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Detailed summary of the dataset 9 

In line with current competing methods [1–3], we utilized a benchmark dataset from 10 

the PDBbind database (2016 version) [4] to train, validate, and test our model. This dataset 11 

comprises 13283 high-quality structures of drug-target complexes sourced from the Pro- 12 

tein Data Bank (PDB, https://www.rcsb.org), along with experimental values of DTA, typ- 13 

ically represented by 𝑝𝐾𝑑. The training and testing datasets were constructed from the 14 

PDBbind database (2016 version), resulting in 12993 and 290 samples, respectively. To 15 

ensure the training efficiency of the model, the sequence length of targets was fixed at 16 

2100 amino acids to cover 98.74% of samples (Supplementary Figure S1) of the training 17 

dataset. A total of four samples were excluded due to processing issues with the Biopy- 18 

thon package [5]. Consequently, the training dataset comprises 12823 samples, while the 19 

testing dataset has 289 samples. The maximum length of drug SMILES (Simplified Molec- 20 

ular Input Line Entry System) [6] was chosen as the fixed length. Sequences of targets or 21 

drug SMILES shorter than their fixed lengths were zero-padded. 22 

 23 

Figure S1. A sequence length distribution statistic chart of targets in 2016 version dataset of 24 
PDBbind database. 25 

Table 24. physical-chemical properties of amino acids. 26 
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Table S2. The physical-chemical properties of atoms in drugs also have a large impact on the pre- 27 
diction performance of S2DTA, so we select 9 physical-chemical properties of atoms. 28 

Atom 
Property 

Atomic 
numbe

r 

Atomic 
mass 

Electron
egativity 
(Pauling) 

Electro
negativi

ty 
(Allen) 

Atomic 
radius 

(empirica
l) 

Atomic 
radius 

(calculate
d) 

Atomic 
radius 

(vanderWa
als) 

Lonizat
ion 

Energy 
(eV) 

Number 
of 

Outermo
st 

Electrons 

Carbon(C) 6 12.01 2.55 2.54 70 67 170 11.26 4 

Hydrogen(H) 1 1.008 2.20 2.3 25 53 120 -13.60 1 

Oxygen(O) 8 15.99 3.44 3.61 60 48 152 13.62 6 

Nitrogen(N) 7 14.01 3.04 3.07 65 56 155 14.53 5 

Fluorine(F) 9 18.99 3.98 4.19 50 42 147 17.42 7 

Sulfur(S) 16 32.06 2.58 2.59 100 88 180 10.36 6 

Phosphorus(
P) 

15 30.97 2.19 2.25 100 98 180 10.49 5 

Iodine(I) 53 126.90 2.66 2.36 140 115 198 10.45 7 

Chlorine(Cl) 17 35.45 3.16 2.87 100 79 175 12.97 7 



 

Arsenic(As) 33 74.92 2.18 2.21 115 114 185 9.79 5 

Selenium(Se) 34 78.96 2.55 2.42 115 103 190 9.75 6 

Bromine(Br) 35 79.90 2.96 2.69 115 94 185 11.81 7 

Boron(B) 5 10.81 2.04 2.05 85 87 192 8.30 3 

Platinum(Pt) 78 195.09 2.28 --(2.28) 135 177 175 8.96 2 

Vanadium(V) 23 50.94 1.63 1.53 135 171 --(172) 6.83 5 

Iron(Fe) 26 55.85 1.83 1.80 140 156 --(172) 7.90 2 

Mercury(Hg) 80 200.59 2.00 --(2.28) 150 171 155 10.44 2 

Rhodium(Rh) 45 102.91 2.28 1.56 135 173 --(172) 7.46 2 

Magnesium(
Mg) 

12 24.31 1.31 1.29 150 145 173 7.65 2 

Beryllium(Be) 4 9.01 1.57 1.58 105 112 153 9.32 2 

Silicon(Si) 14 28.09 1.90 1.92 110 111 210 8.15 4 

Ruthenium(R
u) 

44 101.07 2.2 1.54 130 178 --(172) 7.36 1 

Antimony(Sb) 51 121.75 2.05 1.98 145 133 206 8.61 5 

Copper(Cu) 29 63.55 1.90 1.85 135 145 140 7.73 1 

Rhenium(Re) 75 186.21 1.9 --(2.28) 135 188 --(172) 7.83 2 

Iridium(Ir) 77 192.22 2.2 --(2.28) 135 180 --(172) 8.97 1 

Osmium(Os) 76 190.2 2.2 --(2.28) 130 185 --(172) 8.44 2 

Note: some property values in Supplementary Table S2 are missing (--), we replace the missing val- 29 
ues by averaging all occurrences (data in brackets) of this property. 30 
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