
Article

Not peer-reviewed version

Projective Geometry as a Model

for Hegel’s Logic

Paul Redding 

*

Posted Date: 25 October 2023

doi: 10.20944/preprints202310.1546.v1

Keywords: projective geometry; Greek music theory; Hegel’s logic; Plato’s cosmology; Aristototle’s

syllogistic

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2566307


 

Article  

Projective Geometry as a Model for Hegel’s Logic 

Paul Redding 

The University of Sydney; paul.redding@sydney.edu.au 

Abstract: Recently, historians have discussed the relevance of the nineteenth-century mathematical 
discipline of projective geometry for early modern classical logic in relation to possible solutions to 
semantic problems facing it. In this paper I consider Hegel’s Science of Logic as an attempt to 
provide a projective geometrical alternative to the implicit Euclidean underpinnings of Aristotle’s 
syllogistic logic. While this proceeds via Hegel’s acceptance of the role of the three means of 
Pythagorean music theory in Plato’s cosmology, the relevance of this can be separated from any 
fanciful “music of the spheres” approach by the fact that common mathematical structures underpin 
both music theory and projective geometry, as suggested in the name of projective geometry’s 
principal invariant, the “harmonic cross-ratio”. Here I demonstrate this common structure in terms 
of the phenomenon of “inverse foreshortening”. As with recent suggestions concerning the 
relevance of projective geometry for logic, Hegel’s modifications of Aristotle respond to semantic 
problems of his logic. 

Keywords: projective geometry; Greek music theory; Hegel’s logic; Plato’s cosmology; Aristototle’s 
syllogistic  

 

1. Introduction 

Modern mathematical logic is standardly thought of as commencing around the middle of the 
nineteenth century with the work of George Boole and Augustus de Morgan, although, largely 
unbeknownst to the participants of this movement, a similar attempt to apply algebra to ancient 
syllogistic logic had been pursued by Leibniz almost two centuries earlier. A few decades after Boole, 
however, a different approach would be launched with Gottlob Frege’s “classical” logic, later 
championed and developed by Bertrand Russell. While each movement looked to mathematics, each 
looked to different branches of the discipline and conceived of the relation of their logics to 
mathematics in different ways. In contrast to algebra, the Frege-Russell strand looked to analysis and, 
moreover, conceived of logic not as mathematics but as an autonomous discipline providing its 
rational foundation. For both Frege and Russell, the new logic showed the foundations of arithmetic, 
but while for Russell, this indirectly provided a foundation for geometry as well, as geometry, he 
thought, could be reduced to arithmetic, for Frege, geometry was not so reducible, and so the new 
logic was conceived as a foundation for arithmetic alone. Within the emerging analytic paradigm of 
philosophy in the early twentieth century, the Frege-Russell approach would triumph over the earlier 
“algebra of logic” tradition stemming from Boole,1 as well as over traditional Aristotelian forms of 
logic thought to be ultimately tied to an inadequate “subject-predicate” conception of logical form. 
One victim in particular would be the logic of Hegel. 

Recently, historians of the early years of the modern classicist movement have broadened the 
mathematical context within which it developed beyond analysis and algebra, with a number of 
investigators looking to the role of the nineteenth-century discipline of projective geometry—a 
discipline that had been singled out in the nineteenth thirties of Earnest Nagel [1] as particularly 
relevant. In fact, before his turn to foundational and logical issues, Frege had worked in projective 
geometry and the relevance of this discipline has been raised especially in relation to addressing 
various semantic shortcomings apparent in the early forms of classicism, e.g., [2,3]. 2  Another 
example of such a possible role for projective geometry has been suggested by Pablo Acuña [6] (p. 8) 
with the suggestion that Wittgenstein, in describing the perceptible sign of a proposition as a 
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“projection of a possible state of affairs”, Wittgenstein [7] (§ 3.11) may have had in mind the specific 
status of projection in projective geometry.  

In this paper I explore the idea of the involvement of a form of geometry with many of the 
features of modern projective geometry in Hegel’s earlier attempts in the nineteenth century to 
rejuvenate Aristotle’s syllogistic. Within the ancient mathematical culture to which Hegel was 
appealing, however, this was not identified primarily as a form of geometry, but rather as a 
mathematical theory of musical harmony. 

Projective geometry would be a major area of innovation in nineteenth-century mathematics, 
but it is not always acknowledged that its roots extended back to antiquity with the work of Pappus 
of Alexandria (c. 290-350 CE). Pappus, however, had sought to preserve work from earlier times and 
had taken structures at the heart of projective geometry from Apollonius of Perga (c240-190 BCE), 
and hints at earlier associations with the Pythagorean music theory can be found in the name that 
would be eventually given to projective geometry’s principal “invariant”, the “harmonic cross-
ratio”.3 

Pappus’s early steps in projective geometry had been revived and built on in the seventeenth 
century by Girard Desargues [8], a French mathematician and engineer and contemporary of Rene 
Descartes. Although Desargues had a few initial followers, notably the young Blaise Pascal, his work 
would fall into neglect, swamped by the success of the analytic geometry introduced by Descartes’s 
Geometrie in 1637. Desargues’s alternative geometry would, however, reemerge in the early 
nineteenth, an early expression of which—perhaps the earliest—was the book De la Corrélation des 
Figures de Géométrie by the French military engineer and hero of the French Revolution, Lazare 
Carnot, a German translation of which Hegel had in his library [9] (p. 673).  

It is known that Hegel had become intensely interested in geometry around the time that 
Carnot’s book was published in 1801, and that his reading of ancient geometry had been influenced 
by thinkers from the Platonist tradition in antiquity, such as Proclus [10]. Along with this, Hegel’s 
thinking about astronomy had been strongly influenced by the early seventeenth-century astronomer 
Johannes Kepler, who, with his theory of optics, had contributed to Desargues’s geometric project 
and who had, like earlier Neoplatonists, championed Plato’s music-based cosmology. In his 1801 
Dissertation completed at Jena [11], Hegel, to the disparagement of many contemporaries, ventured 
into this “music of the spheres” tradition, and while such an approach to the physical world was, and 
remains, easy to dismiss, I will argue for its significance via its relation to projective geometry itself. 
While Hegel may or may not have consciously grasped this link to Plato in Carnot’s work, he would 
nevertheless attempt to rejuvinate Aristotle’s syllogistic project in ways that reflected something of 
both Plato’s earlier music-theoretical approach to spatial relations and Carnot’s projective geometry. 
The result would have surprising consequences for the relation of Hegel’s Science of Logic to the 
modern science of logic as it continued to develop beyond the form found in Frege and Russell.4 

In section 1 below I briefly review the relation of logic to geometry in ancient Greece, against the 
background of two different approaches to a problem facing Greek mathematics, that of the 
discovered incommensurability of continuous and discrete magnitudes. Of these, an earlier 
Pythagorean influenced solution can be seen in Plato, while a later solution more in line with 
Euclidean geometry can be found in Aristotle. In Section 2, it is argued that while the latter approach 
would inform Descartes’s analytic geometry in the seventeenth century, the former would inform 
Desargues’s initially unsuccessful projective alternative to Descartes. Then, in Section 3, a common 
underlying mathematical structure to both music theory and projective geometry is explored via the 
phenomenon of “inverse foreshortening”. In Section 4, Desargues’s projective geometry is examined 
in relation to the type of “science of perspective” that Leibniz had attempted to introduce in the 
seventeenth century—a science that, like projective geometry, had built upon earlier theories of 
perspectival representation in painting and architecture that had flourished in the Renaissance. 
Finally, in Section 5, distinctive features of Hegel’s logic are considered as expressing a projective 
equivalent of Aristotle’s more “Euclidean” syllogistic. 
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2. Logic and Geometry in Ancient Greece 

The origin of the science of logic within European culture is typically placed around the middle 
of the fourth century BCE with Aristotle’s development of his system of syllogistic logic as presented 
in his Prior Analytics [13]. In 367, Aristotle had, as a young man, joined Plato’s Academy in Athens, 
remaining there some twenty years, and during this time, mathematics had been a major concern of 
both Plato and many other academicians. This had predominantly taken the form of work on 
geometry, with the development of approaches that would be later codified around the end of the 
fourth century by Euclid in the thirteen books of his Elements. Given this prominence, it is not 
surprising that various authors have speculated about geometry having shaped Aristotle’s logic. John 
Corcoran [14] (p. 284), for example, has described Aristotle’s logical achievements as “unthinkable 
without the emphasis on deductive reasoning in geometry that he had found in Plato’s Academy”, 
while Vangelis Trianatafyllou [15] (p. 10), notes in the light of the “encompassing geometricocentric 
paradigm” of Greek scientific thinking, “it would indeed make perfect sense for logical methodology 
to mirror – up to a certain degree – that of geometry”. While Aristotle’s new discipline wasn’t 
“mathematical” in the modern sense, comments such as these suggest that it had nevertheless been 
modelled on the extant discipline of geometry. 

However, it would seem that what we now know as “Euclidean geometry” had not been the 
only approach to mathematics during the years between Plato’s founding of the Academy in the mid-
380s and Euclid’s codification of that science around 300 BCE. The Greeks did not have an 
equivalently developed number theory, and what they did have was largely restricted to the theory 
of musical harmony [16] (p. 72). However, Árpád Szabó  [17], has argued for the influence of the 
music-theoretical approach to ratios and proportions on Euclidean geometry itself.  

Book V of Euclid’s Elements containing the theory of ratios and proportions is standardly 
attributed to Eudoxus of Cnidus, who, while a little older than Aristotle had joined Plato’s Academy 
about a year before the younger member and about twenty years after Plato’s founding of the school. 
Eudoxus’s approach to ratios and proportions here are standardly seen as pivotal in the Greek 
response to a problem that had arisen for Pythagorean mathematicians—that of the 
incommensurability of ratios of line-lengths with ratios of numbers. It had been grasped that what 
are now known as the square roots of non-square numbers could not be expressed in ratios of natural 
numbers. However, Eudoxus, employing a form of reasoning often likened to the way the real 
numbers would be defined in the later nineteenth century [18], [19] (p. 86, n. 14), had shown a way 
of identifying ratios of lines with ratios of numbers—a solution apparently known to Aristotle. With 
this, Eudoxus had short-circuited existing Pythagorean attempts to deal with the problem of 
incommensurability which appealed to a unity of the three “musical means”. 

Earlier, ratios (logi) and proportions (analogi) had been discussed in ways appropriate for the 
three central “proportions” of music theory—numerical relations holding between two “extremes” 
divided by “middle terms” or “means”, of which there were three, the “geometric”, “arithmetic”, and 
“harmonic”.5 However, the senses of analogos seem to have narrowed between the work of major 
early Pythagorean music theorist and cosmologist, Archytas of Tarentum, a rough contemporary of 
Plato, and that of Aristotle. For Archytas and, seemingly, for Plato himself, all three double-ratios, 
geometric, arithmetic and harmonic, were called proportions [17], [20], [21]. Archytas had thought of 
these three ratios as relevant to astronomical study—geometry, arithmetic, astronomy and harmonics 
being conceived as “sisters” [22] (p. 37).  

By the time of Aristotle only the geometric double-ratio or “mean proportional”, defined as an 
equality of ratios [logi], as in a : b = c : d, was called a proportion. This definition as given by Aristotle 
[23] (1131a31) and Euclid [24] (Bk. 5, def. 4) effectively coincides with what is known as a proportion 
today, and Eudoxus’s general theory of ratios and proportions seems to have undercut the earlier 
appeal to a “unity” existing among the three means, a unity holding despite the incommensurability 
between the geometric mean, the calculation of which required square roots, and the other two.  

With Eudoxus’s innovations the earlier “musical” solution to the problem of 
incommensurability seemed to have fallen by the wayside, at least for several centuries. Nevertheless, 
traces of the earlier pre-Eudoxean history of the complex relations between arithmetic, music, and 
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geometry could still be found in a feature of Aristotle’s logic as Aristotle’s technical vocabulary found 
in Prior Analytics  Book 1, involving intervals, extremes and means, had originated in the theory of 
musical harmony [25] [26]. However, given the innovations of Eudoxus, it might be assumed that for 
Aristotle any continuity with music theory itself had become entirely nominal, such terms by then 
having shed their specifically musical connotations.  

This suspicion is supported by a consideration of the parallel Einarson points to between 
Aristotle’s account of the first-figure syllogism in the Prior Analytics with a passage from a text on 
music theory, the Sectio Canonis,6 that while usually attributed to Euclid was probably based on 
some earlier work. Thus, Aristotle has it that: “if A is predicated of every B, and B of every C, it is 
necessary for A to be predicated of every C” [13] (25b32–26a3), while the author of Sectio Canonis 
writes: “Let there be an interval BC and let B be a multiple of C; and let it be that as C is to B, so B is 
to D. I say surely that D is a multiple of C. For since B is a multiple of C, C therefore measures B. Now 
as C was to B as B was to D, so C also measures D” [27] (p. 239). 

It is evident from the Sectio Canonis that here “measure” is being used in the sense of “divide”, 
since “C measures D” if “D is a multiple of C”, and significantly, in Metaphysics Bk VIII, Aristotle 
gives a numerical analogy involving division for the relation of concepts within a definition: “For 
definition is a sort of number; for it is divisible, and into indivisible parts […] and number is also of 
this nature” [28] (1044b34-35).7 In short, the parallel effectively models the way Aristotle unpacks 
definitions in inferences, such that concepts will be thought of as contained in other concepts much 
in the way that numbers are contained as factors in subsequent numbers of a geometric sequence. In 
short, despite the “musical” analogy, there is no reference to the other two musical means in this 
model, a fact that sits with Netz’s remark linking the ratios and proportions found in Sectio Canonis 
to Euclid’s (or Eudoxus’s) treatment of ratios and proportions in Book V of Elements [16] (pp. 65-67).  

Plato, who would have been about 60 years old by the time both Aristotle and Eudoxus had 
become active in the Academy, had clearly adhered to the earlier link between musical and 
geometrical ratios and proportions as manifest in the dialogue Timaeus. While dismissed by Aristotle 
as no more than a metaphor [30] (290b12-14), this link would be resurrected in the first century BCE 
by Neoplatonists [19] (p. 394) and would persist through the Middle Ages, especially in Christianized 
form via the work of Boethius, and would be revived again in the Renaissance. If, at the turn of the 
seventeenth century, its continued use by the astronomer Johannes Kepler was starting to look dated, 
its being broached by Hegel two centuries later would surely have looked distinctly eccentric. 
However, underlying the Pythagorean-Platonic astronomy was, I will argue, a distinctive and 
modern non-Euclidean geometry, in which the three “musical means” played a significant role. 

3. Projective Geometry from the Greeks to the Seventeenth Century 

In Descartes’s “analytic geometry”, the then recent discipline of algebra, a non-Greek form of 
mathematics derived from Arabic and Indian sources, could be brought to bear on figures of 
Euclidean geometry by its device of orthogonal “x” and “y” coordinates. This allowed a metric to be 
applied to continuous geometric magnitudes in a way that couldn’t be envisaged by the Pythagoreans 
because of the problem of incommensurability. From the perspective of the seventeenth century, 
however, this Greek problem had resulted by the restriction of Greek numbers to the natural or 
“counting” numbers, 1, 2, 3, 4, etc., a restriction that had been overcome by the incorporation of new 
number forms that had by then been adopted. These included fractions or “rational” numbers, zero, 
negative numbers, and, importantly, the so-called “irrational numbers” such as square roots of non-
square numbers such as 2, 3, or 5. Thus, while the Pythagoreans had not been able to give a numerical 
value to the diagonal of a square of side one unit, this could now be expressed by the new number, 
√2. From this modern perspective, Eudoxus’s innovations in relation to ratios and proportions could 
be taken as pointing in this modern direction.  

Descartes’s analytic geometry would be spectacularly successful and would largely eclipse the 
rival geometry contained in Desargues’s treatise, Rough Draft on Conics [31] that had appeared in 
1639, just two years after Descartes’s Geometrie.8 In contrast to Descartes, Desargues was not so 
much interested in applying a fixed metric to the figures of Euclidean geometry. As the title of his 
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work suggests, his focus was the “conic sections”, the circle, the ellipse, the hyperbola and the 
parabola, as conceived by Apollonius in antiquity as produced by sectioning a cone on different 
angles. Work on the conic sections had been revived a few decades before Desargues by the 
astronomer Johannes Kepler, who had taken this concept further than Apollonius by treating these 
seemingly different shapes as different “projections” of a single shape, the circle. That is, ellipses, 
parabolas and hyperbolas were conceived in the way that so-shaped shadows might be “projected” 
onto differently inclined flat surfaces by a light source interrupted by an opaque circular disc. In this 
context, the type of metric introduced by Descartes was not relevant, as now the focus was on the 
relative relations between points on different projectively linked figures. This, however, would 
produce a new need within projective geometry. 

In Euclidean geometry, line-lengths and the angles between them are fixed or “invariant” but 
this is no longer the case in projective geometry, and this loss would imply the need for some other 
source of invariance—some feature that was invariant across different projections. This would be 
provided by a peculiar double-ratio holding among four points on a line, now known as the 
“harmonic cross-ratio”, that would be invariant under projection.9 Earlier constructions of this object 
could be found in Pappus and Apollonius. 

Another of Kepler’s innovations that would find its way into Desargues’s geometry was the idea 
of “points at infinity” [31] (pp. 185-188). If ellipses and parabolas were thought of as projections of a 
circle, there should be some type of correspondence between their respective parts, for example, 
between the center of a circle and the foci found in ellipses and parabolas. The two foci of an ellipse, 
for example, might be thought to coincide when the ellipse was squashed into a circle. Similarly, 
further stretching an ellipse might be thought to further separate the foci, with one eventually coming 
to exist at an infinite distance from the other. Now, the resulting visualizable figure would be a 
parabola.  

The incorporation of points at infinity into projective geometry would have crucial consequences 
for this approach. A line can be determined by any two points through which it passes or “joins”, 
and similarly, a point can be determined by any two lines that intersect or “meet” at it. In projective 
geometry, however, all points and lines can be so defined, as every pair of lines—including parallel 
lines—are defined as meeting. This results in a “duality” between points and lines, such that for a 
theorem concerning a certain structure holding among points, an equivalent theorem exists positing 
an analogous structure holding among lines. 

Points at infinity would also be found within another source of Desargues’s geometry, the 
various theories of perspective that had developed during the Renaissance in relation to the depiction 
of perspective in painting and architectural drawing [31] (ch. 2), [32]. Artists of the fifteenth and 
sixteenth centuries had been principally concerned with the “projection” of three-dimensional objects 
onto the two-dimensional picture plane and the results of these types of studies are on display in the 
foreshortening seen in Raphael’s fresco at the Vatican, The School of Athens, painted in 1530 (Figure 
1, below). In this, line lengths that are objectively equal, such as the edges of the square floor tiles, 
become smaller as they are portrayed as receding into the distance, and lines that are objectively 
parallel appear to converge towards a “vanishing point”. Standardly, the vanishing point had been 
depicted on, or just above, the horizon, but the horizon is blocked in Raphael’s painting and, as 
pointed out by Bigelow and Leckey [33], actually converge on and so draw attention to, a book in the 
hand of the left-most of the two central figures. That figure is meant to portray Plato, and the book 
he is holding is the Timaeus.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1546.v1

https://doi.org/10.20944/preprints202310.1546.v1


 6 

 

 

Figure 1. The vanishing point of parallels in perspective in Raphael’s The School of Athens.10. 

The figure next to Plato is Aristotle, and the foreground figures are clearly divided into two 
groups. The group on Plato’s side includes Pythagoras (the figure writing in an opened book in the 
bottom left-hand corner) and that on Aristotle’s side, Euclid (the corresponding figure in the bottom 
right-hand corner, bending over a slate and holding a compass). The implied association of Plato with 
Pythagoras (and the corresponding contrast with Aristotle and Euclid) is reinforced by the references 
within the painting to Neopythagorean music theory. Besides reference to the Timaeus, the work in 
which Plato had presented his musico-mathematical cosmology, the book in which Pythagoras is 
writing contains a reference to a sequence of four numbers, 6, 8, 9, and 12 [33] (pp. 419-420), the so-
called “harmonia” or “musical tetraktys” structured as a double-ratio in which 6 : 9 is taken as equal 
to 8 : 12 [34] (p. 200). In the Epinomis, Plato, or one of his followers,11 had described this structure as 
“granted to the human race by the blessed choir of the Muses”, adding that this gift had “bestowed 
upon us the use of concord and symmetry to promote play in the form of rhythm and harmony” [35] 
(991b). Later Neoplatonists such as Nicomachus of Gerasa [36] (pp. 284-285), Iamblichus of Chalcis 
[37] (p. 50) and Proclus [38] (pp. 143-145) would identify this structure with that “most beautiful 
bond” that Timaeus, the Pythagorean astronomer of Plato’s Timaeus, describes in the dialogue as 
being responsible for the unity of the parts of the living cosmos [39] (31b–32a). These numbers, 6, 8, 
9, and 12, had represented the spacings among the notes of the three fundamental harmonic intervals 
of Pythagorean music theory: a tonic, here given the value 6, the perfect fourth [diatessaron] above 
it, that of 8, the perfect fifth [diapente] above it, 9, and the octave, 12.  

In the Berlin Lectures on the History of Philosophy, Hegel would claim that Aristotle had based 
his own formal syllogism on a simplified distortion of the “most beautiful bond” that for Plato had 
bound the various parts of the living cosmos into a unity [40] (pp. 209-210). Being familiar with the 
relevant Neoplatonic interpreters of Plato,12 Hegel had most likely followed Iamblichus and others 
in identifying this bond with the musical tetraktys. Further evidence for this association appears in 
Hegel’s discussion of “ratio” or “proportion” (Verhältnis) in Book 1 of The Science of Logic, where 
its most developed form, the “power-proportion”, has exactly the features of the inverse double-ratio 
structure of the harmonic cross-ratio [12] (pp. 70-79).  

It seems to have been Archytas who had calculated the musical means such that while the 
sequence of octaves had been determined as a geometric sequence in which each term doubles its 
predecessor, the two consonant intervals within the octave, the perfect fourth and perfect fifth, were 
determined by the harmonic and arithmetic means of the octave’s extremes. We are to understand 
these different “means” in terms of two fundamentally different numerical sequences, the geometric 
and arithmetic, which are incommensurable. 

In an equally spaced arithmetical sequence of numbers such as 1, 2, 3, 4, 5, …, the middle of three 
consecutive terms is half the sum of the other two, their “arithmetical mean” (or average). In contrast, 
the “geometric” mean is the middle term of three consecutive terms of a geometric sequence, such as 
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1, 2, 4, 8, 16, …, in which each successive term is a constant multiple of its predecessor. Here, the 
geometric mean will be calculated as the square root of the product of its extremes. As noted above, 
a sequence of octaves, the foremost consonantal interval, is determined geometrically, but within the 
octave the most consonant note is the perfect fifth, which is determined by the arithmetic mean of the 
octave’s extremes. Archytas’s third mean, the harmonic, is the inverse of the arithmetic mean in the 
context of the underlying geometric sequence, Proclus later summarizing the relation between the 
three means as such that “the geometric proportion includes the other two and they are reciprocal 
with one another” [38] (p. 145).13 As its inverse, the harmonic mean of a and b will be calculated as 1 

divided by the arithmetic mean of 1a and 1b, or ((a−1+b−12 )−1), which reduces to 2aba+b.14 For the terms 1 

and 2 of a geometric sequence, Archytas had calculated the harmonic mean as the ratio 4:3 and the 
arithmetic mean as 3:2, and to get a sequence of integers each can be multiplied by 6, resulting in the 
musical tetraktys, 6, 8, 9, and 12.  

Archytas is also attributed with having proved that a pair of “epimoric” (superparticular) 
numbers, such as 1 and 2, or any multiples of such pairs, could not be “divided” by the mean 
proportional, that is, divided by the geometric mean [19] (pp. 71-72). That is, without irrational 
numbers, effectively the only means by which an octaval interval could be divided were the harmonic 
and arithmetic means.15 The two equal ratios 6:9 and 8:12 of the four numbers of the musical tetraktys 
would provide an instance of the future harmonic cross-ratio, the principal invariant of this form of 
geometry. The harmonic cross-ratio can seem confusing—Desargues had invented a decidedly non-
intuitive “botanical” technical vocabulary with which to describe these relations—but it is based 
upon a simple idea. 

Consider a segment between points A and B on a line, with that segment divided by a variable 
point X that can move freely within that interval, as in Figure 2 below. The position of X can be said 
to determine the value of a “division ratio” between the segments AX and XB, i.e., AX:BX, or 

expressed as a fraction, AXXB.16 It happens that for each point at which X divides AB “internally”, 

another unique point Y, as displayed in 2b, exists on the line, but outside the interval, dividing the 
interval “externally”, such that the two division ratios are the same, that is AX:XB = AY:YB (or AXXB =AYYB) [31] (pp. 84-85). The ratio of these two equal division ratios, with the value of 1,17 is the harmonic 

cross-ratio.18  
This equality of the division ratios in the harmonic cross-ratio has peculiar consequences for 

relations within the projective plane. As X moves between A and B in a particular direction, for 
example, away from B and towards A as in Figure 2b, Y will move in the opposite direction away 
from B. Moreover, as X approaches the point mid-way between A and B, as in Figure 2c, Y will 
approach a point an infinite distance from the line segment [31] (p. 85).19 If X continues to move past 
the mid-point in the direction of A, Y will reappear on the line but now on the opposite side of the 
segment, approaching A from the left as X approaches it from the right.  

 
Figure 2. Dividing an interval internally and externally by variable points in the same proportion.  

While in the Euclidean plane, a straight line through points A and B will be thought to extend 
to infinity in each of the opposed directions from A to B or from B to A, aligning with the idea that 
the values of ∞ and −∞ are opposed. However, in the projective plane, the point at infinity approached 
when travelling in the direction from A to B is considered to be the same point that is approached 
when travelling in the direction of B to A. Again, this was a point made by Kepler in his work on 
optics [43] (p. 299) and the Platonist heritage of such an idea of an infinite straight line as closed, as 
typical of a circle, is apparent in the fifteenth-century Platonist Nicholas of Cusa who had proposed 
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the ultimate identity of a straight line and a circle, a “coincidence of opposites” suggestive of this 
feature of projective geometry [44].20 

4. The role of the Musical Ratios in Projective Geometry 

For Plato and the Platonists, the significance of the three Pythagorean means had extended 
beyond their role in accounting for the consonant musical intervals of octave, perfect fifth and perfect 
fourth because the “unity” holding among them was seen as addressing the global problem of the 
incommenensurabilty of continuous and discrete magnitudes. An arithmetical sequence is such that 
both arithmetic and harmonic means can be expressed in ratios of natural numbers, but the 
calculation of the geometric mean, involving square roots, meant, as shown in Archytas’s proof, that 
it could not be calculated.21 Facing the need to find approximations for square roots in making actual 
calculations in the context of astronomy, the Pythagoreans are known to have employed algorithms 
inherited from earlier Babylonian mathematics,22 and the musical tetraktys itself provides such an 
algorithm.23 Taken together, the harmonic and arithmetic means of a pair of extremes provide upper 
and lower limits for approximate values for the geometric mean of those extremes. 24 Moreover, 
taking the harmonic and arithmetic means of those two means provides an even narrower range of 
approximate values, and so iterated in this way, the harmonic and arithmetic means provide a 
narrowing range of upper and lower bounds for approximations for √2. 

It is such a harmonization of incommensurable opposites like this that Plato seems to refer to in 
the Timaeus in relation to the bonds required to unify the distinct parts of the cosmos. As Timaeus 
points out, were the cosmos planar rather than three-dimensional, there would be needed only a 
single middle term, but as the cosmos is three-dimensional, two are needed [39] (d32a-b). This 
passage is commonly interpreted as if Plato is referring to the problem of finding two geometric 
means between extremes, as in finding b and c of the extended geometric proportion a : b :: b : c :: c : 
d, a well-known problem concerning the calculation cube roots [24] (bk 8, prop. 12), for which 
Archytas had provided an elaborate geometrically based solution [16] (pp. 66-70).25 Plato does refer 
to geometric sequences involving squares and cubes in this context [39] (35b), but he also explicitly 
alludes to the interpolation of harmonic and arithmetic means between the terms of such sequences 
(36a-b). Moreover, that incommensurables are being united in this double bond seems clear from the 
way he goes on to describe the ratios in terms of the division of a complex mixture said to combine 
“the Same” and “the Different”, which is “hard to mix into conformity with the Same” [39] (35a-b). 
Almost a thousand years later, Proclus would describe this unity achieved in the cosmic soul as one 
in which “the geometric means binds the substantial totality of the soul, for the essence is a single 
logos [ratio] running through all things and connecting the first, middle and last” while the 
“harmonic proportion connects all the Samenesses that has been divided in the case of the soul, 
establishing a common ratio between the extreme terms and yoking together things that are naturally 
similar” and “the arithmetic binds together the various Differences in the soul’s procession” [38] (pp. 
175-176). As we will see below, a differentiation between objects as grouped in terms of their 
samenesses, that is, their shared properties, and as distinguished in terms of their differences, will 
emerge in Hegel’s account of logic in his distinction between the conceptual determinations of 
“particularity [Besonderheit]” and “singularity [Einzelheit]”—this signaling a major departure from 
Aristotle’s syllogistic, in which there is no official place for “singular” judgments [46] (p. 1).  

Hegel had appealed to Plato’s cosmology in his Dissertation at Jena in 1801, a move treated with 
derision by many of his contemporaries. However, I suggest that on the basis of his reading of Plato’s 
own application of the three musical means to the geometry of three-dimensional space, Hegel had 
been predominantly concerned with a feature of the mathematics underlying both a form of geometry 
and Pythagorean music theory. Such a feature in relation to projective geometry is not difficult to 
show, as can be seen by comparing the images in Figure 3 below.  
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Figure 3. The inverse foreshortening found in the neck of a guitar. 

Introductory books in projective geometry typically include diagrams such as images of train 
tracks receding into the distance as in Figure 3a. While the sleepers on which the tracks rest are of 
equal length, they appear in the diagram to progressively shrink, while the parallel tracks resting on 
them appear to converge so as to meet at a vanishing point. But when the neck of a guitar is looked 
at from a certain angle from the bottom end, as in Figure 3b, while the strings which are 
(approximately) parallel appear to converge in a similar way to the train tracks, the gaps between the 
frets do not shrink in the way seen in the railway sleepers. In fact, if the observer gets the angle of 
viewing right, they actually appear equidistant. This is because objectively, the frets are not evenly 
spaced like the sleepers as seen in Figure 3c, but get further apart as one moves up the neck from the 
body of the guitar to the headstock (as in Figure 3d), and thus compensate for the foreshortening. In 
both phenomena there is a superimposition of an arithmetic sequence, which advances like the 
sleepers on a railway track, and a geometric sequence, which advances like the sequence of frets of 
the neck of a guitar. Thus, in receding train tracks, an objective arithmetic sequence is projected onto 
an apparent geometric one, while on the guitar neck, an objective geometric sequence of fret spacings 
is projected onto an apparent arithmetic one. 

This superimposition of geometric and arithmetic sequences gives to the relations holding 
among notes on the Pythagorean scale a very specific character. Considered arithmetically if one 
“adds” a perfect fourth to a perfect fifth a full octave results. 26  However, when considered as 
intervals in a geometric sequence, a complete octave results from the multiplication of the two intra-
octaval intervals, just as 32 × 43 = 2. And this is not peculiar to the Pythagorean scale, as the modern 

diatonic musical scale effectively extends this same mode of division of the octave into one of 12 equal 
steps or “semitones”.  

In the modern scale, if the pitch of the root note is again given the value 1, that of the first 
semitone up the scale will have the value 1 × 12√2, the next note 1 ×12√2 × 12√2, and so on. After twelve 
steps, 12√2 has been multiplied by itself twelve times, giving the value of 2 to the octave above the 
root note. These ratios correlate with the frequencies of the notes, a concept not possessed by the 
Greeks, but they coincide with the relative distances between the frets of a guitar—the sorts of 
distances measured and compared by the Greeks. Here the relation is reversed. If one takes the 
distance between the twelfth and thirteenth frets as 1 unit, the distance between the eleventh and the 
twelfth will be 1 × 12√2 unit and so on, along the neck until the distance between the “nut” and the 
first fret will have the value 2 units. We should not be surprised, then, that the “musical tetraktys” 
turns out to be an instance of the principal invariant in projective geometry. 

5. The Role of the Harmonic Cross-Ratio within Perspectival Representations  

In the last quarter of the seventeenth century, Gottfried Leibniz would attempt to develop the 
types of Renaissance studies of perspective on which Desargues had drawn into a “Scientia 
perspectiva”, an “art of showing the appearance of an object in the tabula” or “plane of appearance” 
[47] (p. 48) conceivable as the picture plane on which a painter creates a perspectival representation 
of an array of objects laid out on some “objective plane”. Like Desargues, Leibniz had aimed to 
abstract from the three-dimensional relationships of points in space to a type of formal two-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1546.v1

https://doi.org/10.20944/preprints202310.1546.v1


 10 

 

dimensional geometry of the “plane of appearance” itself—a type of abstraction manifested, for 
example, in his dropping reference to any “objective plane” in relation to the tabular or “plane of 
appearance” [47] (p. 52). This relative disinterpretation to an essentially formal axiomatic geometry 
would now allow a group of lines intersecting at a point—what geometers call a “pencil of rays”—to 
receive a variety of interpretations when reapplied to a perspectival representation. For example, 
such a pencil could represent parallel lines converging on some point at infinity or alternatively they 
could represent refracted parallel light rays converging at the eye of an observer represented within 
the picture.27 In projective geometry, when rays from a pencil intersect with a line, the relationships 
among the points of intersection (a “harmonic range”) can be regarded as a projection of the 
equivalent relationships among the angles between the rays of the pencil (a “harmonic pencil”), 
allowing determinate structures (“projectivities”and “perspectivities”) to be transmitted across the 
plane [48] (ch. 1). The various projectively linked pencils of rays and ranges of colinear points could 
thus allow the idea of correlations among the sightlines or viewpoints of differently located subjects, 
like those represented in Raphael’s painting, as mediated by the common objects of their vision.  

However, these different interpretations could be superimposed, and the points at infinity could 
also be understood as representing the “viewpoint” of some transcendentally located “viewer”—in 
the seventeenth-century context, the famed “God’s-eye viewpoint”, the objectivity of which could be 
contrasted with the subjective and partial perspectival viewpoints of finite subjects located within 
space and time. Moreover, there is, of course, another viewpoint implied by, if not actually 
represented within, a typically perspectival painting such as The School of Athens—the point of view 
at which we viewers are “located” with respect to the portrayed figures, a viewpoint coinciding with 
that from which the painter had “viewed” the scene being painted.28 But while we viewers view the 
contents of the painting as if from a viewpoint related to those in the scene, in another sense, our 
viewpoint is understood as akin to a transcendental one at infinity—a type of God’s eye view. This, 
according to Acuña’s interpretation of Wittgenstein’s account [6] (pp. 10-11, 16-17), is what 
Wittgenstein had in mind when he had invoked the idea of “projection” in the Tractatus, as 
“performed in logical space by the trancendental subject” (p. 14).29 The relevance of such ideas for 
religious thought about the relations of humans to God was clearly not lost on the likes of Pascal and 
Leibniz. 

Pascal had apparently thought that the relations between finite points within the projective 
plane and its points at infinity might provide an answer to the question of our knowledge of God 
[49]. Considered in the context of the projective plane, from the perspectives of figures within space, 
points at infinity are no longer conceived as entirely unreachable or “transcendent”, but rather as 
infinite points that can enter into determinable relations to finite ones in light of the determinacies of 
the harmonic cross-ratio.30 In his later writings, however, Pascal seems to have changed his mind, 
and opted for a fundamental incommensurability existing between God and humans, modelled on 
the incommensurability, or what he described as the “heterogeneity”, between discrete and 
continuous magnitudes [49] (Section 5).  

For Leibniz, clearly his science of perspective was intended to tie into the more general 
epistemological and metaphysical considerations of the idea of perspective as raised in his Discourse 
on Metaphysics of 1686 [50]. Being a “rationalist” in theology as elsewhere, he suggested that rational 
mechanisms were available to a finite subject to lead them, as if climbing “Jacob’s ladder”, to an 
absolute point of view. In virtue of an individual’s capacity to reflect upon the factors constraining 
his or her own perceptual knowledge, he or she might ascend rung by rung, moving progressively 
away from the contingencies shaping experience of a subject within the world. Later, Kant [51] would 
famously argue against even conceptual possibility here. Human rational thought, he believed, was 
ultimately tethered to empirical contents by the dependence on the contribution of empirical 
“intuitions” received by an individual subject located in the world. Thus, Kant’s equivalent “ladder” 
would take the climber only as far as a view of the world as a totality of objectively justified 
appearances, the climber being metaphysically cut off from any view of reality “as it is in itself”.31 

Leibniz at least knew about Desargues’s projective geometry and certainly was familiar with one 
of its major theorems—“Pascal’s theorem”—and his proposed perspective science included the idea 
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of points at infinity in the form of the vanishing points of apparently converging parallel lines and 
similarly to represent the sight-lines of individuals portrayed within a perspectival representation. 
However, he seems not to have had the one essential element that had allowed Desargues to create a 
distinct and unified non-Euclidean systematic form of geometry, the harmonic cross-ratio that Pascal 
had taken as showing how we might understand our links to God. But without this, for Leibniz there 
was no invariant to ensure that the unity of the space being articulated by variously compounded 
“projectivities” and “perspectivities”—nothing to rule out the “paradoxical” types of space familiar, 
for example, within pictures of the Dutch printmaker M. C. Escher with their closed but infinitely 
ascending staircases.32 Nor was he left with any mathematical means for incorporating “points at 
infinity” into determinate relations with ratios of finite magnitudes. 

This type of thinking had formed part of Hegel’s background. He was well aware, for example, 
of the efforts of the Swiss mathematician Johann Heinrich Lambert to develop Leibniz’s science of 
perspective, referring to it and criticizing it in The Science of Logic [53] (p. 544). 33  In the mid-
eighteenth century, Lambert had also been involved in a public dispute with Hegel’s effective logic 
teacher while he was as student at the Tübingen seminary, Gottfried Ploucquet, over how to develop 
the diagrammatic, i.e., geometric, dimensions of Leibniz’s logic. The harmonic cross-ratio in the 
particular form of the musical tetractys from Plato’s Timaeus might suggest a way forward for 
Leibniz’s intended science. To see how this might work we need to extend this discussion from the 
geometric to the logical register. One possible way here is to consider Hegel’s logic as standing to 
Aristotle’s formal logic in a relation analogous to that in which projective geometry stands to its 
Euclidean counterpart. 

6. Hegel’s Logic as Understood as a Projective Equivalent to Aristotle’s Euclidean Syllogistic  

We have earlier noted that by the time of Aristotle, any parallel between the structure of the 
syllogism to the ratios and proportions of music theory had been reduced to the common role played 
in both by the relation of terms within a geometric sequence, a reduction reflected in Hegel’s 
comment that Aristotle had employed only one “middle term” in his syllogistic [40] (p. 211)—clearly 
the geometric—whereas Plato’s middle term had been “broken” or “doubled” into the relation  
between arithmetic and harmonic means. While for Aristotle, the geometric mean was the principle 
according to which all logical relations were understood, for Plato and his followers, and eventually 
Hegel, the geometric mean needed to be divided into the harmonic and arithmetic means, given that, 
relying on square roots, the geometric mean could often not be given a determinate value and so the 
common “measure” that it sought to provide could not be found. In the logical context, the need for 
harmonic and arithmetic means will turn out to be a semantic one necessary to bridge the gap 
between logical concepts and worldly items to which they apply. Thus, Hegel will distinguish 
between the conceptual determinations of “particularity” (Besonderheit) and “singularity” 
(Einzelheit) [53] (pp. 529-549), the former, as alluded to by Proclus [38] (pp. 175-176), relating concrete 
elements in terms of their “samenesses”—that is, in terms of their common properties—the latter 
differentiating them in terms of their “differences”. 

Elsewhere [12] (chs. 8, 9), I have suggested ways that these Platonic features are translated into 
the formal syllogism Hegel develops in the “subjective logic” of Book III of The Science of Logic. In 
relation to the semantic issues, the logic master at the Tübingen seminary during Hegel’s time there, 
Gottfried Ploucquet, would, from a generally Leibnizian perspective, make essentially the same 
distinction as Hegel’s particular-singular distinction by reference to two varieties of “particularity”: 
“comprehensive” and “exclusive” [12] (p. 128). This distinction effectively aligns with the modern 
modal distinction between proper names and general descriptions, a distinction that had been 
collapsed in Russell’s version of classical logic, but reintroduced in the second half of the twentieth 
century as a modally relevant one [54]. 

Hegel’s distinction fits this modal model. Terms instantiating “particularity” link entities in 
terms of their common properties: “the particular has one and the same universality as the other 
particulars to which it is related… It has no other determinateness than that posited by the universal 
itself” [53] (p. 534). In contrast, “singularity is the concept reflecting itself out of difference into 
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absolute negativity”, “self-referring determinateness is singularity” (pp. 530, 540). That is, considered 
in its singularity, a thing is considered in the ways that it differentiates itself from other similar 
things—in Ploucquet’s terms, excludes other instances of the universal it instantiates. An individual 
human, for example, might be comprehended as “a human”, or “some human”, their humanness 
being what unites them with others. But cognized as “this human”, or, perhaps, as “Socrates”, the 
person is grasped in terms of what distinguishes him or her from others such as “that one” or “that 
one over there”, or, for example, Aristotle or Archytas. In modern modal terms, a particular 
description such as “the teacher of Alexander the great” picks out whoever fits this description in “all 
possible worlds”, including ones in which this is someone other than Aristotle, while the proper name 
“Aristotle” picks out Aristotle in all possible worlds, including those in which he is not the teacher of 
Alexander.34 This is the same play of samenesses and differences that Proclus had linked to the 
harmonic and arithmetic means respectively. Within an abstractly conceptual hierarchy, singular and 
particular terms must be inserted like the insertion of arithmetic and harmonic means in a hierarchy 
of octaves. 

Hegel’s singular-particular distinction among the subjects of predication is in turn linked to a 
similar distinction between the predicates predicated of those subjects and this is expressed in the 
different ways each receives negation. Hegel thus distinguishes “qualitative” from “reflective” forms 
of judgment, or “judgments of inherence” from “judgments of subsumption”,35 and here, it is the 
predicates of such judgments that are differentiated as singular or particular. 

In the former [53] (p. 557), [56] (§ 166), a predicate is affirmed of some perceptually given 
concrete singular subject, as when “red” is predicated of some specific observable rose, picked out 
with the singularly quantified demonstrative “this rose”.36 And of course, the red exemplified by this 
rose will be a specific (i.e., singular) shade of red, opposable to the redness of that rose, over there. 
Negation as described by Hegel in this type of judgment is what is usually discussed as “internal”, 
as the negation applies within the judgment and only to the predicate: the rose is not red, but some 
other colour [53] (p. 565), while that the rose is actually a rose is not brought into question and so is 
beyond the scope of the negation. However, negation necessarily involves generalization and sets 
cognition on a path to abstraction. In the original judgment there had also been something singular 
about the predicate being affirmed, but this specificity is lost in the negative form in which the 
predicate attributes some non-redness to the rose. While there is a way in which a specific rose is red, 
there are many ways in which a rose might be not red for there are many non-red colours. For Hegel, 
negation provides a path for abstraction and takes the judgment from the form of singularity to 
particularity—from this A to some A or As—and then a second negation takes this abstraction one 
step further to a type of abstract universality of empirical laws about all As. 

In the resulting fully developed “reflective” judgment, it is the whole proposition that becomes 
negated “externally”. This is seen in the development of particular judgments, in the sense of 
particularly quantified judgments of the sort, “some As and B” to the universal form “all As are B”.37 
As Hegel points out (and reflecting the “problem of induction”), such judgments made on an 
empirical basis will by necessity be about “a mere plurality which is taken for allness”. What such a 
universal judgment in effect claims is that “if no instance of the contrary can be adduced, a plurality 
of cases ought to count for an allness” [53] (p. 573)—that is, “All As are B” becomes equivalent to “It 
is not the case that some As are not B”. In short, a universal reflective judgment has the form of an 
externally negated particular (and hence itself negative) reflective judgment.  

Such external negation is, in fact, the only type of negation operative in modern classical logic, 
as what is conceived as being affirmed in judgment is a complete proposition with a fixed and so 
eternal “truth-value”. It is clear, however, from his criticisms of this type of judgment form as found 
in Leibniz’s characteristica universalis,38 that Hegel regards such a judgment type as not properly a 
judgment at all. Thus, stopping short at this degree of abstraction, we are left with a duality of 
mutually presupposing qualitative judgments on the one hand and reflective judgments shaping 
universal empirical laws on the other.  

As noted above, in a way that might be thought to anticipate the modern generally 
“falsificationist” epistemology, Hegel has construed universal empirical laws as meaningful to the 
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degree that they can be refuted, as when the universally quantified “All As and B” is refuted by a 
judgment asserting the existence of some A (or As) that is (or are) not B. But Hegel’s singular-
particular distinction makes the applicability of such a particular judgment about some A or As 
dependent upon judgments about some specific A, as in “this A”. In short, qualitative judgments, 
that are clearly “perspectival” or “contextual”, cannot be eliminated in the way they are in Russell’s 
classical logic. Such “indexical” judgments are sometimes called “self-locating” [57] (p. 128) because 
they locate the judging subject within the spatio-temporal world as the anchor point of the various 
indexicals such as “this”, “now”, and “here”. At the same time, however, a singular claim about “this 
A” must itself coexist with those aperspectival, but clearly fallible, law-like claims about “all As”. 
This combination of “perspectival” and “aperspectival” judgments conjures up images of 
perspectival and aperspectival viewpoints within Leibniz’s perspective science, but within Hegel’s 
projective approach, the meaningfulness of such aperspectival views “from infinity” is dependent on 
their relation to the limited views from the finite points of view located within space and time. Thus 
a “duality” of judgment forms is found at the heart of Hegel’s Logic much like that existing between 
points and lines in projective geometry [58]. Hegel deals with the ultimate mediation of these dual 
judgment forms in his treatment of syllogisms, which, I have suggested, he models on the role of the 
harmonic cross-ratio in the projective geometry linking finite and infinite points of view as implicit 
in Plato’s “musical” cosmology. 

The transition of judgment to syllogism is made by Hegel from a distinct form of judgment called 
the “judgement of the concept”, a type of normative perceptual judgment in which, in its initial 
“assertoric” form, an evaluation is made about the goodness or otherwise of the way a singular object 
instantiates its universal: e.g., “this house is bad”, “this act is good” [53] (p. 583). In this context there 
is no ambiguity about the “exclusive” reading of the subject term and this is consistent with its 
typically comparative nature: this house is typically judged good in contrast to that one. But value 
judgments of this sort are “problematic” in that the subjective conditioning of these judgments easily 
induces disagreement, and so in the face of some counter-assertion, a judge can resort to reason 
giving. This expands the judgment into an “apodictic” one in which the subject–predicate relation 
becomes mediated by a “middle term”: “the house, as so and so constituted, is good” [53] (p. 585). 
Here, the middle term is a particular allowing a general reason to be given for the judgment as it 
implies that any house so characterized would be good. It is this expanded tripartite judgment with 
the structure singular–particular–universal (S–P–U) that is implicitly a syllogism: S–P (this house is 
so and so constituted); P–U (any house so and so constituted is good); therefore, S–U (this house is 
good). I have suggested that this is essentially a logical translation of the interrelated arithmetic, 
harmonic, and geometric means as understood by Proclus.  

Within Hegel’s structure, the house in question is thus grasped simultaneously in its singularity 
and its particularity—he says, in its “being” and in its “ought”—so as to express the universal “good”. 
“That this original division [Teilung], which is the omnipotence of the concept, is equally a turning 
back into the concept’s unity and the absolute connection of “ought” and “being” to each other, is 
what makes the actual into a fact; the fact’s inner connection, this concrete identity, constitutes its 
soul” [53] (p. 586).  

Given the structure of Hegel’s logical presentation, his implicitly syllogistic “judgment of the 
concept” is meant to manifest something universal about all earlier forms of judging and cognition 
leading up to it. First, to self-consciously judge is to affirm a judgment such that is not only endorsed 
as true “for oneself” but that it is true in some more general sense and so true for others as well, an 
assumption motivating reason giving. Thus, when I judge in the simpler mode that “this rose is red”, 
besides affirming this specific content I commit myself to the more indefinite statement “there is a 
rose that is red” or “some rose is red” that could be the object of the perception of others. Moreover, 
I commit myself to the counterfactual that this would be the case even were I not to have experienced 
it at all. But Hegel clearly does not want to simply reduce the former qualitative and perspectival 
judgment to the latter reflective aperspectival one, as in the mode of modern classical logic, because 
this would simply eliminate the underlying incommensurability of “being” and “ought” as 
instantiations of conceptuality. Both qualitative and reflective judgments must be retained as 
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necessary “moments” of this form of reasoning just as one’s evaluative bodily reactions retain a place 
in the evaluative “judgments of the concept”.  

These aspects of his attitude to judgment, I suggest, show similarities to that found in the modern 
intuitionist attitude to mathematics and its logic [59] in the intuitionists’ opposition to modern 
classical logic. Thus, in the manner of the intuitionists one might argue that for every general 
aperspectival statement known to be true there must exist some qualitative judgment about a specific 
“witness” that is also held to be true, just as the truth of “houses, as so and so constituted, are good” 
must presuppose a judgment of the form “this house (the witness) is good”.39 For the intuitionist, 
there exists no independent way to access the truth of “aperspectival” contents—the contents of 
Hegel’s reflective judgments.40 This means that the status of all aperspectival judgments is something 
like that of being “existential generalizations” from some perspectival judgment. These aperspectival 
judgments, I suggest, are analogous to those viewpoints “at infinity” that exist for finite viewers in 
the projective plane despite the fact that they are locations they cannot themselves occupy. This 
means that singular witness judgments need their abstract equivalents just as much as the latter need 
the former. In both geometry and logic, these abstract, albeit unoccupiable points of view are required 
for the coherence of the “space” in question—three-dimensional physical space in one case and the 
logical space of interconnected assertions about the world on the other.41 

7. Conclusions 

In the early years of the movement of analytic philosophy Hegel’s logic was thoroughly 
criticised by Bertrand Russell, the chief early proponent of modern “classical logic”. Russell’s efforts 
here were largely successful, with Hegel for the most part being eliminated from serious 
consideration within logic [60] (Intro.). However, the original form of the Frege-Russell logic used to 
denounce Hegel would itself need modification over the coming decades in ways requiring the 
incorporation of elements from rival approaches [5]. This need was initially rooted in concerns with 
the lack of an adequate semantics within classical logic’s original form, a concern motivating 
investigations into the relevance of projective geometry.  

Among the resources of projective geometry deemed significant would be the principle of 
duality, and it is perhaps not surprising that within the variety of non-classical approaches to logic 
that would return in the decades after the introduction of classicism, distinctly dual features are 
apparent which echo some of the fundamental features of Hegel’s “projective” transformation of 
Aristotle’s syllogistic. For example, Kripke’s rehabilitation of the dual proper name-definite 
description distinction [54] would overlap with Hegel’s use of the categorial singular-particular 
distinction in his logic and the same could be said of the duality of modal and nonmodal judgment 
forms, as found in the tense-logic of Arthur Prior, for example, which reflects Hegel’s non-reductive 
duality of qualitative and reflective judgments [61]. Elsewhere [12] (chs. 9, 10), I have drawn attention 
to further ways in which logic over the last century has seemed to reinvent ideas that are easily 
detectable in Hegel’s logic, but here I want to conclude by drawing attention to a Hegelian analogue 
of a feature of projective geometry that has been invoked in contrast to the static universalism of 
Frege’s logic, which is itself seen as underlying many of the semantic problems that faced its initial 
formulations. This concerns the idea developed by Gunther Edel [2] that logical systems should make 
possible the reinterpretation of the terms of their initial object languages.  

Hegel was keenly aware of the central role of reinterpretation of the concept of number in the 
history of mathematics from the Greeks to the modern period [12]. He was aware, for example, that 
the original Greek concept of number had come to be reinterpreted in modern times such that in the 
seventeenth century there existed numbers, negative numbers, irrationals, etc., which for the Greeks 
were not recognizable as numbers at all. He was also clearly aware that such conceptual extensions 
resulted from the dynamic of the development of the sciences themselves. For example, the extension 
of a numerical metric to Euclidean geometry by Descartes would be bound up with the acceptance 
of negative numbers because, as continuous magnitudes, lines could be naturally understood as 
extending in two opposed directions.42 For Hegel, such essential reinterpretatibility applied to all 
scientific concepts, not just mathematical ones, and it is expressed in the methodological shape of the 
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process of laying out the categories of his logic. This conceptual unfolding, as I have argued, follows 
a process in which some initially meaningful concept is at first disinterpreted because it is found to 
generate logical paradoxes, allowing it to be reinterpreted in ways that resolve those particular 
paradoxes [12] (ch. 9).  

The variable historical relations between arithmetic and geometry in antiquity had provided the 
prime example of this for Hegel, and it is therefore not surprising that he would have been attracted 
to approaches, like that of Leibniz, which signaled a “new relation between algebra and geometry” 
after which “the evolution of the two fields was henceforth intrinsically linked in a dialectical 
process” [62] (p. 237). Underlying all this, I have suggested, was a grasp of the relevance of an early 
precursor to projective geometry for logic. It should not be surprising that an increasing number of 
parallels can be found between his approach to logic and developments subsequent to the logical 
revolutions of the late nineteenth century. 
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Notes: 

 

1 Of course, Boolean logic would continue in the twentieth century in the new discipline of computer 

science which, developing in the 1920s, predated the actual birth of computers. 
2 The role of the related discipline of topology has been similarly discussed in this context. See, for 

example, [4]. On the need for classicist logic to draw on rival approaches for its development of 

semantics see [5]. 
3 This would be called by various names during the history of projective geometry, with the name 

“harmonic cross-ratio” being coined at the end of the nineteenth century by the English 

mathematician-philosopher William Kingdon Clifford. 
4 In [4] I argue against the common assumption, found in both his supporters and critics, that Hegel’s 

Science of Logic has nothing to do with logic as it is practiced now. 
5 The nature of these musico-mathematical “means” will be explained below. 
6  The “canon” was a measuring device attached to a monochord and so the title refers to the 

proportions in which the device’s string was “sectioned” or divided in experiments. 
7 About two thousand years later, Leibniz would also assign numbers to concepts in order to portray 

inference as a type of transitivity of relations of “inclusion”. “For example, since man is a rational 

animal, if the number of animal, a, is 2, and of rational, r is 3, then the number of man, h, will be the 

same as ar: in this example, 2 x 3 or 6” [29] (p. 17).  
8 The full title was “Brouillon project d'une atteinte aux événements des rencontres d'un cône avec un plan” 

[Rough Draft of an Essay on the results of taking plane sections of a cone].  
9 The idea of such invariants had also been introduced by Kepler in Astronomica Pars Optica and in 

the later nineteenth century, when a variety of non-Euclidean geometries had been proposed, they 

would be classified in terms of the invariants specific to each. 
10  Image from Internet Archive, <https://archive.org/details/school-of-athens>, accessed on 

17/10/2023. 
11 The author of this work, traditionally attributed to Plato, is now thought to be Philip of Opus, a 

follower of Plato at the Academy. Significantly, Philip had himself authored two works on optics [22] 

(p. 36). 
12 Hegel was familiar with and possessed key works of neo-Platonic authors such as Nicomachus of 

Gerasa, Iamblichus and Proclus [9]. 
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13 The harmonic mean had, prior to Archytas, been called the “sub-contrary” [hypenantia] [41] (p. 283), 

which, in the context of Greek geometry, referred to a triangle that was similar to another but inverted, 

in the sense of as if having been rotated 180° through the third dimension. 
14 Archytas describes the harmonic mean as holding when “the part of the third by which the middle 

term exceeds the third is the same as the part of the first by which the first exceeds the second” [42] 

(p. 42). 
15  While traditionally the problem of incommensurability has been thought to have been a 

consequence of “Pythagoras’s theorem” concerning squares built on the sides of a right-angle triangle, 

recent historians have argued that it was more likely to have emerged out of music theory itself [17] 

(Intro., ch. 1); [41] (pp. 291-292); [21].  
16 In Greek style, Desargues talks of ratios and their compoundings, whereas for a modern reader it 

is more intuitive to talk of fractions and their products.  
17  The ratio has the value of 1 when only the absolute value of the lengths is considered as in 

Desargues’s presentation. In the nineteenth century, the relative directions of the line-segments would 

be taken into account, in which case the value of the harmonic cross-ratio would be given −1, because 

the direction of one of the segments will always be opposite to the directions of the other three. 
18 A quick calculation shows that the harmonia or musical tetraktys instantiates the harmonic cross-

ratio. 
19 Desargues had insisted on counting the four points as an instance of the involution despite the fact 

that the idea of a point at infinity is “incomprehensible” [31] (p. 85). Remember that Desargues had 

not formulated the harmonic cross-ratio in terms of fractions, but ratios, and so was not faced with 

the problem of “dividing” by infinity. Later in the nineteenth century, worries about calculating with 

“infinity” would be bypassed by the introduction of homogeneous coordinates.  
20 In fact, the point at infinity as portrayed in figure 2 above will be just one of an infinite number of 

such points, each being the point of intersecting parallels pointing in different directions. These points 

will form a single line at infinity which is closed, like a circle. 
21  For the Greeks, multiplicative relationships were fundamentally geometrical, in that the 

multiplication of two numbers was essentially shorthand for the area of a rectangle with sides of 

lengths equal to those two numbers. 
22 For an account of the history of the spread of these algorithms, see [45].  
23 It is now known that the Pythagorean musical scale had originated in Mesopotamia. 
24 For the interval between 6 and 12, for example, the geometric mean (√72 = ~ 8.48528…) falls 

between the harmonic mean, 8, and the arithmetic mean, 9. 
25 This was known as the “Delian problem” of working out the dimensions of an altar that would be 

built to twice the volume of an existing one. Arithmetically, the solution involves the calculation of 

cube roots. 
26 This can be appreciated in relation to the fretboard of a modern guitar, where the perfect fourth is 

equivalent to five steps on the fretboard and the perfect fifth to seven. Adding to the interval of a fifth, 

say C to G (7 steps), a further fourth (5 steps), results in a full octave (12 steps). 
27 Leibniz had, apparently, drawn schematic eyes as located at origins of such rays in his geometric 

diagrams.  
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28 Of course, the painter would typically paint their models in the studio from a determinate point of 

view, which would become that from which the spectator would “view” the characters represented 

by those models.  
29  C.f., “Projections in logical space are always drawn from point P, and that point is the 

transcendental subject I” [6] (p. 17). 
30 In fact, there seem parallels here to Georg Cantor’s attitude to “transfinite” numbers towards the 

end of the nineteenth century, in that his “actual” infinites had determinable properties for humans, 

whereas traditionally, knowledge of the infinite had been the exclusive preserve of God. Thus, Cantor 

had attempted to quieten his Catholic critics by distinguishing between the traditional “absolute 

infinite” that was the preserve of God and the actual “transfinitum” that could be cognized by humans 

[52] (pp.144-145).  
31 This ladder analogy is clearly on view in Kant’s treatment of “prosyllogistic” forms of inductive 

inference [51] (A307-8/B364-365; A331-332/B387-389). 
32 See, for example, his 1953 lithograph “Relativity” <M.C. Escher's "Relativity" (byu.edu)>). 
33 As with Leibniz, there is no evidence that Lambert had grasped the need for a specific invariant in 

the geometry informing his studies on perspective. 
34  Such modal conceptions of individuality in the Renaissance were anticipated by logical 

conceptions in the Middle Ages. See, for example, [55]. 
35 Hegel uses “reflective” as the contrary of “qualitative” in discussing judgments, explaining his 

reluctance to use “quantitative” as this judgment is not purely quantitative [53] (p. 569). This is an odd 

decision, however, seeing that his qualitative judgments are themselves not entirely qualitative.  
36 Hegel often employs “the” rather than the demonstrative “this” in these examples, but that the 

latter is intended is clear in the Encyclopedia Logic when he notes that “if we say ‘this rose is red’, then 

it lies in the copula ‘is’ that subject and predicate agree with one another. But now the rose, as 

something concrete, is not merely red; instead it also has an odour, a determinate form, and many 

other sorts of determinations that are not contained in the predicate ‘red’” [56] (§ 172 add.) and, “if 

we say, for example, ‘this rose is red’, we consider the subject in its immediate individuality without 

relation to another”, (§ 174 add.). This is clearly the form of designation that excludes other instances 

of the genus “rose” in order to specify what is distinctive of this “singular” one. 
37 Here the particular-universal distinction is being applied to the subject term, resulting in the 

quantities some and all. 
38 See Hegel’s account of the “mathematical syllogism” [53] (pp. 602-608). See [12] (ch. 6.3). 
39  While not invoking its intuitionist origins, Robert Stalnaker uses this notion to distinguish 

propositions true in the actual world from those true in a merely possible world [57] (ch. 2.2) 
40 This is famously manifest in the intuitionists’ opposition to the classicists’ indirect establishment 

of truths via proof by contradiction or “reductio ad impossibile”. 
41 In the logical context, aperspectival reflective judgments provide the appropriate judgment form 

that allows properly truth preserving inferences across differently located finite subjects.   
42 For his part, Descartes had apparently not extended his coordinates into the territory of negative 

numbers, but this would happen soon after. 
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