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Abstract: As a new type of gear, bevoloid gears have the advantages of compensating axial error, smooth 

transmission, and eliminating turning error, and they are widely used in applications requiring high 

transmission accuracy and stability. However, research on calculating the time-varying mesh stiffness of 

bevoloid gears is still limited, and there is an urgent need to propose a method that can calculate the stiffness 

of bevoloid gears quickly and accurately. This paper first establishes the bevoloid gear tooth profile 

expressions, then assumes a pair of bevoloid gears meshing with the same rack and derives the contact line 

equations of parallel axis bevoloid gear pairs, and analyze the contact process of bevoloid gears. We propose 

an analytical algorithm that uses the slicing method to calculate the stiffness of helical gears, straight bevoloid 

gears, and helical bevoloid gears, change the parameters of helical bevoloid gears respectively, and analyze the 

influence of different parameters on stiffness. Finally, the finite element method is used to verify the analytical 

method, and the correctness of the analytical calculation results is verified, and the errors are analyzed. 

Keywords: bevoloid gear; time-varying mesh stiffness; analytical algorithm; finite element 

 

1. Introduction 

Ships, being the primary mode of water transportation, play a vital role in protecting maritime 

safety, marine development and exploitation, deep sea exploration, and other activities. Smart ships 

place a great value on power transmission stability. Traditional gears are easily disturbed by external 

interference in the complex marine environment, which affects the normal meshing of gear pairs and 

can lead to gear failure in severe cases. Whether the gear system can operate reliably becomes a 

bottleneck restricting the further development of smart ships. A.S. Beam proposed the concept of 

bevoloid gear in 1954 [1]. The linear variation of the addendum modification factor along the tooth 

width direction is a feature of this gear. Furthermore, the bevoloid gear can meet a higher 

transmission ratio, which helps to minimize transmission system volume and make the structure 

more compact. It also has good adaptation to complex operating conditions and can reduce system 

vibration, which has a positive influence on transmission system life [2,3]. Bevoloid gears' time-

varying meshing stiffness is an inherent property that is exclusively connected to its design 

parameters and exhibits periodic variations. Stiffness excitation of the gear system is caused by this 

characteristic during transmission, which causes dynamic excitation forces in the gear system and 

can affect the dynamic characteristics of the gear system such as noise and vibration directly, gives a 

strong nonlinearity to the dynamic equations. The analytical study of time-varying meshing stiffness 

of bevoloid gears helps the analysis of ship kinematic and dynamic properties, which is critical for 

ship navigation and control, so, there is a high demand for research in this field. 

In terms of the computation of relevant design parameters of bevoloid gear, Li et al [4] provided 

the entire design process of bevoloid gear as well as the procedure of calculating two lateral faces 

parameters. Ni et al [5] not only completed the geometric design of bevoloid gear based on meshing 

theory but also investigated bevoloid gear meshing properties. K. Mitome [6] defined the ideal gear 

from bevoloid gear roll-cutting processing and generated mathematical formulas for bevoloid gear 

tooth profiles from it. Yu et al [7] developed mathematical formulas for the tooth profile of parallel-

axis bevoloid gear pairs, derived the mathematical expressions of tooth profile and mesh line 
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equation for parallel-axis bevoloid gear pairs, and estimated the tooth profile error and tooth 

orientation error based on the basic principle of gear meshing. In the research on the processing 

method of bevoloid gear, Wu et al [8] proposed using the same gear shaper to generate the inner and 

outer bevoloid gear that mesh with each other. Wen et al [9] investigated the grinding and 

modification method of bevoloid gears, they designed a gear grinding machine with a specially 

modified large-plane grinding wheel and optimized the modification of the involute bevoloid gears. 

Ni et al [10] suggested a method for machining route of bevoloid gears with nonlinear displacement 

based on the traditional linear roller machining. Cao et al [11] provided an adaptive design model, 

from which a mechanism to determine the installation location and grinding kinematics was devised. 

ISO defines the meshing stiffness of gears as the amount of the normal load required to act on 

the meshing line during the meshing of gear teeth with a deflection of 1 m over the tooth width. For 

the meshing stiffness of straight cylindrical gears, the stiffness calculation of three-dimensional gears 

is generally reduced to a two-dimensional planar problem, there are three main methods: the 

mechanics of materials method, the mathematical elastodynamics method, and the finite element 

method. The existing research uses the Ishikawa formula and the Weber energy method to study 

stiffness based on the material mechanics method. With the advancement of computers, it is easier to 

solve the meshing stiffness of gears using the finite element technique compared with others, and 

optimization and enhancement of modeling methods have gradually increased the accuracy of the 

finite element approach. Compared with straight cylindrical gears, where the changing of contact 

line length of helical gears leads to a nonlinear force state. Smith [12] proposed the slice theory to 

achieve a more precise meshing stiffness of helical gears. Finite element software is also useful for 

addressing the time-varying meshing stiffness of helical gears, and it is commonly used to verify the 

analytical results. Zhang [13] investigated the nonlinear vibration characteristics of bevoloid gear 

pairs with parallel-axis internal meshing under the action of internal and external factors, as well as 

the effect of parametric excitation on the transmission system's nonlinear vibration characteristics. 

Bai et al [14] developed an intersecting tooth pair dynamics model and a tooth contact analysis model, 

as well as a micro geometric correction method to improve meshing performance. Zhu et al [15] 

established two methods for calculating the tooth thickness error (TTE) of straight gears using an 

inclined gear-inserting machine. As bevoloid gears have variable-section along the axial and radial 

directions, the meshing stiffness calculation for bevoloid gear should account for elastic deformation, 

so previous methods for calculating elastic deformation must be imverified. Wu et al [16] suggested 

an improvement to the elastic deformation formula for estimating cylindrical gear meshing stiffness. 

Song et al [17] developed a method for determining the meshing stiffness of parallel-axis straight 

bevoloid gear pairs based on the slicing approach and the energy principle. Mao et al [18] imverified 

the Weber method by using the slicing concept to compute the meshing stiffness of a bevoloid gear 

after tooth profile modification. Yu et al [19] suggested applying elliptical roughness contact area 

distribution function to point contact of curve and developed a fractal contact mechanics model for 

elliptical roughness surfaces. Li [20] calculated the meshing stiffness of intersecting axis bevoloid gear 

pairs using material mechanics theory and examined the impact of several parameters on the 

meshing stiffness of bevoloid gears. The meshing stiffness of the bevoloid gear can also be calculated 

using the finite element method, which requires the creation of an accurate model of the bevoloid 

gear as well as the calculation of the deformation and force of the gear teeth at different contact 

positions, and then the meshing stiffness of the bevoloid gear is solved. Bian [21] used ANSYS to 

calculate the deformation of the bevoloid gear along the coordinate direction and then calculated the 

bevoloid gear's time-varying meshing stiffness. Furthermore, the correctness of the analytical 

algorithm's computation outputs can be verified using the finite element approach [22,23]. Wu [24] 

developed an analytical and numerical approach to solve the dynamics model and differential 

equations of a bevoloid planetary gear system under the impact of numerous factors.  

In conclusion, so much research is being conducted on the design of bevoloid gear parameters, 

contact characteristics, and machining procedures, which can design specific bevoloid gear pairs and 

complete machining operations based on the real application requirements. However, existing 

research on the meshing stiffness of bevoloid gears is limited, and the calculation process is only for 
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bevoloid gears with specific parameters, with no systematic calculation method. Therefore, research 

on the calculation method of time-varying meshing stiffness of bevoloid gears is required.  

According to the importance of research on time-varying meshing stiffness of bevoloid gears 

and the scarcity of research in this area, we aim to investigate the time-varying meshing stiffness of 

bevoloid gears on intelligent ships, to develop a theoretical system for investigating time-varying 

meshing stiffness of bevoloid gears, to highlight the time-varying nature of meshing stiffness, to 

improve the calculation method of time-varying meshing stiffness of bevoloid gears, and to 

standardize the calculation process. In this paper, we take involute bevoloid gears as the primary 

object of study, solve the tooth profile expression of involute bevoloid gears from the tooth surface 

shape, calculate the analytical results of time-varying meshing stiffness of bevoloid gears using the 

slice method and Ishikawa formula for different contact positions, and analyze the influence of 

different gear parameters on the time-varying meshing stiffness. The results are compared to the 

analytical data to ensure the accuracy of the analytical calculation approach. 

2. Analysis of Meshing Contact Position of Bevoloid Gears 

To calculate the time-varying meshing stiffness of the bevoloid gear, the force situation and 

normal deformation of the bevoloid gear during the meshing process must be obtained, and the force 

size and direction of the meshing point at different contact positions will differ which will affect the 

calculation of the meshing stiffness. To solve the time-varying meshing stiffness of bevoloid gears 

accurately, the accurate tooth profile expression must be calculated before obtaining the meshing 

contact location of the bevoloid gear pair. This section's research strategy is as follows:  

(1) Starting from the normal tooth profile equation of the rack, combined with the meshing 

principle, based on coordinate transformation, the contact line equation of the gear and rack in the 

comoving coordinate system of the bevoloid gear is obtained. 

(2) Changing the size of the corner, the contact line equation at different contact positions is 

obtained, and the bevoloid gear tooth profile is enveloped.  

(3) The left and right teeth surface images of bevoloid gears are drawn as parametric equations 

and then to verify the correctness of the solution procedure of the bevoloid gear tooth profile 

equation.  

(4) Letting a pair of bevoloid gears mesh with the same rack to demonstrate that the bevoloid 

gear is in line contact when meshing, and the contact line equation at various corners is obtained. 

2.1. Derivation of the Bevoloid Gear’s Tooth-Surface Equation 

Due to the complexity of the bevoloid gear structure, it is difficult to directly calculate the tooth 

profile expression for bevoloid gears in each cross-section. However, the tooth profile of the gear 

teeth meshing with the bevoloid gear is a straight line on the normal surface, and the expression is 

easier to get. Therefore, the tooth profile of bevoloid gears can be calculated by solving the tooth 

profile equation of the rack meshing with the bevoloid gear at first, and then calculating the tooth 

profile of the bevoloid gear indirectly based on the meshing principle. For the left and right tooth 

surfaces of individual gear teeth are meshed on both sides of the tooth groove of the rack, take the 

intersection of the normal plane of the rack tooth groove and the index line as the Origin, and 

establish the rack coordinate system as is shown in Figure 1: 
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Figure 1. Establishment of rack coordinate system. 

The basic normal parameters of the bevoloid gear are shown in Table 1 below: 

Table 1. The basic normal parameters of the bevoloid gear. 

n
m  z  n

  a
h


 c


     B  

Module 
Number 

 of teeth 

Pressure 

angle 

Addendum 

coefficient 

Tip clearance 

coefficient 

Helix 

 angle 

Taper 

angle 

Tooth 

width 

In the figure, the coordinate system 𝑂𝑇−𝑋𝑌𝑍 is the end coordinate system of the rack, and the 

coordinate system 𝑂𝑛−𝑋𝑌𝑍 is the normal coordinate system of the rack. The conversion matrix 𝑅𝑛𝑇 

from the normal to the end coordinate system can be expressed as: 

cos sin sin sin cos 0

0 cos sin 0

sin sin cos cos cos 0

0 0 0 1

nTR

    
 

    

− 
 
 =
 − −
 
   (1) 

Then the tooth profile of the rack on the normal plane is two straight lines, and the shape of the 

rack tooth in the normal coordinate system is shown in Figure 2: 

 

Figure 2. The normal tooth profile of the rack. 

Taking the left tooth profile of the rack as an example, the equation of the tooth profile of the 

rack in the normal coordinate system 𝑂𝑛−𝑋𝑌𝑍 can be derived based on the tooth shape of the rack in 

the normal section: 

tan 0
4

n n n

p
x y + + =

(2) 𝑝 -indexing rounded pitch of bevoloid gears (mm). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1560.v1

https://doi.org/10.20944/preprints202310.1560.v1


 5 

 

Then the left profile of the rack can be expressed in the coordinate system of the rack end face 

as: 

( ) ( )tan cos sin sin cos sin tan sin cos 0
4

T n T T n

p
x y z        − + + − − + =

(3) 

A coordinate system is established for the meshed bevoloid gear rack. As is shown in Figure 3. 

Where the coordinate system 𝑂−𝑋𝑌𝑍 is the fixed coordinate system, the Origin is located at the center 

of the circle of the large end face of the bevoloid gear, and the y-axis points to the direction of the rack 

movement; the coordinate system 𝑂𝑇−𝑋𝑌𝑍 is the end face coordinate system of the rack, which is the 

follower coordinate system of the rack, and the distance from the fixed coordinate system in the x-

direction is the gear pitch circle radius 𝑟 . Coordinate system 𝑂𝑂−𝑋𝑌𝑍  is the follower coordinate 

system of the bevoloid gear, and the angle with the coordinate system 𝑂−𝑋𝑌𝑍 is 𝜑. 

 

Figure 3. Coordinate system during the meshing process of the bevoloid gear rack. 

According to the coordinate system established in Figure 3, the transformation matrix 𝑅𝑇0 from 

the coordinate system to the coordinate system is: 

0

cos sin 0 cos sin

sin cos 0 sin cos

0 0 1 0

0 0 0 1

T

r r

r r
R

    
    

− − − 
 − + =
 
 
  (4) 

Then, in the coordinate system O XYZ
O − , the equation of the left tooth surface of the rack is 

expressed as: 

( )

( )

0

0

0

sin sin cos cos sin cos sin
4 4

cos tan cos sin sin cos sin

sin sin sin cos cos sin cos
4 4

sin tan cos sin sin cos cos

sin cos t
4

n

n

p p
x r r

p p
y r r

p
z

       

      

       

      

 

  − + − −     
− − +  

  − − − +     
− + +  

 −  
( )an sin sin cos 0

n
   + =

(5) 

Based on the principle of gear meshing, the tangential velocity of the gear rack should be 

perpendicular to the normal vector of the profile of the rack to make the gear rack mesh continuously, 

and the coordinates of the meshing point satisfy the equation: 

( )( )cos tan cos sin sin 0
T T n

x y r     − + − =
(6) 
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Since the meshing point is located on the tooth profile of the rack, the spatial equation of the 

mesh line of the gear and rack in the coordinate system 𝑂𝑇−𝑋𝑌𝑍 can be expressed as: 

( )

( )

0

0

0

sin sin cos cos sin cos sin
4 4

cos tan cos sin sin cos sin

sin sin sin cos cos sin cos
4 4

sin tan cos sin sin cos cos

sin cos t
4

n

n

p p
x r r

p p
y r r

p
z

       

      

       

      

 

  − + − −     
− − +  

  − − − +     
− + +  

 −  
( )

( ) ( )
( ) ( )

0

0

an sin sin cos 0

cos cos cos tan cos sin sin sin

sin cos sin tan cos sin sin cos 0

n

n

n

x r

y r

   

       

       












 + =



 − −  + − +      
 − −  − − =       (7) 

Therefore, it can be verified that the mesh line of the bevoloid gear and the rack is straight. 

Similarly, the equation of the mesh line between the right tooth profile of the bevoloid gear and the 

rack can be obtained. Changing the corner 𝜑, the left and right tooth profiles of the bevoloid gear can 

be enveloped. Ensembling the left and right tooth profile equations, the mathematical expression of 

the equation for the single-tooth profile equation of the bevoloid gear can be obtained. 

2.2. Bevoloid Gears’ Tooth-Surface Drawing 

In order to verify the correctness of the derived tooth surface profile equation, the data 

processing software is used to obtain the point set on the tooth surface of the bevoloid gear, and after 

Excel processing, it is imported into the drawing software Origin to draw a three-dimensional tooth 

surface image, and whether the tooth profile surface equation is correct is judged from the definition 

of the bevoloid gear. The parameters selected during this verification are described in Table 2:  

Table 2. The basic parameters of the bevoloid gear. 

n
m  z  n

  
a

h


 c


     B  

4mm 40 20˚ 1 0.25 10˚ 6˚ 40mm 

In order to facilitate the determination of the tooth surface area of the bevoloid gear, the 

coordinates 𝑥𝑛、𝑦𝑛  and 𝑧𝑛  on the rack normal section are used as parameters, and after the 

coordinate transformation, the rack profile equation in the coordinate system 𝑂𝑂−𝑋𝑌𝑍  can be 

represented by the parameters 𝑥𝑇、𝑦𝑇  and 𝑧𝑇： 

0

0

0

cos sin cos sin

sin cos sin cos

T T

T T

T

x x y r r

y x y r r

z z

    
    

= − − −
 = − − +
 =

(8) 

Based on these above, the corresponding value 𝜑 is obtained:  

cos

tan cos sin sin

T
T

n

x
y

r


   

−
−

= (9) 
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The value obtained in the formula is brought into the parametric Equation (8), and the dataset 

of the right tooth surface of the bevoloid gear is obtained, and the data set of the left tooth surface is 

obtained by the same method for image drawing.  

Drawing as is shown in Figure 4: 

 

Figure 4. The involute bevoloid gear’s tooth surface diagram. 

From the single-tooth surface diagram of the bevoloid gear plotted in Fig. 4, it can be seen that 

the bottom is the large end of the bevoloid gear. It is verified that the tooth profile of the variable 

bevoloid gear teeth obtained by this method is involute in each section parallel to the x-y plane, and 

meets the definition of bevoloid gears, so the correctness of the tooth profile surface expression can 

be verified. According to the tooth surface diagram of the graduated bevoloid gear, it can be seen that 

the shape of the left and right tooth surfaces of the helical bevoloid gear is different. Therefore, it is 

necessary to calculate the deformation separately for the left and right tooth surfaces involved in 

meshing when calculating the stiffness.  

2.3. Analysis of Parallel-Axis Meshing Contact Position of Bevoloid Gears 

According to the above conclusion, the straight line obtained by the intersection of the two 

planes of the contact line between the left and right tooth profiles and the rack of the bevoloid gear 

can be obtained.  

For parallel-axis meshing bevoloid gears, a pair of gears meshing with each other can be 

considered to be meshing with the same rack at the same time. 

As is shown in Figure 5. 

 

Figure 5. The bevoloid gear pair meshes with the rack. 

For a pair of bevoloid gears and racks in Fig. 5, the coordinate system as shown in Figure 3 is 

established. Assuming the right gear is the active wheel with rotates counterclockwise, regard the 

right gear as gear 1, the left gear as gear 2, and the relevant parameters are distinguished by 

subscripts. When meshing, the left tooth surface of gear 1 and the right tooth surface of gear 2 mesh 

with each other, and the helix angle of the two is the same magnitude and the direction is opposite. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1560.v1

https://doi.org/10.20944/preprints202310.1560.v1


 8 

 

Based on a series of coordinate transformations, the meshing line equation of the right tooth 

surface of gear 2 and the rack is converted from the coordinate system 𝑂𝑂2−𝑋𝑌𝑍 to the coordinate 

system 𝑂𝑂1−𝑋𝑌𝑍, which can be expressed as:  

( )

( )

0

0

0

sin sin cos cos sin cos sin
4 4

cos tan cos sin sin cos sin

sin sin sin cos cos sin cos
4 4

sin tan cos sin sin cos cos

sin cos t
4

n

n

p p
x r r

p p
y r r

p
z

       

      

       

      

 

  − + − −     
− − +  

  − − − +     
− + +  

 −  
( )

( ) ( )
( ) ( )

0

0

an sin sin cos 0

cos cos cos tan cos sin sin sin

sin cos sin tan cos sin sin cos 0

n

n

n

x r

y r

   

       

       












 + =



 − −  + − +      
 − −  − − =          (10) 

Equations (10) and (7) are the same, so the contact form of a pair of parallel-axis bevoloid gears 

meshing with each other is line contact, and the meshing line of the two gears is the same as the 

straight line is verified. At the same time, for 𝜑 in different values, it is also possible to solve for their 

real-time contact lines. 

3. Analytical Solution of Time-Varying Meshing Stiffness of Bevoloid Gears 

3.1. Calculation of Time-Varying Meshing Stiffness of Helical Gears 

An approximate model of gear tooth slices should be established first, and then the time-varying 

meshing stiffness of helical gears would be calculated based on Ishikawa's formula (Ishikawa's 

formula is to simplify the gear teeth into a rectangular and trapezoidal combination of the cantilever 

beam, and use the 30° section method to determine the dangerous section of the gear, and then divide 

the deformation along the meshing line into four parts: the bending deformation of the trapezoidal 

part, the bending deformation of the rectangular part, the deformation caused by shear, and the 

deformation of the basic part, and obtain the deformation of the gear tooth by superposing them, and 

then combine the contact deformation to obtain the single-tooth meshing stiffness through the 

stiffness calculation formula), and the basic parameters of helical gears and their representative 

symbols are shown in Table 3. 

Table 3. The normal parameters of the helical gear and their representative symbols. 

n
m  z  n

  a
h


 c


   x  B  

Module 
Number 

 of teeth 

Pressure 

angle 

Addendum 

coefficient 

Tip clearance 

coefficient 

Helix 

angle 

Modification 

coefficient 

Tooth 

width 

According to the idea of the slice method, one tooth of the helical gear is equally divided into N 

slices along the tooth width direction, as shown in Figure 6: 
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Figure 6. Gear tooth slicing and its approximation to straight gear tooth shape. 

Considering the gear tooth as a cantilever beam (The displacement and rotation angle at the 

tooth root position are always 0 during the meshing process). Simplifying each gear tooth slice as a 

combination of a rectangle and an isosceles trapezoid, as is shown in Figure 7, based on the above, 

calculating the deformation of a single tooth translates into calculating the deformation of this 

approximation.  

 

Figure 7. Tooth shape approximated by the Ishikawa formula. 

Calculation of each parameter: 

The tooth thickness of the end faces tooth apex circle of the gear tooth slice: 

4 tan
2 sin

2

t t
a at t at

x
S r inv inv

z

   + = + − 
    (11) 𝑟𝑎𝑡-the radius of the end face tooth top circle of the helical gear.  

( )2 2 2
at t t t

r m z h x= + +
     (12) 𝑚𝑡-the end face modulus;  ℎ𝑡-the end face tooth top height coefficient; 𝑥𝑡-the end face displacement coefficient of the helical gear. 𝛼𝑡-the pressure angle of the end face indexing circle of the helical gear. 𝛼𝑎𝑡-the pressure angle of the top circle of the end face of the helical gear. 𝑟𝑏𝑡-base radius of the end face of the helical gear. 𝑟𝐹-radius of effective root circle of the end face. 

2
F at t t

r r m h
= −

      (13) 𝑠𝑓-the tooth thickness of the end face tooth root circle of the gear tooth slice: ℎ𝑟- the height of approximate rectangular: 

When 𝑟𝐹 ≥ 𝑟𝑏𝑡: 

4 tan
2 sin

2

t t
f F t F

x
s r inv inv

z

   + = + − 
     (14) 
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2 2

2 2

4 4

f f

r bt ft

s s
h r r= − − −

     (15) 

When 𝑟𝐹 < 𝑟𝑏𝑡: 

4 tan
2 sin

2

t t
f F t

x
s r inv

z

  + = + 
     (16) 

2 2

2 2

4 4

f f

r F ft

s s
h r r= − − −

     (17) 𝛼𝐹-effective root circle pressure angle of helical gear end face. 𝑟𝑓𝑡-radius of end face root circle of helical gear: 

( )2 2 2 2
ft t t t t

r m z h c x= − − +
    (18) 𝑐𝑡-end face top clearance coefficient of helical gear. 

Full tooth height of the tooth slice: 

2 2

2 2

4 4

f f

at ft

s s
h r r= − − −

     (19) 

Height of the intersection of the two waist extensions of the trapezoid: 

f a

i

f a

s h s h
h

s s

−
=

−
      (20) 

For a pair of gears involved in meshing, let subscript 1 denote the active wheel and subscript 2 

denote the driven wheel. Let the angle of rotation 𝜃 of the nth tooth slice just entering the mesh be 

0, then when the tooth slice of the wheel is rotated by an angle 𝜃, the radius at the position of the 

mesh point: 

( )
1 1

2
2

1 1 1 1 1
sin

x bt B B bt
r r r r = + +

    (21) 𝛼1𝐵1-pressure angle of the gear tooth slice entering the contact position. 𝑟1𝐵1-radius of entering the contact position. 

Radius at the contact position of the driven wheel: 

( ) 2
2

2 2 1 2 1 1
tan sin

x bt bt bt t x x
r r r r r = + + −     (22) 𝛼𝑥1-the meshing angle at the active wheel contact position. 

The angle between the direction of force and the horizontal axis: 

4 tan
arccos

2

bt t t
x t x

x

r x
inv inv

r z

   
  + = − + −   

     (23) 

Height of the force position: 

( )
2

2
cos

4

f

x x x x ft

s
h r r = − − −

    (24) 

The values of 𝜔𝑥 and ℎ𝑥 for the active wheel and driven wheel: takes 𝑟𝑥1, 𝛼𝑥1 and 𝑟𝑥2, 𝛼𝑥2 

respectively. 

According to the Ishikawa formula, the bending deformation of the trapezoid: 

3 2

3

6 cos
4 2ln 3

i N x i x i x i x
Bt

f i r i r i r

h F h h h h h h

Ebs h h h h h h


  − − − = − − −  − − −      (25) 

E-modulus of elasticity of the gear. 

The bending deformation of the rectangle: 
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( )
2 3

3

12 cos

3

N x r
Br x r x r

f

F h
h h h h

Ebs


 

= − + 
     (26) 

Shear deformation: 

( ) ( )
2

2 1 cos
ln

N x i r
S r i r

f i x

v F h h
h h h

Ebs h h




+  −
= + − −    (27) 𝑣-poisson's ratio of the gear tooth section. 

Deformation of the substrate: 
2 2

2

24 cosN x x
G

f

F h

Ebs




=
      (28) 

The total deformation of the n-th gear tooth slice:  

Bt Br S G
    = + + +

     (29) 

The total deformation of the active and driven wheel tooth slices is calculated, and the contact 

deformation of the two slices is obtained according to the Hertz formula: 

( )2
4 1

N

pV

F v

Eb




−
=

      (30) 

The total deformation of the two corresponding gear slices in the process of meshing: 

1 2n n n npV
   = + +

      (31) 

The stiffness of the gear tooth slices: 

N
n

n

F
K


=

       (32) 

Let the angle of rotation of the gear 𝛩 = 0 when the first tooth slice starts to participate in the 

meshing process. 

The rotation angle of the n-th gear segment: 

( )1 tan

t

n B

Nr




−
= −

     (33) 𝑟𝑡-radius of the indexing circle of the end face of the helical gear. 

The angle of rotation of the gear when a single tooth slice is always meshd in a meshing cycle: 

bt

bt

p

r

 =
       (34) 𝜀-end overlap of helical gears: 

( ) ( ) ( )1 1 2 2
tan tan tan tan 2

at t at t
z z     = − + −    (35) 𝑝𝑏𝑡-thickness of the end indexing circle of the helical gear. 

The range of angles in which the nth tooth slice is involved in the mesh: 

( ) ( )1 tan 1 tan
t t

n B Nr n B Nr  −    − +         (36) 

Total stiffness of a single tooth mesh: 

( ) ( )
m i

n n

n m

K k 
+

=

 =
      (37) 𝑖-number of gear slices involved in simultaneous meshing. 

The helical gear parameters in Table 4 are used to calculate the single-tooth stiffness at different 

corners, and the calculated data is imported into Origin to plot the single-tooth time-varying meshing 

stiffness image of the helical gear as shown in Figure 8. 
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Table 4. The basic parameters of the helical gear. 

n
m  z  n

  
a

h


 c


   x  B  

4mm 40 20˚ 1 0.25 5˚ 0 40mm 

 

Figure 8. Single tooth time variable meshing stiffness. 

. 

Figure 9. Multi-tooth time variable meshing stiffness. 

The multi-tooth meshing stiffness of the helical gear can be obtained by adding the meshing 

stiffnesses of multiple gear teeth. As is shown in Figure 9. It can be seen from Figure 9 that the helical 

gear is divided into a two-tooth meshing zone and a three-tooth meshing zone during the meshing 

process. 

3.2. Calculation of Time-Varying Meshing Stiffness of Straight Bevoloid Gears 

The time-varying meshing stiffness of straight bevoloid gears is calculated by using the Ishikawa 

formula and the slice method, while the helix angle is 0. The end face modulus of the straight tooth 

bevoloid gear is fixed, but 𝛼𝑛, ℎ𝑡∗, 𝑐𝑡∗ will change: 

( )arctan tan cos
t n

  =     (38) 

cos

n
t

h
h




 =      (39) 

cos
t

c
c




 =       (40) 

The displacement coefficient of the bevoloid gear at different tooth widths positions is different, 

and for the bevoloid gear with the intermediate end face displacement coefficient of 0, the 

displacement coefficient of the n-th tooth slice satisfies: 
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( )1
tan

2

t

n B B

N
x

m


− 

− 
 =      (41) 

The meshing stiffness 𝐾𝑛  of individual gear slices can be calculated by substituting the 

parameters of straight bevoloid gears into the formula above. Due to the different displacement 

coefficients of the gear slices at different tooth widths of the straight bevoloid gear, the coincidence 

degree is different for each group of gear tooth slices when meshing.  

After calculation, the slices at the middle-end face have the largest coincidence degree during 

meshing and are involved in the longest meshing process during the gear rotation process. 

The stiffnesses of the gear tooth slices involved in simultaneous meshing were superimposed to 

obtain the total stiffness of single tooth meshing. The single-tooth stiffness at different corners is 

calculated by using the variable bevoloid gear parameters except for the helix angle in Table 2, and 

the calculated data is imported into the Origin, and the image of Single tooth time-varying meshing 

stiffness of bevoloid gears at different angles of rotation is shown in Figure 10. And the image of 

Single tooth time-varying meshing stiffness of bevoloid gears at different angles of rotation is shown 

in Figure 11. 

  

Figure 10. Single tooth meshing stiffness. 

 

Figure 11. Multi-tooth meshing stiffness. 

3.3. Calculation of Time-Varying Meshing Stiffness of Helical Bevoloid Gears 

For helical bevoloid gears, the end-indexing circle pressure angles on the left and right tooth 

profiles are different and can be expressed as: 

tan cos
arctan sin tan

cos

n
tL

   


 
= − 

     (42) 

tan cos
arctan sin tan

cos

n
tR

   


 
= + 

     (43) 
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The size of the corresponding base circle on the left and right tooth surfaces: 

( ) ( )
1

cos
2

tbtL R L R
r m z =

     (44) 

The tooth shape obtained by the slicing method is asymmetric, and the meshing deformation 

cannot be calculated directly by Ishikawa's simplification, so the tooth cross-section of the helical 

bevoloid gear is simplified into a combination of an oblique trapezoid and a rectangle, as is shown in 

Figure 12: 

 

Figure 12. Approximate tooth shape of helical bevoloid gears. 

From the calculation of the basic gear parameters, it can be found that the top circular pressure 

angle and the root circular pressure angle on the left and right tooth surfaces are also different, so 

they should be calculated separately from the left and right tooth surfaces in the calculation of 𝑠𝑓𝐿(𝑅)
，𝑠𝑎𝐿(𝑅)，ℎ𝑟𝐿(𝑅) . For the approximate tooth shape is asymmetrical, its deformation needs to be 

recalculated using the formula of material mechanics.  

The parameters to be changed are calculated as follows: 

When 𝑟𝐹 ≥ 𝑟𝑏𝑡𝐿(𝑅): 
( )

( )
( ) ( )

4 tan

sin
2

t tL R

FfL R tL R FtL R

x
s r inv inv

z

 
 

+ 
= + −  

   (45) 

( ) ( )
( )

( )
( )

2 2

2 2

4 4

fL R fL R

rL R btL R ftL R

s s
h r r= − − −

    (46) 

When 𝑟𝐹 < 𝑟𝑏𝑡𝐿(𝑅): 
( )

( )
( )

4 tan

sin
2

t tL R

FfL R tL R

x
s r inv

z

 


+ 
= +  

     (47) 

( )
( ) ( )

2 2

2 2

4 4

fL R fL R

F ftrL R

s s
h r r= − − −

     (48) 

Then: 

( )
( )

( ) ( )

4 tan

sin
2

t tL R

ataL R tL R atL R

x
S r inv inv

z

 
 

+ 
= + −  

   (49) 

f fL fR
s s s= +

       (50) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1560.v1

https://doi.org/10.20944/preprints202310.1560.v1


 15 

 

a aL aR
s s s= +

       (51) 

( )1

2
r rL rR

h h h= +
      (52) 

Observe from the large end of the active wheel, and let the active wheel rotate counterclockwise, 

the left tooth surface of the active wheel is in contact with the right tooth surface of the driven wheel 

under force, then the pressure angle at the position where the slices of the wheel teeth start to mesh: 

( ) ( ) ( )
1

1 2 2 2

1

1

tan sin
arctan

btL btR tL at atR

B

btL

r r r

r

 


+ − 
=  

    (53) 

The radius equation at the contact position corresponding to different angles: 

( )
1 1

2
2

1 1 1 1 1
sin

x btL B B btL
r r r r = + +

     (54) 

The radius at the contact position of the driven wheel: 

( ) 2
2

2 2 1 2 1 1
tan sin

x btR btL btR tR x x
r r r r r = + + −      (55) 

The distance between the line of symmetry of the tooth thickness at the top of the tooth and 𝑙: 
2 2

fa

aR fR

ss
s s = − − +

     (56) 

According to the energy method, the bending deformation can be expressed as: 

( )22

0

cosxh
N x x

B

x

F h x
dx

EI




−
= 

    (57) 𝐼𝑥-the moment of inertia of the approximate toothed section. 

Moment of inertia of rectangular section: 
3

12

f

Br

bs
I =

       (58) 

Moment of inertia of trapezoidal section: 

( )
( )

( )23 3

3

12

i f i f

Bt

r i ri r

b h x s h x sx
I b

h h h hh h

− − 
= +  − −−  

   (59) 

Then: 

( ) ( )2 22 2

0 0

cos cosx xh h
N x x N x x

B

Br Bt

F h x F h x
dx dx

EI EI

 


− −
= + 

 (60) 

Similarly, the energy method can be used to calculate the shear deformation of the approximate 

tooth shape: 
2

0

cos

2

xh
S N x

S

F
dx

GA

  = 
     (61) 𝛼𝑆-The coefficients corresponding to the cross-sectional shape. 𝐺 -shear modulus of the material. 𝐴 -Cross-sectional area of different sections. 

The substrate deformation and contact deformation can be calculated by Ishikawa's formula. For 

an intermeshing pair of tooth slices, the calculated deformations are summed to obtain the total 

deformation of the tooth slices, and then the stiffness of the tooth slices is calculated by dividing the 

total deformation with the normal force. As is shown in Figure 13, the image of the single tooth 

meshing stiffness in forward rotation is obtained by superposition. And the image of the multi-tooth 

meshing stiffness in forward rotation is shown in Figure 14: 
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Figure 13. Single tooth in forward rotation. 

 

Figure 14. Multi-tooth in forward rotation. 

Similarly, the image of the single tooth and the multi-tooth meshing stiffness in reverse rotation 

is shown in Figure 15 and Figure 16. 

 

Figure 15. Single tooth in reverse rotation. 

 

Figure 16. Multi-tooth in reverse rotation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1560.v1

https://doi.org/10.20944/preprints202310.1560.v1


 17 

 

After comparison, the change of single tooth meshing stiffness is the same for both bevoloid 

gears in forward and reverse rotation, but the total overlap is relatively small in reverse rotation, 

resulting in the difference of variable meshing stiffness image in multi-tooth. 

The differences in the multi-tooth time-varying meshing stiffness of helical bevoloid gears, 

helical gears, straight bevoloid gears and straight gears were compared. 

As is shown in Figure 17.  

 

Figure 17. Multi-tooth meshing stiffness of different types of gears. 

After comparison, it was found that the multi-tooth time-varying meshing stiffness of bevoloid 

straight gears is smoother than that of straight gears, but the improvement is not large, and the 

stiffness image is similar to that of straight gears. Helical and helical bevoloid gears change stiffly 

more smoothly, meshing is more stable, and provides greater stiffness when meshing. Helical 

bevoloid gears have a smaller stiffness variation range and are more stable during transmission under 

the premise of providing stiffness similar to helical gear size.  

3.4. Analysis of Stiffness Influencing Factors 

For the helical bevoloid gears in forward rotation condition, the basic parameters are changed, 

and the influence of the Module, Number of teeth, Pressure angle, Helix angle, Taper angle, and 

Tooth width on the multi-tooth time-varying meshing stiffness is analyzed with the average meshing 

stiffness and fluctuation degree as indicators. 

 

Figure 18. bevoloid gears with different modulus. 
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From Figure 18, it can be obtained that the normal modulus increases, the single tooth meshing 

stiffness increases and the total coincidence degrees decreases, which increases the degree of gear 

meshing fluctuation. 

 

Figure 19. bevoloid gears with different tooth numbers. 

From Figure 19, it can be obtained that the number of teeth has little effect on the degree of 

fluctuation.  

 

Figure 20. bevoloid gears with different tooth width. 
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From Figure 20, it can be obtained that the tooth thickness increases, the single-tooth meshing 

stiffness and multi-tooth meshing stiffness increase, and the total coincidence degrees increases. 

 

Figure 21. bevoloid gears with different helix angles. 

From Figure 21, it can be obtained that the helix angle increases, the single-tooth meshing 

stiffness and multi-tooth meshing stiffness decrease, and the total coincidence degrees increases. 

 

Figure 22. bevoloid gears with different taper angles. 

From Figure 22, it can be obtained that the taper angle increases, the single-tooth meshing 

stiffness and multi-tooth meshing stiffness decrease, and the total coincidence degrees decreases. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1560.v1

https://doi.org/10.20944/preprints202310.1560.v1


 20 

 

4. Numerical Solution of Time-Varying Meshing Stiffness 

In order to verify the correctness and accuracy of the analytical method, the three-dimensional 

models of helical gears and helical bevoloid gears were established and imported into ABAQUS for 

finite element simulation, the contact force and contact displacement were read, and the time-varying 

meshing stiffness of single tooth and multi-tooth were calculated respectively. 

4.1. Finite Element Contact Analysis of Helical Gears 

According to the definition of helical gear, the parameters such as the three-dimensional 

diagram of the helical gear in Table 4 are drawn, and after assembly, it is imported into ABAQUS for 

analysis. Firstly, set the material of both gears as 45# steel, the density is 7.8 × 10−9𝑇 /mm, the 

modulus of elasticity is 208,000 MPa, and Poisson's ratio is set to 0.27. Next, the inner surface of the 

gear is coupled about the gear center point, and the contact situation is set for both gears: the friction 

coefficient is set to 0.1 in the normal behavior, and the tangential behavior is set to " hard contact" in 

the tangential behavior. Finally, the boundary conditions and loads of the two helical gears are set, 

and all degrees of freedom except axial rotation is restricted for the active wheel, and all degrees of 

freedom are fixed for the driven wheel, and a torque of 100000𝑁 ⋅ 𝑚𝑚 is applied to the active wheel, 

and the active and driven wheels are divided into two blocks, with a circular column in the middle 

part, and the approximate global size of the layout points is set to 5, and the approximate global size 

of the layout points at the tooth positions is 0.8. 

The contact displacement and contact force at the contact position are read by setting different 

rotation angles for the gear, and the single tooth meshing stiffness obtained from the finite element 

simulation is plotted simultaneously with the multi-tooth meshing stiffness and the analytical 

calculation results, as is shown in Figure 23: 

 

Figure 23. Comparison of analysis results and simulation results. 

From Figure 23, it can be seen that the trend of the single tooth meshing stiffness of the finite 

element calculation is consistent with the analytical calculation, but the single tooth meshing stiffness 

size is smaller than the analytical calculation. The possible reason for the above error is that the finite 

element calculation has a large span of the angle of rotation and does not take the maximum contact 

position of the gear tooth stiffness. The trend of the multi-tooth time-varying meshing stiffness from 

the finite element calculation is approximately the same as that from the analytical calculation, but 

the finite element calculation results are relatively larger and less volatile. Therefore, the difference 

between the two calculation methods for helical gears is considered to be within the acceptable range, 

the finite element analysis results can prove the correctness of the analytical calculation results. 

4.2. Finite Element Contact Analysis of Helical Bevoloid Gears 

The helical bevoloid gear is simplified by removing the intermediate base part and establishing 

a model with only six complete gear teeth at the contact position. The same material, force and 

boundary conditions are applied to the helical gear. In drawing the mesh, due to the complexity of 

the helical bevoloid gear, a tetrahedral shape mesh is used at the boundary position of the gear teeth, 
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and the approximate global size of the cloth points at the gear teeth position is set to 0.8, and the 

approximate global size at the inner ring position is set to 5. 

To obtain the time-varying meshing stiffness of the bevoloid gear, it is necessary to make a pair 

of bevoloid gear pairs mesh at different angles of rotation to derive the contact displacement and 

contact force at different angles of rotation. When the helical bevoloid gears mesh, the magnitude of 

the forces at both ends of the contact line is relatively small, and this part of the data can be considered 

to be removed when calculating the stiffness. To ensure that the sampling can be selected to the 

position with the largest force, a point is selected for every 6 meshes along the tooth profile direction 

to complete the path creation. The contact data of all the teeth involved in meshing at the same angle 

of rotation are extracted, and the average values of force and displacement are obtained by averaging, 

and then the meshing stiffness is calculated. 

The single-tooth meshing stiffness obtained from the finite element simulation is plotted 

together with the multi-tooth meshing stiffness and the analytical calculation results. As is shown in 

Figure 24: 

 

Figure 24. Comparison of analysis results and simulation results. 

After comparison, the difference between the finite element calculation results and the analytical 

error results was found to be large. For helical bevoloid gears, due to model complexity and 

insufficient modeling accuracy, there are problems in the process of importing the finite element 

software that resulting in large errors. 

5. Conclusions 

To develop the study of the dynamic performance of bevoloid gears, based on the relevant 

theory of slicing method and Ishikawa formula, the time-varying meshing stiffness of helical gears, 

straight bevoloid gears, and helical bevoloid gears is calculated, and the correctness of the calculation 

results is verified. Follows are the main conclusions:  

1. Starting with the rack's normal coordinate system, the rack tooth shape equation in the rack 

end coordinate system is obtained via coordinate transformation, and the meshing line equation in 

the rack end coordinate system is obtained by combining with the meshing principle. The meshing 

line equation is then transferred into the bevoloid gear's follow-up coordinate system via coordinate 

transformation, and the bevoloid gear's tooth surface equation is enveloped by adjusting the gear 

rotation angle. The equation of the rack in the normal coordinate system is then expressed as a 

parameter and the parameter equation of the tooth surface of the bevoloid gear is obtained. Changing 

the value of parameters, the left and right tooth surface images of the bevoloid gear are drawn, which 

confirms the correctness of the equation derivation process. It is demonstrated that the meshing line 

of the parallel-axis bevoloid gear is a straight line by assuming that a pair of bevoloid gears mesh 

with the same rack, and the equation expression of the line in space at different moments is given.  

2. Starting with the helical gear, the gear tooth slice is evenly divided in the direction of tooth 

width, and the stiffness of a single gear tooth slice is obtained by using the Ishikawa formula to 

calculate the deformation of each gear tooth slice, and then the single tooth meshing stiffness is 

obtained by superposition. Unfolding the helical gear's working plane, the contact of adjacent gear 
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teeth is analyzed, and the meshing stiffness of multi-tooth is obtained by superimposing the stiffness 

of each distinct gear teeth at the same angle. For straight bevoloid gears, the characteristics of different 

coincidence degrees of meshing between different layer gear tooth slices are highlighted, and the 

time-varying meshing stiffness is determined. Due to the asymmetry of the end face's left and right 

tooth faces, the end tooth shape is approximated as a combination of a rectangle and an oblique 

trapezoid, and the deformation of the contact position is calculated using the energy principle, and 

then the meshing stiffness of the bevoloid gear is calculated. The time-varying meshing stiffness of 

the bevoloid gear pair is calculated separately under forward and reverse rotation, and it is 

discovered that the changing trend of single-tooth meshing stiffness of the two is consistent, but the 

total coincidence degrees during reversal is relatively small, resulting in a difference in the multi-

tooth meshing stiffness image. Comparing the meshing stiffness of straight gear, helical gear, straight 

bevoloid gear, and helical bevoloid gear when multi-tooth meshing, it is discovered that the meshing 

stiffness of straight gear and straight bevoloid gear is not significantly different, whereas the average 

meshing stiffness of helical gear and helical bevoloid gear is larger and the degree of fluctuation is 

smaller. The basic parameters of the helical bevoloid gear are then altered, and the effects of Module, 

Number of teeth, Pressure angle, Helix angle, Taper angle, and Tooth width on the meshing stiffness 

of multi-tooth are investigated using the average meshing stiffness and fluctuation degree as 

indicators. 

3. The static analysis of helical gears and helical bevoloid gears is performed using ABAQUS. 

Set different gear corners, read the contact displacement and contact force at the contact position, and 

calculate the single-tooth and multi-tooth meshing stiffnesses. The maximum stiffness is utilized as 

the standard for single-tooth meshing stiffness; for multi-tooth meshing stiffness, the difference 

between the analytical and finite element results is determined using the average stiffness and 

fluctuation degree. After calculation and comparison, it is determined that the difference between the 

results obtained by the two helical gear calculation methods is within an acceptable range, in other 

words, the finite element analysis results can verify the correctness of the analytical calculation results. 

For helical bevoloid gears, due to model complexity and insufficient modeling accuracy, there are 

problems in the process of importing the finite element software that resulting in large errors. 
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