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Abstract: Over the last decade, highly pathogenic avian influenza (HPAI) has severely affected

poultry production systems across the globe. In particular, massive pre-emptive depopulation of all

poultry within the certain distance has raised concerns regarding animal welfare and food security.

Thus, alternative approaches to reducing unnecessary depopulation, such as risk-based depopulation,

are highly demanded. This paper proposes a data-driven method to generate a rule table and

risk score for each farm to identify preventive measures against HPAI. To evaluate the proposed

method, 105 cases of HPAI occurring in a total of 381 farms in Jeollanam-do from 2014 to 2023 were

evaluated. The accuracy of preventive measure identification was assessed for each case using both

the conventional culling method and the proposed data-driven method. The evaluation showed

that the proposed method achieved an accuracy of 84.19%, significantly surpassing the previous

10.37%. The result was attributed to the proposed method reducing the false-positive rate by 83.61%

compared with the conventional method, thereby enhancing the reliability of identification. The

proposed method is expected to be utilized in selecting farms for monitoring and management of

HPAI.

Keywords: Highly Pathogenic Avian Influenza (HPAI); biosecurity zones; machine learning; risk

analysis; pre-emptive depopulation

1. Introduction

Highly pathogenic avian influenza (HPAI) continues to pose a sustained threat to the global livestock

industry and has significant socioeconomic impact [1]. According to reports from the World Health

Organization, the virus has a very high mortality rate of approximately 50% when transmitted to humans.

With increasing mutations, the risk of human infection is also on the rise. According to data from the Food

and Agriculture Organization, the number of global incidents is steadily increasing and is expected to

continue until 2023. This disease recurs every 2–3 years, and due to its rapid rate of spread, thorough

reevaluation and improvement of existing disease control strategies are needed [2]. Despite many efforts,

current control measures have proven insufficient in curbing the rapid spread of this disease [3].

South Korea, especially the Jeonnam region, has suffered significant damage from persistent

and large-scale outbreaks of HPAI since 2003 [4]. Cases in this region account for approximately

20% of national outbreaks, and as of 2019, they have severely impacted the livestock industry, which

constitutes approximately 6% of Jeollanam-do’s economic output. According to data from the Korean

Animal Health Integrated System (KAHIS) of the Ministry of Agriculture, Food and Rural Affairs,

the number of HPAI cases has been increasing in recent years. This has led to large-scale preventative

culling, movement restrictions, and various resulting issues such as economic losses, price hikes,

and fatigue in epidemic prevention [5]. Interestingly, South Korea is the only country in the world

that performs preventative culling in all farms within a 3-km radius. During the avian flu epidemic

in the winter of 2020/2021, approximately 13,015,000 birds were preventively culled within a 3-km
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radius of infected sites, accounting for approximately 70% of the total culled poultry [6]. This excessive

culling has led to various problems such as labor shortages, lack of burial sites, inadequacies in initial

response measures, and ethical dilemmas between farms and government departments, provoking a

wave of criticism against the government’s disease control policies.

In contrast, most developed countries focus on a preventive approach emphasizing individual

farm disinfection and sanitation and avoiding preventive culling [1]. Countries such as the Netherlands

and Hong Kong control avian flu by blocking transmission routes or using vaccines, approaches that are

known to be economical and effective in the long term [3]. South Korea should also consider referring

to these advanced methodologies, reconsidering the targets for preventive culling, and conducting

scientific epidemiological investigations and risk assessments on a farm-by-farm basis [7].

The high rate of culling and rapid spread of the disease indicates that there is a significant need

for improvement in current disease response strategies [1]. Therefore, more effective and efficient

response measures are urgently needed to mitigate the impact of this spread [3]. To this end, Korean

health authorities are considering options including risk-based prevention and response systems

in collaboration with industry, universities, and research institutes, as well as artificial intelligence

(AI)-based risk prediction systems [8]. Specifically, the adoption of AI and Internet of Things (IoT)

technology allows for proactive responses for high-risk farms and regions, and plans are being explored

for risk prediction and priority allocation of epidemic prevention resources [9].

This paper proposes a data-driven approach to identify isolation zones in the event of HPAI

outbreaks [10]. The proposed method defines a heuristic rule table based on expert opinions, considering

factors such as geography, farms, outbreak history, surrounding facilities, migratory bird habitats,

and weather information [11]. Using this rule table, a factor-specific risk assessment is conducted for

farms within the area of interest. Scores obtained from these risk assessments are combined to calculate

the risk score for each farm, and a support vector machine (SVM)-based outbreak standard score is

derived to classify these risk scores [12]. Finally, based on the outbreak standard score, the designation

of each farm for HPAI prevention is determined. The research focuses on the development of early

detection systems for HPAI, data-based spread response systems, and emergency decision-making

support systems. Through this, we aim to conduct an in-depth study of risk factors related to HPAI

outbreaks in the Jeonnam region and to explore appropriate measures to minimize transmission.

2. Materials and Methods

2.1. Data Preparation and Organization

The data for identifying HPAI quarantine zones are intricately organized by major categories

closely related to HPAI outbreak factors and their respective sub-categories. The final structure consists

of a total of 7 major categories and 13 sub-categories. Firstly, Table 1 is composed of terrain items,

including sub-categories on mountain ranges [13] and river ratios [14]. Table 2 addresses the status

around the farm, with sub-categories including proximity to roads [15], population density [14], farm

density [15], farmland ratio [13], and proximity to traditional markets. Lastly, Table 3 consists of breeding

information, epidemic information, weather information, epidemiological information, and ecological

environmental information, with sub-categories including breeding types, distance from nearby farms

subject to analysis [16], temperature [17], wind direction [17], analysis farm occurrence history, and distance

from migratory bird habitats [15]. Ultimately, all major categories are termed under one large ’rule table.’

The composition of the sub-items in the rule table is divided into two main forms. The first

includes items considering the correlation between the target farm and nearby farms, such as mountain

ranges, distance to nearby farms, and wind direction. These three items can verify the influence of

nearby farms on the target farm based on certain conditions. The other form calculates the conditions

of the sub-items based on the target farm itself. Finally, scores are set for all sub-items of the rule table.
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Table 1. Decision rules related to geographical information for HPAI quarantine zone designation.

Highly Pathogenic Avian Influenza (HPAI) Farm Culling Criteria Score

Terrain

Mountain
range

In cases where there are mountain ranges or terrains with an altitude
of 50m or higher blocking the direct path

between the farm under analysis and the nearby farm.
-10

If the farm under analysis is located in the
mountains or a mountain is within 100m proximity.

+3

River ratio

When the proportion of national rivers or local rivers
within 3km of the farm under analysis is 3% or higher.

+5

When the proportion of national rivers or local rivers within 3km
of the farm under analysis is between 2% and 3%.

+2

When the proportion of national rivers or local rivers within 3km
of the farm under analysis is between 1% and 2%.

+1

When the proportion of national rivers or local rivers within 3km
of the farm under analysis is 1% or less.

-2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2023                   doi:10.20944/preprints202310.1557.v1

https://doi.org/10.20944/preprints202310.1557.v1


4 of 13

Table 2. Decision rules related to the status around farms for designating HPAI quarantine zones.

Highly Pathogenic Avian Influenza (HPAI) Farm Culling Criteria Score

Status
around the
farm

Road
proximity

In cases where the distance between the farm under analysis and
the surrounding road (with 2 or more lanes) is within 1km.

+5

In cases where the distance between the farm under analysis and
the surrounding road (with 2 or more lanes) is between 1km and 3km.

+2

In cases where the distance between the farm under analysis and
the surrounding road (with 2 or more lanes) exceeds 3km.

-3

Population
density

When the population density of the administrative area where
the farm under analysis is located is 100

or more per 1 km2.
+5

When the population density of the administrative area where
the farm under analysis is located is 50

or more per 1 km2.
+2

When the population density of the administrative area where
the farm under analysis is located is 30

or more per 1 km2.
+1

When the population density of the administrative area where
the farm under analysis is located is 20

or fewer per 1 km2.
-2

Farm
density

When the combined number of poultry and
duck farms in the administrative area of the farm

under analysis is 1 or more per 1 km2.
+10

When the combined number of poultry and duck farms
in the administrative area of the farm under analysis

is between 0.5 and 0.1 per 1 km2.
+5

When the combined number of poultry and duck farms
in the administrative area of the farm under analysis

is between 0.3 and 0.5 per 1 km2.
+2

When the combined number of poultry and duck farms
in the administrative area of the farm under analysis

is 0.3 or fewer per 1 km2.
-2

Farmland
ratio

When the proportion of farmland within 3km of the
farm under analysis is 30% or more.

+5

When the proportion of farmland within 3km
of the farm under analysis is between 20% and 30%.

+2

When the proportion of farmland within 3km
of the farm under analysis is between 10% and 20%.

+1

When the proportion of farmland within 3km
of the farm under analysis is 10% or less.

-2

Traditional
market

When the distance between the analysis target farm
and the market is less than 1km.

+5

When the distance between the analyzed farm and the market is
more than 1km and less than 2km.

+3

When the distance between the analysis target farm and the market is
more than 2km and less than 5km.

+2

When the distance between the analysis target farm and the market
exceeds 5km.

-1
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Table 3. Decision rules related to breeding information, infectious disease information, meteorological

information, epidemiological information, and ecological environment information for designating

HPAI quarantine zones.

Highly Pathogenic Avian Influenza (HPAI) Farm Culling Criteria Score

Breed
Breeding
type

In the case where the farm under analysis raises breeding chickens. +0

In the case where the farm under analysis raises meat chickens. +0

In the case where the farm under analysis raises laying hens. +5

In the case where the farm under analysis raises breeding ducks. +20

In the case where the farm under analysis raises meat ducks. +15

Epidemic
information

Analyzing
nearby farm
distances

If the distance between the farm under analysis and
the nearby farm is within 500m.

+30

If the distance between the farm under analysis and
the nearby farm is 500m 3km.

+5

If the distance between the farm under analysis and
the nearby farm is 3km 10km.

+2

If the distance between the farm under analysis and
the nearby farm exceeds 10km.

-5

Weather
Temperature

If the temperature on the day of analysis is below 0°C. +7

If the temperature on the day of analysis is 0°C 15°C. +5

If the temperature on the day of analysis is 15°C 20°C. +3

If the temperature on the day of analysis is 20°C 30°C. +0

If the temperature on the day of analysis exceeds 30°C. -10

Wind direction
If the wind blows from the nearby farm under analysis
towards the farm under analysis at an average speed

of 3.3 m/s or more on the day of analysis.
+5

Epidemiological
history

Analysis
farm
occurrence
history

In the case where the farm under analysis
has had one occurrence of HPAI in the past 5 years.

+10

In the case where the farm under analysis
has had two occurrences of HPAI in the past 5 years.

+20

In the case where the farm under analysis
has had three occurrences of HPAI in the past 5 years.

+40

Ecological
environment

Distance
from
migratory
bird habitat

If the distance between the farm under analysis and
the main migratory bird habitat is within 15km.

+7

If the distance between the farm under analysis and
the main migratory bird habitat is 15 30km.

+3

If the distance between the farm under analysis and
the main migratory bird habitat exceeds 30km.

-3

Once the overall score setting for the conditions of the sub-items in the rule table is completed,

we collect raw data that corresponds to the sub-items. For the collection of items such as mountain

range, river ratio, road proximity, population density, and distance from bird arrival areas, we utilized

data from [18]. Additionally, information on farm density, farmland ratio, and proximity to traditional

markets was based on data from [19]. Data related to weather, such as temperature and wind direction,

were collected through [20]. Finally, information related to the farm, such as types of livestock breeding,

distance to nearby farms under analysis, and outbreak history of the analysis farm, was provided

through the relevant agency [21].

Following the raw data collection phase, a preprocessing step is conducted to ensure that each

farm’s data can be directly applied to the rule table. In this stage, the raw data is matched to each
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farm according to Table 1, Table 2, and Table 3 of the entire rule table, so that each farm possesses

the variables and values of the sub-items. However, for sub-items derived from interrelationships,

such as distance to nearby farms, temperature, wind direction, and mountain ranges, or for weather

information items that change daily, distance analysis and weather data processing are carried out using

latitude and longitude coordinate values for each farm variable. Through these data configuration

processes, various sub-items and rules necessary for identifying HPAI quarantine zones are accurately

integrated and preprocessed for each farm, ultimately preparing them for final analysis.

2.2. Rule-Based Scoring

To identify the HPAI quarantine zones, the final evaluation score for all farms is calculated based

on the scoring rule table. This scoring rule is structured to assign points to specific items that meet

certain conditions according to the rules shown in Tables 1–3.

The evaluation scoring method designates each chicken and duck farm across the country as

an analysis target, represented by a. The nearby farms within a 3,000m radius from the designated

analysis farm a are referred to as b. Figure 1 illustrates an example of the six processes for setting the

range of these nearby farms when each farm becomes the benchmark for analysis. The evaluation

score is derived by calculating the item scores according to specific rule items for these designated

nearby farms. Equation (1) represents the formula to determine the single evaluation score, where Sa:b

denotes the evaluation score of farm a in relation to its nearby farms b. m stands for the number of rule

items, and rx signifies the score corresponding to rule item x.

Sa:b =
m

∑
x=1

rx (1)

If there are no other farms within a 3,000-m radius, the evaluation score for the analysis farm is

calculated considering only its surrounding environmental rules.

After evaluating all the chicken and duck farms nationwide, a single evaluation score for

the nearby farms within a 3,000m radius can be derived, as shown in the example of Figure 1.

Table 4 depicts each example from Figure 1 in a table format and illustrates the calculation of the

final evaluation score using the average value after the single evaluation scores have been derived.

Equation (2) explains the method to derive the final evaluation score. Here, FSa is the final evaluation

score of the analysis target farm a, n is the number of nearby farms within a 3,000m radius centered on

the analysis target farm a, k is the number of nearby farms determined as outliers, and Sa:b represents

the single score between farm a and the nearby farm b.

FSa =
1

n − k

n−k

∑
b=1

Sa:b (2)
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Figure 1. Each map contains six examples of farms subject to analysis. (a)–(f) on each map are poultry

farms, the red dots on each of the six maps are the analysis target farms, the red circles are the analysis

farms within a 3000m radius, and the yellow dots are the nearby analysis farms.

Table 4. Final evaluation score calculated with each farm being analyzed once from (a) to (f) in Figure 1.

Farm Name Evaluation Score Final Evaluation Score

(a) S(a):(b)=45, S(a):(c)=30, S(a):(d)=48, S(a):(e)=32, S(a):( f )=38 FS(a) = 38.6

(b) S(b):(a)=50, S(b):(c)=54, S(b):(d)=55, S(b):(e)=60, S(b):( f )=58 FS(b) = 55.4

(c) S(c):(a)=12, S(c):(b)=16, S(c):(d)=18, S(c):(e)=20, S(c):( f )=9 FS(c) = 15

(d) S(d):(a)=50, S(d):(b)=54, S(d):(c)=55, S(d):(e)=60, S(d):( f )=58 FS(d) = 55.4

(e) S(e):(a)=88, S(e):(b)=76, S(e):(c)=74, S(e):(d)=79, S(e):( f )=85 FS(e) = 80.4

(f) S( f ):(a)=33, S( f ):(b)=35, S( f ):(c)=50, S( f ):(d)=48, S( f ):(e)=39 FS( f ) = 41

2.3. Decision Model

SVM inherently possesses excellent generalization capabilities and is useful for building accurate

and reliable classification models even with limited data [22]. It is particularly specialized for binary

and multi-classification, making it highly suitable for accurately classifying whether the final evaluation

score of a farm is at a dangerous level.

First, during the training process, the final evaluation scores of farms nationwide that were

analyzed in Section 3.2 are combined with historical occurrence data, as depicted in Figure 2. Farms

with at least one past occurrence of HPAI are designated as Class 1, and farms with no such history are

designated as Class 0 [23]. The completed training dataset then uses the final evaluation score just

before training as the feature variable and the class information regarding occurrence history as the

target variable, and training is conducted. Figure 3 illustrates the training process and the criteria for

deriving the score.

However, an important challenge in this approach is the potential issue of data imbalance, given

that historical data on HPAI occurrences in farms are not abundant [24]. To address this challenge,

we employ a strategy involving the adjustment of class-specific weights. Through iterative testing,

we optimize these weights to balance the training process. SVM training is subsequently performed

using a Gaussian kernel to improve the model’s ability to generalize from the training data to unseen

instances. The model in Figure 4a was trained by assigning equal weights to all classes, resulting
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in a relatively low baseline score. Consequently, the accuracy reached 85.19%. On the other hand,

the Figure 4b model was trained by applying optimal weights, achieving a high accuracy of 99.74%.

The accuracy difference between these two models is 14.55%, confirming that weight adjustment has a

significant impact on model training.

In our upcoming experiment details, we delve into a comparative analysis illustrating the effect

of these strategic weight adjustments. We designate these weights as w representing the specific values

assigned during the training phase. This notation aids in clearly distinguishing the contribution of

each weight parameter to the model’s overall performance, highlighting the pivotal role of fine-tuning

the balance between classes to enhance the prediction accuracy for HPAI occurrences.

Figure 2. Example of the process of constructing Training data by merging final evaluation score data

and past occurrence history data.

Figure 3. Example of the process of deriving a criterion score by dividing training data into feature

data and target data.

Upon completion of the training phase, we establish a criterion score, which is illustrated in

Figure 3, to serve as the risk threshold score for classification. Farms that have evaluation scores

surpassing this criterion are labeled as “dangerous farms” that require immediate attention and

potentially stringent measures. On the other hand, farms that score below this criterion are further

segmented into two categories: “caution farms” and “safe farms.” This categorization is based on

their average evaluation scores, allowing for a nuanced understanding of the risk levels and thereby

enabling more targeted interventions.
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Figure 4. SVM model learned by setting the weights for each class to be the same (a) and SVM model

learned by deriving the optimal weights (b).

2.4. Experiment Setup

In this research, we zero in on the issue of HPAI affecting farms in the Jeollanam-do region

of South Korea. The temporal scope spans from March 14, 2014, to April 7, 2023, encapsulating

105 reported HPAI cases across 381 distinct farms. Designed as a bifurcated experimental inquiry,

the research engages deeply with two different but related facets of the HPAI outbreak scenario.

The first experimental session adopts a micro view by examining the geographical cluster formed

by each farm that has experienced an HPAI outbreak [4]. When such a farm is identified, it becomes a

point of criterion, and the surrounding farms within a 3,000-m radius are closely examined. If any of

these nearby farms report an HPAI case within a month from the date of the outbreak at the criterion

farm, that cluster is treated as a single case for the analysis. This method allowed us to pinpoint

47 unique cases of HPAI spread in the region.

The second session shifts the lens to a macro view by analyzing the data year by year [25].

The occurrence dates of the farms from the 47 cases of the first session are grouped by year, resulting in

8 separate case sessions corresponding to the years 2014, 2015, 2016, 2017, 2020, 2021, 2022, and 2023.

Then, the methodology remains consistent across both experimental sessions. The term “positive”

is assigned to farms within the 3,000-m radius of a subject farm if they also experienced an HPAI

outbreak within one month of the incident at the subject farm. Those that do not meet these criteria are

tagged as “negative.” Our ground-truth data are then formed based on these designations.

To evaluate various efficiencies for identifying high-risk farms, we compared four approaches

using actual data. The first approach is the conventional method of culling by rule [16], which classifies

all neighboring farms as ’positive’. The remaining three approaches hinge on the final evaluation

scores calculated through a rule engine to classify high-risk farms. These methods, distinct from one

another, depend on how the weights, designated as w, are adjusted. This adjustment is critical in

deriving the criterion score that becomes instrumental in future risk assessments conducted via the

rule engine.

The first of these, termed the w=1 maintains the status quo in learning, with no weight adjustment

to offset class imbalance, thereby not considering the ratio. This approach derives the risk criterion score

based on the existing data distribution, without any regard for potential skewness between classes.

In what we’ve designated the w=485 we take a different tack. Here, the ratio between classes 0

and 1 is meticulously adjusted to attain parity. Through this method, the risk criterion score is derived

by considering more nuanced factors, even if there is a pronounced imbalance within each class. This

strategy allows for a more balanced view, potentially uncovering risks that a more lopsided approach

might overlook.

The w=8.5 represents our most refined approach. This method involves learning with the most

optimized weight, determined through the painstaking process of fine-tuning the weight ratio. The risk

criterion score in this model benefits from the most balanced and nuanced perspective, carefully honed

through this optimization process.
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Upon establishing these methodologies, we conducted a comprehensive comparison. We

juxtaposed the actual data from individual farm sessions and annual sessions against the outcomes

predicted by all four approaches.

3. Results

In this section, a confusion matrix was derived by comparing the experimental results of the

two sessions set in 2.4 with actual data regarding the HPAI cases. Performance was compared using

classification evaluation metrics such as the F1 score and accuracy.

Table 5 displays the results of the average of 47 experimental outcomes from individual farm

sessions, while Table 6 represents the overall results of the experiments for the annual sessions.

Surprisingly, both sessions showed significant improvements in all the w=1, w=485, and w=8.5

experiments compared to the conventional method of culling by rule [16]. This resulted in an accuracy

of 84.19%, greatly surpassing the conventional method’s accuracy of 10.37%. It was also observed that

false-positive decreased by 83.61%, leading to a reduction in unnecessary culling.

Table 5. Individual farm session comprehensive evaluation index.

Experiment Method Recall Precision Accuracy F1 score

Conventional Method 1 0.1037 0.1037 0.1817
Proposed Method (w=1) 0.7865 0.4252 0.8408 0.5046

Proposed Method (w=485) 0.9851 0.1805 0.4537 0.2829
Proposed Method (w=8.5) 0.839 0.489 0.8419 0.5619
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Table 6. Session evaluation metrics by year.

Year of Occurrence Experiment Method Recall Precision Accuracy F1 score

2014

Conventional Method 1 0.093023 0.093023 0.17
Proposed Method (w=1) 0.75 0.222222 0.732558 0.343

Proposed Method (w=485) 1 0.145455 0.453488 0.254
Proposed Method (w=8.5) 0.75 0.222222 0.732558 0.343

2015

Conventional Method 1 0.134043 0.134043 0.236
Proposed Method (w=1) 0.952381 0.437956 0.829787 0.6

Proposed Method (w=485) 1 0.225806 0.540426 0.368
Proposed Method (w=8.5) 0.904762 0.431818 0.82766 0.585

2016

Conventional Method 1 0.060241 0.060241 0.114
Proposed Method (w=1) 1 0.138889 0.626506 0.244

Proposed Method (w=485) 1 0.104167 0.481928 0.189
Proposed Method (w=8.5) 1 0.138889 0.626506 0.244

2017

Conventional Method 1 0.054348 0.054348 0.103
Proposed Method (w=1) 1 0.714286 0.978261 0.833

Proposed Method (w=485) 1 0.076923 0.347826 0.143
Proposed Method (w=8.5) 1 0.714286 0.978261 0.833

2020

Conventional Method 1 0.02381 0.02381 0.047
Proposed Method (w=1) 1 0.111111 0.809524 0.2

Proposed Method (w=485) 1 0.034483 0.333333 0.067
Proposed Method (w=8.5) 1 0.125 0.833333 0.222

2021

Conventional Method 1 0.057143 0.057143 0.108
Proposed Method (w=1) 1 0.4 0.914286 0.571

Proposed Method (w=485) 1 0.090909 0.428571 0.167
Proposed Method (w=8.5) 1 0.4 0.914286 0.571

2022

Conventional Method 1 0.097436 0.097436 0.178
Proposed Method (w=1) 0.368421 0.466667 0.897436 0.412

Proposed Method (w=485) 0.894737 0.114865 0.317949 0.204
Proposed Method (w=8.5) 0.631579 0.461538 0.892308 0.533

2023

Conventional Method 1 0.030303 0.030303 0.059
Proposed Method (w=1) 1 0.333333 0.939394 0.5

Proposed Method (w=485) 1 0.037037 0.212121 0.071
Proposed Method (w=8.5) 1 0.285714 0.924242 0.444

4. Discussion

This research introduces an integrated methodology focused on the precision of farm risk

evaluations within HPAI quarantine zones. By drawing on a diverse set of variables, the model

achieves a comprehensive risk assessment. These variables include geographical details, livestock

facility factors, meteorological data, and epidemiological insights. Together, they form an intricate

blend that not only ensures a reliable evaluation of farm risks but also highlights the versatility of the

approach [26].

A significant feature of this research is the incorporation of the SVM classification model.

Renowned for its exceptional generalization capabilities, SVM proves invaluable even when working

with limited datasets [27]. The ability of the model to provide a nuanced assessment of farm risks

is further enhanced by addressing data imbalances. This is achieved through class-specific weight

adjustments, amplifying the overall efficacy of the model.

From an economic standpoint, the model presents a departure from conventional methods. While

conventional approaches often call for the blanket culling of animals within a quarantine zone, this

research suggests a more discerning strategy. By focusing on the risks associated with individual farms,

this methodology reduces unnecessary culling. This approach not only prioritizes animal welfare but

also leads to significant cost savings [28].
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5. Conclusions

The study suggests that by harnessing technology to pinpoint animals for culling, unnecessary

culling can be substantially reduced. When considering guidelines based on expert advice for

identifying various livestock diseases, it is evident that this model might be suitable for addressing

diseases such as foot and mouth disease and African swine fever. This underscores the adaptability

of this model and its relevance for tackling a range of animal health issues. The pivotal takeaway

from the research is a needed shift in perspective: instead of the prevailing belief that “more control is

always better,” smart and science-based control emerged as the optimal approach.
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