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Detailed summary of the dataset

In line with current competing methods [1-3], we utilized a benchmark dataset from
the PDBbind database (2016 version) [4] to train, validate, and test our model. This dataset
comprises 13283 high-quality structures of drug-target complexes sourced from the Pro-
tein Data Bank (PDB, https://www.rcsb.org), along with experimental values of DTA, typ-
ically represented by pK;. The training and testing datasets were constructed from the
PDBbind database (2016 version), resulting in 12993 and 290 samples, respectively. To
ensure the training efficiency of the model, the sequence length of targets was fixed at
2100 amino acids to cover 98.74% of samples (Supplementary Figure S1) of the training
dataset. A total of four samples were excluded due to processing issues with the Biopy-
thon package [5]. Consequently, the training dataset comprises 12823 samples, while the
testing dataset has 289 samples. The maximum length of drug SMILES (Simplified Molec-
ular Input Line Entry System) [6] was chosen as the fixed length. Sequences of targets or
drug SMILES shorter than their fixed lengths were zero-padded.
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Figure S1. A sequence length distribution statistic chart of targets in 2016 version dataset of
PDBbind database.

Table 24. physical-chemical properties of amino acids.
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Table S2. The physical-chemical properties of atoms in drugs also have a large impact on the pre-

diction performance of S2DTA, so we select 9 physical-chemical properties of atoms.
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Atomic . Electron .. . . . . of
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* (Pauling) (Allen) 1) d) als)  (ev) .
Electrons
Carbon(C) 6 12.01 2.55 2.54 70 67 170 11.26 4
Hydrogen(H) 1 1.008 2.20 2.3 25 53 120 -13.60 1
Oxygen(0) 8 15.99 3.44 3.61 60 48 152 13.62 6
Nitrogen(N) 7 14.01 3.04 3.07 65 56 155 14.53 5
Fluorine(F) 9 18.99 3.98 4.19 50 42 147 17.42 7
Sulfur(S) 16 32.06 2.58 2.59 100 88 180 10.36 6
Phos'f;orus( 15 3097 219 225 100 98 180 1049 5
lodine(l) 53 126.90 2.66 2.36 140 115 198 10.45 7
Chlorine(Cl) 17 35.45 3.16 2.87 100 79 175 12.97 7
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Arsenic(As) 33 7492 218 221 115 114 185 979 5
Selenium(Se) 34 7896 255 242 115 103 190 975 6
Bromine(Br) 35 79.90 2.96 2.69 115 94 185 11.81 7
Boron(B) 5 10.81 2.04 2.05 85 87 192 8.30 3
Platinum(Pt) 78 19509 2.28 —(2.28) 135 177 175 896 2
Vanadium(V) 23 50.94 163 153 135 171 —(172) 683 &
Iron(Fe) 26 5585 183 1.80 140 156 —(172) 790 2
Mercury(Hg) 80 200.59 2.00 -(2.28) 150 171 155 1044 2
Rhodium(Rh) 45 10291 228 156 135 173 ~(172) 746 2
Mag:ﬂegs)'“m( 12 2431 131 129 150 145 173 7.65 2
Berylium(Be) 4 9.01 157 158 105 112 153 932 2
Silicon(Si) 14 2809 190 1.92 110 111 210 815 4
R”the:)'”m(R 44 10107 22 154 130 178  —(172) 736 1
Antimony(Sb) 51 12175 205 198 145 133 206 861 5
Copper(Cu) 29 63.55 1.90 1.85 135 145 140 7.73 1
Rhenium(Re) 75 18621 1.9 -(2.28) 135 188 ~(172) 7.8 2
Iridium(Ir) 77 192.22 2.2 —(2.28) 135 180 ~(172) 897 1
Osmium(Os) 76 1902 22 —(2.28) 130 185 ~(172) 844 2

Note: some property values in Supplementary Table S2 are missing (--), we replace the missing val-
ues by averaging all occurrences (data in brackets) of this property.
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