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Abstract: In this work, an entropy-stable and well-balanced numerical scheme for a one-dimensional
blood flow model is presented. Such scheme is obtained from an explicit entropy conservative flux
along with a second order discretization of the source term by using centered finite differences. We
prove that the scheme is entropy-stable and preserves steady-states solutions. In addition, some
numerical examples are included to test the performance of the proposed scheme.
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1. Introduction

Blood flow in arteries can be described mathematically by the Navier-Stokes equations in
three dimensions (3D). However, numerical approximations for three-dimensional models are
computationally expensive. Therefore, the simpler one-dimensional (1D) models are considered,
which provide a realistic description of certain parts of the cardiovascular system and also provide
boundary conditions for the more complex three-dimensional models. A simplified 1D model that
describes the blood flow in arteries is given by the following system of partial differential equations
(seee.g. [1])

dA  J(AU)
ot ox

o ou 100 F
ot dx  podx pA’

=0
)

where A(x,t) = R?(x, t) is the cross-sectional area of the vessel at spatial position x and time  with
R(x, t) being the radius, U(x, t) is the mean blood velocity in the axial direction, p is the blood density,
assumed to be constant and equal to 1060 kg/m?3, P = P(A) is the internal pressure and F(x, t) is the
friction force per unit length. The present work is restricted to the inviscid limit where 7 = 0.

Several expressions can be found in the literature to describe the pressure. In the present work we
use the algebraic expression proposed in [2]:

P= Pext"‘ﬁ(\/Z— \/%), (2)

where the external pressure Peyt, the coefficient § stands for the arterial stiffness and is supposedly
constant and Ay = Ag(x) is the vessel cross-sectional area at rest, which may be variable in the case of
some pathologies.

We refer to equations (1) as the system (A, U). Such equations are an example of a system of balance

laws
ow dJf(w)

§+ ax

= S(w) ®)
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where
A AU 0
w= gl f(w) = LI72+/3\/Z , S(w) = | BV Ag
o 0x

2 P
correspond to the vector of unknowns, flux function and source term, respectively. In order to analyse

the characteristic information it is convenient to write the system in the non-conservative form

ow ow
W +J(w)g - S(X,W),

where
u A

J(w) = eV

is the Jacobian matrix of the flux function with eigenvalues
M=U-c y AMp=U+c

and the corresponding right eigenvectors are given by

n=[-1¢/A" y n=[c/A" )
Here, c = 4/ %X is the Moens-Korteweg wave speed.

It is well known that solutions of balance laws may contain discontinuities, even for smooth initial
data. Consequently, the solutions of such systems must be considered in weak sense. Moreover, the
weak solutions may not be unique, then it is necessary to impose an additional admissibility criterion
or entropy conditions to select among the possible solutions, the one that is physically relevant [3]. In
particular, the system (A, U) admits the entropy inequality

o7 (w) N oG (w)

<
ot ox 0 ©)
where (7, G) is the extended entropy pair introduced in [4]:
f=yg-PYAy aoc BVA ©6)
P P
and (7, G) is the entropy pair (1, G) given by
1 ) 2ﬁA3/2 1 5 ,BUA3/2
ﬂszU—f— 30 ,szAU—I— 7)

Using the entropy pair we may obtain the entropy variables

T
u? A
vw) = vy = |2 BV Ly ®)
with the corresponding entropy potential
AU3 U A3/2
p(v) = v (w(v)) — Glw(v)) = 220+ PLA ©

P


https://doi.org/10.20944/preprints202310.1553.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2023 doi:10.20944/preprints202310.1553.v1

30f12

In the extended case, we have

V(w) = Vij =v—[Bv/Ao/p, 0] (10)

Systems as (3) are of special interest because of the delicate balance that must exist between the
convective term and the source term during the time evolution. Specifically, the steady-states solutions
for the system (3) are the solutions w(x) which are time-independent. Thus, steady-state solutions
satisfy the system

of(w)
ox

In particular, the system (A, U) admits the following steady-state solution, known as the (non-zero
pressure) man-at-eternal-rest steady state or dead-man equilibrium [5]:

U=0 vy VA —+/Ay = C = constant. (12)
When C = 0, the (zero pressure) man-at-eternal-rest steady state is obtained, namely
U=0 and A= Ay. (13)

It is crucial that numerical methods to approximate steady-state solutions also satisfy a discrete version
of (11). Such methods are termed well-balanced schemes.

2. Numerical method

Since, in general, it is not possible to find an analytical solution of the system (3), it is imperative
to approximate the solution numerically. To this end, we consider a semi-discrete finite volume scheme
for (3) on a uniform spatial mesh with nodes x; = jAx, j € Z:

i Ax (Fj+1/2 - Fj—l/Z) +S;j, (14)

where wj(t) is the cell average on I; = [x;_1/2,Xj11/2), Fj41/2 is the numerical flux associated with
Xj+1/2 and S; is a discretization of the source term. It should be noted that the first term on the
right-hand side corresponds to the discretisation of the spatial derivative —f(w). The discretization
of the time derivative will be discussed later.

The scheme (14) is entropy stable with respect to the entropy pair (77, G) if it satisfies a discrete
version of the entropy inequality (5), that is,

d._. 1 /45 =
ST+ 5 (G2 = Giaya) <0 (15)
for some numerical entropy flux gAjH /2 consistent with the entropy flux G.If equality holds in (15), then

the scheme (14) is called entropy conservative.
From now on, we use

1
[a]j+1/2 2= a1 —aj, Hatjrayo = (a0 +a)).

to denote, respectively, the jump of a across the interface x;1,, and the arithmetic mean of a quantity.
In this work we will used a numerical flux of the form [7]:

. 1
Fit12 = Fjpa2 = SR 00 0 /2(2) 1172 (16)

where


https://doi.org/10.20944/preprints202310.1553.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2023 doi:10.20944/preprints202310.1553.v1

40f12
(). i]‘rl /o = [1?1,]-“ /2 E’Z,j-i—l /Z]T is the second order and entropy conservative flux for the
homogeneous case of (3) given by
- ~ 1, B JA
Fiivp = {AUY 12, Bjjipe= 5{{11 Hivi2+ E{{ Ali1/2, (17)
with the corresponding numerical entropy flux
Gis2 = v Bir1/2Fr12 = Ly B2 (18)
The numerical flux (17) was obtained in [8] from the condition (see [6])
v Dj+1/2F 4172 = [9Dj41/2- (19)

(ii). Rji1/2 is the matrix of right eigenvectors of the Jacobian matrix J(wj,1/2) being evaluated at
the average state wi 1o == (W; +Wjy1)/2, Aji1/2 = diag(|M],[A2]) is a Roe-type matrix
and ((z))jy1/2 = z].trl ;2= Zi12 Zg12 Y Zj++1 /, denoting, respectively, the left and right
limiting values of the scaled entropy variables z := R].TJrl oV at interface x;, 1/, obtained by ENO
reconstruction. The choice of this ENO method is due to the fact that it satisfies the so-called sign
property [9]:

sign(((z))j11/2) = sign([z]j11/2), (20)

which will be useful in proving entropy stability of the flux (16).

The discretization of the second component of the source term B(x) := dy+/Ao(x) is performed
using the simple and well-known second-order centered difference approximation

B/(x) ~ B(x+ Ax)zng(x - Ax).

Thus, the discretization of the source term yields

0
Sj = o | Biri—Bi (21)
2Ax
where B; denotes the discrete approximation of B(x;) = |/ Ao(x;)-

3. Theoretical results and numerical experiments

In this section it is shown that the scheme (14) with numerical flux (16) and discretization of
the source term (21) is entropy stable and well- balanced. The proof is similar to that developed for
the Saint-Venant equations and the relativistic magnetohydrodynamics equations in [10] and [11],
respectively. Then, some examples are included to check that the numerical scheme verifies these
properties at the discrete level.

Theorem 1. The numerical scheme (14) with numerical flux (16) and discretization of the source term (21)
satisfies the following properties:

(i) It is entropy stable, i.e., satisfies the discrete entropy inequality (15), where 7] is the entropy function given
by (6) and the corresponding numerical entropy flux is

Giv1/2=Giv12— Djsay (22)
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with
~ ~ B(BjAj11Uj1 + B Ajl;)
Gir1/2 = Gjorjp — —1— e (23)
2p
~ 1.
Djy12 = E{{VT}}]’+1/2R]’+1/2A]‘+1/2<<Z>>j+1/2- (24)
(ii) it preserves the discrete version of the man-at-eternal-rest (12), this means that given the initial data
U] =0, \/A]' - B] =C V], (25)
with C a constant, then the solution obtained with the scheme (14) satisfies
dW] —0 Vi
ar a
Proof. Let us first prove entropy stability. Multiplying (14) by V]T yields
dw;(¥) 1
ST = ST
V= = axY (Fn—Fas) 497, 26)
1 1 /= ~
= _EV] (F]‘+1/2 — F]’*l/Z) (27)
1 1/ 1 1
a7V \ TRt 2(2) 2+ SR 281 2((2) a2 (28)
+9/'S; (29)
The left-hand side of (26) gives
dw; dw; dij(w;
vi L v = (w)) (30)

itar YA T T a
We now turn to the right-hand side. Using (10), the numerical flux EH /2 explicitly given by (17), the
equation (18) and the definition of éj+1 /2 (18), we get
V]‘T (fj+1/2 - i5]'—1/2) = V]'T (Fj+1/2 - F]'—1/2) — [BB;/p, 0] (E’H/z - 1~:]'—1/2)
- 1 -
={{v' Wiv12Fi12 — EHVT]]j+1/2Fj+1/2
- 1 _
—{v" Bj-1/2Fj_12 — E[[VT]]j—lﬂFj—l/Z

- B gy - gau; 1)

= {v" Bj1/2F 412 — %ﬂll)]] 12 — UV B o12F 2 — %ﬂllﬂ]] j-12 (B
- fp(BjAjJrl U1 — BiAjaUj-1)

= {v " Biv2Fi12 — §ol e — {v B m12Fio12 + {12

- zli)(BjAjH U1 — BijAjaUj-1)

= (éj+1/2 - C~;]'—1/2) - Z[i)(BjAj+luj+1 — BjA; 1Uj ).
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To deal with the factor (28) in parenthesis, we take into account the definition of the scaled entropy
variables and (24) to obtain

1.
- EV]'T(Rj+1/2Aj+1/2<<Z>>j+1/2 —Ri_120i-12(2))j-1/2)

1 . 1.,
=- E{{VT Wiv12Rjv1/20112(2) jr1/2 + 3 {V" Bi-1/2Rj-1/20-12((2)) 12

(32)
1. 1.
+2 [V Tj+1/2R a1 /20854122 12 + 1 [V Tj-1/2Rj1/28i-1/2(2) j-1/2
~ ~ 1 1
= —(Djy1/2 = Dj-172) + ;LHZT]]]'H/zAjH/z (z)jy1/2+ ZHZT]]jfl/ZAjfl/Z (z)j-1/2
Using the discretization of the source term bive by (21) we can rewrite (29) as
0
v/ S = (v —[BVAn/p, 0) B(Bj+1—Bj1)
20Ax
w2 B4 0 (33)
= 2 +— 0 » Ailj| | B(Bjy1 — Bj1)
20Ax
B

Inserting (30), (31), (32) and (33) into (26) an dusing the definition of Q}H /2 given by (22) we get

dif(w;) _
dt
_1 _ (BjAj11Uj1 + Bjy1A;U;) e B (Bj—1AjU;j + BjAj_1Uj_1)
Ax Git1/2 2 j—1/2 2%
1 1 T 1 T
+ 25 (Div12 = Dia2) = a2 Dot a2 se = 52 T afia o2
1 /.~ ~ ~ _
= _H ((gj+l/2 - Dj+1/2) - (gj71/2 — D]'fl/2))
1/ .
 4Ax ([[z Jiv1728j41/2(2) 172 + [2 ]]j—1/2/\j—1/2<<l>>j—1/2)
1 5 5 1
A G172 = Gi-172) = iy ([[Z lj+1/2041/2(2) j+1/2 + [[ZT]]]?l/ZAjfl/z<<Z>>];1/2)
Therefore,
di(w;)) 1 5 .
TJ —+ B(gj+1/2 - g]’—l/Z)
1
T iAx ([[ZT]]J‘H/zAjﬂ/z<<Z>>j+1/2 + [[ZT]]jfl/ZAjfl/Z<<Z>>j71/2)
<0

where the last inequality is obtained by using the sign property. Summing up,

dij(w;) 1 4 ~
T 4 Tx(gj+1/2 —Gi_1/2) <0,

which proves entropy stability.
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We next show the second part of the theorem. From (25) it follows easily that
T T
= - C
Bz =0 Eqvanag] o o= B ] .

The second equality implies that V; is constant, thus ((z));41/2 = 0, and consequently the diffusion
term in (16) vanishes. On account of this remark, we have F; 1,5 = l~7]-+1 /2. Hence,

d“(;]t(t) = _pAﬁx (1~3j+1/2 - ?771/2) +5;
S I
PAX | ({VAR 12— {VARj-1/2]  20D% |Biy — Bjy
B 0 ]
208% | (VAj1 — Bjpa) — (VA1 — Bja)

0
O 7
the last equality being a consequence of (25). O

Discretizacién temporal

To discretize the temporal derivative in (14), the explicit second-order strong stability preserving
Runge-Kutta method SSPRK (Heun’s method) will be used. This method is described by the following

steps
wl) = w" + AL (wh),
w? = w4 Arc(wl)),
wn+l _ %(w" +w(2))’
where

1
[L(w)];:= Ay (Fiy1/2 —Fji_1/2) +8;,

with Fj 1,5 and S; given by (16) and (21), respectively. In order to guarantee that the explicit scheme
obtained to be stable, the time and space discretization steps must obey the CFL condition. For this
purpose, the value of At is computed adaptively for each step. More exactly, the solution w*! at
tn41 = tn + At is calculated from w” by using the time step At = CFL * Ax/al .., where amax is an
estimate of the maximal characteristic velocity for w. All numerical experiments are carried out with a
CFL number of 0.5.

3.1. Numerical tests

In this section, some examples are presented to validate that the scheme correctly captures the
steady-state solutions of system (1) and to verify that it is entropy stable at discrete level. In all
examples transmissive boundary conditions are imposed.
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3.1.1. Ejemplo 1.

In the first example taken from [12], we consider three different configurations for the Riemann
problem with initial data

W(X 0) _ W) = [Al, UI]T six < X4
’ w, = [A, U]" six>xy,

with the spatial domain of length L = 0.2 m and x; = 0.1 m the point where the discontinuity is
located. The numerical solutions are computed on a mesh with M = 200 uniform cells and for
comparison purposes reference solutions are computed on a refined mesh with 3200 uniform cells. The
other parameters are Ag = 3.14 x 10~% m?, 8 = 3.31 x 10° Pa/m along with different configurations
of the initial data to obtain different types of waves. One can observe in Figure 1 the two rarefactions
obtained at the final time t = 0.009 s for the initial data w; = [24y, —1]", w, = [24¢, 1]T. In Figure
2 it is observed that the scheme can capture the two shocks waves obtained at the time t = 0.012 s
for the initial data w; = [Ag, 1]T, w, = [24p, —1]". The third configuration is w; = [Ag, 0],
w, = [2Ap, 0]" and the results at the time ¢t = 0.012 s are displayed in Figure 3. In this case, the
solutions develop a left discontinuity follows by a right rarefaction. Due to the presence of two types
of waves we also present in Figure 4 the total entropy

M
E(tn) == Ax Y yp(wj(ty))- (34)
j=1

As expected, this quantity decreases over time, that is, the scheme is entropy stable at the discrete level.

6.4 x10 1+ >
6.2
0.5
61
< 7
Esst E o0
< =

5.6
-0.5¢

5.4+ 1
Exact Exact
50 ) ) O Approx -16 O  ApproxH
) 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 02
x [m] x[m]

Figure 1. Rarefaction waves: area and velocity at t = 0.009 s for the reference and approximate
solutions.
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-4
7.4710 ‘ ‘ : 1
e
Exact
b o o
721 1 4 Approx
b q 0.5 b
7r ]
b
& @
@2 o
Eesf E o
< =}
6.6 9 8
[ D -0.5
6.4 o o |
Exact
O  Approx
6.2 . : ! 1 . . .
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
x [m] x [m]

Figure 2. Shock waves: area and velocity at t = 0.012 s for the references and approximate solutions.

-4
6.5 10 ; ‘ : 0
9
6r q
051
55r q
& 51 w
E E !
<45 =]
4l A5}
b
. ‘ ‘ ‘ O Approx ol = O Approx|]
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
x [m] x[m]

Figure 3. Shock and rarefaction waves: area and velocity at t = 0.012 s for the references and

approximate solutions.

%107

Total Entropy

SO L L
® © ® o) N
oo o S N oo

~
©

0 0.002 0.004 0.006 0.008 0.01 0.012
Time

Figure 4. Entropy vs time on a mesh with 200 uniform cells.

3.1.2. Ejemplo 2.

The purpose of this test problem taken from [13] is to check that the proposed scheme preserves
the zero pressure man-at-eternal-rest steady state (13) at a discrete level. The configuration exhibits
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with no flow and includes a change in the section of the artery. This is the case for a dead man with an
aneurism. The initial conditions are U(x,0) = 0 and A(x,0) = Ag(x) = R3(x), where

R six €[0,x1]U][xy, L],

AR {sin ( x’;:xx]l T— %) +1}
2

R+

six €]xq, x2],
Ro(x) =19 _
R+ AR six € [xp,x3),

R L AR {cos ( x’;;_x% 7T) +1]

six €]xs, x4/,

withR=4x103m, AR=10x103m,x; =1.0x 10 2m, x, = 3.05 x 10 2m, x3 = 4.95 x 10 2 m,
x4 = 7.0 x1072m and L = 0.14m. The computational domain is [0,L] and 8 = 7! x 108 Pa/m.
The numerical results computed on a mesh with 200 cells at time ¢ = 55 are plotted in Figure 5. In
Figure 5 (left) can be observed that the area remains the same as the area at rest as expected. In
Figure 5 (right) we compare the velocity obtained by using the well-balanced and entropy stable
scheme proposed in this work (hereafter referred as WB-ES) and the velocity obtained by using the
Lax-Friedrichs numerical flux combined with discretization of the source term given by (21). Notice
that the WB-ES scheme preserves the steady-state exactly while Lax-Friedrichs produces unacceptable
spurious oscillations. This kind of anomalies was also reported before in reference [5].

5
8 x10 . . 0.4
Ao WB-ES
75 o A 037 Lax-Friedrichs
02F
s
< 01r
E Q)
< 6.5 E o f
. =
< 6l 0.1
02f
55
03[
5 . . . n n ‘ 0.4 . ‘ . . ‘ .
0 0.02 0.04 006 008 0.1 012 0.14 "o 002 004 006 008 01 012 0.4
x [m] x [m]

Figure 5. Numerical solutions of the zero pressure man-at-eternal-rest problem on a mesh with 200
cells at time t = 5s. Area and area at rest (left) and comparison between solutions obtained with WB-ES
and Lax-Friedrichs schemes (right).

3.1.3. Ejemplo 3

This example (see [13]) corresponds to the case of a dead man with stenosis. Stenosis occurs
when the artery narrows and it leads to reduced blood flow from the heart to the rest of the body. The
cross-sectional area at rest is Ag(x) = 7R3(x), where

R+ AR for x € [0,x1] U [xg, L],
- AR -

R— — | sin Qn—z —1| forx € (x1,x2),

Ro(x) _ 2 X2 — X1 2

R for x € [xp, x3),

- AR —

R — (cos(wrc) 1) for x € (x3,x4)

2 X4 — X3
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with R = 4 x 1073m, AR = 1.0 x 1073 m, an artery of length L = 0.14m, x; = 9L/40, x, = L/4,
x3 = 3L/40, x4 = 31L/40. The initial conditions are

A(x,0) = (C+ '/?Ro(x))?,  U(x,0)=0,

where C = 103 m.

Numerical solutions are computed at t = 1s. As observed in Figure 6 the proposed scheme
preserves the steady-state (12) at the discrete level, i.e., the quantity \/A(x,t) — /A(x) remains
constant and the velocity is null.

17 -1
52107 ‘ ‘ ‘ ‘ ‘ Pl
S 4
E
< 5l
° Q
Ly M Eo
“ 2t ! W e
=z
<
1,
o ‘ ‘ ‘ ‘ ‘ ‘ p ‘ ‘ ‘ ‘ ‘ ‘
0 002 004 006 008 01 012 014 0 002 004 006 008 01 012 014
x [m] x[m]

Figure 6. numerical solutions of the non-zero pressure man-at-eternal-rest problem on a mesh with 200
cells at simulated time ¢ = 1s. Area minus area at rest (left) and velocity (right).

4. Conclusions

We present a numerical scheme to approximate the solutions of a blood flow model in arteries.
It was shown analytically that the scheme is entropy stable and preserves the steady state solutions.
These properties were also tested numerically with some standard examples. Although higher order
schemes can be found in the literature related to the numerical approximation of blood flows, the value
of the second order discretization of the source term proposed in this work lies in the fact that using
linear combinations of them combined with high-order entropy stable fluxes it is possible to construct
arbitrarily high order entropy stable schemes that preserve the steady states solutions.
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