

Article

Not peer-reviewed version

Enhancing Aerospace Industry Efficiency and Sustainability: Process Integration and Quality Management in the Context of Industry 4.0

[Gheorghe Ioan Pop](#) , [Aurel Mihail Titu](#) * , [Alina Bianca Pop](#) *

Posted Date: 25 October 2023

doi: [10.20944/preprints202310.1532.v1](https://doi.org/10.20944/preprints202310.1532.v1)

Keywords: Aerospace Industry; Quality Management; Process Integration; Industry 4.0; Efficiency Sustainability; Technological Advancements

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Enhancing Aerospace Industry Efficiency and Sustainability: Process Integration and Quality Management in the Context of Industry 4.0

Gheorghe Ioan Pop ¹, Aurel Mihail Titu ^{2,3,*} and Alina Bianca Pop ^{4,*}

¹ S.C. Universal Alloy Corporation Europe S.R.L. Dumbravița 244A, Maramures, Romania; popghitz@gmail.com

² Industrial Engineering and Management Department, Faculty of Engineering, "Lucian Blaga" University of Sibiu, 10 Victoriei Street, 550024 Sibiu, Romania; mihail.titu@ulbsibiu

³ The Academy of Romanian Scientists, 3 Ilfov Street, Bucharest, Romania.

⁴ Faculty of Engineering, Department of Engineering and Technology Management, Northern University Centre of Baia Mare, Technical University of Cluj-Napoca, 62A Victor Babes Street, 430083 Baia Mare, Romania; bianca.bontiu@gmail.com

* Correspondence: mihail.titu@ulbsibiu.ro (A.M.T.); bianca.bontiu@gmail.com (A.B.P.)

Abstract: This paper delves into the multifaceted domain of the aerospace industry, examining its evolution, current challenges, and imperative focus on quality management and process integration. The aerospace sector, driven by technological advancements and a burgeoning global demand for air travel and freight transport, necessitates a thorough analysis of its industrial fabric and operational intricacies. This research endeavors to analyze the dynamics of the aerospace industry, pinpoint its challenges, and propose an integrated approach to enhance efficiency, quality, and sustainability. The primary goals encompass understanding the evolving industry landscape, identifying critical challenges, and offering innovative solutions by amalgamating principles of Industry 4.0 into quality management and processes within the aerospace sector. Through an in-depth exploration of various facets, this research underscores the pivotal role of efficient processes and integrated quality management in achieving sustainable growth and competitiveness in the aerospace industry. By aligning with the paradigm of Industry 4.0, organizations can optimize their operations and contribute to the industry's advancement, delivering safer and more cost-effective aerospace products. The study adopts a multifaceted approach, incorporating extensive literature review, critical analysis of industry trends, examination of quality management frameworks, and a thorough evaluation of the integration potential of Industry 4.0 technologies. The research also involves case studies and expert insights to validate the proposed approach. The investigation reveals that by leveraging Industry 4.0 technologies and embracing an integrated approach to quality management, the aerospace industry can significantly enhance operational efficiency, product quality, and overall sustainability. The seamless integration of processes and the implementation of advanced quality frameworks pave the way for a more competitive and future-ready aerospace industry, meeting the evolving demands of a globalized world.

Keywords: Aerospace Industry; Quality Management; Process Integration; Industry 4.0; Efficiency Sustainability; Technological Advancements

1. Introduction

In the current industrial landscape, the aerospace and space industry are undergoing a continuous process of evolution and adaptation to increasingly complex and diverse market requirements. The rapid technological advancement and the growing challenges related to the efficiency and sustainability of products and processes have turned this domain into a competitive and dynamic environment. This evolution has generated the necessity for an innovative and integrative approach to quality management and processes in the aerospace industry, aiming to achieve safer, more efficient, and sustainable products.

This study aims to make a significant contribution to understanding and implementing advanced quality management practices and process integration in the aerospace industry. In a context where quality and sustainability requirements are becoming more stringent, this research is crucial to optimize processes and ensure that products in the aerospace industry comply with the highest standards of performance and safety.

The current literature reveals gaps in understanding the complex processes in the aerospace industry and in the integrated application of quality management in this domain. There are also ambiguities regarding the proper implementation of Industry 4.0 principles in aeronautical and space processes. These gaps have motivated the planning and execution of this research to fill the existing knowledge voids and provide new perspectives and innovative solutions.

The primary novelty of this research lies in integrating concepts and technologies from Industry 4.0 into quality management and processes in the aerospace industry. The proposed innovative approach will offer a holistic view of quality management and illustrate how it can be adapted and optimized within the specific context of the aerospace industry.

The main goal of this research is to analyze and propose solutions to optimize process integration and quality management in the aerospace industry, using the paradigms and advanced technologies of Industry 4.0. It aims to identify and assess the impact of implementing this innovative approach on the efficiency, quality, and sustainability of products and processes in the aerospace industry.

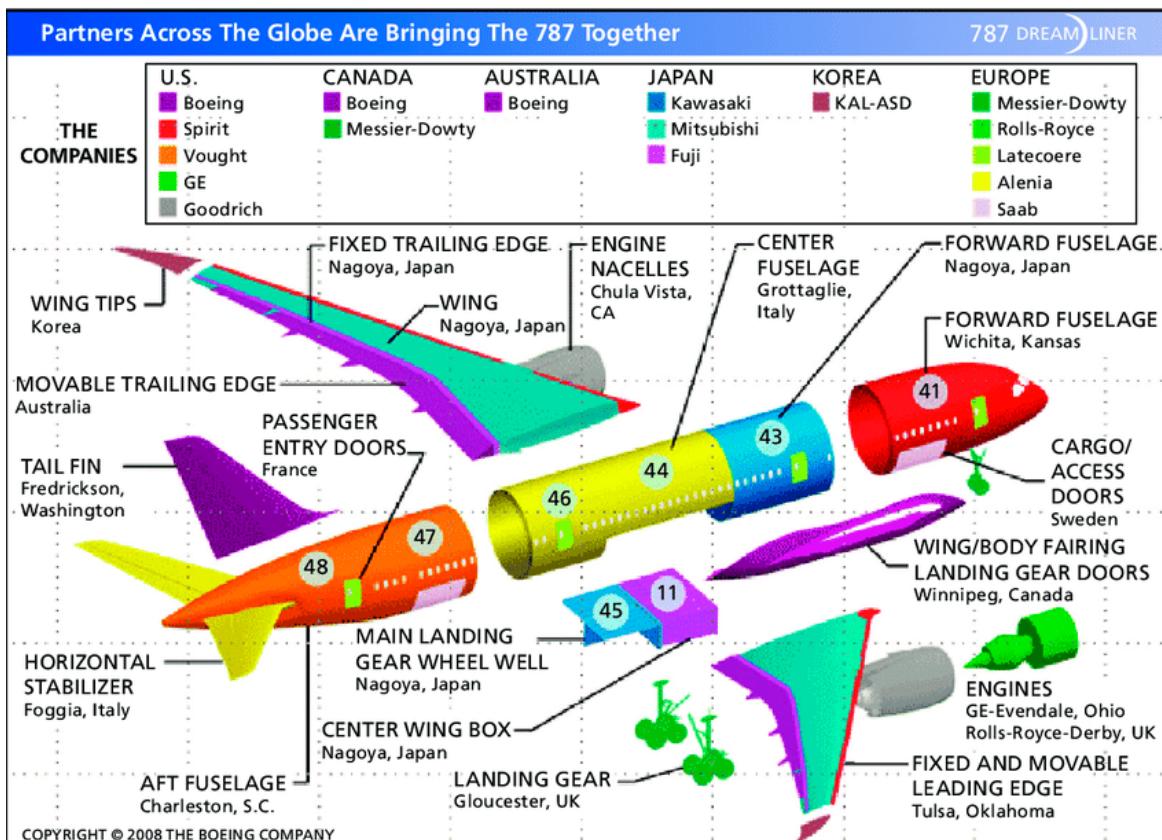
This paper is organized into eight major parts, each contributing significantly to the understanding and implementation of processes and quality management within the aerospace industry. The first part delves into the Evolution of Industrial Organizations in the Aeronautic Field, shedding light on the types of organizations involved and current industry challenges. The second focuses on Current Challenges in the Aerospace Industry, analyzing the economic and technical aspects. The third part discusses Quality Management in the Aviation Industry, emphasizing its crucial role in aircraft design, production, operation, and maintenance. Then the Quality Management System in the Context of the Aeronautical Industry, showcasing the importance of adherence to global standards, is explored. The next part uncovers insights on Unlocking Efficiency and Value: Current Perceptions on Process Management in the Aerospace Industry. Then it is investigated the Modelling Systems and Processes in the Aerospace Industry, essential for performance evaluation and improvement. The next part provides an overview of the Processes and their Integration into the Quality Management System, revealing the interconnections and pivotal role they play. Lastly, the final part presents Conclusions and further research, offering insights and innovative pathways for future studies.

2. Evolution of Industrial Organizations in the Aeronautic Field

The evolution of the industrial environment in the aeronautic domain has significantly impacted the quality requirements for each component of aircraft. Aeronautics, defined as a segment of technology devoted to aircraft manufacturing and air navigation in the Romanian language explanatory dictionary, has undergone substantial transformations throughout its history.

A major consequence of the current complexity of aircraft is the involvement of multiple organizations specialized in various fields of activity, all contributing to a common goal: creating an aircraft that ensures safe flight with minimized costs.

In the aeronautic domain, the following types of organizations are distinguished:


- Design Organizations: These organizations develop products (aircraft) according to customer requirements, whether for commercial or military purposes. They are sizable organizations that benefit from modern design technologies, substantially aiding them in product design through simulation of the final product—the aircraft—as well as simulation of the operation of each individual component or system. The simulation and verification methods are dictated by the design standards established by major manufacturers.
- Execution Organizations: These are specialized in various activity domains necessary for the completion of the final product. Multiple organizations are required for the realization of the final product, connected through a well-controlled supply chain based on aeronautical domain

standards. Figure 1 demonstrates that to achieve an aircraft, suppliers are classified based on levels, according to the configuration of aircraft components. It also indicates that organizations are structured and specialized in relation to aircraft configuration. This configuration is determined by the aircraft assembly technology, and, at the same time, the execution technologies used. Figure 1.9 presents the distribution of the Boeing 787 aircraft configuration execution for different suppliers. The aircraft configuration represents the sum of components structured into assemblies, sub-assemblies, and parts.

- **Certification Organizations:** These entities, by their status, can grant various certifications to organizations, attesting their capability to produce specific products or services in aeronautics in compliance with applicable standards. Among the most frequently mentioned certifications in the specialized literature are certifications for the quality management system (e.g., EN AS 9100 Quality Management System in Aeronautics), certifications for special production processes (e.g., NADCAP – Aerospace and Defense Contractors Accreditation Program), and certifications by governmental authorities (e.g., EASA – European Union Aviation Safety Agency, FAA – Federal Aviation Administration).
- **Aircraft Maintenance Organizations:** These organizations focus on aircraft maintenance, implementing rigorous verification procedures at each stop to ensure compliance with relevant standards. They are crucial in the aircraft life cycle, ensuring passenger safety through aircraft verification procedures during each stop.

This vast organizational structure, comprising entities specialized in different domains, leads to high aircraft costs. To highlight the significance of addressing this field, we will present some current economic data demonstrating the direct correlation between product complexity (aircraft) and costs, according to the study conducted by Doicin, Rusu, Sokovic and Kopac in 2008 [1].

Figure 1 illustrates the distribution of the execution of the Boeing 787 aircraft configuration among different suppliers. The aircraft configuration represents the aggregate of components structured into assemblies, sub-assemblies, and parts.

Figure 1. Boeing 787 Aircraft Structure Configuration [2].

3. Current Challenges in the Aerospace Industry: Analyzing Economic and Technical Aspects

The present aerospace industry is witnessing a continuous surge in air traffic, primarily driven by the expansion of low-cost carriers and the rise of the middle class in emerging economies. This trend has led to an increased demand for new and upgraded aircraft, stimulating investments in research and development.

Simultaneously, the aerospace industry faces significant challenges related to environmental sustainability. Stricter regulations regarding carbon emissions have compelled manufacturers to develop aircraft that are more fuel-efficient and explore alternative propulsion options such as electric and hybrid engines.

Efforts in digitization and automation have revolutionized the way aircraft are designed, manufactured, and maintained. Real-time data utilization and Internet of Things (IoT) technology have significantly improved maintenance management, reducing downtime and associated costs.

International collaboration and partnerships among companies from different countries have become essential in the aerospace industry. Sharing expertise and resources contributes to the efficient development of advanced technologies and the standardization of safety norms.

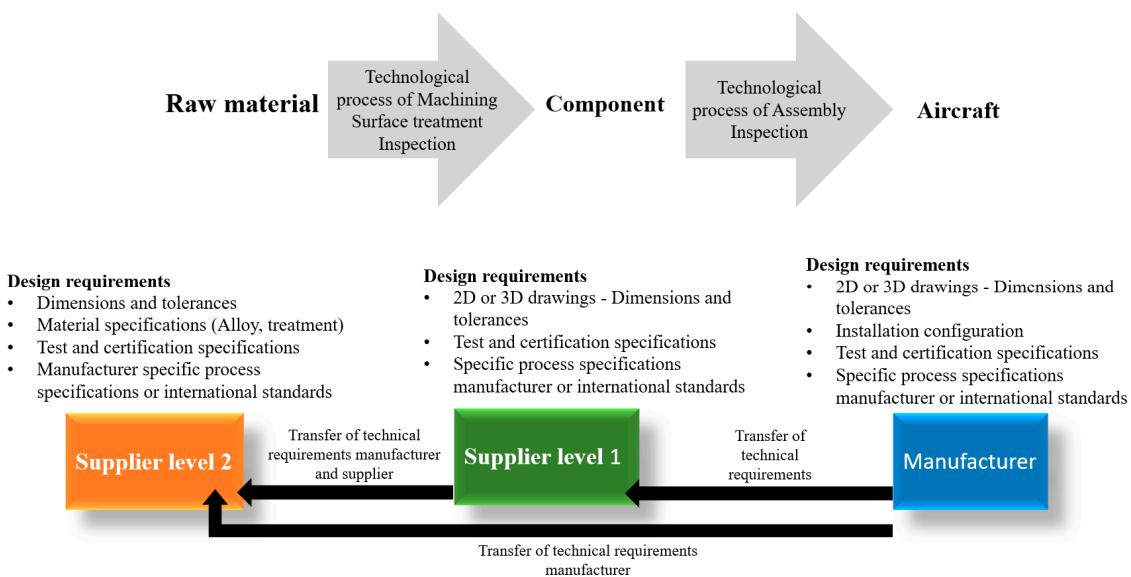
As travel and freight transportation demands continue to grow, the cargo sector has also witnessed substantial expansion. Freight aircraft are optimized for efficient and rapid transportation of goods, aiding global supply chains.

For aircraft manufacturers and suppliers in the aerospace industry, a major impact comes from the rapid evolution of production technologies. Presently, design organizations collaborate closely with execution and certification teams to innovate and develop new materials and production technologies swiftly to meet the continuously changing market demands. This process is accelerated and facilitated by the emergence of specialized associations in the aerospace domain, promoting common standards and practices, creating a conducive environment for efficient collaboration among organizations with diverse expertise.

Current trends influencing this dynamic include ongoing efforts to reduce the weight of aircraft components to enhance efficiency and autonomy. Concurrently, the development of composite materials and the utilization of 3D printing in manufacturing have opened new horizons in designing and fabricating aircraft components, allowing enhanced flexibility and adaptability in the production process.

As energy efficiency and environmental requirements become increasingly stringent, sustainable technologies have gained critical importance. Investments in low-emission engines, alternative propulsion technologies, and the development of biofuels have become crucial to achieve environmental objectives and maintain long-term competitiveness.

Thus, intensive collaboration among all stakeholders in the aerospace production chain and a commitment to innovation remain fundamental in the face of these challenges and trends. This not only accelerates the development of advanced manufacturing technologies but also ensures that the aerospace industry remains at the forefront of innovation, contributing to the sustainable development of global air transportation.


In the aerospace domain, various methods of transferring documentation from design organizations to execution organizations are being increasingly implemented, utilizing supporting Product Lifecycle Management (PLM) and Product Data Management (PDM) applications.

Technical documentation used in the aerospace industry takes various forms [3], including:

- Traditional technical execution documentation (2D drawings, material lists, approvals for document usage in execution).
- Partially digital technical execution documentation (2D drawings with reduced information, 3D models, material lists, approvals for document usage in execution), known as Digital Product Data Definition (DPD).
- Fully digital technical execution documentation (3D models with annotations, material lists, approvals for document usage in execution), known as Model-Based Definition (MBD).

A significant challenge for aircraft design organizations is to transfer technical information to organizations executing structures, assemblies, components, materials, and infrastructure. Technical documentation aligns with international standards as well as with the standards of major organizations such as Airbus and Boeing, among others. To ensure proper organization of technical information control, these organizations have developed standardized processes for transferring design data. Having a major impact on product compliance, these processes have been incorporated into international standards for management system certifications.

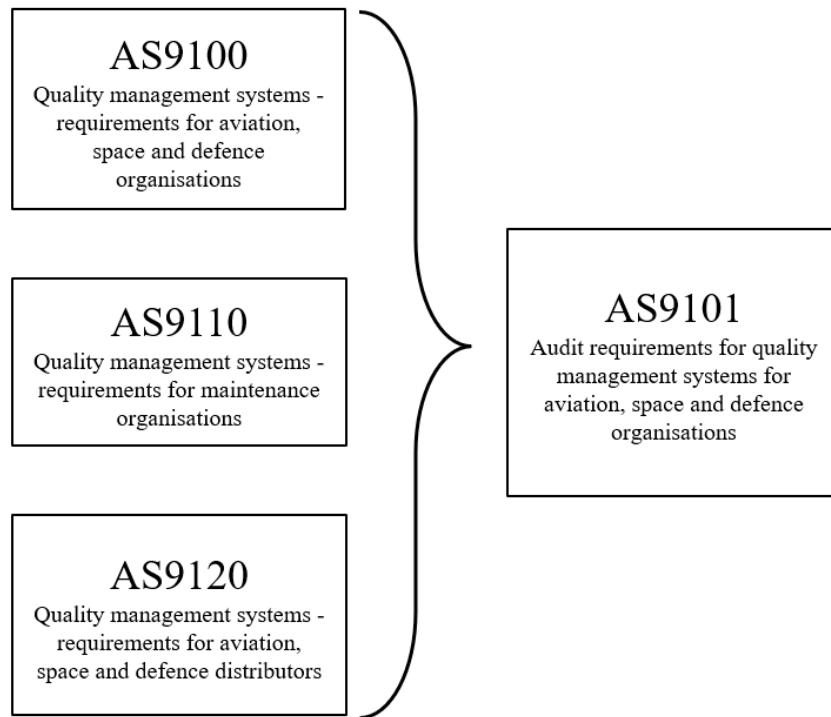

Figure 2 highlights the way design requirements are transferred from aircraft manufacturers to raw material and component suppliers, in relation to the technological flow for product realization.

Figure 2. Transfer of technical requirements from the final aircraft manufacturer to suppliers.

4. Quality Management in the Aviation Industry

Quality management projects share fundamental quality principles, tailored, and applied uniquely across various industrial domains. In the aerospace industry, quality is crucial in aircraft design, production, operation, and maintenance, given their long lifespan and safety requirements. The AS 9100 standard, developed by the International Aerospace Quality Group (IAQG), serves as the global benchmark for this industry. The aerospace and defense industry faces strict quality and safety requirements, operating in complex environments with trends toward shorter production cycles. Investments in the quality management system, aligned with the standards, are vital to meet customer needs and ensure compliance with global requirements. AS9100 [4] is widely adopted and strongly endorsed by major manufacturers, representing a comprehensive quality management system that provides guidance for efficient implementation of standards in the aerospace industry [5,6] (Figure 3).

Figure 3. Certification scheme for aviation organizations.

Adopting a process-based quality approach is essential in the aerospace industry. It involves systematically defining and managing processes, focusing on their interactions to achieve desired outcomes aligned with the organization's quality policy [7,8]. This approach helps understand and consistently meet requirements, add value to processes, achieve process performance, and improve based on data and information evaluation. A cohesive system of interconnected processes is crucial for organizational efficiency and effectiveness in achieving its objectives.

Continuous improvement is a cornerstone for successful organizations. It entails enhancing products and services to meet current and future needs, preventing, or reducing adverse effects, and improving the performance and effectiveness of the quality management system. The Plan-Do-Check-Act (PDCA) methodology is a valuable tool for implementing continuous improvement, involving stages of planning, implementation, monitoring, and taking corrective actions. This iterative cycle drives the maintenance and enhancement of the quality management system [9].

5. Quality Management System in the Context of the Aeronautical Industry

In the aerospace industry, integrating legal requirements into the quality management system is of paramount importance due to the critical nature and safety of the products and services offered. This process involves the following essential aspects:

- *Standards and International Agencies:* Regulations in the aerospace domain are developed and verified by international organizations such as ICAO, CAA, FAA, and EASA. These standards serve as references for states in developing their national regulations, harmonizing regulations globally, and ensuring an adequate level of security and efficiency.
- *Product Traceability:* Traceability is a crucial aspect in the aerospace industry, allowing the identification of the origin and history of each item. It involves marking products with essential information such as part code, production batch, and other relevant details. This information is vital for identifying processes and materials used in case of non-conformities or maintenance checks.
- *Auditing in the Aerospace Industry:* Auditing is a systematic, independent, and documented process used to objectively evaluate compliance with legal requirements. In the aerospace

industry, audits are not limited to ensuring compliance but also aim to identify weak points in the management system. These audits are essential to provide feedback and contribute to the continuous improvement of systems.

- *Advanced Product Quality Planning (APQP):* Adapted from the automotive industry, APQP is essential in the aerospace industry to manage the complex requirements of products. This process involves planning and implementing quality assurance measures from the product conception phase to production and post-production. It is a mandatory requirement for suppliers in the aerospace industry.

The correct and efficient integration of these aspects into the quality management system in the aerospace industry is essential to ensure compliance with regulations, guarantee the safety and reliability of products, and enable continuous improvements in this critical domain.

6. Unlocking Efficiency and Value: Current Perceptions on Process Management in the Aerospace Industry

- *Processes: The Beating Heart of Organizations*

In the dynamic realm of organizational functioning, processes stand as vital entities. Michael Hammer and James Champy, pioneering in the 1990s, emphasized that organizations could significantly enhance productivity by redesigning their business processes [10]. This enhancement translates into faster deliveries, shorter order-to-cash cycles, and workforce savings. However, many organizations lack formalized procedures, relying on historical ways of doing things. Despite this, analyzing or improving these processes becomes challenging without explicit process descriptions.

- *Unveiling the Inefficiencies: Breaking the Mold*

In many cases, organizations continue redundant tasks for decades without questioning their purpose. Risks, such as unnecessarily routing a document to multiple individuals, lurk in such scenarios, resulting in waiting times for additional approvals. When asked why things are done this way, the common response is, "That's how we've always done it." This phenomenon stems from organizational inertia, where questioning established practices rarely occurs. Akhil Kumar aptly asserts [11]:

- A process is a sequence of activities aiming to achieve an objective.

- A process model is a formal representation of related activities progressing in a specific order to achieve a clear objective.
- A business process involves activities that require one or more input types, producing an output valuable to the customer.
- A business process is defined as a chain of activities ultimately producing a specific product for a specific customer or market.
- *Dividing and Conquering: The Process Spectrum*

Within organizations, there are various types of processes: management processes, operational processes, and support processes.

- *Management Processes: Guiding the Ship*

Management processes follow a six-stage lifecycle proposed by Dumas and colleagues, encompassing identification, discovery, analysis, redesign, implementation, and monitoring and control [12]. Planning, organizing, coordinating, and controlling form the four functions of management, operating as a continuous process. Planning sets the organization's objective and decides on the best course of action to achieve it, essentially determining the organization's current and future positions.

- *Organizing: Turning Plans into Action*

Once objectives and plans are established, the next managerial function is organizing. This involves arranging the human and other resources identified during planning for achieving the objective. It entails determining how activities and resources are combined and coordinated, aiming to create an environment for optimal human performance [13].

- *Leadership: Paving the Way*

Leadership, the third fundamental managerial function, involves influencing and mobilizing people toward a specific goal or direction. Considered the most challenging and impactful of all managerial activities, leadership entails creating a positive attitude toward work and organizational goals among members [14].

- *Control: Steering Towards Success*

Control is the monitoring of organizational progress toward achieving objectives. It involves measuring performance, comparing it against existing standards, and finding and correcting deviations. Monitoring progress is crucial to ensure the organization achieves its set goals.

In conclusion, the management process functions are interconnected and cannot be disregarded. Management projects and maintain an environment where personnel, working together in groups, efficiently achieve selected objectives [15].

- *Operational Processes: The Manufacturing Symphony*

Operational processes in an industrial organization coordinate activities to create products. These processes represent a sequence of activities performed with the aid of equipment and natural processes, organized, and guided by people to obtain products. Systemically, the objectives of the production process involve transforming inputs (materials, labor, energy, etc.) into outputs in the form of semifinished goods, finished products, or services [16].

- *Support Processes: The Unsung Heroes*

The intense focus on improving operational processes has somewhat diminished the attention on support processes, which nevertheless exert a direct influence on them and, consequently, on the products. Every organization comprises main, management, and support processes:

Main processes relate to production and services provided.

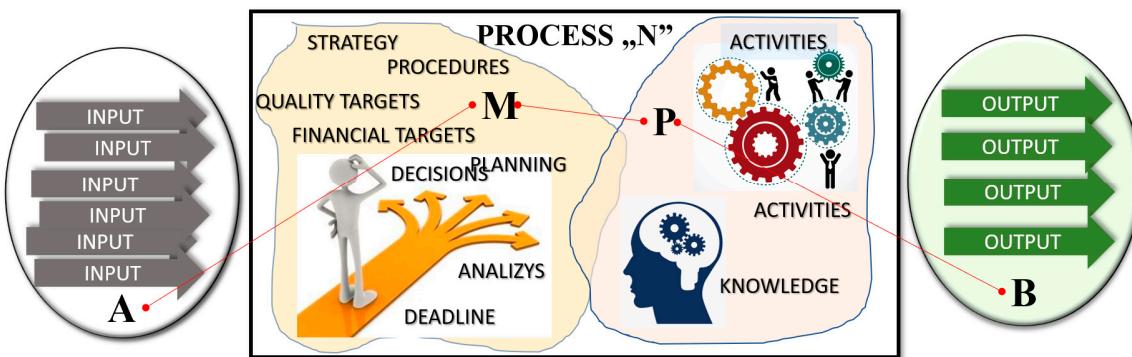
Management processes pertain to policy setting, organizational objective analysis, resource analysis, and decision-making [17].

Support processes encompass human resources, infrastructure, the work environment, provisioning, transportation, logistics, internal audits, improvements, and more.

- *Empowering Business Processes: The Technological Edge*

Supporting business processes through methods, techniques, and software applications aims to design, adopt, control, and analyze operational processes involving people, organizations, applications, documents, and other sources of information.

In the ever-evolving landscape of the aerospace industry, mastering these processes is pivotal for growth, innovation, and ultimately, soaring to new heights. The current perceptions outlined here offer a compass for organizations to navigate this dynamic journey, ensuring they stay ahead in the race to excellence [18].


7. Modelling Systems and Processes in the Aerospace Industry

In the captivating universe of the aerospace industry, modeling systems and processes is the key to performance. Each process is evaluated based on its outputs and its integration within the organizational structure. As W. Edwards Deming once said, process maps are like a map of uncharted territory—essential for navigating the world of business successfully [19].

Process maps provide a visual perspective on the relationships and dependencies between processes. They are the cornerstone of effectively managing business processes, allowing for an understanding of how the organization operates without getting lost in the details. Designing these maps is both an art and a science, crucial for the success of business process management.

In this labyrinth of processes, a well-designed architecture is like a compass. Organizing and documenting processes become essential to ensure compliance and to illustrate the principles that govern the organization's functioning. A well-crafted process map is the beacon that lights the way in times of change or when explaining how the organization operates [20–23].

As can be seen in Figure 4, in an "N" process all process inputs are transformed by performing coordinated activities against a management thinking, resulting in value-added outputs. Each influencing factor has a greater or lesser impact on the outputs.

Figure 4. Influencing factors in a process.

Each process within the organization has an efficiency calculated in relation to the quality and quantity of the outputs of that process, without considering the quality and quantity of the information input to the process. The influence of management activities (M - Figure 4) within processes is achieved by organizing the activities within the processes using procedures and work instructions (P - Figure 4). These procedures and instructions are developed based on the structure of the quality management system, the context of the organization and the knowledge of the process owner. Thus, the activities within each process are influenced by the quality management system. The level of influence on the process also indicates the level of integration of the process into the organization's system.

It can be stated that, now, in all industrial organizations, the assessment of the integration of processes into the quality management system is done by conducting process audits using the quality management system standard as a criterion.

In conclusion, in our journey through this complex landscape, we turn our attention to engineering processes—the heart and soul of the aerospace industry. Here, experience and challenges have taught us that perfection and innovation stem from modeling and understanding. This is the path to the sky, and we are the guides on this fascinating journey.

In the industrial aerospace sector, engineering processes are vital for translating product quality requirements into production mandates. They are the linchpin of organizations, directly influencing product production and quality. These processes encompass product design, execution documentation, configuration of technical data systems, technological process design, and quality engineering [24].

Product design processes are pivotal, aiming to utilize technical knowledge to develop customer-requested products. They are fundamental in organizations focused on product design and involve designing necessary technology for product manufacturing and equipment devices [25].

Execution documentation creation processes involve converting designed product documentation into organization-specific production documentation. This includes technical execution drawings, visual aids for product shape and dimensions, installation/uninstallation files, and programs for various processes [26–28].

Configuration processes of technical data systems establish and control the flow of product technical data within organizations, crucial for production processes. In the aerospace domain, emphasis is on managing technical data, vital for production and product qualification.

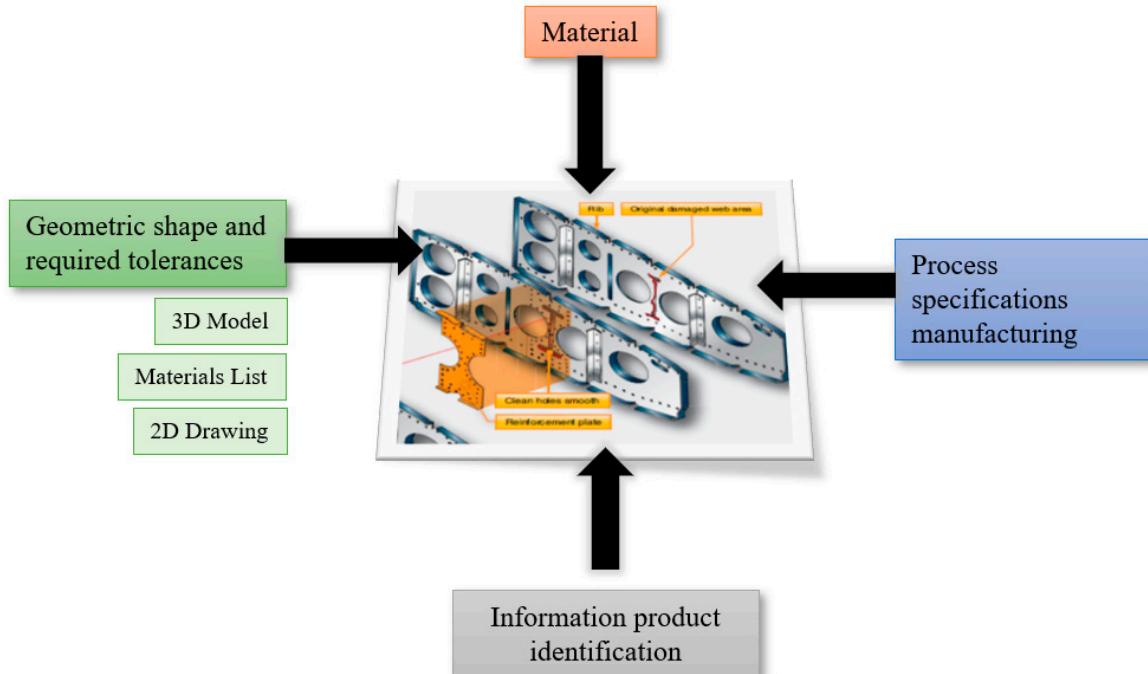
Technological process design processes convert designed product and process requirements into a production technological flow, considering process and production requirements [29,30].

The global engineering process, a set of interconnected engineering processes, plays a pivotal role in industrial aerospace organizations. It encompasses product design, production

documentation creation, configuration of technical data systems, technological process design, and quality engineering processes.

In the aerospace industry, each product is identified by a set of documents containing design data and legal requirements related to product safety. Design challenges arise from the need for lightweight products with high resistance to various stresses.

To proactively improve product quality, it's crucial to examine and analyze the current process, derive conclusions, and hypothesize improved approaches. The process begins with analyzing product documentation, ensuring completeness and correctness.


Recording and structuring technical data in a database is essential, facilitated by modern applications like PLM, PDM, or DMS. Managing this data is vital for efficient change management, especially given the multitude of information and the need for quick adaptations.

Engineering processes are pivotal in any production organization, bridging the gap between design and production. They transform technical quality requirements into production mandates, considering design, production, and quality specifications.

In the aerospace industry, the global engineering process involves analyzing product documentation, structuring technical data, and efficiently managing this data in a digital environment. This process is essential for ensuring product quality and efficiency in the production of aerospace components and structures.

The industrialization process in the aerospace industry is a captivating journey where technology, precision, and innovation come together to create complex and safe products. Technical documentation databases become vital hubs, connecting multiple departments, and ensuring an efficient flow of information within the organization [31–36].

Products come to life from the designed requirements, and the 3D model becomes their pulse, incorporating essential geometric requirements for machining and inspection. The evolution towards virtual models has revolutionized production and inspection, eliminating human errors and ensuring quality right from the production phase (Figure 5).

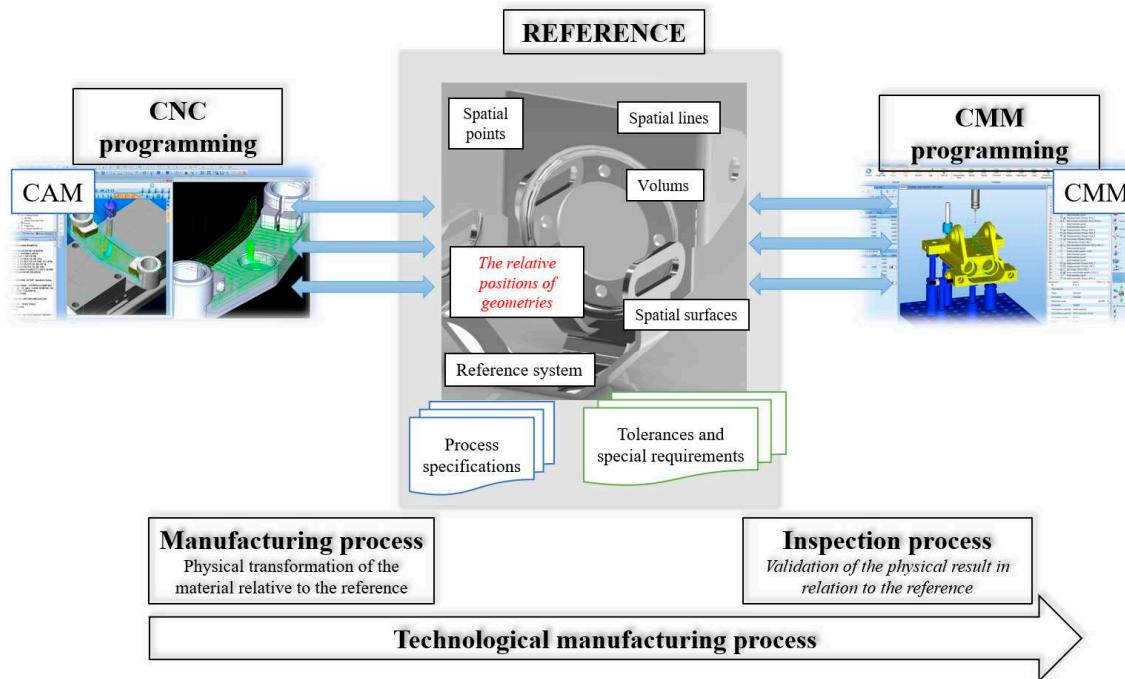


Figure 5. Requirements for structural products in the aircraft industry.

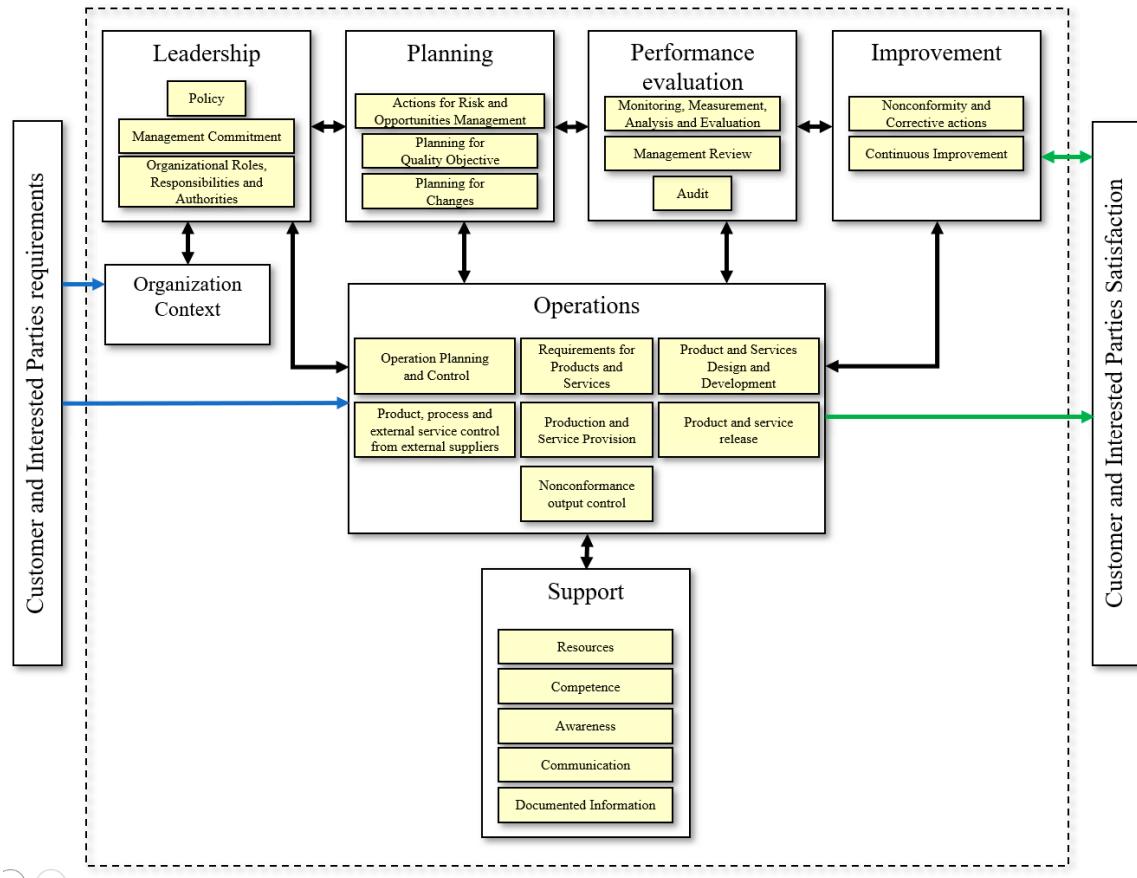
From coordinate measuring machines to computer-assisted machining strategies, the aerospace industry continuously adapts to achieve high-quality products. Using the same geometric reference

throughout the stages—from machining to inspection—ensures that products reach the desired quality before reaching the client.

The industrialization process is a complex orchestration, where CNC programming and device design become keys to efficient production. In an industry where details matter immensely, simulations become imperative to minimize risks and ensure precision (Figure 6).

Figure 6. Using 3D modelling in production processes.

Behind every final product lies a series of critical decisions, from choosing the semi-finished products to defining the technological itinerary. Internal inspections and tests guarantee quality throughout the process, and inspection plans become quality control roadmaps.


In an environment where safety and precision are non-negotiable, the industrialization process in the aerospace industry represents a dance between technology, strategy, and execution, where every move must be precise and perfectly orchestrated to create products that exceed expectations.

8. Processes and their Integration into the Quality Management System

Figure 7 shows the distribution and connections of processes in an industrial organization in the aeronautical sector, with a focus on the manufacture of structural metal components. The processes are distributed according to their purpose within the organization. Thus, it is possible to identify:

- management processes;
- operational processes;
- support processes.

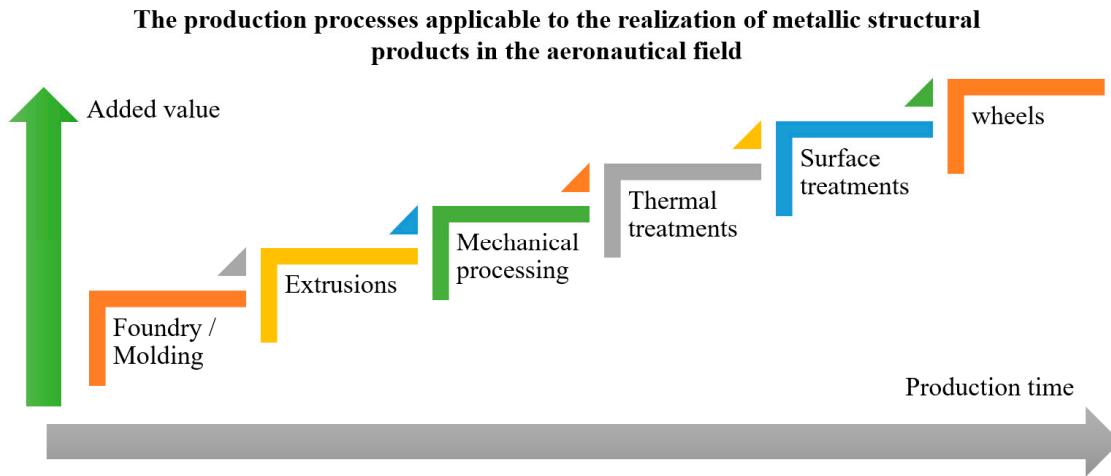
As can be seen in Figure 7, customer requirements are the main input to the organizational system. These requirements are transformed by the organization through the organizational context. The outputs, the resulting products, verified by the customer, are measured, besides the financial benefits, also by the customer satisfaction, which has a direct impact on the performance evaluation of the organization and on the continuous improvement process.

Figure 7. Process map of an industrial organization in the aeronautical industry.

Leadership is a critical management process in organizations, heavily focused on top management engagement and involvement in processes. Commitment is demonstrated by taking responsibility for quality management effectiveness, integrating quality goals with organizational context, allocating resources for the quality management system, and promoting continuous improvement.

Quality policies in aerospace include adherence to laws and aviation regulations, clear quality objectives, data-driven decision-making, risk-aware thinking, and active improvement of the quality management system.

Planning is fundamental to organizational success, seen at all hierarchical levels. It involves projects for development, production, and improvement, aligning with quality objectives. Coordinating planned activities is vital, analyzing their impact and influence on the organizational system.


Control processes involve evaluating organizational performance through management analyses, audits, and a focus on continuous improvement. Customer satisfaction serves as a valuable marketing tool and influences product quality and improvement processes.

Support processes manage human resources, covering hiring, competence evaluation, awareness, and communication. Quality of human resource knowledge significantly impacts the entire organization.

Operational processes are the organization's "engine." Operational planning and control, a crucial sub-process, develops and monitors operational plans, aligning with customer requirements to ensure product compliance and success.

The operational processes include the sub-process of product and service design and development, which also has a major impact on the achievement of the operational plan. The production sub-process brings direct value to the organization. In the organization chosen for this book, production processes represent the complete technological flow of production of structural

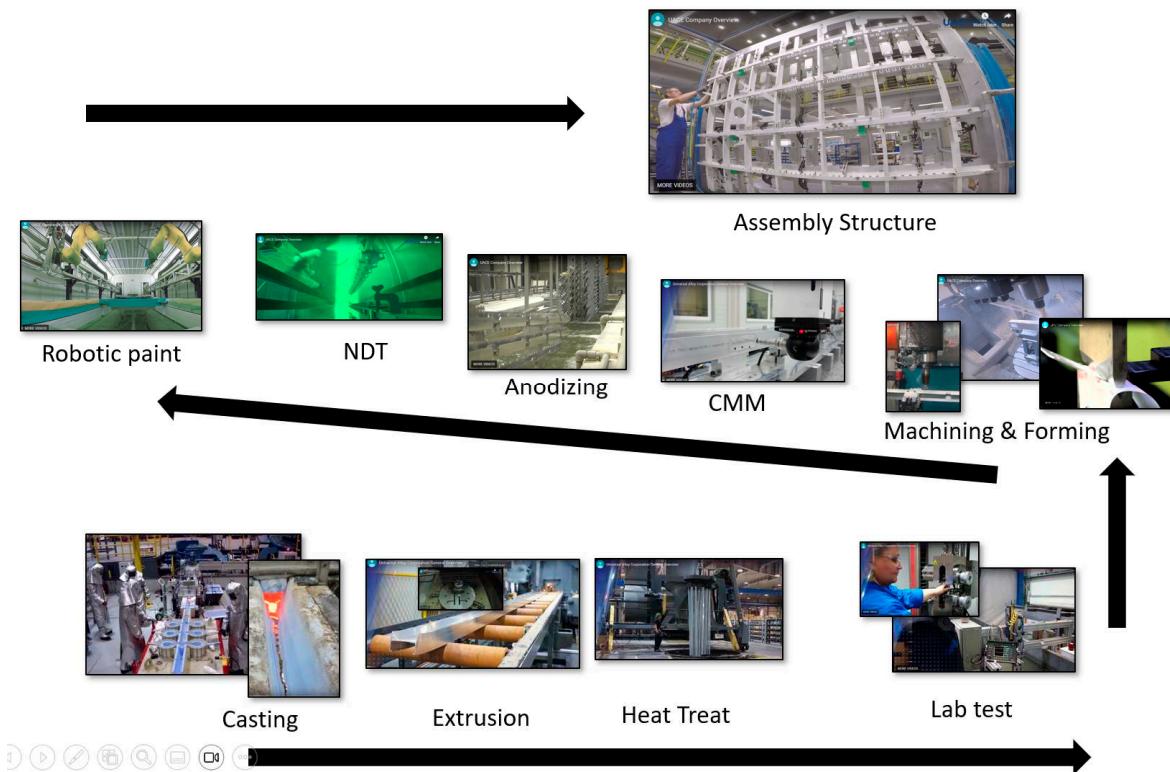
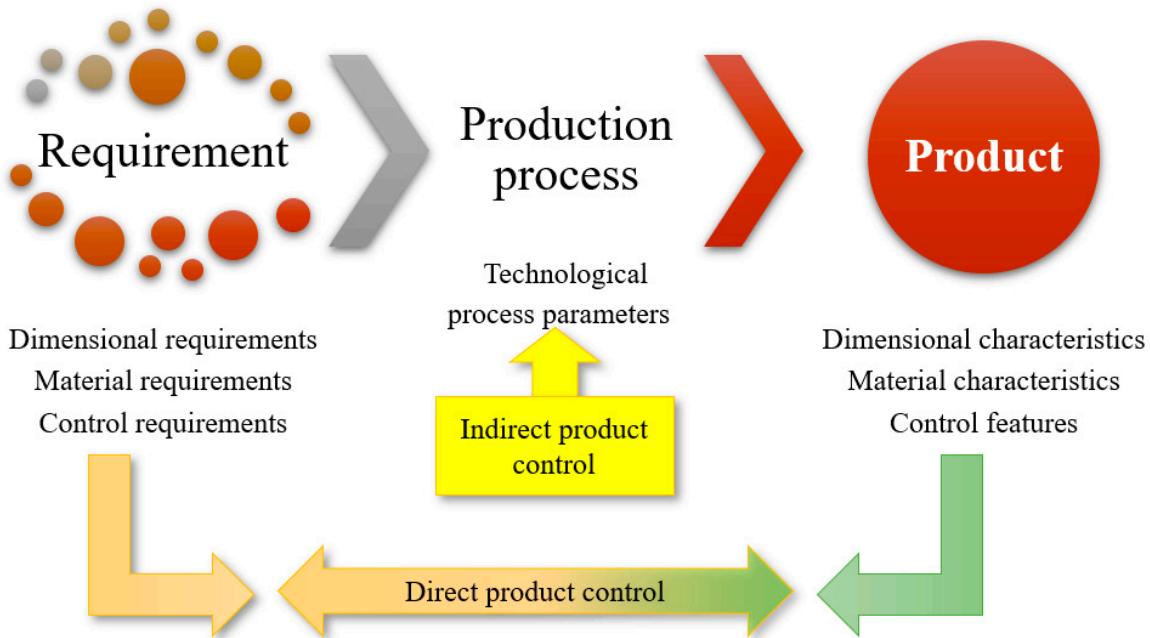

components (Figure 8). Production processes require direct or indirect control. In the aircraft industry, production processes are controlled by the major aircraft manufacturers by defining production process and inspection standards that suppliers must meet in the technological process of component production.

Figure 8. Production processes in industrial organization.


These process and inspection standards are called process specifications and are intended to set the same production process parameters and their limits for all suppliers in the industry. In this way, major manufacturers can design and plan the production process across the entire supply chain to achieve quality products. Controlling the process parameters by various methods is a direct control of the production process. In other words, the resulting process parameter values are directly monitored within pre-defined limits. Process control can also be achieved indirectly by monitoring certain product characteristics resulting from the process under analysis.

In the aeronautical sector, certain production or inspection processes are of a more special nature and are considered to have a major impact on products. For this reason, aircraft manufacturers are directly involved in the qualification of suppliers, conducting qualification and process assessment audits. Thus, material/semi-finished product manufacturing processes, material/semi-finished product heat treatment and inspection processes, certain mechanical machining processes, chemical surface treatment processes, non-destructive inspections, assembly processes and assembly element inspection are considered as special (Figure 9).

Figure 9. Technological process of achieving structural milestones in the aeronautical industry.

As shown in Figure 10, product inspection can be carried out similarly to process inspection, directly or indirectly. Direct product control is achieved by comparing designed requirements with values or attributes measured directly on the product. Indirect control is achieved by controlling process parameters applied to the product in question.

Figure 10. Direct or indirect control of the product.

The process of controlling the resulting non-conformities is critical and is applied at all hierarchical levels because of the potential impact of non-conformities - in terms of safety, which is

critical in aviation, and of course in terms of cost. Thus, most organisations in the aeronautical sector have policies to manage non-conforming products under special conditions, by very clearly identifying and segregating them from production products. Also, products declared as scrap are destroyed immediately.

9. Conclusions and further research

Organizations in the aerospace industry are adapting and integrating modern systems to manage the complex requirements of Industry 4.0. Industrial evolution is influenced by product quality, competition, and technological advancement. In the informational age, the success of organizations depends on their ability to learn, innovate, and update technological skills.

The 21st century is defined by change and creativity, necessitating an amplification of knowledge to mitigate risks. In the aerospace industry, the focus is on quality and process integration to produce safe and cost-effective aircraft. An integrated management system adds value by unifying requirements and methods, optimizing organizational performance.

In the complex realm of management, insight and anticipation become fundamental building blocks of success. An exceptional manager doesn't just lead; they glimpse into the future and foresee possible directions. This ability to envision the future and anticipate key trends is the backbone of effective management.

Essentially, the managerial process cannot be viewed as a mosaic of separate functions. It's an interconnected whole, where designing and maintaining a conducive work environment play a paramount role. This environment must be prepared and optimized so that objectives are achieved with maximum efficiency.

And how do you envision and construct this environment? This is where the process map comes in. It's not just an illustration; it's a powerful tool that can transform how organizations understand and conduct their operations. Particularly in the aerospace industry, where quality requirements are paramount, the process map becomes a strategic weapon.

This map is not just a mere representation. It's a complex panorama that reveals interdependencies and the flow of value. It helps organizations distribute their responsibilities at a macro level, following the fundamental principles of quality management. It's a map of responsibility and integration, helping us understand how processes contribute to value creation.

In the aerospace world, where precision and control are crucial, you tailor the quality management system to the specific requirements of the customers. Airbus, for example, has built its own supplier management system to ensure the quality of the products they receive. Thus, customization and adaptation are the keys to meeting the increasingly complex expectations and requirements of customers.

But the strategic implementation of these requirements can be a complex terrain. Different approaches in defining and understanding processes can lead to dysfunctions. It's a delicate balance between detail and efficiency, and this balance is essential for a functional system.

And at the heart of this labyrinth of processes lies the technological flow, with direct implications on management and support processes. A deep analysis of these interconnections opens doors to fascinating research. Process mapping, developing efficient flows, and identifying areas with major risks are just a few aspects of a universe of research possibilities.

We are in an era where technology provides powerful tools. From Industry 4.0 to the emerging concept of Industry 5.0, evolution is accelerated. However, at the center of this evolution remains the human. Technology can support, but creativity and human knowledge drive progress.

In conclusion, this journey into the world of processes and management has led to the unveiling of new and promising research directions. Evaluating integration, reducing industrialization time, and harnessing human knowledge are just a few of the challenges and opportunities that arise. We stand on the brink of revolutionary changes, and the key to success will be the perfect balance between technology and human creativity.

Author Contributions: "Conceptualization, G.I.P. and A.M.T.; methodology, G.I.P. and A.M.T.; software, G.I.P.; validation, A.M.T.; formal analysis, A.B.P.; investigation, G.I.P. and A.M.T.; resources, G.I.P.; data curation, G.I.P. and A.M.T.; writing—original draft preparation, G.I.P., A.M.T. and A.B.P.; writing—review and editing,

G.I.P., A.B.P. and A.M.T.; visualization, A.M.T. and A.B.P.; supervision, A.M.T.; project administration, A.M.T. and G.I.P.; funding acquisition, -. All authors have read and agreed to the published version of the manuscript."

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doicin, C., Rosu, M., Sokovic, M., & Kopac, J. (2008). Quality and cost in production management process. *Strojniški vestnik*, 54(3), 207-218.
2. *Enhancing Small-Business Opportunities in the DoD - Scientific Figure on ResearchGate*. https://www.researchgate.net/figure/Boeings-787-Lean-Supply-Chain-Supplier-Partners_fig7_235147217, retrieved on 2022.01.12
3. Tîtu, A. M., Pop, G. I., & Oprean, C. (2019). Aspects regarding the quality management in the aerospace industry organizations. In *Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE*, 13(1), 426-435. doi: WOS:000587901000041
4. (2016). *AS9100D : Quality Management Systems - Requirements for Aviation, Space and Defense Organizations*. SAE International.
5. Tomić, B., Brkić, V. S., & Klarin, M. (2011). Quality Management System for the Aerospace Industry. *I International Symposium Engineering Management And Competitiveness*.
6. Tîtu, A. M., & Pop, G. I. (2019). Regarding Quality Management System in Aerospace Industry Organizations. *Materials Science Forum*, 957, 221-230. doi:<https://doi.org/10.4028/www.scientific.net/MSF.957.221>
7. Dragomir, M. (2013). *Design, implementation and continual improvement of integrated management systems*. Cluj-Napoca: MEGA Publishing house.
8. Dragomir, M., Bodı, Ș., Banyai, D., & Dragomir, D. (2015). Process improvements using simulation software and quality tools. *Applied Mechanics and Materials*, 808, 376-381.
9. ISO 9000:2015. (2022, 01 30). Preluat de pe Quality management systems — Fundamentals and vocabulary: <https://www.iso.org/standard/45481.html>
10. Hammer, M., & Champy, J. (1993). *Reengineering the Corporation*. New York: Harper Business.
11. Kumar, A. (2018). *Business Process Management, First Edition*. New York: Routledge: Taylor & Francis Group.
12. Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2013). *Fundamentals of Business Process Management*. Springer.
13. Naidoo, P. (2019). Perceptions of teachers and school management teams of the leadership roles of public school principals. *South African Journal of Education*, 39(2).
14. Prasad, L. M. (2020). *Principles and practice of management*. Sultan Chand & Sons.
15. Bolsinger, M. (2015). *Bringing value-based business process management to the operational process level* (Vol. Inf Syst E-Bus Manage 13). Preluat de pe <https://doi.org.am.e-nformation.ro/10.1007/s10257-014-0248-1>
16. Snyder, N., & Glueck, W. F. (2019). How managers plan—the analysis of managers' activities. In *Managerial Work* (pp. 227-233). Routledge.
17. Giglioli, G. B., & Bedeian, A. G. (2019). A conspectus of management control theory: 1900-1972. In *Management Control Theory* (pp. 3-16). Routledge.
18. Agarwal, R., & Sambamurthy, V. (2020). Principles and models for organizing the IT function. In *Strategic information management* (pp. 243-260). Routledge.
19. Herzenberg, S. A., Alic, J. A., & Wial, H. (2019). *New rules for a new economy: Employment and opportunity in post-industrial America*. Cornell University Press.
20. Harmon, P. (2019). *Business process change: a business process management guide for managers and process professionals*. Morgan Kaufmann.
21. De Ramon Fernandez, A., Ruiz Fernandez, D., & Sabuco Garcia, Y. (2020). Business Process Management for optimizing clinical processes: A systematic literature review. *Health informatics journal*, 26(2), 1305-1320.
22. Bitkowska, A. (2020). The relationship between Business Process Management and Knowledge Management-selected aspects from a study of companies in Poland. *Journal of entrepreneurship, management and innovation*, 16(1), 169-193.
23. Dey, S., & Das, A. (2019). Robotic process automation: assessment of the technology for transformation of business processes. *International Journal of Business Process Integration and Management*, 9(3), 220-230.
24. Lim, K. Y. H., Zheng, P., & Chen, C. H. (2020). A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. *Journal of Intelligent Manufacturing*, 31, 1313-1337.
25. Cui, Y., Kara, S., & Chan, K. C. (2020). Manufacturing big data ecosystem: A systematic literature review. *Robotics and computer-integrated Manufacturing*, 62, 101861.

26. Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. *Computers & electrical engineering*, 81, 106522.
27. Janssen, M., Weerakkody, V., Ismagilova, E., Sivarajah, U., & Irani, Z. (2020). A framework for analysing blockchain technology adoption: Integrating institutional, market and technical factors. *International journal of information management*, 50, 302-309.
28. Opoku, D. G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: A literature review. *Journal of Building Engineering*, 40, 102726.
29. Tseng, M. L., Tran, T. P. T., Ha, H. M., Bui, T. D., & Lim, M. K. (2021). Sustainable industrial and operation engineering trends and challenges Toward Industry 4.0: A data driven analysis. *Journal of Industrial and Production Engineering*, 38(8), 581-598.
30. Aheleroff, S., Xu, X., Lu, Y., Aristizabal, M., Velásquez, J. P., Joa, B., & Valencia, Y. (2020). IoT-enabled smart appliances under industry 4.0: A case study. *Advanced engineering informatics*, 43, 101043.
31. Kammouh, O., Gardoni, P., & Cimellaro, G. P. (2020). Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks. *Reliability Engineering & System Safety*, 198, 106813.
32. Xu, Z., & Saleh, J. H. (2021). Machine learning for reliability engineering and safety applications: Review of current status and future opportunities. *Reliability Engineering & System Safety*, 211, 107530.
33. Andriotis, C. P., & Papakonstantinou, K. G. (2019). Managing engineering systems with large state and action spaces through deep reinforcement learning. *Reliability Engineering & System Safety*, 191, 106483.
34. Rezaeianjouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. *Measurement*, 163, 107929.
35. Abualfaraa, W., Saloniatis, K., Al-Ashaab, A., & Ala'raj, M. (2020). Lean-green manufacturing practices and their link with sustainability: A critical review. *Sustainability*, 12(3), 981.
36. Wu, L.; Subramanian, N.; Abdulrahman, M.D.; Liu, C.; Lai, K.H.; Pawar, K.S. The Impact of Integrated Practices of Lean, Green, and Social Management Systems on Firm Sustainability Performance—Evidence from Chinese Fashion AutoParts S. *Sustainability* 2015, 7, 3838–3858.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.