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Abstract: As a new type of gear, bevoloid gears have the advantages of compensating axial error, smooth
transmission, and eliminating turning error, and they are widely used in applications requiring high
transmission accuracy and stability. However, research on calculating the time-varying mesh stiffness of
bevoloid gears is still limited, and there is an urgent need to propose a method that can calculate the stiffness
of bevoloid gears quickly and accurately. This paper first establishes the bevoloid gear tooth profile
expressions, then assumes a pair of bevoloid gears meshing with the same rack and derives the contact line
equations of parallel axis bevoloid gear pairs, and analyze the contact process of bevoloid gears. We propose
an analytical algorithm that uses the slicing method to calculate the stiffness of helical gears, straight bevoloid
gears, and helical bevoloid gears, change the parameters of helical bevoloid gears respectively, and analyze the
influence of different parameters on stiffness. Finally, the finite element method is used to verify the analytical
method, and the correctness of the analytical calculation results is verified, and the errors are analyzed.

Keywords: bevoloid gear; time-varying mesh stiffness; analytical algorithm; finite element

1. Introduction

Ships, being the primary mode of water transportation, play a vital role in protecting maritime
safety, marine development and exploitation, deep sea exploration, and other activities. Smart ships
place a great value on power transmission stability. Traditional gears are easily disturbed by external
interference in the complex marine environment, which affects the normal meshing of gear pairs and
can lead to gear failure in severe cases. Whether the gear system can operate reliably becomes a
bottleneck restricting the further development of smart ships. A.S. Beam proposed the concept of
bevoloid gear in 1954 [1]. The linear variation of the addendum modification factor along the tooth
width direction is a feature of this gear. Furthermore, the bevoloid gear can meet a higher
transmission ratio, which helps to minimize transmission system volume and make the structure
more compact. It also has good adaptation to complex operating conditions and can reduce system
vibration, which has a positive influence on transmission system life [2,3]. Bevoloid gears' time-
varying meshing stiffness is an inherent property that is exclusively connected to its design
parameters and exhibits periodic variations. Stiffness excitation of the gear system is caused by this
characteristic during transmission, which causes dynamic excitation forces in the gear system and
can affect the dynamic characteristics of the gear system such as noise and vibration directly, gives a
strong nonlinearity to the dynamic equations. The analytical study of time-varying meshing stiffness
of bevoloid gears helps the analysis of ship kinematic and dynamic properties, which is critical for
ship navigation and control, so, there is a high demand for research in this field.

In terms of the computation of relevant design parameters of bevoloid gear, Li et al [4] provided
the entire design process of bevoloid gear as well as the procedure of calculating two lateral faces
parameters. Ni et al [5] not only completed the geometric design of bevoloid gear based on meshing
theory but also investigated bevoloid gear meshing properties. K. Mitome [6] defined the ideal gear
from bevoloid gear roll-cutting processing and generated mathematical formulas for bevoloid gear
tooth profiles from it. Yu et al [7] developed mathematical formulas for the tooth profile of parallel-
axis bevoloid gear pairs, derived the mathematical expressions of tooth profile and mesh line
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equation for parallel-axis bevoloid gear pairs, and estimated the tooth profile error and tooth
orientation error based on the basic principle of gear meshing. In the research on the processing
method of bevoloid gear, Wu et al [8] proposed using the same gear shaper to generate the inner and
outer bevoloid gear that mesh with each other. Wen et al [9] investigated the grinding and
modification method of bevoloid gears, they designed a gear grinding machine with a specially
modified large-plane grinding wheel and optimized the modification of the involute bevoloid gears.
Ni et al [10] suggested a method for machining route of bevoloid gears with nonlinear displacement
based on the traditional linear roller machining. Cao et al [11] provided an adaptive design model,
from which a mechanism to determine the installation location and grinding kinematics was devised.

ISO defines the meshing stiffness of gears as the amount of the normal load required to act on
the meshing line during the meshing of gear teeth with a deflection of 1 pm over the tooth width. For
the meshing stiffness of straight cylindrical gears, the stiffness calculation of three-dimensional gears
is generally reduced to a two-dimensional planar problem, there are three main methods: the
mechanics of materials method, the mathematical elastodynamics method, and the finite element
method. The existing research uses the Ishikawa formula and the Weber energy method to study
stiffness based on the material mechanics method. With the advancement of computers, it is easier to
solve the meshing stiffness of gears using the finite element technique compared with others, and
optimization and enhancement of modeling methods have gradually increased the accuracy of the
finite element approach. Compared with straight cylindrical gears, where the changing of contact
line length of helical gears leads to a nonlinear force state. Smith [12] proposed the slice theory to
achieve a more precise meshing stiffness of helical gears. Finite element software is also useful for
addressing the time-varying meshing stiffness of helical gears, and it is commonly used to verify the
analytical results. Zhang [13] investigated the nonlinear vibration characteristics of bevoloid gear
pairs with parallel-axis internal meshing under the action of internal and external factors, as well as
the effect of parametric excitation on the transmission system's nonlinear vibration characteristics.
Bai et al [14] developed an intersecting tooth pair dynamics model and a tooth contact analysis model,
as well as a micro geometric correction method to improve meshing performance. Zhu et al [15]
established two methods for calculating the tooth thickness error (TTE) of straight gears using an
inclined gear-inserting machine. As bevoloid gears have variable-section along the axial and radial
directions, the meshing stiffness calculation for bevoloid gear should account for elastic deformation,
so previous methods for calculating elastic deformation must be imverified. Wu et al [16] suggested
an improvement to the elastic deformation formula for estimating cylindrical gear meshing stiffness.
Song et al [17] developed a method for determining the meshing stiffness of parallel-axis straight
bevoloid gear pairs based on the slicing approach and the energy principle. Mao et al [18] imverified
the Weber method by using the slicing concept to compute the meshing stiffness of a bevoloid gear
after tooth profile modification. Yu et al [19] suggested applying elliptical roughness contact area
distribution function to point contact of curve and developed a fractal contact mechanics model for
elliptical roughness surfaces. Li [20] calculated the meshing stiffness of intersecting axis bevoloid gear
pairs using material mechanics theory and examined the impact of several parameters on the
meshing stiffness of bevoloid gears. The meshing stiffness of the bevoloid gear can also be calculated
using the finite element method, which requires the creation of an accurate model of the bevoloid
gear as well as the calculation of the deformation and force of the gear teeth at different contact
positions, and then the meshing stiffness of the bevoloid gear is solved. Bian [21] used ANSYS to
calculate the deformation of the bevoloid gear along the coordinate direction and then calculated the
bevoloid gear's time-varying meshing stiffness. Furthermore, the correctness of the analytical
algorithm's computation outputs can be verified using the finite element approach [22,23]. Wu [24]
developed an analytical and numerical approach to solve the dynamics model and differential
equations of a bevoloid planetary gear system under the impact of numerous factors.

In conclusion, so much research is being conducted on the design of bevoloid gear parameters,
contact characteristics, and machining procedures, which can design specific bevoloid gear pairs and
complete machining operations based on the real application requirements. However, existing
research on the meshing stiffness of bevoloid gears is limited, and the calculation process is only for
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bevoloid gears with specific parameters, with no systematic calculation method. Therefore, research
on the calculation method of time-varying meshing stiffness of bevoloid gears is required.

According to the importance of research on time-varying meshing stiffness of bevoloid gears
and the scarcity of research in this area, we aim to investigate the time-varying meshing stiffness of
bevoloid gears on intelligent ships, to develop a theoretical system for investigating time-varying
meshing stiffness of bevoloid gears, to highlight the time-varying nature of meshing stiffness, to
improve the calculation method of time-varying meshing stiffness of bevoloid gears, and to
standardize the calculation process. In this paper, we take involute bevoloid gears as the primary
object of study, solve the tooth profile expression of involute bevoloid gears from the tooth surface
shape, calculate the analytical results of time-varying meshing stiffness of bevoloid gears using the
slice method and Ishikawa formula for different contact positions, and analyze the influence of
different gear parameters on the time-varying meshing stiffness. The results are compared to the
analytical data to ensure the accuracy of the analytical calculation approach.

2. Analysis of Meshing Contact Position of Bevoloid Gears

To calculate the time-varying meshing stiffness of the bevoloid gear, the force situation and
normal deformation of the bevoloid gear during the meshing process must be obtained, and the force
size and direction of the meshing point at different contact positions will differ which will affect the
calculation of the meshing stiffness. To solve the time-varying meshing stiffness of bevoloid gears
accurately, the accurate tooth profile expression must be calculated before obtaining the meshing
contact location of the bevoloid gear pair. This section's research strategy is as follows:

(1) Starting from the normal tooth profile equation of the rack, combined with the meshing
principle, based on coordinate transformation, the contact line equation of the gear and rack in the
comoving coordinate system of the bevoloid gear is obtained.

(2) Changing the size of the corner, the contact line equation at different contact positions is
obtained, and the bevoloid gear tooth profile is enveloped.

(3) The left and right teeth surface images of bevoloid gears are drawn as parametric equations
and then to verify the correctness of the solution procedure of the bevoloid gear tooth profile
equation.

(4) Letting a pair of bevoloid gears mesh with the same rack to demonstrate that the bevoloid
gear is in line contact when meshing, and the contact line equation at various corners is obtained.

2.1. Derivation of the Bevoloid Gear’s Tooth-Surface Equation

Due to the complexity of the bevoloid gear structure, it is difficult to directly calculate the tooth
profile expression for bevoloid gears in each cross-section. However, the tooth profile of the gear
teeth meshing with the bevoloid gear is a straight line on the normal surface, and the expression is
easier to get. Therefore, the tooth profile of bevoloid gears can be calculated by solving the tooth
profile equation of the rack meshing with the bevoloid gear at first, and then calculating the tooth
profile of the bevoloid gear indirectly based on the meshing principle. For the left and right tooth
surfaces of individual gear teeth are meshed on both sides of the tooth groove of the rack, take the
intersection of the normal plane of the rack tooth groove and the index line as the Origin, and
establish the rack coordinate system as is shown in Figure 1:
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Figure 1. Establishment of rack coordinate system.
The basic normal parameters of the bevoloid gear are shown in Table 1 below:

Table 1. The basic normal parameters of the bevoloid gear.

m, z a, h: ¢’ ﬂ o B
Number Pressure Addendum Tip clearance Helix Taper Tooth
Module - .. .
of teeth angle coefficient coefficient angle angle width

In the figure, the coordinate system Or_yxy; is the end coordinate system of the rack, and the
coordinate system O,,_yy; is the normal coordinate system of the rack. The conversion matrix R,
from the normal to the end coordinate system can be expressed as:

cosd —sinosinf sindcosf 0

| 0 cos f3 sin 0
| =sinS —sin fcosd cos fcosd O
0 0 0 1

)

Then the tooth profile of the rack on the normal plane is two straight lines, and the shape of the
rack tooth in the normal coordinate system is shown in Figure 2:

i\
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Figure 2. The normal tooth profile of the rack.

Taking the left tooth profile of the rack as an example, the equation of the tooth profile of the
rack in the normal coordinate system O,_xy, can be derived based on the tooth shape of the rack in
the normal section:

X, tanan+yn+£=0

()

p -indexing rounded pitch of bevoloid gears (mm).
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Then the left profile of the rack can be expressed in the coordinate system of the rack end face
as:

x, (tana, cos § —sin Bsin )+ y, cos f+z; (—sinStan e, —sinﬂcos5)+§ =0
®)

A coordinate system is established for the meshed bevoloid gear rack. As is shown in Figure 3.
Where the coordinate system O_yy; is the fixed coordinate system, the Origin is located at the center
of the circle of the large end face of the bevoloid gear, and the y-axis points to the direction of the rack
movement; the coordinate system Or_yxy, is the end face coordinate system of the rack, which is the
follower coordinate system of the rack, and the distance from the fixed coordinate system in the x-
direction is the gear pitch circle radius r. Coordinate system O,_yxy; is the follower coordinate
system of the bevoloid gear, and the angle with the coordinate system O_yy;is ¢.

Figure 3. Coordinate system during the meshing process of the bevoloid gear rack.

According to the coordinate system established in Figure 3, the transformation matrix Ry, from
the coordinate system to the coordinate system is:

cos@p —sing —rCcosS @ —resin @

CE S 0
0 0

0

0

sing cosp 0 —rsin@+recose
1
0 1

(4)

Then, in the coordinate system O,_y,,, the equation of the left tooth surface of the rack is

expressed as:

X, —(%sin 5sinﬂcos¢+%cosﬂsin(p—rcowp—r(psin(pj X

[cosgo(tan a, cos f—sin fsin &) —cos Bsin (p} +

Yo —(%sinésin/)’sin(p—%cosﬂcosgy—rsingﬁr(ocosgoj X

[singa(tan a, cos f—sin Bsin &)+ cos S cos (p] +

2z, —Lsin ﬁcosé)‘}(tan a, sind +sin fcos5)=0
4
- )
Based on the principle of gear meshing, the tangential velocity of the gear rack should be

perpendicular to the normal vector of the profile of the rack to make the gear rack mesh continuously,
and the coordinates of the meshing point satisfy the equation:

x; cos f—(y, +rp)(tane, cos5—sinﬁsin5)=0(6)
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Since the meshing point is located on the tooth profile of the rack, the spatial equation of the
mesh line of the gear and rack in the coordinate system O;_yy; can be expressed as:

X, —(%sin5sinﬁcos¢)+%cosﬂsingp—rcosgp—rgosin(pj X

[cos ¢(tan , cos § —sin Bsin &) —cos fsin (p] +

Yo —(%sin5sin,8singp—gcosﬂcosq)—rsin(p+r(pcosq)J X

[sin ¢(tan a, cos & —sin Bsin &)+ cos S cos go] +

Z —%sinﬂcosﬂ(tanan sin & +sin fcos§) =0

[xo —(—rcos (o):l X [cos Bcosp+(tana, cos§ —sin Fsin &)sin go:l +

[yo —(—rsin(p)Jx[cosﬂsingo—(tanan cos § —sin Ssin 5)COS(p:| =O(7)

Therefore, it can be verified that the mesh line of the bevoloid gear and the rack is straight.
Similarly, the equation of the mesh line between the right tooth profile of the bevoloid gear and the
rack can be obtained. Changing the corner ¢, the left and right tooth profiles of the bevoloid gear can
be enveloped. Ensembling the left and right tooth profile equations, the mathematical expression of
the equation for the single-tooth profile equation of the bevoloid gear can be obtained.

2.2. Bevoloid Gears’ Tooth-Surface Drawing

In order to verify the correctness of the derived tooth surface profile equation, the data
processing software is used to obtain the point set on the tooth surface of the bevoloid gear, and after
Excel processing, it is imported into the drawing software Origin to draw a three-dimensional tooth
surface image, and whether the tooth profile surface equation is correct is judged from the definition
of the bevoloid gear. The parameters selected during this verification are described in Table 2:

Table 2. The basic parameters of the bevoloid gear.

m z a, h, c’ p 4 B

a

4mm 40 20° 1 0.25 10° 6 40mm

In order to facilitate the determination of the tooth surface area of the bevoloid gear, the
coordinates x,. ¥, and z, on the rack normal section are used as parameters, and after the
coordinate transformation, the rack profile equation in the coordinate system O,_yxy; can be
represented by the parameters x;. yr and zp:

Xy =X, COSQ— Y, SINQ—7COS QY —r@sin ¢
Yo =X, SIN@ — y, COS@—71Sin @+ recos ¢ (8)
Zo = Zr

Based on these above, the corresponding value ¢ is obtained:

X, cos

X oY
_ tana, cos —sin #sind !

©)

r
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The value obtained in the formula is brought into the parametric Equation (8), and the dataset
of the right tooth surface of the bevoloid gear is obtained, and the data set of the left tooth surface is
obtained by the same method for image drawing.

Drawing as is shown in Figure 4:

Figure 4. The involute bevoloid gear’s tooth surface diagram.

From the single-tooth surface diagram of the bevoloid gear plotted in Fig. 4, it can be seen that
the bottom is the large end of the bevoloid gear. It is verified that the tooth profile of the variable
bevoloid gear teeth obtained by this method is involute in each section parallel to the x-y plane, and
meets the definition of bevoloid gears, so the correctness of the tooth profile surface expression can
be verified. According to the tooth surface diagram of the graduated bevoloid gear, it can be seen that
the shape of the left and right tooth surfaces of the helical bevoloid gear is different. Therefore, it is
necessary to calculate the deformation separately for the left and right tooth surfaces involved in
meshing when calculating the stiffness.

2.3. Analysis of Parallel-Axis Meshing Contact Position of Bevoloid Gears

According to the above conclusion, the straight line obtained by the intersection of the two
planes of the contact line between the left and right tooth profiles and the rack of the bevoloid gear
can be obtained.

For parallel-axis meshing bevoloid gears, a pair of gears meshing with each other can be
considered to be meshing with the same rack at the same time.

As is shown in Figure 5.

Figure 5. The bevoloid gear pair meshes with the rack.

For a pair of bevoloid gears and racks in Fig. 5, the coordinate system as shown in Figure 3 is
established. Assuming the right gear is the active wheel with rotates counterclockwise, regard the
right gear as gear 1, the left gear as gear 2, and the relevant parameters are distinguished by
subscripts. When meshing, the left tooth surface of gear 1 and the right tooth surface of gear 2 mesh
with each other, and the helix angle of the two is the same magnitude and the direction is opposite.
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Based on a series of coordinate transformations, the meshing line equation of the right tooth
surface of gear 2 and the rack is converted from the coordinate system 0Op,_yxy; to the coordinate
system Op;_xyz, which can be expressed as:

[

p 14

X, —(Zsin5sinﬂcos¢+Zcosﬂsin(p—rcosgo—r(osin (p]

cosg(tana, cosé—sinﬁsiné‘)—cosﬂsin(p]+

Yo —[%sin5sinﬂsin(p—gcosﬂcosqp—rsin(p+r(pcosq)j

[singo(tan a, cos § —sin Bsin &)+ cos S cos go] +

2 —%sinﬂcosﬁ}(tanan sin & +sin fcos§) =0

[xo —(—rcos (0)] x [cos Bcosp+(tana, cos§ —sin Bsin §)sin go:l +

[yo —(—rsin go)} x [cosﬂsingo—(tan a, cos & —sin Bsin &) cos go] =0 (10)

Equations (10) and (7) are the same, so the contact form of a pair of parallel-axis bevoloid gears
meshing with each other is line contact, and the meshing line of the two gears is the same as the
straight line is verified. At the same time, for ¢ in different values, it is also possible to solve for their
real-time contact lines.

3. Analytical Solution of Time-Varying Meshing Stiffness of Bevoloid Gears

3.1. Calculation of Time-Varying Meshing Stiffness of Helical Gears

An approximate model of gear tooth slices should be established first, and then the time-varying
meshing stiffness of helical gears would be calculated based on Ishikawa's formula (Ishikawa's
formula is to simplify the gear teeth into a rectangular and trapezoidal combination of the cantilever
beam, and use the 30° section method to determine the dangerous section of the gear, and then divide
the deformation along the meshing line into four parts: the bending deformation of the trapezoidal
part, the bending deformation of the rectangular part, the deformation caused by shear, and the
deformation of the basic part, and obtain the deformation of the gear tooth by superposing them, and
then combine the contact deformation to obtain the single-tooth meshing stiffness through the
stiffness calculation formula), and the basic parameters of helical gears and their representative
symbols are shown in Table 3.

Table 3. The normal parameters of the helical gear and their representative symbols.

m, z a, h, ¢’ p x B
Number Pressure Addendum Tip clearance Helix Modification Tooth
Module . . - .
of teeth angle coefficient coefficient angle coefficient width

According to the idea of the slice method, one tooth of the helical gear is equally divided into N
slices along the tooth width direction, as shown in Figure 6:
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Figure 6. Gear tooth slicing and its approximation to straight gear tooth shape.

Considering the gear tooth as a cantilever beam (The displacement and rotation angle at the
tooth root position are always 0 during the meshing process). Simplifying each gear tooth slice as a
combination of a rectangle and an isosceles trapezoid, as is shown in Figure 7, based on the above,
calculating the deformation of a single tooth translates into calculating the deformation of this
approximation.

Figure 7. Tooth shape approximated by the Ishikawa formula.

Calculation of each parameter:
The tooth thickness of the end faces tooth apex circle of the gear tooth slice:
. (mw+4x tane, . :
S, =2r,sin (# +inve, — mvamj
1q¢-the radius of the end face tooth top circle of the helical gear.

rm=mt(z+2ht+2xt)/2 (12)

m;-the end face modulus;

h.-the end face tooth top height coefficient;

x,-the end face displacement coefficient of the helical gear.

a,-the pressure angle of the end face indexing circle of the helical gear.
aq.-the pressure angle of the top circle of the end face of the helical gear.
Tpe-base radius of the end face of the helical gear.

rg-radius of effective root circle of the end face.

Tp =Ty — 2mtht* (13)
s¢-the tooth thickness of the end face tooth root circle of the gear tooth slice:
h,- the height of approximate rectangular:
When 1 = 1,

. (r+4x tane, . .
S; =2n, sin| ————+inva, —inva,
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2 szc 5 S;
r ’;7[ 4 rft 4
(15)

m+4x tane, .
————L+inva,

When 1 < 1

s, =2n sin(
2z (16)

2 2
h z\/r2 —S—f—\/rz—s—f
S "o 17)

ap-effective root circle pressure angle of helical gear end face.

15e-radius of end face root circle of helical gear:

rﬂzmt(z—2h1—2q+2xt)/2 (18)

c.-end face top clearance coefficient of helical gear.

Full tooth height of the tooth slice:
S2 S2
_ ]2 f 2 f
h = rat — ? — rﬂ — ?
(19)

Height of the intersection of the two waist extensions of the trapezoid:
s;h—s,h

Sp =5,

h, =
(20)

For a pair of gears involved in meshing, let subscript 1 denote the active wheel and subscript 2
denote the driven wheel. Let the angle of rotation 8 of the nth tooth slice just entering the mesh be
0, then when the tooth slice of the wheel is rotated by an angle 6, the radius at the position of the
mesh point:

2
_ 2 :
ry = \/ o+ (s sin @, +7,,0)

1)
a, 5, -pressure angle of the gear tooth slice entering the contact position.
71p,-tadius of entering the contact position.
Radius at the contact position of the driven wheel:
_ |2 - 2
Fo = \/rth + I:(’Zz1 7y ) tana, —r,sinqa,, (22)
@y1-the meshing angle at the active wheel contact position.
The angle between the direction of force and the horizontal axis:
r, r+4x tana, . :
@, =arccos| -+ |- . +inve, —inva,
r
: : 23)
Height of the force position:
5
h,=r, cos(a, —m,)—|r; vy
(24)

The values of w, and h, for the active wheel and driven wheel: takes 7y, a,; and 7y,, @,
respectively.
According to the Ishikawa formula, the bending deformation of the trapezoid:

3 2 _ _ _
_6l/F, cos’ o, | hx[4_hl. hx}_zlnhi h,

Bt 3 -3
Ebs; h —h h —h h—h
1 r ] r 1 r (25)

E-modulus of elasticity of the gear.
The bending deformation of the rectangle:
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12F, cos’ @ n
= 22 B l(hy —hy Yok, +
Br Ebs3 X T x'r 3
! (26)
Shear deformation:
2(1+v) F, cos’ @ h.—h
2R f A
sf i (27)
v-poisson's ratio of the gear tooth section.
Deformation of the substrate:
_24F,h cos’ o,
(N 2
7EDs;, 28)
The total deformation of the n-th gear tooth slice:
0 =0, +0, +05+0; 29)

The total deformation of the active and driven wheel tooth slices is calculated, and the contact
deformation of the two slices is obtained according to the Hertz formula:

4F, (1-v7)
" ZxEb (30)

The total deformation of the two corresponding gear slices in the process of meshing;:

5n = 5n1 + 5n2 + 5an

(31)
The stiffness of the gear tooth slices:
K =fx
o 62

Let the angle of rotation of the gear ® = 0 when the first tooth slice starts to participate in the
meshing process.
The rotation angle of the n-th gear segment:

(n—1)Btan g

N @)
re-radius of the indexing circle of the end face of the helical gear.

The angle of rotation of the gear when a single tooth slice is always meshd in a meshing cycle:

0=0-

— pbzg
Vot (34)
g-end overlap of helical gears:
&= [Zl (tane,, —tang, )+ z, (tana,,, —tan g, )]/(27[) 35)
Ppe-thickness of the end indexing circle of the helical gear.
The range of angles in which the nth tooth slice is involved in the mesh:
[(n—l)Btanﬂ]/Nr, S@S[(n—l)Btanﬂ]/N;; +¢ 36)
Total stiffness of a single tooth mesh:
m+i
K(©)=2 k,(4,)
n=m (37)

i-number of gear slices involved in simultaneous meshing.

The helical gear parameters in Table 4 are used to calculate the single-tooth stiffness at different
corners, and the calculated data is imported into Origin to plot the single-tooth time-varying meshing
stiffness image of the helical gear as shown in Figure 8.
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Table 4. The basic parameters of the helical gear.

m z a h ¢ ﬂ

n a

4mm 40 20° 1 0.25 5° 0 40mm

S
oo

Q4

Time-varying mesh stiffness (18N /m )

0.00 0.10 0.20 0.30 0.40

Angles of rotation (rad)

Figure 8. Single tooth time variable meshing stiffness.
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12‘\ ----- Complete single tooth
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M of gear teeth

0.00 0.10 0.20 0.30 0.40

Time-varying mesh stiffness (105N /m )

Angles of rotation (rad)

Figure 9. Multi-tooth time variable meshing stiffness.

The multi-tooth meshing stiffness of the helical gear can be obtained by adding the meshing
stiffnesses of multiple gear teeth. As is shown in Figure 9. It can be seen from Figure 9 that the helical
gear is divided into a two-tooth meshing zone and a three-tooth meshing zone during the meshing
process.

3.2. Calculation of Time-Varying Meshing Stiffness of Straight Bevoloid Gears

The time-varying meshing stiffness of straight bevoloid gears is calculated by using the Ishikawa
formula and the slice method, while the helix angle is 0. The end face modulus of the straight tooth
bevoloid gear is fixed, but a,,, hi, ¢ will change:

a, = arctan (tan @, cos & ) (38)
= (39)
cosd
c = ¢ (40)
" cosd

The displacement coefficient of the bevoloid gear at different tooth widths positions is different,
and for the bevoloid gear with the intermediate end face displacement coefficient of 0, the
displacement coefficient of the n-th tooth slice satisfies:
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N
X = (41)
ml‘

The meshing stiffness K, of individual gear slices can be calculated by substituting the
parameters of straight bevoloid gears into the formula above. Due to the different displacement
coefficients of the gear slices at different tooth widths of the straight bevoloid gear, the coincidence
degree is different for each group of gear tooth slices when meshing.

After calculation, the slices at the middle-end face have the largest coincidence degree during

meshing and are involved in the longest meshing process during the gear rotation process.

{W—ﬂmﬁ

The stiffnesses of the gear tooth slices involved in simultaneous meshing were superimposed to
obtain the total stiffness of single tooth meshing. The single-tooth stiffness at different corners is
calculated by using the variable bevoloid gear parameters except for the helix angle in Table 2, and
the calculated data is imported into the Origin, and the image of Single tooth time-varying meshing
stiffness of bevoloid gears at different angles of rotation is shown in Figure 10. And the image of
Single tooth time-varying meshing stiffness of bevoloid gears at different angles of rotation is shown
in Figure 11.

Time-varying mesh stiffness ( 10°N / m )
S = MW B O

0.00 0.05 0.10 0.I5 0.20 0.25 0.30

Angles of rotation (rad)

Figure 10. Single tooth meshing stiffness.
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\
\
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Time-varying mesh stiffness (10°N /m )
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Figure 11. Multi-tooth meshing stiffness.

3.3. Calculation of Time-Varying Meshing Stiffness of Helical Bevoloid Gears

For helical bevoloid gears, the end-indexing circle pressure angles on the left and right tooth
profiles are different and can be expressed as:

tana, coso .
o, =arctan (”— —sin ¢ tan j
cos (42)

tana, coso .
o, =arctan| ————+sino tan
cos (43)
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The size of the corresponding base circle on the left and right tooth surfaces:
1
r, =—mzCosc
biL(R t L(R
iL(R) — (R) (44)

The tooth shape obtained by the slicing method is asymmetric, and the meshing deformation
cannot be calculated directly by Ishikawa's simplification, so the tooth cross-section of the helical
bevoloid gear is simplified into a combination of an oblique trapezoid and a rectangle, as is shown in
Figure 12:

h.
T

n Sm

Figure 12. Approximate tooth shape of helical bevoloid gears.

From the calculation of the basic gear parameters, it can be found that the top circular pressure
angle and the root circular pressure angle on the left and right tooth surfaces are also different, so
they should be calculated separately from the left and right tooth surfaces in the calculation of sz )
. SaL(r), MrLr)- For the approximate tooth shape is asymmetrical, its deformation needs to be
recalculated using the formula of material mechanics.

The parameters to be changed are calculated as follows:

When 17 = 1,41.(r):

7+dx tana, .

S p(ry = T SIN 2 VO ) — IV )
(45)
2 2
[ \/rz S _\/rz _ Sur)
. b /i
L(R) (L(R) 4 1L(R) 4 (46)
When 17 < 1h41(r):
[ m+4x, tan Cyry
S gy = T SIN 2 IV,
(47)
2 2
b = - 22
rL(R) F 4 ft 4 (48)
Then:
[ m+4x, tan Ayry . ‘
Surr) = T SN 2 HIVA ) T IV
(49)

S, =S, +S§
f fL R (50)
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Sa = SaL + saR (51)
hr = l(hrL +hrR)

2 (52)

Observe from the large end of the active wheel, and let the active wheel rotate counterclockwise,
the left tooth surface of the active wheel is in contact with the right tooth surface of the driven wheel
under force, then the pressure angle at the position where the slices of the wheel teeth start to mesh:

(rthl *+ Vra ) tan (atL ) — 1, 81N (aatRZ )}

Q= arctan[
r;?tLl

(53)
The radius equation at the contact position corresponding to different angles:
2
— 2 ;
Fa = \/”szl + (”131 S, + rthlg) (54)
The radius at the contact position of the driven wheel:
2 . 2
Fa = \/’Zsz + I:(rbtu * ko ) tanq,, —r, sin axl:l (55)
The distance between the line of symmetry of the tooth thickness at the top of the tooth and :
Ky S
A=—%—s, ——f+sz
According to the energy method, the bending deformation can be expressed as:
2
n F,cos’w (h —x
Sy =] ()
EI, (57)
I,-the moment of inertia of the approximate toothed section.
Moment of inertia of rectangular section:
;o bs,
Br
12 (58)

Moment of inertia of trapezoidal section:

b(hi—xfs;{ Ax wa,.—x)sf

Bi 3
12(h=h ) AR=h ) Bl (59)
Then:
5 - .[Oh)- Fy cos’ @, (h, —x)zderIOhX Fy cos’ @, (h, —x)2dx
El, El,, (60)
Similarly, the energy method can be used to calculate the shear deformation of the approximate
tooth shape:

dx
2GA (61)

as-The coefficients corresponding to the cross-sectional shape.

2
S = hoagk, cos” o,
s o

G -shear modulus of the material.

A -Cross-sectional area of different sections.

The substrate deformation and contact deformation can be calculated by Ishikawa's formula. For
an intermeshing pair of tooth slices, the calculated deformations are summed to obtain the total
deformation of the tooth slices, and then the stiffness of the tooth slices is calculated by dividing the
total deformation with the normal force. As is shown in Figure 13, the image of the single tooth
meshing stiffness in forward rotation is obtained by superposition. And the image of the multi-tooth
meshing stiffness in forward rotation is shown in Figure 14:
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Figure 13. Single tooth in forward rotation.
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Figure 14. Multi-tooth in forward rotation.

Similarly, the image of the single tooth and the multi-tooth meshing stiffness in reverse rotation
is shown in Figure 15 and Figure 16.

—_— k) W B hn Oy

Time-varying mesh stiffness (10°N /m )
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Figure 15. Single tooth in reverse rotation.
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Figure 16. Multi-tooth in reverse rotation.
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After comparison, the change of single tooth meshing stiffness is the same for both bevoloid
gears in forward and reverse rotation, but the total overlap is relatively small in reverse rotation,
resulting in the difference of variable meshing stiffness image in multi-tooth.

The differences in the multi-tooth time-varying meshing stiffness of helical bevoloid gears,
helical gears, straight bevoloid gears and straight gears were compared.

As is shown in Figure 17.

" helical bevoloid gear

A = == * helical gears

1 2o ==y |=+= straight bevoloid gear
y ' N |- .. straight gear

0.00 0.10 0.20 0.30 0.40

Time-varying mesh stiffness (10N /m )
o

Angles of rotation (rad)

Figure 17. Multi-tooth meshing stiffness of different types of gears.

After comparison, it was found that the multi-tooth time-varying meshing stiffness of bevoloid
straight gears is smoother than that of straight gears, but the improvement is not large, and the
stiffness image is similar to that of straight gears. Helical and helical bevoloid gears change stiffly
more smoothly, meshing is more stable, and provides greater stiffness when meshing. Helical
bevoloid gears have a smaller stiffness variation range and are more stable during transmission under
the premise of providing stiffness similar to helical gear size.

3.4. Analysis of Stiffness Influencing Factors

For the helical bevoloid gears in forward rotation condition, the basic parameters are changed,
and the influence of the Module, Number of teeth, Pressure angle, Helix angle, Taper angle, and
Tooth width on the multi-tooth time-varying meshing stiffness is analyzed with the average meshing
stiffness and fluctuation degree as indicators.
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Figure 18. bevoloid gears with different modulus.
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From Figure 18, it can be obtained that the normal modulus increases, the single tooth meshing
stiffness increases and the total coincidence degrees decreases, which increases the degree of gear
meshing fluctuation.
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Figure 19. bevoloid gears with different tooth numbers.

From Figure 19, it can be obtained that the number of teeth has little effect on the degree of
fluctuation.
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From Figure 20, it can be obtained that the tooth thickness increases, the single-tooth meshing
stiffness and multi-tooth meshing stiffness increase, and the total coincidence degrees increases.
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Figure 21. bevoloid gears with different helix angles.

From Figure 21, it can be obtained that the helix angle increases, the single-tooth meshing
stiffness and multi-tooth meshing stiffness decrease, and the total coincidence degrees increases.
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Figure 22. bevoloid gears with different taper angles.

From Figure 22, it can be obtained that the taper angle increases, the single-tooth meshing
stiffness and multi-tooth meshing stiffness decrease, and the total coincidence degrees decreases.
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4. Numerical Solution of Time-Varying Meshing Stiffness

In order to verify the correctness and accuracy of the analytical method, the three-dimensional
models of helical gears and helical bevoloid gears were established and imported into ABAQUS for
finite element simulation, the contact force and contact displacement were read, and the time-varying
meshing stiffness of single tooth and multi-tooth were calculated respectively.

4.1. Finite Element Contact Analysis of Helical Gears

According to the definition of helical gear, the parameters such as the three-dimensional
diagram of the helical gear in Table 4 are drawn, and after assembly, it is imported into ABAQUS for
analysis. Firstly, set the material of both gears as 45# steel, the density is 7.8 x 107°T /mm, the
modulus of elasticity is 208,000 MPa, and Poisson's ratio is set to 0.27. Next, the inner surface of the
gear is coupled about the gear center point, and the contact situation is set for both gears: the friction
coefficient is set to 0.1 in the normal behavior, and the tangential behavior is set to " hard contact" in
the tangential behavior. Finally, the boundary conditions and loads of the two helical gears are set,
and all degrees of freedom except axial rotation is restricted for the active wheel, and all degrees of
freedom are fixed for the driven wheel, and a torque of 100000N - mm is applied to the active wheel,
and the active and driven wheels are divided into two blocks, with a circular column in the middle
part, and the approximate global size of the layout points is set to 5, and the approximate global size
of the layout points at the tooth positions is 0.8.

The contact displacement and contact force at the contact position are read by setting different
rotation angles for the gear, and the single tooth meshing stiffness obtained from the finite element
simulation is plotted simultaneously with the multi-tooth meshing stiffness and the analytical
calculation results, as is shown in Figure 23:
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Figure 23. Comparison of analysis results and simulation results.

From Figure 23, it can be seen that the trend of the single tooth meshing stiffness of the finite
element calculation is consistent with the analytical calculation, but the single tooth meshing stiffness
size is smaller than the analytical calculation. The possible reason for the above error is that the finite
element calculation has a large span of the angle of rotation and does not take the maximum contact
position of the gear tooth stiffness. The trend of the multi-tooth time-varying meshing stiffness from
the finite element calculation is approximately the same as that from the analytical calculation, but
the finite element calculation results are relatively larger and less volatile. Therefore, the difference
between the two calculation methods for helical gears is considered to be within the acceptable range,
the finite element analysis results can prove the correctness of the analytical calculation results.

4.2. Finite Element Contact Analysis of Helical Bevoloid Gears

The helical bevoloid gear is simplified by removing the intermediate base part and establishing
a model with only six complete gear teeth at the contact position. The same material, force and
boundary conditions are applied to the helical gear. In drawing the mesh, due to the complexity of
the helical bevoloid gear, a tetrahedral shape mesh is used at the boundary position of the gear teeth,
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and the approximate global size of the cloth points at the gear teeth position is set to 0.8, and the
approximate global size at the inner ring position is set to 5.

To obtain the time-varying meshing stiffness of the bevoloid gear, it is necessary to make a pair
of bevoloid gear pairs mesh at different angles of rotation to derive the contact displacement and
contact force at different angles of rotation. When the helical bevoloid gears mesh, the magnitude of
the forces at both ends of the contact line is relatively small, and this part of the data can be considered
to be removed when calculating the stiffness. To ensure that the sampling can be selected to the
position with the largest force, a point is selected for every 6 meshes along the tooth profile direction
to complete the path creation. The contact data of all the teeth involved in meshing at the same angle
of rotation are extracted, and the average values of force and displacement are obtained by averaging,
and then the meshing stiffness is calculated.

The single-tooth meshing stiffness obtained from the finite element simulation is plotted
together with the multi-tooth meshing stiffness and the analytical calculation results. As is shown in
Figure 24:
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Figure 24. Comparison of analysis results and simulation results.

After comparison, the difference between the finite element calculation results and the analytical
error results was found to be large. For helical bevoloid gears, due to model complexity and
insufficient modeling accuracy, there are problems in the process of importing the finite element
software that resulting in large errors.

5. Conclusions

To develop the study of the dynamic performance of bevoloid gears, based on the relevant
theory of slicing method and Ishikawa formula, the time-varying meshing stiffness of helical gears,
straight bevoloid gears, and helical bevoloid gears is calculated, and the correctness of the calculation
results is verified. Follows are the main conclusions:

1. Starting with the rack's normal coordinate system, the rack tooth shape equation in the rack
end coordinate system is obtained via coordinate transformation, and the meshing line equation in
the rack end coordinate system is obtained by combining with the meshing principle. The meshing
line equation is then transferred into the bevoloid gear's follow-up coordinate system via coordinate
transformation, and the bevoloid gear's tooth surface equation is enveloped by adjusting the gear
rotation angle. The equation of the rack in the normal coordinate system is then expressed as a
parameter and the parameter equation of the tooth surface of the bevoloid gear is obtained. Changing
the value of parameters, the left and right tooth surface images of the bevoloid gear are drawn, which
confirms the correctness of the equation derivation process. It is demonstrated that the meshing line
of the parallel-axis bevoloid gear is a straight line by assuming that a pair of bevoloid gears mesh
with the same rack, and the equation expression of the line in space at different moments is given.

2. Starting with the helical gear, the gear tooth slice is evenly divided in the direction of tooth
width, and the stiffness of a single gear tooth slice is obtained by using the Ishikawa formula to
calculate the deformation of each gear tooth slice, and then the single tooth meshing stiffness is
obtained by superposition. Unfolding the helical gear's working plane, the contact of adjacent gear
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teeth is analyzed, and the meshing stiffness of multi-tooth is obtained by superimposing the stiffness
of each distinct gear teeth at the same angle. For straight bevoloid gears, the characteristics of different
coincidence degrees of meshing between different layer gear tooth slices are highlighted, and the
time-varying meshing stiffness is determined. Due to the asymmetry of the end face's left and right
tooth faces, the end tooth shape is approximated as a combination of a rectangle and an oblique
trapezoid, and the deformation of the contact position is calculated using the energy principle, and
then the meshing stiffness of the bevoloid gear is calculated. The time-varying meshing stiffness of
the bevoloid gear pair is calculated separately under forward and reverse rotation, and it is
discovered that the changing trend of single-tooth meshing stiffness of the two is consistent, but the
total coincidence degrees during reversal is relatively small, resulting in a difference in the multi-
tooth meshing stiffness image. Comparing the meshing stiffness of straight gear, helical gear, straight
bevoloid gear, and helical bevoloid gear when multi-tooth meshing, it is discovered that the meshing
stiffness of straight gear and straight bevoloid gear is not significantly different, whereas the average
meshing stiffness of helical gear and helical bevoloid gear is larger and the degree of fluctuation is
smaller. The basic parameters of the helical bevoloid gear are then altered, and the effects of Module,
Number of teeth, Pressure angle, Helix angle, Taper angle, and Tooth width on the meshing stiffness
of multi-tooth are investigated using the average meshing stiffness and fluctuation degree as
indicators.

3. The static analysis of helical gears and helical bevoloid gears is performed using ABAQUS.
Set different gear corners, read the contact displacement and contact force at the contact position, and
calculate the single-tooth and multi-tooth meshing stiffnesses. The maximum stiffness is utilized as
the standard for single-tooth meshing stiffness; for multi-tooth meshing stiffness, the difference
between the analytical and finite element results is determined using the average stiffness and
fluctuation degree. After calculation and comparison, it is determined that the difference between the
results obtained by the two helical gear calculation methods is within an acceptable range, in other
words, the finite element analysis results can verify the correctness of the analytical calculation results.
For helical bevoloid gears, due to model complexity and insufficient modeling accuracy, there are
problems in the process of importing the finite element software that resulting in large errors.
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