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Abstract: Biosynthetic gene clusters are specific genomic regions in microorganisms, like bacteria and fungi,
responsible for producing bioactive compounds. Identifying these clusters is complex due to their diverse
nature. This research presents a comprehensive approach to effective BGC identification. The study focuses on
five classes of Natural Products: PKS , NRPS, RiPP, Terpenes, and Hybrid PKS-NRPS. Data was gathered from
the MiBIG database in GBK format. Protein sequences from each file were extracted, and sequences under the
same BGC ID were combined. Physicochemical properties were calculated, and sequence embeddings were
generated using NLP techniques like CountVec, TFIDF, and Word2Vec specific to each NP class. An integrated
feature matrix was created by merging physicochemical properties and generated embeddings. This matrix
was used for training and testing of nine ML models such SVM, RF and many more. The study explored data
balancing techniques with and without SMOTE and employed Grid Search for parameter optimization. This
led to six datasets and 54 models. The LR model, using TFIDF with SMOTE, emerged as the most effective,
achieving an accuracy of 0.96, AUC of 0.9912, and other strong metrics. This method enhances BGC
identification for drug development, offering a broader understanding of their applications in medicine and
biotechnology.

Keywords: Biosynthetic Gene Clusters; Natural Language Processing; Machine Learning; Hybrids PKS-NRPS;
SMOTE

1. Introduction

Natural Products refer to a diverse group of chemical compounds produced by living organisms,
including plants, bacteria, fungi, and marine organisms [1]. These compounds have been extensively
explored for their pharmaceutical, agricultural, and industrial applications due to their remarkable
biological activities. Many well-known drugs, such as Penicillin, Taxol, and Erythromycin, are
Natural Products or derivatives thereof, highlighting their significance in medicine [2].

The biosynthesis of Natural Products is governed by specific genomic regions known as
Biosynthetic Gene Clusters (BGCs) [3]. These are specific genomic regions responsible for encoding
enzymes and regulatory proteins involved in the synthesis of Natural Products (Figure 1). These
clusters consist of contiguous genes and exhibit conserved genetic architectures, making them
identifiable through sequence motifs and codon usage bias [4]. Natural Products' chemical diversity
arises from the use of building blocks, biosynthetic chemistry, and tailoring enzymes. Environmental
signals play a crucial role in redirecting primary metabolites towards secondary metabolism, where
core biosynthetic enzymes combine these metabolites to form intricate structures. Tailoring enzymes
then modify these structures to produce the final Natural Products.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Overview of Biosynthetic gene clusters.

BGCs are associated with the synthesis of various Natural Products, each originating from
specific precursors. For example, Polyketide Synthases (PKSs) use acyl-CoA or malonyl-CoA as
precursors to form polyketides [5], while Non-Ribosomal Peptide Synthetases (NRPSs) utilize
aminoacyl-tRNA to produce nonribosomal peptides [6]. Ribosomally synthesized and post-
translationally modified Peptides (RiPPs) have precursor peptides that undergo various
modifications to form diverse RiPPs, including antimicrobial peptides and lantibiotics [7]. Terpene
synthases use isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) as
precursors to synthesize terpenes [8]. Some BGCs are hybrids of PKS and NRPS gene clusters, using
both acyl-CoA/malonyl-CoA and aminoacyl-tRNA precursors, combining the biosynthetic pathways
of PKS and NRPS.

Understanding BGCs is crucial for elucidating the biosynthetic pathways of Natural Products,
optimizing their production, and discovering novel bioactive compounds. However, BGC
classification remains challenging due to its complex and diverse nature. The diverse range of
bioactive compounds produced through these pathways presents exciting opportunities for novel
therapeutics, antimicrobial agents, and other applications with the potential to address various health
challenges.

Traditional methods for BGC identification have predominantly relied on laborious and time-
consuming experimental approaches. Gene knockout experiments, for instance, involve the
inactivation of specific genes within an organism's genome to observe the impact on the production
of Natural Product [9]. While informative, these experiments are resource-intensive and limited in
scope, as they require prior knowledge of the target gene. Chemical assays have also been employed
to detect the presence of specific Natural Products. Bioactive compounds are isolated from the
organism of interest, and their chemical structures are elucidated through spectroscopic techniques
[10]. Despite the fact that traditional approaches can directly detect the target molecule, they are not
appropriate for identifying novel BGCs or compounds with low abundance. Traditional methods are
useful, but they come with many difficulties because of the complexity and variety of BGCs.

In recent years, the advent of genomics and sequencing technologies has revolutionized the field
of BGC identification. Genome mining approaches involve the systematic analysis of genomic data
to predict and annotate BGCs. This approach relies on the identification of genes associated with
particular biosynthetic pathways, which are then linked to the production of Natural Products.
Despite these advancements, traditional methods have certain limitations. Many microbial species
are challenging to culture in the laboratory, limiting access to their biosynthetic potential.
Additionally, the huge amount of unexplored microbial diversity presents a challenge in discovering
novel Natural Products and their associated BGCs.

In recent years, the Artificial Intelligence (Al) field with Natural Language Processing (NLP) and
ML techniques has shown its huge potential in biological research. Automating and accelerating the
analysis and identification of BGC, Al, and NLP may transform this field. NLP-based techniques
extract valuable information from scientific literature and databases, facilitating more accurate BGC
prediction by transforming textual data into structured datasets. Meanwhile, ML approaches,
particularly supervised and unsupervised learning models, have been crucial in deciphering complex
relationships within biological data. They enable precise classification of gene clusters using curated
datasets of known BGCs and can even discover novel BGCs without prior annotated data. Studies
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like DeepBGC [12] and PRISM have showcased the potential of Al-driven tools in BGC identification
from genomic and metagenomic datasets, respectively [13,14].

The rationale behind the current study is to overcome the limitations and challenges faced by
previous efforts for BGC classification. Existing tools like antiSMASH, DeepBGC, and ML-Miner
while valuable, had their shortcomings. The antiSMASH relied on Hidden Markov Models (HMMs)
and struggled with rediscovery problems and identifying certain BGC classes like RiPPs. While,
DeepBGC depended on existing Pfam families, leading to less robust results and increased false
positives, on the other hand, ML-Miner [15] faces problems in effectively identifying and
distinguishing a challenging class like hybrids of PKS-NRPS.

To address these shortcomings, we aimed to develop a novel approach that would be more
exhaustive, accurate, and comprehensive. Our strategy involved integrating both sequence features
and physicochemical properties, recognizing the importance of combining diverse data sources for
better insights.

2. Materials and Methods

2.1. Data Collection and Preparation

To gather comprehensive and relevant information about known Biosynthetic Gene Clusters
(BGCs), we accessed the publicly available MiBIG database(Medema et al., 2015) (Minimum
Information about a Biosynthetic Gene cluster, https://mibig.secondarymetabolites.org/). For our
study, we specifically focused on specific class of BGCs i.e. PKS, NRPS, RiPP, Terpenes, and Hybrids
of PKS-NRPS. By utilizing the search criteria available in the MiBIG database, we obtained GenBank
(gbk) files containing multiple genes that encode specific Natural Products. These GenBank files
offered crucial information, including the BGC ID, species name, products encoded, and protein-
coding sequences of each gene.

We proceeded to download a substantial number of BGCs for each class, amounting to 605 PKS,
456 NRPS, 344 Hybrid PKS-NRPS, 328 RiPP, and 159 Terpene. Extracting individual genes from the
respective GenBank files resulted in a rich set of genetic information for each BGC class, with 12177
genes for PKS, 7068 genes for NRPS, 3096 genes for RiPP, 803 genes for Terpenes, and 5962 genes for
Hybrid PKS-NRPS BGCs. To facilitate further analysis, we thoughtfully concatenated all the genes
within a single BGC cluster into a single entity and stored the compiled results in a CSV file. This
dataset, comprising consolidated genes for each BGC class, served as the input for vectorization and
the calculation of physicochemical properties.

2.2. Hardware and Software Environment

In this study, we utilized Python 3.10.10 as the primary programming language for both training
and testing procedures. Keras and TensorFlow were employed as essential libraries for building and
running the machine-learning models. The coding platform used was Jupyter Notebook. To support
our analyses and computations, we incorporated several important Python libraries, such as Numpy,
pandas, scikit-learn, genism, and matplotlib.

Windows 8.1 Pro operating system (64-bit) platform was used which was equipped with an Intel
(R) core TM i7 4770, running at a clock speed of 3.4 GHz. The system was equipped with a total of
12.00 GB of RAM, out of which 11.9 GB was available for our computations. This hardware setup
provided the computational resources necessary to carry out our machine learning and classification
tasks effectively.

2.3. Calculation of Physicochemical Properties

The physicochemical properties of proteins play pivotal roles in their structure, function, and
interactions within biological systems. We calculated some important properties including molecular
weight, Isoelectric point (pl), Charge distribution, Hydrophobicity, Secondary structure predictions,
Aromaticity, Instability index, and the molecular extinction coefficient. These properties are
calculated using Python libraries such as the BioPython and ProtParam modules.
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2.4. Sequence to Vector Conversion

In this study, we used NLP techniques to convert the protein sequences to numerical vectors.
Specifically, we tried 3 different NLP techniques, such as Count Vector [31], TF-IDF (Term Frequency-
Inverse Document Frequency) [32], and Word2Vec to obtain the sequence embeddings. Details of the
implementation of each method are provided below in subsequent sub-sections.

2.4.1. Count Vectorizer Method

The Count Vectorizer is a technique commonly used in NLP to convert protein sequences into
numerical vectors by counting the occurrence of each amino acid. The principle behind Count
Vectorizer is to create a bag-of-words model, where each word in the text is treated as a separate
token, and its frequency is counted.

In this implementation, we utilize the scikit-learn library's ‘CountVectorizer' to transform
protein sequences into trigrams. To begin, we import the necessary module, specifically importing
the 'CountVectorizer' class from ‘sklearn.feature_ extraction.text’. Next, we initialize the
‘CountVectorizer' with specific parameters. We set the ‘analyzer’ parameter to “'char”, indicating
that we want to analyze the protein sequences at the character level. Additionally, we set the
‘ngram_range’ parameter to (3, 3), which instructs the *CountVectorizer® to generate trigrams from
the protein sequences and maximum features to 2500. Then the core transformation is performed
using the ‘fit_transform’ method of the CountVectorizer' instance. We pass the list of protein
sequences, protein_sequences’, as input to this method. The ‘fit_transform" method operates in two
steps: "fit" and "transform". During the "fit" step, the "CountVectorizer' learns the vocabulary of the
protein sequences. It maps each unique character to a distinct index, building a dictionary that will
be used for the subsequent transformation process. The "transform" step then converts the original
protein sequences into their trigram representations based on the learned vocabulary. The result of
this transformation, containing the trigram feature vectors for the protein sequences, is saved in the
variable. These trigram representations are numerical, making them suitable inputs for various
machine learning models and enabling further analysis and classification tasks.

2.4.2. TF-IDF (Term Frequency-Inverse Document Frequency) method

TF-IDF is a widely used weighting scheme that assigns weights to words based on their
frequency in a document and their rarity in the overall corpus. It represents words as vectors based
on their importance in the protein sequence. TF-IDF is effective in capturing the discriminative power
of words within a sequence. TFIDF consists of two main components: Term Frequency (TF) and
Inverse Document Frequency (IDF).

TF measures the frequency of a word in a document, and is calculated by mathematical formula

number of times a trigram appears in a sequence

TF =
Total number of trigrams in a sequence

IDF quantifies the rarity of the word across the entire corpus and is given by mathematical
equation.

total number of sequences
IDF = log (

)

the number of sequences containing the trigram

The product of TF and IDF yields the TFIDF score for each word, resulting in a document-
specific numerical representation. Words that appear frequently in a document but are rare across
the corpus receive higher TFIDF scores, making them more discriminative and relevant to the
document's content.

In the implementation part, Similar to the CountVec method but here TfidfVectorizer is used to
convert protein sequences into trigrams using the TFIDF approach. The ‘analyzer® parameter is set
to “char”, the ‘'ngram_range’ parameter is set to * (3, 3) °, and maximum features to 2500. Then
‘fit_transform’ method of the TfidfVectorizer is applied to convert the protein sequences into their
trigram representations, simultaneously learning the vocabulary and transforming the data. The
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resulting trigram representations are stored as numerical representations and are utilized for further
ML analysis.

2.4.3. Word2Vec

Word2Vec is a word embedding technique that represents words in a continuous vector space,
capturing semantic relationships and context. It employs two models: Skip-gram, which predicts
context words given a target word, and Continuous Bag of Words (CBOW), which predicts the target
word given context words. Both models use neural networks with an embedding layer to convert
words into dense vector representations. During training, the models adjust embeddings to maximize
prediction accuracy. The resulting word embeddings encode semantic and syntactic similarities
between words, making them valuable for various natural language processing tasks such as
classification and many more.

In the implementation, the protein sequences are converted into trigrams using a sliding
window approach. The resulting trigrams are stored in a list called 'trigrams." Next, the Word2Vec
model is initialized with the 'trigrams' list. The 'sg’ parameter is set to 1, indicating the use of the Skip-
gram algorithm for training. The 'vector_size' parameter is set to 300, specifying the dimensionality
of the resulting trigram embeddings. The 'window' parameter is set to 5, indicating the maximum
distance between the current and predicted trigrams in a sentence. The 'min_count' parameter is set
to 1, ensuring that even trigrams with a single occurrence are considered during training. Lastly,
the 'workers' parameter is set to 5, determining the number of CPU cores used for training. For each
sequence in 'trigrams,' the code retrieves the corresponding embeddings from the trained Word2Vec
model, ensuring that each trigram has a corresponding embedding. It then calculates the average of
these trigram embeddings along each dimension to obtain a single continuous vector, representing
the embedding of the entire sequence. These sequence embeddings are stored in the 'embeddings'
list. The resulting 'embeddings' list contains the continuous vector representations of the protein
sequences, where each vector captures the semantic relationships between trigrams within the
respective sequence. These embeddings can be further utilized in classification, to gain insights and
make predictions based on the underlying patterns within the protein sequences.

2.5. Comprehensive Feature Matrix

After obtaining sequence embeddings for proteins, we integrated them with the calculated
physicochemical properties of the corresponding BGC sequences. The concatenation step effectively
combined both the structural and chemical properties of proteins, enhancing the information
available for subsequent analysis. This integrated feature representation serves as input for our ML
classification task. This approach allows for a more holistic understanding of the proteins within the
BGCs and facilitates a more in-depth exploration of their functional roles and potential applications.

2.6. Data Balancing and Scaling

The imbalanced datasets can lead to biased models, as the classifier may prioritize the majority
class and neglect the minority classes. To address the challenge of imbalanced datasets, we employed
the Synthetic Minority Over-sampling Technique (SMOTE). SMOTE is a popular technique that
generates synthetic samples for the minority classes, thus balancing the class distribution [33]. By
creating synthetic instances through interpolation between existing samples, SMOTE effectively
increases the representation of the minority classes, making the dataset more balanced. Additionally,
we performed feature scaling using MinMax Scaler to bring all features to a similar scale, ensuring
that no particular feature dominated others during model training. This preprocessing step was
essential in achieving reliable and accurate protein sequence classification results.

2.7. Model building and Classification using Machine Learning

This integrated feature matrix serves as the input for our classification task, where we aim to
predict and classify the Biosynthetic Gene Clusters (BGCs). In this study, we conducted a
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comprehensive assessment of various machine-learning models for the classification of biosynthetic
gene clusters (BGCs). To effectively address the class imbalance in our dataset, we performed two
sets of experiments: one with SMOTE and the other one without SMOTE. For each of the three NLP
(Natural Language Processing) methods employed, namely Word2Vec, TFIDF, and Count Vector,
we generated two sets of datasets: one with SMOTE and one without SMOTE. This resulted in a total
of six datasets, each incorporating embeddings from the respective NLP method, combined with
calculated physicochemical properties. Within each of the six datasets, we trained and evaluated
nine different machine-learning models. Logistic Regression (LR) is a linear classification algorithm
that models the probability of a binary outcome. Gaussian Naive Bayes (GNB) is a probabilistic
classification method based on Bayes' theorem, assuming conditional independence of features given
the class. Decision Tree (DT) [34] is a tree-like model useful for classification and regression, though
prone to overfitting and benefiting from pruning. Random Forest (RF) [35], is an ensemble method
that combines multiple decision trees, particularly effective for classification and regression while
mitigating overfitting. K-Nearest Neighbours (KNN) [36] is an intuitive algorithm that predicts
based on the majority class of its nearest neighbours, suitable for various data types. Support Vector
Machine (SVM) [37] is a powerful algorithm for classification and regression tasks, finding
hyperplanes that best separate data classes. Extreme Gradient Boosting (XGBoost) [38] is a high-
performance gradient-boosting framework used for structured data. Categorical Boosting
(CatBoost) [39] is a gradient-boosting library adept at handling categorical features without extensive
preprocessing. Artificial Neural Network (ANN) [40] mimics the human brain's interconnected
neurons, employed in tasks like image recognition and natural language processing. Each ML
technique has its own strengths and unique approach to pattern recognition and classification. To
optimize these models' hyperparameters and achieve the best possible results, we applied a grid
search method. This systematic approach allowed us to explore various hyperparameter
combinations for each model, enabling us to identify the optimal configuration that yielded the
highest classification performance.

2.8. Cosine Similarity Calculation

To assess whether three different NLP methods (CountVec, TFIDF, and Word2Vec) effectively
capture biological information from the protein sequences or not, we calculated the cosine similarity
scores, which is a widely used metric in NLP to assess the similarity between two text vectors, such
as protein sequences. Given two protein sequence embeddings, A and B, the similarity between them
is calculated using the following formula: Cosine Similarity (A, B)=(A - B) / (IIAll * [ IBI1). Here,
(A - B) represents the dot product of the two embeddings A and B, and (I | All * | IBII) represents
the product of their Euclidean norms (magnitude). The resulting cosine similarity score ranges from
-1 to 1, where -1 indicates complete dissimilarity, 0 indicates no similarity, and 1 indicates identical
sequences.

For this purpose, we downloaded the top 100 protein sequences from yeast, mouse, and E. coli
obtained from the UniProt protein sequence database. Further, we applied each NLP method to
convert the protein sequences into numerical representations (vectors). For TFIDF and CountVec, we
transformed the sequences into trigrams, while for Word2Vec, we used pre-trained embeddings.
After obtaining the vector representations, we calculated the cosine similarity between all pairs of
sequences within and across the organisms.

2.9. Performance Evaluation

In order to evaluate the performance of various classifiers used in the current study, we
employed various metrics, each offering valuable insights into its effectiveness for the multiclass
classification task.
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1. Stratified k-fold Cross-validation: We utilized stratified k-fold cross-validation, a modification
of standard k-fold cross-validation, to ensure balanced class distributions in each fold. This
technique allows us to assess the classifier's performance robustly on different subsets of the
dataset.

2. Confusion Matrix: The confusion matrix visually represents the performance of the classifier by
showing the true and predicted class labels. In contrast to binary classification, a multiclass
confusion matrix has neither positive nor negative classifications. For each class individually, the
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values are
determined. A confusion matrix for the multiclass classification problem is shown in Table 3.1.
These values allow us to measure the accuracy and errors in the classification process.

Table 1. Sample Confusion Matrix.

o Class 1 Class1 ..ocevvvnnennn. Class n
2 o Class 1 R11 R12 Rln
= & Class 2 R21 R22 e, R2n
o
E cose ceee ieeeeseeeseneas
Class n Rn1 Rn2 Rnn

TP: The true value and predicted value should be the same. All diagonal elements will become TP for
respective classes, FP: The sum of values of corresponding rows except for the TP value, FN: The sum
of values of corresponding columns except for the TP value, TN: The sum of values of all rows and
columns except the values of that class that we are calculating for.

3. Recall (Sensitivity): Recall calculates the percentage of truly positive samples correctly predicted
by the classifier. It is useful when it is necessary to locate all positive samples or minimize false
negatives.

Recall = X 100

TP
TP + FN
4. Precision: Precision measures the percentage of correctly predicted positive samples out of all
samples predicted as positive. It helps to evaluate the classifier's ability to minimize false positives.

Precision = X 100

TP + FP

5. F1 Score: The F1 score combines precision and recall, providing a harmonic measure of their
balance. It indicates the classifier's ability to achieve both high precision and high recall.

2 = Precision * Recall

F1S =
core Precision + Recall

6. Accuracy: The accuracy metric quantifies the fraction of correctly predicted samples among all
samples in the dataset. It gives an overall measure of the classifier's performance.
TP + TN

X
TP + TN + FP + FN 100

Accuracy =

7. Balanced Accuracy: The balanced accuracy metric calculates the arithmetic mean of sensitivity
and specificity, providing a balanced measure for imbalanced datasets.
Sensitivity+ Specificity

2

Balanced accuracy =
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8. Matthews Correlation Coefficient (MCC): MCC is a statistical test that evaluates the agreement
between actual and predicted values, ranging from -1 to 1.

(TP * TN)-(EN * FP)
J(TP +FP) * (TP + FN) * (IN + TP) * (IN + FN)

MCC =

9. Kappa Statistic: The Kappa statistic compares the observed accuracy with the expected accuracy
due to random chance, ranging from 0 to 1.

2*(TP* TN - EN * FP)
(TP + FP) * (FP + TN) * (TP + FN) * (FN+ TN)

Cohen’s Kappa =

10. Micro, Macro, and Weighted Precision, Recall, and F1 Score: In multiclass classification,
evaluating the performance of a model requires more nuanced metrics beyond simple accuracy.
Micro, macro, and weighted precision, recall, and F1 scores are commonly used metrics to provide
a comprehensive assessment of the model's performance across multiple classes. Micro-averaging
calculates by aggregating the counts of true positives, false positives, and false negatives across all
classes before computing the metrics. Micro-averaging is useful when the classes have significantly
varying sizes, as it prevents the dominance of larger classes in the evaluation. Macro-averaging
calculates for each individual class and then takes the average across all classes. It treats each class
equally and provides insight into the model's performance for each class separately. Macro-
averaging is useful when all classes are considered equally important and you want to identify
classes with lower performance. Weighted averaging is similar to macro-averaging but takes into
account the class distribution by assigning different weights to each class based on their prevalence.

11. AUC-ROC Curve: The Receiver Operating Characteristic (ROC) curve and its Area Under the
Curve (AUC) measure the classifier's ability to distinguish between classes in binary classification
tasks. It summarizes the model's performance across various thresholds.

By employing these performance metrices, we can comprehensively evaluate our classifier's
performance and make informed decisions about its effectiveness for the multiclass classification

task.
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Figure 2. Flowchart of methodology for the identification of BGC in the current study.
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3. Results and Discussion

In this section, we will discuss, the detailed results obtained and discuss their combined results
for the proposed methodology.

3.1. Multiclass Classification and Evaluation:

In this study, we conducted an extensive experimental analysis on six different datasets using
three distinct Natural Language Processing (NLP) techniques coupled with nine ML models.
Specifically, we investigated the impact of the SMOTE on model performance in comparison to
scenarios without SMOTE. The models were evaluated based on various performance metrics
including Accuracy, Kappa Score, Mathews Score, Balanced Accuracy, Precision, Recall, F1-Score,
and Area Under the Curve (AUC) Score. Detailed results are presented in respective tables
(Supplementary Tables S1-56)) respectively for easy reference and analysis.

¢  For Count Vector with SMOTE (Supplementary Table S1), it is observed that Logistic Regression
(LR), Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN) achieved
notable performance with Accuracy scores of 0.93, 0.91, and 0.89 respectively. These models also
exhibited high Precision, Recall, and F1-Score values, indicating their effectiveness in
classification tasks.

e  Comparatively, when Count Vector was used without SMOTE (Supplementary Table S2), the
performance of models slightly decreased across all metrics. Notably, LR, XGBoost, and ANN
still demonstrated commendable results with Accuracy scores of 0.82, 0.80, and 0.76 respectively.

e  The results obtained for TFIDF with SMOTE (Supplementary Table S3), indicate that LR, SVM,
and Random Forest (RF) models exhibited strong performance with Accuracy scores of 0.94,
0.90, and 0.88 respectively. These models also demonstrated high Precision, Recall, and F1-Score
values, suggesting their suitability for the given classification tasks.

e  When TFIDF was employed without SMOTE (Supplementary Table S4), LR, XGBoost, and SVM
models showed promising results with Accuracy scores of 0.77, 0.80, and 0.77 respectively. These
models maintained competitive performance across various evaluation metrics.

e Additionally, results obtained for Word2Vec with and without SMOTE (Supplementary Tables
S5 and S6), demonstrated that LR, Random Forest, and Extreme Gradient Boosting consistently
yielded favorable outcomes across the datasets, emphasizing their robustness and applicability
in the context of this study.

Further, results are visualized through various graphs for different evaluation measures i.e.,
confusion metrics (Supplementary Figures S1, S3, S5, S7, S9, and S11) and ROC curve
(Supplementary Figures S2, S4, S6, S8, S10, and S12) for each dataset.

3.2. Cosine similarity calculation

From Table 2 it has been concluded that TFIDF and CountVec demonstrated high similarity,
indicating their effectiveness in capturing biological information within organisms. On the other
hand, the low similarity of Word2Vec suggests that it may not effectively capture specific biological
features of protein sequences.

Table 2. Shows the average cosine similarity of 3 different NLP techniques.

SI. No. NLP Methods Average Cosine Score
1 TFIDF 0.93
2. Count Vector 0.90
3. Word2Vec 0.33

Based on the presented results, both tables and figures, it is evident that the utilization of TFIDF
with SMOTE in conjunction with Logistic Regression (Refer Supplementary Table S3) yields
superior performance. This conclusion is substantiated by the calculated Cosine Similarity Scores,
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which indicates a high similarity of approximately 0.93 for TFIDF. Hence, we can say that TFIDF is
capturing better biological information and rightly obtained results are also pointing the same.

4. Summary and Conclusion

We have developed a comprehensive approach to tackle the complex task of identifying
biosynthetic gene clusters (BGCs) responsible for producing bioactive compounds. This method
combines NLP-derived sequence features with physicochemical properties of proteins. By using
advanced machine learning (ML) techniques, we have proposed a robust methodology for classifying
BGCs. With the incorporation of diverse data types, including sequence information and
physicochemical attributes, along with the implementation of data balancing, has proven to be a
substantial asset. These measures enable the creation of a more dependable and extensive dataset for
BGC classification. Notably, the integration of these elements, coupled with SMOTE, has not only
boosted the accuracy of our model but also furnished valuable insights into the intricate nature of
BGCs.

Identifying biosynthetic gene clusters (BGCs) poses challenges, particularly due to class
imbalances and distinguishing hybrid PKS-NRPS clusters from the PKS and NRPS classes. To
overcome this, we implemented the Synthetic Minority Over-sampling Technique (SMOTE). This
technique notably bolstered our model's capability to handle the minority classes, particularly the
intricate PKS-NRPS hybrids. This improvement ensures the effectiveness and reliability of our
approach, even when certain BGC classes are underrepresented in the dataset.

Our research outcomes underscore the effectiveness of our TFIDF approach in conjunction with
SMOTE-enhanced Logistic Regression (LR) machine learning models for accurately categorizing
biosynthetic gene clusters (BGCs) into their respective classes. The machine learning model's
contribution was substantial, elevating the overall robustness and accuracy of BGC classification to
an impressive level. The model achieved outstanding accuracy, precision, recall, and F1 score metrics,
all registering at an impressive 96%. Moreover, the model exhibited a high Area Under the Curve
(AUCQ), affirming its remarkable ability to distinguish between various BGC classes with exceptional
accuracy. The amalgamation of physicochemical properties alongside sequence data has proven to
be a pivotal advantage, enabling the creation of a more dependable and comprehensive dataset for
BGC classification, with an AUC of 0.9912.

In comparison with existing tools BGC identification tools, our model does not rely on HMMs
or rule-based algorithms, avoiding the rediscovery problem of antiSMASH and enabling
comprehensive classification, including RiPP BGCs. Unlike DeepBGC, our method does not depend
on existing Pfam families, providing a more robust and inclusive BGC identification. Moreover, our
model efficiently handles high-dimensional by selecting maximum features during the vectorization
of protein sequences only, which significantly reduced the code complexity and improved
computational efficiency compared to ML Miner's approach. Moreover, our model achieved a higher
accuracy of 97% for four classes, showcasing its superior performance compared to ML Miner. It
accurately identifies hybrids and achieves higher accuracy (97%) compared to ML Miner’s 92%.

In conclusion, our research offers several advantages over the ML Miner strategy, including
hybrid identification, improved computational efficiency through dimensionality reduction, the
integration of physicochemical properties, and higher classification accuracy. These advancements
enhance the potential of our approach to bioactive compound discovery and drug development
research. Our model achieved impressive results demonstrating its effectiveness in accurately
classifying BGCs into five different classes, including challenging hybrids (PKS-NRPS hybrids).

In conclusion, our proposed approach introduces a novel and comprehensive method for BGC
classification, effectively addressing the challenges posed by their diverse and complex nature. The
TFIDF with SMOTEs Logistic Regression ML model, in conjunction with the integration of
physicochemical properties demonstrated superior performance over existing tools such as ML
Miner. The high accuracy, Kappa, Balanced Accuracy, F1 Score, Precision, Recall, and AUC achieved
by our model highlight its potential for bioactive compound discovery and drug development
research, contributing to the advancement of Natural Product biosynthesis and facilitating the
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exploration of novel bioactive compounds with therapeutic applications. Additionally, the
significance of Cosine similarity in reinforcing the reliability of our classification model indicates a
high degree of sequence similarity within specific BGC classes, further endorsing the strength of our
approach.

5. Future Scope

For future work, one can strengthen the BGCs classification through more robust ensemble
models and incorporating diverse datasets, by exploring dimensionality reduction techniques and
advanced NLP methods to improve processing efficiency, and accuracy at the same time by reducing
the false positives. Exploring novel drug targets within identified Natural Products presents an
innovative dimension in the research of Natural Products, offering potential breakthroughs in
therapeutics. To gain a comprehensive ecosystem understanding, researchers can conduct functional
studies, metabolomics analyses, and targeted Natural Product characterizations, contributing to a
deeper comprehension of microbial communities and their intricate dynamics. Integrating multi-
omics data, including metagenomics, metatranscriptomics, metaproteomics, and metabolomics,
provides a nuanced portrayal of microbial communities and hence their Natural Product dynamics.
Further, the prediction of chemical structures from sequence information is a promising avenue for
unveiling the vast chemical diversity of Natural Products. Interdisciplinary collaboration with
experts from microbiology, chemistry, and environmental science will enrich insights and ensure
practical relevance. These explorations synergize to advance our knowledge of microbial ecosystems,
Natural Product diversity, and their potential applications in fields like medicine and biotechnology.

List of Abbreviations

AUC Area Under ROC Curve
BGC Biosynthetic Gene Clusters
NLP Natural Language Processing
TFIDF Term Frequency and Inverse Document Frequency
ML Machine Learning
PKS Polyketide Synthases
NRPS Non-Ribosomal Peptide Synthetases
RiPP Ribosomally synthesized and Post translationally modified Peptides
SMOTE Synthetic Minority Over-sampling Technique
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