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Abstract: In this work, an entropy-stable and well-balanced numerical scheme for a one-dimensional

blood flow model is presented. Such scheme is obtained from an explicit entropy conservative flux

along with a second order discretization of the source term by using centered finite differences. We

prove that the scheme is entropy-stable and preserves steady-states solutions. In addition, some

numerical examples are included to test the performance of the proposed scheme.

Keywords: One-dimensional blood flow model, Balanced laws, Entropy-stable scheme, Steady-states.

1. Introduction

Blood flow in arteries can be described mathematically by the Navier-Stokes equations in

three dimensions (3D). However, numerical approximations for three-dimensional models are

computationally expensive. Therefore, the simpler one-dimensional (1D) models are considered,

which provide a realistic description of certain parts of the cardiovascular system and also provide

boundary conditions for the more complex three-dimensional models. A simplified 1D model that

describes the blood flow in arteries is given by the following system of partial differential equations

(see e.g. [1]) 



∂A

∂t
+

∂(AU)

∂x
= 0

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂P

∂x
=

F
ρA

,

(1)

where A(x, t) = πR2(x, t) is the cross-sectional area of the vessel at spatial position x and time t with

R(x, t) being the radius, U(x, t) is the mean blood velocity in the axial direction, ρ is the blood density,

assumed to be constant and equal to 1060 kg/m3, P = P(A) is the internal pressure and F (x, t) is the

friction force per unit length. The present work is restricted to the inviscid limit where F = 0.

Several expressions can be found in the literature to describe the pressure. In the present work we

use the algebraic expression proposed in [2]:

P = Pext + β(
√

A −
√

A0), (2)

where the external pressure Pext, the coefficient β stands for the arterial stiffness and is supposedly

constant and A0 = A0(x) is the vessel cross-sectional area at rest, which may be variable in the case of

some pathologies.

We refer to equations (1) as the system (A, U). Such equations are an example of a system of balance

laws
∂w

∂t
+

∂f(w)

∂x
= S(w) (3)
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where

w =

[
A

U

]
, f(w) =




AU

U2

2
+

β
√

A

ρ


 , S(w) =




0

β

ρ

∂
√

A0

∂x




correspond to the vector of unknowns, flux function and source term, respectively. In order to analyse

the characteristic information it is convenient to write the system in the non-conservative form

∂w

∂t
+ J(w)

∂w

∂x
= S(x, w),

where

J(w) =

[
U A

c2/A U

]

is the Jacobian matrix of the flux function with eigenvalues

λ1 = U − c y λ2 = U + c

and the corresponding right eigenvectors are given by

r1 = [−1, c/A]⊤ y r2 = [1, c/A]⊤. (4)

Here, c =

√
β
√

A
2ρ is the Moens-Korteweg wave speed.

It is well known that solutions of balance laws may contain discontinuities, even for smooth initial

data. Consequently, the solutions of such systems must be considered in weak sense. Moreover, the

weak solutions may not be unique, then it is necessary to impose an additional admissibility criterion

or entropy conditions to select among the possible solutions, the one that is physically relevant [3]. In

particular, the system (A, U) admits the entropy inequality

∂η̂(w)

∂t
+

∂Ĝ(w)

∂x
≤ 0, (5)

where (η̂, Ĝ) is the extended entropy pair introduced in [4]:

η̂ = η − β
√

A0

ρ
A , Ĝ = G − β

√
A0

ρ
AU, (6)

and (η, G) is the entropy pair (η, G) given by

η =
1

2
AU2 +

2βA3/2

3ρ
, G =

1

2
AU3 +

βUA3/2

ρ
(7)

Using the entropy pair we may obtain the entropy variables

v(w) = ∇η =

[
U2

2
+

β
√

A

ρ
, AU

]⊤
(8)

with the corresponding entropy potential

ψ(v) := v⊤f(w(v))− G(w(v)) =
AU3

2
+

βUA3/2

ρ
. (9)
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In the extended case, we have

v̂(w) = ∇η̂ = v − [β
√

A0/ρ, 0]⊤. (10)

Systems as (3) are of special interest because of the delicate balance that must exist between the

convective term and the source term during the time evolution. Specifically, the steady-states solutions

for the system (3) are the solutions w(x) which are time-independent. Thus, steady-state solutions

satisfy the system
∂f(w)

∂x
= S(w). (11)

In particular, the system (A, U) admits the following steady-state solution, known as the (non-zero

pressure) man-at-eternal-rest steady state or dead-man equilibrium [5]:

U = 0 y
√

A −
√

A0 = C = constant. (12)

When C = 0, the (zero pressure) man-at-eternal-rest steady state is obtained, namely

U = 0 and A = A0. (13)

It is crucial that numerical methods to approximate steady-state solutions also satisfy a discrete version

of (11). Such methods are termed well-balanced schemes.

2. Numerical method

Since, in general, it is not possible to find an analytical solution of the system (3), it is imperative

to approximate the solution numerically. To this end, we consider a semi-discrete finite volume scheme

for (3) on a uniform spatial mesh with nodes xj = j∆x, j ∈ Z:

dwj(t)

dt
= − 1

∆x

(
Fj+1/2 − Fj−1/2

)
+ Sj, (14)

where wj(t) is the cell average on Ij = [xj−1/2, xj+1/2), F j+1/2 is the numerical flux associated with

xj+1/2 and Sj is a discretization of the source term. It should be noted that the first term on the

right-hand side corresponds to the discretisation of the spatial derivative −f(w)x. The discretization

of the time derivative will be discussed later.

The scheme (14) is entropy stable with respect to the entropy pair (η̂, Ĝ) if it satisfies a discrete

version of the entropy inequality (5), that is,

d

dt
η̂(wj(t)) +

1

∆x

(
Ĝj+1/2 − Ĝj−1/2

)
≤ 0 (15)

for some numerical entropy flux Ĝj+1/2 consistent with the entropy flux Ĝ. If equality holds in (15), then

the scheme (14) is called entropy conservative.

From now on, we use

[[a]]j+1/2 := aj+1 − aj, {{a}}j+1/2 :=
1

2
(aj+1 + aj).

to denote, respectively, the jump of a across the interface xj+1/2 and the arithmetic mean of a quantity.

In this work we will used a numerical flux of the form [7]:

Fj+1/2 = F̃j+1/2 −
1

2
Rj+1/2Λj+1/2〈〈z〉〉j+1/2, (16)

where
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(i). F̃j+1/2 = [F̃1,j+1/2, F̃2,j+1/2]
⊤ is the second order and entropy conservative flux for the

homogeneous case of (3) given by

F̃1,j+1/2 = {{AU}}j+1/2, F̃2,j+1/2 =
1

2
{{U2}}j+1/2 +

β

ρ
{{
√

A}}j+1/2, (17)

with the corresponding numerical entropy flux

G̃j+1/2 := {{v⊤}}j+1/2F̃j+1/2 − {{ψ}}j+1/2. (18)

The numerical flux (17) was obtained in [8] from the condition (see [6])

[[v⊤]]j+1/2F̃j+1/2 = [[ψ]]j+1/2. (19)

(ii). Rj+1/2 is the matrix of right eigenvectors of the Jacobian matrix J(wj+1/2) being evaluated at

the average state wj+1/2 := (wj + wj+1)/2, Λj+1/2 = diag(|λ1|, |λ2|) is a Roe-type matrix

and 〈〈z〉〉j+1/2 = z+j+1/2 − z−j+1/2 z−j+1/2 y z+j+1/2 denoting, respectively, the left and right

limiting values of the scaled entropy variables z := R⊤
j+1/2v̂ at interface xj+1/2, obtained by ENO

reconstruction. The choice of this ENO method is due to the fact that it satisfies the so-called sign

property [9]:

sign(〈〈z〉〉j+1/2) = sign([[z]]j+1/2), (20)

which will be useful in proving entropy stability of the flux (16).

The discretization of the second component of the source term B(x) := ∂x

√
A0(x) is performed

using the simple and well-known second-order centered difference approximation

B′(x) ≈ B(x + ∆x)− B(x − ∆x)

2∆x
.

Thus, the discretization of the source term yields

Sj =
β

ρ




0

Bj+1 − Bj−1

2∆x
,


 (21)

where Bj denotes the discrete approximation of B(xj) =
√

A0(xj).

3. Theoretical results and numerical experiments

In this section it is shown that the scheme (14) with numerical flux (16) and discretization of

the source term (21) is entropy stable and well- balanced. The proof is similar to that developed for

the Saint-Venant equations and the relativistic magnetohydrodynamics equations in [10] and [11],

respectively. Then, some examples are included to check that the numerical scheme verifies these

properties at the discrete level.

Theorem 1. The numerical scheme (14) with numerical flux (16) and discretization of the source term (21)

satisfies the following properties:

(i) It is entropy stable, i.e., satisfies the discrete entropy inequality (15), where η̂ is the entropy function given

by (6) and the corresponding numerical entropy flux is

Ĝj+1/2 = G̃j+1/2 − D̃j+1/2 (22)
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with

G̃j+1/2 = G̃j+1/2 −
β(Bj Aj+1Uj+1 + Bj+1 AjUj)

2ρ
, (23)

D̃j+1/2 =
1

2
{{v̂T}}j+1/2Rj+1/2Λj+1/2〈〈z〉〉j+1/2. (24)

(ii) it preserves the discrete version of the man-at-eternal-rest (12), this means that given the initial data

Uj = 0,
√

Aj − Bj ≡ C ∀j, (25)

with C a constant, then the solution obtained with the scheme (14) satisfies

dwj

dt
= 0 ∀j.

Proof. Let us first prove entropy stability. Multiplying (14) by v̂⊤
j yields

v̂⊤
j

dwj(t)

dt
= − 1

∆x
v̂⊤

j

(
Fj+1/2 − Fj−1/2

)
+ v̂⊤

j Sj (26)

= − 1

∆x
v̂⊤

j

(
F̃j+1/2 − F̃j−1/2

)
(27)

− 1

∆x
v̂⊤

j

(
−1

2
Rj+1/2Λj+1/2〈〈z〉〉j+1/2 +

1

2
Rj−1/2Λj−1/2〈〈z〉〉j−1/2

)
(28)

+ v̂⊤
j Sj (29)

The left-hand side of (26) gives

v̂⊤
j

dwj

dt
= ∇η̂

dwj

dt
=

dη̂(wj)

dt
(30)

We now turn to the right-hand side. Using (10), the numerical flux F̃j+1/2 explicitly given by (17), the

equation (18) and the definition of G̃j+1/2 (18), we get

v̂⊤
j

(
F̃j+1/2 − F̃j−1/2

)
= v⊤

j

(
F̃j+1/2 − F̃j−1/2

)
− [βBj/ρ, 0]

(
F̃j+1/2 − F̃j−1/2

)

= {{v⊤}}j+1/2F̃j+1/2 −
1

2
[[v⊤]]j+1/2F̃j+1/2

− {{v⊤}}j−1/2F̃j−1/2 −
1

2
[[v⊤]]j−1/2F̃j−1/2

−
βBj

ρ
({{AU}}j+1/2 − {{AU}}j−1/2)

= {{v⊤}}j+1/2F̃j+1/2 −
1

2
[[ψ]]j+1/2 − {{v⊤}}j−1/2F̃j−1/2 −

1

2
[[ψ]]j−1/2

− β

2ρ
(Bj Aj+1Uj+1 − Bj Aj−1Uj−1)

= {{v⊤}}j+1/2F̃j+1/2 − {{ψ}}j+1/2 − {{v⊤}}j−1/2F̃j−1/2 + {{ψ}}j−1/2

− β

2ρ
(Bj Aj+1Uj+1 − Bj Aj−1Uj−1)

=
(

G̃j+1/2 − G̃j−1/2

)
− β

2ρ
(Bj Aj+1Uj+1 − Bj Aj−1Uj−1).

(31)
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To deal with the factor (28) in parenthesis, we take into account the definition of the scaled entropy

variables and (24) to obtain

− 1

2
v̂⊤

j (Rj+1/2Λj+1/2〈〈z〉〉j+1/2 − Rj−1/2Λj−1/2〈〈z〉〉j−1/2)

= −1

2
{{v̂⊤}}j+1/2Rj+1/2Λj+1/2〈〈z〉〉j+1/2 +

1

2
{{v̂⊤}}j−1/2Rj−1/2Λj−1/2〈〈z〉〉j−1/2

+
1

4
[[v̂⊤]]j+1/2Rj+1/2Λj+1/2〈〈z〉〉j+1/2 +

1

4
[[v̂⊤]]j−1/2Rj−1/2Λj−1/2〈〈z〉〉j−1/2

= −(D̃j+1/2 − D̃j−1/2) +
1

4
[[z⊤]]j+1/2Λj+1/2〈〈z〉〉j+1/2 +

1

4
[[z⊤]]j−1/2Λj−1/2〈〈z〉〉j−1/2

(32)

Using the discretization of the source term bive by (21) we can rewrite (29) as

v̂⊤
j Sj = (v⊤ − [β

√
A0/ρ, 0])




0

β(Bj+1 − Bj−1)

2ρ∆x




=


U2

j

2
+

β
√

Aj

ρ
, AjUj







0

β(Bj+1 − Bj−1)

2ρ∆x




=
β

2ρ∆x
(Bj+1 AjUj − Bj−1 AjUj).

(33)

Inserting (30), (31), (32) and (33) into (26) an dusing the definition of G̃j+1/2 given by (22) we get

dη̂(wj)

dt
=

− 1

∆x

[(
G̃j+1/2 −

β
(

Bj Aj+1Uj+1 + Bj+1 AjUj

)

2ρ

)
−
(

G̃j−1/2 −
β
(

Bj−1 AjUj + Bj Aj−1Uj−1

)

2ρ

)]

+
1

∆x
(D̃j+1/2 − D̃j−1/2)−

1

4∆x
[[z⊤]]j+1/2Λj+1/2〈〈z〉〉j+1/2 −

1

4∆x
[[z⊤]]j−1/2Λj−1/2〈〈z〉〉j−1/2

= − 1

∆x

(
(G̃j+1/2 − D̃j+1/2)− (G̃j−1/2 − D̃j−1/2)

)

− 1

4∆x

(
[[z⊤]]j+1/2Λj+1/2〈〈z〉〉j+1/2 + [[z⊤]]j−1/2Λj−1/2〈〈z〉〉j−1/2

)

= − 1

∆x
(Ĝj+1/2 − Ĝj−1/2)−

1

4∆x

(
[[z⊤]]j+1/2Λj+1/2〈〈z〉〉j+1/2 + [[z⊤]]j−1/2Λj−1/2〈〈z〉〉j−1/2

)

Therefore,

dη̂(wj)

dt
+

1

∆x
(Ĝj+1/2 − Ĝj−1/2)

= − 1

4∆x

(
[[z⊤]]j+1/2Λj+1/2〈〈z〉〉j+1/2 + [[z⊤]]j−1/2Λj−1/2〈〈z〉〉j−1/2

)

≤ 0

where the last inequality is obtained by using the sign property. Summing up,

dη̂(wj)

dt
+

1

∆x
(Ĝj+1/2 − Ĝj−1/2) ≤ 0,

which proves entropy stability.
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We next show the second part of the theorem. From (25) it follows easily that

F̃j+1/2 =

[
0,

β

ρ
{{
√

A}}j+1/2

]⊤
, v̂j =

[
βC

ρ
, 0

]⊤
.

The second equality implies that v̂j is constant, thus 〈〈z〉〉j+1/2 = 0, and consequently the diffusion

term in (16) vanishes. On account of this remark, we have Fj+1/2 = F̃j+1/2. Hence,

dwj(t)

dt
= − β

ρ∆x

(
F̃j+1/2 − F̃j−1/2

)
+ Sj

= − β

ρ∆x

[
0

{{
√

A}}j+1/2 − {{
√

A}}j−1/2

]
+

β

2ρ∆x

[
0

Bj+1 − Bj−1

]

= − β

2ρ∆x

[
0

(
√

Aj+1 − Bj+1)− (
√

Aj−1 − Bj−1)

]

=

[
0

0

]
,

the last equality being a consequence of (25).

Discretización temporal

To discretize the temporal derivative in (14), the explicit second-order strong stability preserving

Runge-Kutta method SSPRK (Heun’s method) will be used. This method is described by the following

steps

w(1) = wn + ∆tL
(
wn
)
,

w(2) = w(1) + ∆tL
(
w(1)

)
,

wn+1 =
1

2

(
wn + w(2)

)
,

where

[L(w)]j := − 1

∆x

(
Fj+1/2 − Fj−1/2

)
+ Sj,

with Fj+1/2 and Sj given by (16) and (21), respectively. In order to guarantee that the explicit scheme

obtained to be stable, the time and space discretization steps must obey the CFL condition. For this

purpose, the value of ∆t is computed adaptively for each step. More exactly, the solution wn+1 at

tn+1 = tn + ∆t is calculated from wn by using the time step ∆t = CFL ∗ ∆x/αn
max, where αmax is an

estimate of the maximal characteristic velocity for w. All numerical experiments are carried out with a

CFL number of 0.5.

3.1. Numerical tests

In this section, some examples are presented to validate that the scheme correctly captures the

steady-state solutions of system (1) and to verify that it is entropy stable at discrete level. In all

examples transmissive boundary conditions are imposed.
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3.1.1. Ejemplo 1.

In the first example taken from [12], we consider three different configurations for the Riemann

problem with initial data

w(x, 0) =

{
wl = [Al , Ul ]

⊤ si x ≤ xd

wr = [Ar, Ur]⊤ si x > xd,

with the spatial domain of length L = 0.2 m and xd = 0.1 m the point where the discontinuity is

located. The numerical solutions are computed on a mesh with M = 200 uniform cells and for

comparison purposes reference solutions are computed on a refined mesh with 3200 uniform cells. The

other parameters are A0 = 3.14 × 10−4 m2, β = 3.31 × 106 Pa/m along with different configurations

of the initial data to obtain different types of waves. One can observe in Figure 1 the two rarefactions

obtained at the final time t = 0.009 s for the initial data wl = [2A0, −1]⊤, wr = [2A0, 1]⊤. In Figure

2 it is observed that the scheme can capture the two shocks waves obtained at the time t = 0.012 s

for the initial data wl = [A0, 1]⊤, wr = [2A0, −1]⊤. The third configuration is wl = [A0, 0]⊤,

wr = [2A0, 0]⊤ and the results at the time t = 0.012 s are displayed in Figure 3. In this case, the

solutions develop a left discontinuity follows by a right rarefaction. Due to the presence of two types

of waves we also present in Figure 4 the total entropy

E(tn) := ∆x
M

∑
j=1

η
(
wj(tn)

)
. (34)

As expected, this quantity decreases over time, that is, the scheme is entropy stable at the discrete level.

0 0.05 0.1 0.15 0.2

x [m]

5.2

5.4

5.6

5.8

6

6.2

6.4

A
 [

m
2
]

10
-4

Exact

Approx

0 0.05 0.1 0.15 0.2

x [m]

-1

-0.5

0

0.5

1

U
 [

m
/s

]

Exact

Approx

Figure 1. Rarefaction waves: area and velocity at t = 0.009 s for the reference and approximate

solutions.
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Figure 2. Shock waves: area and velocity at t = 0.012 s for the references and approximate solutions.
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Figure 3. Shock and rarefaction waves: area and velocity at t = 0.012 s for the references and

approximate solutions.
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Figure 4. Entropy vs time on a mesh with 200 uniform cells.

3.1.2. Ejemplo 2.

The purpose of this test problem taken from [13] is to check that the proposed scheme preserves

the zero pressure man-at-eternal-rest steady state (13) at a discrete level. The configuration exhibits
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with no flow and includes a change in the section of the artery. This is the case for a dead man with an

aneurism. The initial conditions are U(x, 0) = 0 and A(x, 0) = A0(x) = πR2
0(x), where

R0(x) =





R̃ si x ∈ [0, x1] ∪ [x4, L],

R̃ +
∆R
[
sin
(

x−x1
x2−x1

π− π
2

)
+1
]

2 si x ∈]x1, x2[,

R̃ + ∆R si x ∈ [x2, x3],

R̃ +
∆R
[
cos
(

x−x3
x4−x3

π
)
+1
]

2 si x ∈]x3, x4[,

with R̃ = 4 × 10−3 m, ∆R = 1.0 × 10−3 m, x1 = 1.0 × 10−2 m, x2 = 3.05 × 10−2 m, x3 = 4.95 × 10−2 m,

x4 = 7.0 × 10−2 m and L = 0.14 m. The computational domain is [0, L] and β = π−1 × 108 Pa/m.

The numerical results computed on a mesh with 200 cells at time t = 5 s are plotted in Figure 5. In

Figure 5 (left) can be observed that the area remains the same as the area at rest as expected. In

Figure 5 (right) we compare the velocity obtained by using the well-balanced and entropy stable

scheme proposed in this work (hereafter referred as WB-ES) and the velocity obtained by using the

Lax-Friedrichs numerical flux combined with discretization of the source term given by (21). Notice

that the WB-ES scheme preserves the steady-state exactly while Lax-Friedrichs produces unacceptable

spurious oscillations. This kind of anomalies was also reported before in reference [5].
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Figure 5. Numerical solutions of the zero pressure man-at-eternal-rest problem on a mesh with 200

cells at time t = 5 s. Area and area at rest (left) and comparison between solutions obtained with WB-ES

and Lax-Friedrichs schemes (right).

3.1.3. Ejemplo 3

This example (see [13]) corresponds to the case of a dead man with stenosis. Stenosis occurs

when the artery narrows and it leads to reduced blood flow from the heart to the rest of the body. The

cross-sectional area at rest is A0(x) = πR2
0(x), where

R0(x) =





R̃ + ∆R for x ∈ [0, x1] ∪ [x4, L],

R̃ − ∆R

2

(
sin

(
x − x1

x2 − x1
π − π

2

)
− 1

]
for x ∈ (x1, x2),

R̃ for x ∈ [x2, x3],

R̃ − ∆R

2

(
cos

(
x − x3

x4 − x3
π

)
− 1

)
for x ∈ (x3, x4)
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with R̃ = 4 × 10−3 m, ∆R = 1.0 × 10−3 m, an artery of length L = 0.14 m, x1 = 9L/40, x2 = L/4,

x3 = 3L/40, x4 = 31L/40. The initial conditions are

A(x, 0) =
(
C + π1/2R0(x)

)2
, U(x, 0) = 0,

where C = 10−3 m.

Numerical solutions are computed at t = 1 s. As observed in Figure 6 the proposed scheme

preserves the steady-state (12) at the discrete level, i.e., the quantity
√

A(x, t) −
√

A0(x) remains

constant and the velocity is null.
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Figure 6. numerical solutions of the non-zero pressure man-at-eternal-rest problem on a mesh with 200

cells at simulated time t = 1 s. Area minus area at rest (left) and velocity (right).

4. Conclusions

We present a numerical scheme to approximate the solutions of a blood flow model in arteries.

It was shown analytically that the scheme is entropy stable and preserves the steady state solutions.

These properties were also tested numerically with some standard examples. Although higher order

schemes can be found in the literature related to the numerical approximation of blood flows, the value

of the second order discretization of the source term proposed in this work lies in the fact that using

linear combinations of them combined with high-order entropy stable fluxes it is possible to construct

arbitrarily high order entropy stable schemes that preserve the steady states solutions.
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