches. Nevertheless, CNNs inherently possess a local
inductive bias and lack the ability to model context and long-distance dependencies [13]. To address
these limitations, various methods have been proposed to enhance CNNs remote sensing image
segmentation. These methods include dilated convolutions [14,15], expanding the size of convolutional
kernels [16], feature pyramids [17], and the incorporation of attention [18,19] and self-attention
mechanisms [20,21]. These techniques aim to capture both local and global information, enabling more
comprehensive feature representation and improving the accuracy of semantic segmentation remote
images.

However, in the context of complex land cover analysis in high-resolution remote sensing
images, non-adaptive feature extraction at all positions within each layer of feature maps proves to be
insufficient. This inadequacy stems from the fact that the amount of information present in different
image positions varies significantly. For instance, areas with dense or sparse small targets and scale
variations pose unique challenges, as illustrated in Figure 1. Consequently, employing convolutional
kernels of the same size and shape for the original image and each layer of feature map fails to extract
the most appropriate features for pixel-level classification. To elaborate further, in regions with dense
small targets, it may be crucial to precisely capture higher-density boundary features, making it
unacceptable to lose information through downsampling. Conversely, downsampling is less sensitive
in areas with relatively larger connectivity. Thus, employing non-discriminatory downsampling and
feature extraction methods for feature maps is suboptimal. Recognizing this limitation, we propose
a novel In-Layer Rich-Scale Attention Network that adaptively extracts rich-scale features within
each layer by quantifying and classifying image information. This approach involves partitioning the
feature maps within the same layer to extract features that are more suited to the specific scales present
in the image. Additionally, we perform in-layer and inter-layer aggregation of rich-scale features,
combining global and local features to enhance the overall segmentation performance.
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Figure 1. Activation map of different feature layers and image entropy. We found that feature maps
from different layers have different response preferences. For example, some feature maps correspond
better to edges, while others prefer to respond diffusely to regions. Meanwhile, the entropy of the
image can simultaneously indicate edges and regions. Therefore, for different positions in the image,
we choose to first use image entropy for subgraph partitioning and then fuse different layers of features
for different subgraphs to balance the overall and local aspects of the target.

In this study, we propose a comprehensive approach to address the limitations of existing
methods in remote sensing image semantic segmentation. Our proposed method consists of three
key components. Firstly, we introduce a feature extraction scheme that quantifies and grades image
information, allowing for the differentiation of features extracted from different locations within the
image. This enables the model to effectively capture the varying degrees of importance and relevance
of different image regions. Secondly, we present a partition-based in-layer rich-scale feature extraction
method. This method adapts to extract features from both large-scale sparse feature regions and
dense small targets using different-sized receptive fields. By utilizing receptive fields of varying
sizes, we can capture features at different scales, ensuring that the model can effectively represent the
diverse characteristics present in the image. Lastly, we propose a fusion-attention rich-scale feature
aggregation module. This module facilitates the fusion of feature maps with different resolutions
within the same layer and across different layers. By combining low-level features from the shallow
layers with high-level semantic features from the deep layers, the model can leverage both local
and global information to achieve more accurate and robust semantic segmentation. To evaluate
the effectiveness of our proposed method, we conducted extensive experiments on two widely-used
public datasets, namely ISPRS Potsdam and Vaihingen. The experimental results demonstrate the
superior performance of our approach. Specifically, our proposed method achieves a mean Intersection
over Union (mloU) of 86.47 and 83.31 on the ISPRS Potsdam and Vaihingen datasets, respectively.
These results highlight the effectiveness and potential of our approach in semantic segmentation of
high-resolution remote sensing images.

To sum up, our contribution is mainly Three points:

(1) We propose an information quantification and grading strategy to evaluate and quantify the
amount of information contained in different positions within the image. This method allows us
to assess the significance and relevance of various image regions.

(2) We introduce a novel intra-layer rich-scale feature extraction module. This module is specifically
designed to perform feature extraction on targets with large-scale. By adaptively extracting
features at different we effectively capture the intricate and variations present in the image,
leading to improved segmentation performance.
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(3) We propose an intra- and inter-layer feature aggregation module, this module allows for the
refinement of feature maps and the aggregation of low-level features, such as edge features, with
high-level semantic features.

(4) Based on the above intra-layer rich-scale feature extraction module and intra- and inter-layer
feature aggregation module, we construct a network specifically designed for high-resolution
remote sensing image semantic segmentation.

The organization of the remainder of this paper is as follows. In Section 2, we introduce research
related to remote sensing image semantic segmentation and multi-scale contextual feature extraction
and fusion methods. In Section 3, we provide detailed information on the proposed method. In Section
4, we demonstrate the effectiveness of our method through extensive experiments and result analysis.
Finally, in Section 5, we draw conclusions.

2. Related Work

2.1. Remote Sensing Image Semantic Segmentation

Thanks to universal semantic segmentation methods such as FCN [11], U-Net [22], and the
DeepLab series [14,23-25], the primary focus of remote sensing image semantic segmentation research
lies in extracting features through CNN layers, with end-to-end segmentation results generated based
on the encoder-decoder architecture.

In recent years, significant efforts have been made to improve the encoder-decoder architecture
[26-29]. Many researchers have focused on modifying either the encoder or decoder and adjusting
the hierarchical feature fusion to better utilize high-level and low-level feature maps. For example,
Long et al. [26] integrated a Transformer encoder in parallel with CNN to capture fine-grained spatial
details in the remote global context. Jin et al. [28] proposed a combined void convolution with different
inflation rates to enhance the preservation of small target information in the feature maps. Tan et
al. [29] introduced feature focus (FF) and context focus (CF) modules in the decoder to enhance the
model’s multi-scale feature representation capability. Wang et al. [30] constructed a hierarchical and
lightweight Transformer decoder with global-local transformer blocks to capture multi-scale global
and local features. These methods have shown promising results in improving the feature extraction
and fusion abilities of the encoder-decoder architecture.

Moreover, there are also methods [31,32] that enhance both the feature extraction ability of the
model at the encoder side and the feature fusion ability at the decoder side. Yang et al. [33] incorporated
a dense connection and multi-scale maximum pool module at the encoder end, while adding the ECA
attention mechanism module to the decoder for simultaneous feature mapping from different coding
layers. This enables the fusion of low-level and high-level semantic information and improves the
classification ability of features, especially for small objects. Zhang et al. [34] replaced convolution with
a Focus operation on the encoder side to reduce information loss and utilized Swin Transformer and
CBAM hybrid attention for feature extraction. They also used Focus and upsampled feature maps for
feature enhancement at the decoder side. These methods further enhance the overall feature extraction
and fusion capabilities of the encoder-decoder architecture.

However, despite these advancements, current methods still perform the same operations on the
feature maps of each layer during feature extraction and fusion, as shown in Figure. 2. Moreover, they
only perform feature fusion between layers and do not fully exploit the rich-scale features within each
layer or aggregate the features within the layer. This limitation indicates the need for further research
to explore more effective methods for feature extraction, fusion, and enhancement within each layer of
the encoder-decoder architecture.
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Figure 2. Schematic diagram of different pyramid structures. The image pyramid and feature pyramid,

as shown in Figures (a) and (b), perform the same processing, e.i., feature extraction, on all locations
of the same layer of the image or feature map. While (c) shows a simple schematic of performing
rich-scale feature extraction within a layer in our HRFNet.

2.2. Multi-scale Context Feature

At present, the utilization methods of multi-scale context information [35-38] can be broadly
categorized into two main approaches. The first approach focuses on increasing the receptive field by
modifying the convolution operation. For example, Xiao et al. [35] proposed directional convolution
and large-field convolution to capture gradient changes in different directions and expand the receptive
field. Wu et al. [39] introduced a sample-proxy dual triplet (SPDT) loss function, in conjunction with a
multi-proxy softmax (MPS) loss function, to learn fusion features effectively. Li et al. [40] enhanced
the feature representation and extraction capabilities of convolutional layers by utilizing asymmetric
convolutions. Xie et al. [41] proposed viewpoint-robust knowledge distillation (VRKD), which focuses
on learning multi-stage features through a combination of a sophisticated teacher network and a
streamlined student network. Although these methods modify the convolution operation they do not
fundamentally address the inherent local inductive bias, as the same operation is still performed at all
locations within each layer of the feature map.

Another category of methods [42—46] utilizes attention mechanisms to model long-range
dependencies on channels or spatial dimensions. For instance, Xu et al. [42] employed an adaptive
Transformer to suppress background noise, enhance foreground saliency, and extract detailed
information through spatial attention and channel attention. Wang et al. [30] introduced Swin
Transformer as the encoder and proposed a DCFAM at the decoder side to enhance the spatial and
channel relationships of semantic features using Shared Spatial Attention (5SA) and Shared Channel
Attention (SCA). HPGN [47] proposed a pyramid graph network that focuses on exploring multi-scale
spatial structural features, which is tightly connected behind the backbone network. He et al. [48]
proposed a Swin Transformer encoder structure with a spatial interaction module (SIM) parallel to
the CNN encoder. However, current attention mechanisms do not fully leverage the existing local
contextual priors captured by convolutions and fail to effectively utilize features extracted by CNN.

Both categories of methods have made significant advancements in enhancing and fusing
contextual information. However, whether it is modifying the convolution kernel or employing
attention mechanisms, the same operation is still performed on all parts of the feature maps within the
same layer. This approach lacks the ability to adaptively extract features from positions that contain
varying amounts of information. Therefore, there is a need for further research to explore methods
that can dynamically extract features from different positions within the feature maps based on the
local contextual information.

3. Method

In this section, we present a comprehensive overview of our method, highlighting its key
components and discussing the underlying ideas. To begin with, we introduce the concept of
information quantization and rating strategy, which is realized through our Information Rating
Module. This module plays a crucial role in effectively quantifying and rating the information within
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the input data. By assigning appropriate ratings to different information elements, we can prioritize
their importance and guide subsequent processing steps. Next, we delve into the module of Intra-layer
Rich-scale Feature Enhancement, which comprises two sub-modules: Intra-layer Rich-scale Feature
Extraction and Inter- and Intra-layer Feature Fusion. The Intra-layer Rich-scale Feature Extraction
module focuses on extracting rich-scale features within each layer of the network. This allows us to
capture fine-grained details and local contextual information, enhancing the discriminative power of
the network. The Inter- and Intra-layer Feature Fusion module, on the other hand, aims to fuse the
extracted features across different layers, facilitating the integration of global and local information.
Finally, we discuss the sources of inspiration for our method and provide an overview of the overall
network structure.

3.1. Information Rating Module

According to Shannon’s information theory, entropy is a mathematical measure of uncertainty and
is commonly used to represent the probability of occurrence of discrete random events. In the context
of image analysis, the entropy value provides valuable insights into the richness of information present
in an image.In an image, when the entropy value is high, it indicates that the image contains a diverse
range of objects and densely packed elements. This implies that there are multiple types of objects
present in the image, and they are distributed in a dense manner. Such high entropy values suggest
that the image carries a significant amount of information and exhibits a high level of complexity.
In our method, we recognize the importance of entropy in quantifying the richness of information
within an image. By incorporating the concept of entropy, we can effectively evaluate and leverage the
information content for improved analysis and decision-making. The quantification of information
can be expressed as

H(x;) = = ) P(x;)log(P(xi)), )
i=1
where P(x;) denotes probability of random event x;. Generalized to the image, there is the entropy of
image I
Hyiiy = = ) P(xc") log P(xc"). ()
c=1

Similarly, where I(x."/) represents the the category of pixels at position (i, j) in image I is ¢, and
P(x.") denotes the probability of I(x /).

In order to measure the amount of information contained in different positions in an image,
we propose an information quantization and classification module based on image local entropy.
Specifically, first, we calculate the entropy of the image according to formula 2 and optimize the result
to get the information quantization graph as shown in Figure 3. Then, according to the quantized
information, The information of the image is divided into several levels R;;, where n represents the
total quantity of quantized classification.

To accurately measure the information content in different positions of an image, we introduce a
novel information quantization and classification module based on local image entropy. Firstly, we
calculate the entropy of the image using a specified formula (referring to formula 2). This entropy
calculation provides us with a quantitative measure of the uncertainty or randomness present in the
image. The optimized entropy serves as the basis for generating an information quantization graph, as
shown in Figure 3, which visually represents the distribution of information across the image. Next,
based on the quantized information obtained from the information quantization graph, we partition
the information in the image into several distinct levels, denoted as R,. The parameter n represents the
total number of quantized classifications. This step allows us to effectively categorize and classify the
information present in the image, enabling a more detailed analysis of its content. By leveraging this
information quantization and classification approach, we gain valuable insights into the distribution
and characteristics of information within the image. This enables us to identify and prioritize regions or
positions that contain significant amounts of information, as well as those that may be less informative.
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The quantized classification of information provides us with a finer-grained representation of the
image content, facilitating subsequent analysis and decision-making processes. By considering the
different levels of quantized information, we account for the varying importance and relevance of the
information in different regions of the image. In summary, our proposed method offers an effective
approach to measure and classify the information content in an image. By quantizing the information
based on local entropy and dividing it into distinct levels, we can better understand and utilize the
information available within the image.

Figure 3. Quantization of image information entropy. The first and third pictures are the input images,
and the other two pictures are their information quantization maps, i.e. entropy maps. The darker the
color, the greater the entropy value at that point, that is, the greater the difference between the pixel
value here and the neighboring point. This point may be the junction of different target categories.

For high-resolution remote sensing images, the density of objects in different locations varies
greatly, so we partition the image by R, and obtain sub-regions I, € I, € (1,R), k denotes index
of sub-regions. By partitioning the image into sub-regions, we can specifically analyze and process
the different areas based on their respective levels of quantized information. This allows us to focus
our analysis and processing efforts on specific regions that may contain important or informative
objects, while also considering the less dense or less informative areas separately. This finer-grained
analysis helps to improve the overall performance and reliability of our image processing techniques,
particularly in the context of high-resolution remote sensing images where the object density can vary
significantly.

3.2. Intra-layer Rich-scale Feature Enhancement

Both the image pyramid and the feature pyramid [17] apply the same processing to the image or
feature map at each level, which hinders the adaptive extraction of features from different positions
in the image. As a result, objects located at different positions exhibit varying levels of accuracy in
feature maps due to differences in scale and shape. To address this issue, our HRFNet quantifies and
grades the information, enabling adaptive feature enhancement. By performing hierarchical feature
extraction and fusion on subgraphs containing different amounts of information, HRFNet improves
the accuracy of prediction.

3.2.1. Intra-layer Rich-scale Feature Extraction

Through the aforementioned IRM, the image I is partitioned into k subgraphs Iz,*. These
subgraphs are then processed by the Res2Net50 encoder to extract features. Specifically, for the
subgraph with the lowest information rank Iz;¥, we extract the low-level feature Fy and the-level
feature map Fj, resulting in feature maps Folri* and Fylgq~. Similarly, for the subgraph I ro© with
information level R2 , we extract the feature maps Fyl R, Fl1 roF, and Ful ro* from different layers, the
corresponding feature maps Fyl Rzk, FI Rzk and F41 Rzk . This process is repeated for the remaining, I R3k
and Igs*, respectively.

Subsequently, all the obtained feature maps are inputted into the decoder for intra-layer inter-layer
feature fusion, as well as resolution restoration.
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3.2.2. Inter- and Intra-layer Feature Fusion

After undergoing intra-layer rich-scale feature extraction in the encoder, we obtain a hierarchical
feature map that corresponds to each sub-map. This feature map is obtained from multiple feature
layers and possesses different receptive fields. To enhance the utilization of features, we perform
both inter-layer and intra-layer feature fusion on these feature maps. This fusion process allows us to
aggregate information from different scales and spatial locations, thereby improving the efficiency of
feature utilization.

Inter-layer Feature Fusion. After applying IRM and dividing the input image into four
sub-images with varying amounts of information, we extract feature maps with different dimensions
for each sub-image in the encoder. To begin, we perform feature fusion within the same sub-image
across different layers, resulting in feature maps Flg; k Flgok, FI R3k and Flg4* of the four sub-images.
Taking subgraph I le as an example, the feature maps Fyl le and F4I le extracted by the encoder
have shapes of [B, Crg, Wro, Hro| and [B, Cra, Wr4, Hra, respectively. These two feature maps are
resized to the same dimensions of W and H, and then concatenated to obtain a feature map with a of
[B, Cro + Cra, W1, Hy]. Similarly, the dimensions of feature maps FI roX, FIgsF and FIg4* obtained after
intra-layer feature fusion of sub-images I Rzk, Irs*, and I R4k are [B, Crg + Cr1 + Cp + Cpy, W3, H3| and
[B, Cro + Cr1 + Cr + Cr3 + Cra, Wy, Hy], respectively. Next attention is employed for feature fusion
in each high subgraph feature map.

Recover Spatial Position by Index. After applying IRM, the order of the sub-graphs is altered.
Therefore, following inter-layer feature fusion, it becomes necessary to restore the spatial position of
the sub-graph based on the sub-graph index k. Specifically, we rearrange the spatial positions of the
subgraphs based on the specified index k of subgraph I in IRM. This allows us to restore their original
spatial arrangement.

Intra-layer Feature Fusion. The direct splicing of the four sub-images would introduce
inconsistencies at the edges and other undesired phenomena due to the discrepancy in scales between
feature map upsampling, downsampling, and inter-layer feature fusion (as shown in Figure 4). To
overcome this challenge, we propose an intra-layer feature fusion module that effectively combines
the feature maps of the four sub-maps. The process of our proposed method is illustrated in Figure 5.
After splicing the four sub-images, a 1x1 convolution operation is applied to facilitate cross-channel
information interaction. Following this, global feature fusion is performed on the spliced image I'.
Inspired by the DeepLab v3+ architecture, we utilize two sets of 3x3 convolution layers, incorporating
batch normalization (BN) and rectified linear unit (ReLU) activations, to fuse the feature maps. Finally,
linear interpolation and upsampling techniques are employed to restore the original image size.

—-—

Scale up,

. kSc‘c“Ep q
B B e I

Figure 4. Results of Ground Truth and direct concatenation of feature maps. We zoomed in on the area

within the red box in the image and pointed to the zoomed-in result with an arrow. It can be seen that
the segmentation result after directly splicing the feature maps has the problem of uneven edges, and
some features are roughly truncated from the middle, causing loopholes in certain types of targets.
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Figure 5. Intra-layer feature fusion. After restoring the position according to the indeXx, the attention
mechanism is used to fuse the features of the stitched image in the layer, and the incoherence in local
details when directly stitching images is bridged by long-distance modeling.

3.3. Combined with Sota Method

In this section, we present a review of the conceptual origins behind our approach, which focuses
on enhancing the representation of rich scale features within individual layers. Additionally, we
outline the overall framework of our proposed method.

3.3.1. Review Res2Net

Building upon the ResNet, one of the most prominent CNN networks, Gao et al. [49] introduced
the Res2Net network (illustrated in Figure 6). This network aims to effectively capture information
from various scales, enabling robust object classification across different scales and enhancing the
understanding of the contextual relationship with objects. The Res2Net achieves this by incorporating
hierarchical class residual links within a single residual block at a finer level of multiscale, thereby
increasing the receptive field of each layer of the feature map.

b !

l 1 x 1 conv l l Feature Fusion ‘

‘ Y. ‘ Y: ‘ Ys ‘ Y. ‘ ‘ Feature: ‘ Fcaturc:*‘Fcaturcx ‘ Feature:

Conv

3x3 Layer3
Conv
Layer2

3x3
Conv
Layerl

‘ Xu ‘ X. Xs ‘ X4 ‘ ‘ Sub: ‘ Sub: Sub: ‘ Sub. ‘
l 1 x 1 conv l
T l Input Image l

(@ (b) (©

Figure 6. Architecture of Res2Net backbone and our HRFNet sketch inspired by it. Figure (a) shows
the bottleneck structure diagram of the Res2Net network. Figure (b) is a sketch of the intra-layer
rich-scale fusion structure we designed inspired by this. Similar to intra-layer interaction in Res2Net,
our HRFNet also performs differential feature extraction operations on images within the same layer.
Figure (c) is a schematic diagram of the feature extraction process of our method.

Let the feature map after 1x1 convolution be X, and divide it evenly into s subgraphs, setting the
set of feature subgraphs x; € X, where i € [1,s]. The feature subgraph feed to 3x3 convolution layer

except x1, has output
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Xi, i= 1/
yi = 3 x 3conv(x;), i=2; 3)
3 x 3conv(x; +y; 1), 1i>2.

Although each 3x3 convolution has a fixed receptive field size, a significant portion of the feature
maps can receive indirect receptive fields from other locations through class residuals within the
layers. This allows for a combination of different numbers and sizes of receptive fields, thereby
implicitly capturing long-distance contextual information. By employing various operations on the
feature map of the same layer, one can effectively leverage features of multiple scales and enhance
the representation capability. Motivated by this observation, we contend that the conventional image
pyramids and feature pyramids treat images at the same layer of the feature map in a suboptimal
manner. To address this limitation, we propose a novel hierarchical rich-scale fusion method, which
elaborated in Section 3.1 and 3.2.

3.3.2. Overall of Network Architecture

As depicted in Figure 7, our proposed network begins by passing through an Image Rating
Module (IRM), which partitions and arranges the input image based on quantized and graded image
entropy. This process yields sorted sub-regions, where each sub-region corresponds to a specific image
entropy level. The backbone network is then employed to extract feature maps from different layers
for each sub-region. Subsequently, these feature maps from different layers are selectively fused based
on the image entropy level of the corresponding sub-region. Finally, the final segmentation map is
obtained through intra-layer and inter-layer feature fusion processes.

[k, L]

—

Encoder
Input I [K,L] _
R [KL]
» M R 2
X | | I
) Feature_0 Feature_1 Feature_2 Feature_3 Feature_4 Intra-
[k, L] [B, C, Wro, Hro] [B, C, Wr1, Hr1] [B, C, Wiz, Hi2] [B, C, Wrs, Hr3] [B, C, Wrd, Hrs] Layer FF

- g BN

o —

—» Flu —

T Decoder

Figure 7. Overall of HRFNet Architecture. Given an image I, our Information rating module (IRM)
splits it into n sub-regions with image entropy. For different sub-regions, we extract feature maps of
different layers for feature fusion. Finally, Finally, the resolution is restored between layers and within
layers to obtain the final segmentation results.

4. Experiments

4.1. Dataset

To demonstrate the effectiveness of our HRFNet, we conducted experiments on several widely
used public datasets, with a particular focus on the ISPRS Potsdam and Vaihingen datasets.
Through extensive experimentation, we validate that our proposed approach outperforms existing
state-of-the-art methods in terms of performance metrics.
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Potsdam. The dataset comprises 38 patches, all of which are of the same size (6000 x 6000). These
patches were extracted from very high-resolution TOP mosaics with a ground sampling distance
(GSD) of 5 cm. The dataset covers an area of 3.42 square kilometers in Potsdam and includes complex
buildings and dense settlement structures. For the purpose of semantic segmentation research, the
dataset is annotated with six categories: car, tree, low vegetation/grass, building, impervious surfaces,
and clutter. Each image in the dataset is provided in three channel combinations: IR-R-G, R-G-B, and
R-G-B-ir, and also includes a digital surface model (DSM). Due to limitations in our computational
resources, we selected DSM-free R-G-B images for our experiments.

Vaihingen. The dataset consists of 33 TOP images of varying sizes, with the maximum image size
being 3816x2550 and the minimum size being 1388x2555. These images cover an area of 1.38 square
kilometers in Vaihingenngen. The ground sampling distance (GSD) of the dataset is approximately
9 cm. Each TOP image in the dataset includes IR, red (R), and green (G) channels. The images are
annotated with six categories for semantic segmentation. Similar to our previous experiments, we
selected DSM-free images based on the computational resources available for our experiment.

4.2. Evaluation Metrics

The average intersection over union ratio (mloU) is recognized as the primary evaluation criterion
for segmentation tasks. It measures extent to which predicted segmentation mask overlaps with the
ground truth mask, providing an overall assessment of segmentation accuracy. The calculation formula
is

1 ¢ pii
mIoU=k+1Z: p p , 4)
=0 'Zo pij + 'Zo Pji — Pii
= i=

where k denotes foreground class, i denotes ground truth, j denotes prediction, that is, p;j denotes
the case where i is predicted to be j.

Furthermore, for the land cover classification task, there are commonly used evaluation metrics
such as overall accuracy (OA) and F1-score. The F1-score is calculated based on precision and recall,
providing a comprehensive evaluation of the classification performance.

TP
OA = l , ®)
TP+ FP+FN+TN

It~

1

Lt

precision - recall

F1=2 — . 6
precision + recall ©)
Moreover, the calculations for precision and recall are as follows.
. TP TP
precision = m,recall = TPLIN' (7)

Where, TP represents the number of true positive predictions for the positive class, FP represents the
number of false positive predictions where the prediction result is a positive class but the ground truth
is a negative class, and FN represents the number of false negative predictions where the prediction
result is a negative class but the ground truth is a positive class. Additionally, FP represents the number
of true negative predictions for the negative class. Therefore, the mean intersection over union (mloU)
can also be considered equivalent to

TP

1 k
mloU = 5 LN T PP 1 TP ®)
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4.3. Experiment Setting and Complement Details

The experimental environment utilized a server equipped with an Intel(R) Xeon(r) Gold 6230R
CPU @2.10GHz and an Nvidia A10 24G GPU, running on Linux version Ubuntu 20.04.4LTS. The
ResNet50 backbone, pre-trained on ImageNet, was employed in this study. For the training set, random
scaling and cropping techniques [50] were applied, with an input size of 1024 x 1024. The AdamW
optimizer was utilized with an initial learning rate of 6e~* and a weight decay of 2.5¢~* . To manage
the learning rate, we adopted the Cosine Annealing Strategy with Warmup [51] and restart, where T-0
was set to 15 and T-mult to 2. Moreover, a batch size of 8 and 200 epochs were set for the Potsdam and
Vaihingen datasets, respectively.

4.4. Results and Analysis

4.4.1. Comparison with State-of-the-art Methods

In this study, we conducted a series of comparative experiments on three datasets and achieved
highly promising results. Our analysis primarily centered around evaluating the performance of
various methods and techniques in addressing the given problem. The experiments were meticulously
designed to compare the accuracy of different approaches and determine the most effective ones. The
obtained results clearly indicate that our proposed method surpasses the other methods in terms of
accuracy, as demonstrated in Table 1 and Table 2.

Table 1. Comparison with State-of-the-art Methods on Potsdam Dataset. The bold indicates the best
data. Since some methods did not publish the IoU of the Clutter, for the convenience of comparison,
we do not include this category when calculating mIoU.

IoU
Method Imp.surf. Building Lowveg. Tree Car mloU Fl-Score  OA
SegNet [52] 71.69 75.64 61.71 5540 76.51 68.19 80.79 88.94
FCN [11] 81.64 89.11 71.36 7334 7932 7144 81.85 87.17
PSPNet [53] 82.68 90.17 72.72 7400 80.56 72.67 82.75 87.90
DeepLab v3+ [25] 79.80 86.86 69.73 68.10 83.08 77.51 87.14 85.67
UNet++ [54] 83.25 83.87 74.38 7833 7327 80.56 - -
OCRNet [55] 85.17 90.22 75.31 7696 89.83  83.50 - -
MACUNet [40] 86.64 90.36 73.37 7658 80.69 84.76 - -
ANCNet [56] 86.25 92.17 76.26 7483 8316 85.17 - -
DMAUNet [33] 87.72 92.03 75.46 7852 8791 85.68 - -

HRFNet (Ours) 87.21 94.09 77.92 80.38 92.75 86.47 92.62 91.14
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Table 2. Comparison with State-of-the-art Methods on Vaihingen Dataset. The bold indicates the best
data. Since some methods did not publish the IoU of the Clutter, for the convenience of comparison,
we do not include this category when calculating mIoU.

ToU

Method Imp.surf. Building Lowveg. Tree Car mloU  Fl-Score  OA
FCN [11] 78.11 84.82 63.78 75.08 53.38 70.95 77.98 85.86
SegNet [52] 81.76 83.79 79.98 4819 68.73 7249 83.31 87.72
DeepLab v3+ [52] 78.62 86.07 64.47 7543 58.69 72.66 79.41 86.27
PSPNet [53] 79.16 85.90 64.36 7494 6093 73.06 79.75 86.26
MAResU-Net [57] 79.58 86.05 64.31 75.69 59.68 73.06 79.51 86.52
FarSeg [58] 78.94 86.14 64.48 7551 61.72 73.36 79.68 86.46
LANet [59] 79.41 86.17 64.47 75.87 6429 74.04 79.84 86.59
UNet [22] 82.02 86.63 80.72 5251 7034 7444 84.75 88.43

DANet [19] 82.27 89.15 71.77 73.70 8172 79.72 - -
Unetformer [30] 86.45 90.91 73.83 82.61 79.44 82.64 90.18 90.76
HRFNet (Ours) 87.30 91.69 82.72 81.13 73.70 83.31 90.77 91.21

The tables present the Intersection over Union (IoU) values for each category and the mean IoU
(mloU) for all categories obtained with different models. Firstly, it is evident that the classic semantic
segmentation networks, such as SegNet, FCN, and DeepLab, which were not specifically designed for
remote sensing images, yield unsatisfactory results. Particularly for low vegetation/grass and trees,
two easily confused targets, SegNet and DeepLab exhibit the lowest IoU, both below 70. Conversely,
all models specifically tailored for remote sensing achieve an IoU higher than 70 for all categories.
This can be attributed to the fact that these methods take into account the unique characteristics of
remote sensing images. Notably, the proposed HRFNet in this study attains an IoU higher than 80 for
nearly all categories, surpassing all other methods. Specifically, we achieve mloU values of 86.47 and
83.31 on the two datasets, which are nearly 10 percentage points higher than the classic segmentation
model FCN and the DeepLab v3+ network. When compared to DANet, LANet, and other models
designed for remote sensing image segmentation, our method still demonstrates a 1-2 percentage
point improvement in mloU. Out of these improvements, our method shows a 1.5 percentage point
enhancement for low vegetation/grass and trees. Moreover, improvements can also be observed to
varying degrees for building and car categories. We attribute these improvements to the fusion of
feature maps from different layers, as our method effectively captures local detail features such as
edges outside the discriminative region of the target.

Quantitative analysis shows the performence of the model. In addition, we also perform a visual
qualitative analysis of the segmentation effect of the model. The visualization of results in two datasets
are shown in as shown in Figure 8 and 9. Where the first column is the input image, the second
column is ground truth, the middle four columns are the segmentation results of other methods, and
the last column is our segmentation results. It can be seen that the HRFNet proposed in this article
and the models designed specifically for remote sensing images, UNetFormer and DANet, have good
segmentation results. Especially, HRFNet has excellent segmentation results on low vegetation/grass
and car. For low vegetation/grass, HRFNet has clear edges and no obvious defects inside the target.
As well as for car with clear edges and leaves little to be missed.
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(a) Input Image (b) Ground Truth (¢) FCN (d) SegNet (e) DANet (f) UNetFormer (g) Ours

Figure 8. Visual comparisons of models in Potsdam dataset. Where the first column is the input image,
the second column is ground truth, the middle four columns are the segmentation results of other
methods, and the last column is our segmentation results. We use a black dotted line to mark the most
distinct regions between the HRENET proposed in this paper and other methods.
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(a) Input Image (b) Ground Truth (¢) FCN (d) SegNet (e) DANet (f) UNetFormer (g) Ours

Figure 9. Visual comparisons of models in Vaihingen dataset. Where the first column is the input
image, the second column is ground truth, the middle four columns are the segmentation results of
other methods, and the last column is our segmentation results. We use a black dotted line to mark the
most distinct regions between the HRFNET proposed in this paper and other methods.

Furthermore, we extracted feature maps at different layers and visualized them, as illustrated
in Figure 10. It is evident that for the low vegetation/grass category, it predominantly occupies the
significant areas, albeit with less clear edges. In certain locations, misclassification occurred where
parts of other objects were mistakenly identified as low vegetation/grass, while in other areas, the
object was not entirely encompassed. To address these issues, our method incorporates a fusion of
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feature maps from multiple layers, thereby maximizing the exploration of discriminative regions while
preserving sharper edges.

(d) CAM_ layer 4

o

(e) Ground Truth (f) FCN (g)DANet (h) Ours

Figure 10. Visual comparisons of Segmentation results from different layers of feature maps and
visualization of certain layers of feature maps. The feature maps of different layers have different
characteristics, such as some feature maps diffuse to the entire target, while others mainly indicating
edges. The most obvious difference is within the black dotted box.

4.4.2. Ablation Experiments and Analysis

In order to evaluate the performance of our proposed IRM and rich-scale intra-layer feature
enhancement methods, taking into account computational resources and experimental efficiency, we
conducted ablation experiments on the Vaihingen dataset.

Ablation experiments of IRM. The Intra-Region Mining (IRM) module within our proposed
HRFNet quantifies the information content at different locations within the image. Leveraging this
information, the subsequent intra-layer rich-scale feature enhancement method extracts features from
different locations within each layer to fuse multi-scale context. To demonstrate the effectiveness
of IRM, we conducted comprehensive experiments. Firstly, we designed ablation experiments to
investigate the impact of the number of Rn (inter-layer feature fusion modules) on the segmentation
results. When Rn=1, IRM is not utilized, and the 2-layer feature maps from DeepLab v3+ with Res2Net
as the backbone are uniformly employed for the subgraphs. In this case, only Res2Net50 is used for
multi-scale feature extraction as the baseline. Additionally, when Rn is 2 and 3, the corresponding
layer 2 and 3 feature maps, and layer 2, layer 3, and layer 4 feature maps are utilized, respectively.

The experiments demonstrated that increasing the number of Rn and fused inter-layer feature
maps has a significant positive impact on the segmentation results within a certain range. As shown in
Table 3, simply replacing the ResNet backbone network with Res2Net resulted in an improvement of
nearly 1 percentage point in the segmentation results, highlighting the effectiveness of our HRFNet
design. Specifically, by utilizing fine-grained multiple receptive fields for feature extraction from
feature maps, IoU showed improvements across all categories. For instance, IoU increased by nearly 1
percentage point for invisible surfaces, Trees, and low vegetation/grass with significant differences
in shape and range, and by 0.6 for buildings. Notably, there was a remarkable improvement in the
extraction of dense small objects, achieving a 2.3 IoU with finer-grained receptive fields. Consequently,
mloU increased by more than 1 percentage point.
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Furthermore, the experiments confirmed that our approach, inspired by Res2Net, effectively
extracts multi-scale features from feature maps at a finer granularity. As shown in Table 3, when
the fused feature layers are fixed, the segmentation results improve to varying degrees with an
increase in Rn. Specifically, when two-layer feature maps are used for feature fusion (Rn=2),
differential feature extraction and fusion on two subgraphs with different levels of information lead to
improvements compared to ordinary two-layer feature map fusion on the entire image. This approach
involves dividing the image into two sub-images for different feature extraction. In comparison to
using two-layer feature maps for feature extraction on the entire image using the original network,
improvements were observed in buildings, cars, and low vegetation/grass, particularly in cars
where IoU increased by nearly 0.6. Similarly, when three-layer feature maps were used and the
image was divided into three sub-images for feature extraction, improvements in IoU were observed
for impermeable surfaces, buildings, and cars, particularly in cars where IoU increased by nearly
0.7. Moreover, when four-layer feature maps were employed and the image was divided into four
fine-grained subgraphs, the mloU of feature extraction improved by nearly 0.6 and nearly 0.4 compared
to the entire image and two subgraphs, respectively. Notably, in the case of cars, IoU increased by
nearly 2 percentage points and nearly 2.4, while impermeability also increased by nearly 0.7 and 0.2,
respectively. Interestingly, when Rn is 4, simply fusing the four-layer feature maps of the entire image
yielded similar mloU results as when Rn is 3 and different feature extraction and fusion are performed
on the feature maps. This fully demonstrates the effectiveness of differential processing on different
regions of the image.

Table 3. Ablation experiments of IRM. The bold indicates the best data.

IoU
Rn'  Layers of Feature map Imp.surf. Building Tree Car Lowveg. Clutter mlol
1 2 85.87 90.98 81.45 76.60 71.90 39.83  81.36%
1 2 86.76 91.59 8233 78.92 72.81 43.60 8248
2 2 86.56 91.61 8227 79.55 73.04 43.74  82.61
1 3 86.75 91.36 82.83 78.73 73.80 46.41 82.69
3 3 86.89 91.63 8235 79.47 73.22 46.67  82.71
1 4 86.64 91.72 8245 79.19 73.62 46.26  82.72
2 4 87.18 92.16 82.84 78.72 74.00 4574 8298
4 4 87.30 91.69 8272 8113 73.70 49.49 83.31

IRn represents the rating of the image information after quantification and rating, that is, when Rn=1,
it means that IRM is not used, and when Rn=2, it means that the entire image is divided into two
levels according to the information quantification level, and so on.

2Gray refers to ResNet and no color refers to Res2Net.

Ablation experiments of IRFE. Our IRFE module consists of two main parts: Intra-layer
Rich-scale Feature Extraction and Inter- and Intra-layer Feature Fusion. To evaluate the effectiveness of
these components, we conducted separate ablation studies on inter-layer feature fusion and intra-layer
feature fusion, as shown in Table 4 and Table 5, respectively. These experiments aimed to analyze
the impact of each component on the segmentation results and demonstrate their effectiveness in
enhancing the performance of our proposed model.

Firstly, in the evaluation of inter-layer feature fusion, we explored the impact of different fused
feature maps by varying the values of Rn. The results are presented in Table 4. We observed that feature
maps from different layers contribute differently to the segmentation results. Through experimentation,
we found that the 3rd and 4th layer feature maps had the most significant contribution, while the 1st
and 2nd layer feature maps also showed some improvement. Specifically, when using the first two
layers of feature maps, the mloU on the Vaihingen dataset was 81.84. Replacing the first layer feature
maps with the third and fourth layers respectively resulted in an improvement of nearly 1 point in
the segmentation results. This improvement was approximately 0.5 for impervious surfaces, trees,
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and low vegetation/grass, and around 2 percentage points for buildings and cars. When the last two
layers of feature maps were used, the mloU increased by 1.1 compared to using only the first two
layers of feature maps. For each of the five categories, the IoU for impervious surfaces increased by
approximately 0.7, while buildings, trees, and low vegetation/grass increased by approximately 1
percentage point, and cars increased by nearly 2 percentage points. Finally, when all four layers of
feature maps were utilized, the segmentation result achieved the highest mIoU of 83.31. In this case,
the IoU for impervious surfaces increased.

Table 4. Ablation experiments of IRM and Inter-layer Feature Fusion. The bold indicates the best data.
Rn represents the rating of image information after quantification and rating.

IoU
Rn  Feature map Imp.surf. Building Tree  Car Lowveg. Clutter mlol
2 1,2 86.49 91.05 81.88 76.78 73.00 4554  81.84
2 2,3 87.05 91.94 8222 78.99 73.59 4523 8276
2 2,4 87.05 91.80 82.61 79.26 73.48 4768  82.84
2 3,4 87.18 92.16 82.84 7872 74.00 4574 8298
4 1,2,34 87.30 91.69 82.72 81.13 73.70 49.49  83.31

In addition, for the evaluation of intra-layer feature fusion, we first utilized the final feature map
of the subgraph and directly concatenated the intra-layer feature maps as the baseline. The results
are shown in Table 5. It was observed that the direct concatenation of subgraphs yielded the worst
segmentation results, with discontinuous edges and even some targets not forming independent
bounding boxes. However, after performing simple edge smoothing, the segmentation results
improved. Furthermore, our proposed intra-layer feature fusion module significantly improved
the results. This demonstrates the effectiveness of our proposed approach in fully preserving detailed
information in feature subgraphs during stitching. Specifically, by simply smoothing the edges, the
segmentation results for impervious surfaces improved by 0.25, the IoU for trees increased by nearly
0.7, and the results for cars and low vegetation improved by 0.44 and 46,. Ultimately, mIoU increased
by 0.33. Surprisingly the results for the building category actually decreased. This may be due to
mistakenly sliding a portion of the targets that belong to the building into non-building categories
during edge smoothing, and vice versa. However, after incorporating our intra-layer feature fusion
module, the mIoU increased by an additional 0.47. Compared to directly concatenating-layer feature
maps, our method a total of .8 percentage points in mloU. Notably, the increase in IoU for cars was the
largest, with a surprising 2.23 improvement. Additionally, there was a 0.68 increase for low vegetation,
0.5 increase for trees, and 0.43 increase for impious surfaces Similar to the smoothing approach, the
building category have been affected by incorrect feature maps, resulting in a decrease in the results.

Table 5. Ablation experiments of Intra-layer Feature Fusion. The bold indicates the best data.

IoU

Inter-layer Feature Fusion Imp.surf. Building Tree Car Lowveg Clutter mloU
w/o 86.77 92.01 81.92 78.81 73.02 5411 8251

Edge smoothing 87.05 91.80 82.61 7925 7348 47.68  82.84

w/ 87.30 91.69 82.72 8113  73.70 4949  83.31

5. Conclusion

In this study, we propose a novel Hierarchical Rich-scale Fusion framework (HRFNet) for semantic
segmentation of high-resolution remote sensing images. The framework addresses the challenge of
varying information content across different positions in the image by incorporating an information
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quantification and rating module, based on IRM. This module enables the adaptive extraction of
multi-layer high-level semantic features and low-level features at different positions in the image.
Additionally, our approach utilizes inter-layer and intra-layer multi-scale feature extraction and fusion
techniques to capture information in high-resolution remote sensing images. Extensive experiments
conducted on the ISPRS Vaihingen and Potsdam datasets demonstrate the effectiveness of our proposed
method. The results show that HRFNet achieves superior segmentation performance compared to
existing approaches.

In future research, we plan to extend our intra-layer rich-scale feature enhancement to networks
that utilize richer contextual information, such as Transformer graph networks. This will enable us to
achieve even better segmentation results by leveraging the enhanced feature representation provided
by our framework.

Conflicts of Interest: The authors declare no conflict of interest.
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