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Abstract: Cellular Automata and Boolean Networks are generalizations of one another because
algorithms to compute the preimage of cellular automata reveal the underlying network, i.e., the
global dynamics in terms of the basins of attraction. Therefore, we hypothesize we can unveil the
local dynamics of cellular automata from the basin of attraction of an inferred boolean network. Our
motivation was the observation that human keratinocytes and melanoma can stick together to form
clusters after eight days in co-culture. This cluster formation would be the attractor of population
dynamics, and cell seeding would be the initial condition of the basin of attraction. Hence, we propose
a method to estimate the rules of cellular automata, which consist of comparing the density states
within each state transition and reaching a consensus among state transitions belonging to a basin of
attraction. Therefore, we aim: (1) to infer a boolean network from the in vitro co-culture growth curve;
(2) to estimate the rules of cellular automata; and (3) to implement a cellular automata for spatial
dynamics simulations. The binarization of the growth curve shows high population density after four
days; the estimated cellular automata rules were compatible with cell proliferation and migration in
agreement with experimental observations. Spatial dynamics shows that: (1) keratinocytes exhibit
higher density in neighborhoods where melanoma is present; (2) the chance of keratinocyte migration
increases until the fourth day, but the probability of survival increases; and (3) space is freed for cells
with maximum proliferation capacity through proliferation compensated by death. Our approach
suggests that the attractor state of cell co-culture would be induced by an increase in keratinocyte
migration and survival, as well as the balance of proliferation and death concerning melanoma.
Our approach has the potential to offer valuable clues about microenvironmental interactions or
configurations that drive population dynamics.

Keywords: cells co-culture,; population dynamic; cellular automata; boolean network; basin of
attraction

1. Introduction

In cells co-culture experiments, after eight days, keratinocytes surround the melanoma clusters,
limiting the growth of the melanoma cells. To be more specific, the keratinocytes are denser near
the melanoma clusters and less dense farther away [1]. It’s interesting that when keratinocytes are
cultured with melanoma, they become less differentiated and connect with the melanoma instead of
other keratinocytes nearby [2] [3]. These observations may explain biologically the different levels of
tolerance to high density, which is called allelophilia, between melanoma and keratinocytes [1].

As in concepts about discrete dynamic system modeling, this spatial characteristic observed
on the eighth day of the experiment would correspond to an equilibrium state or attractor of the
population dynamics. Conversely, the initial distribution of cells on the cell culture plate would be the
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initial condition of the basin of attraction. Thus, the system moves from the initial condition towards
its attractor through state transitions like proliferation, migration, survival, and cell death, etc, causing
changes in the spatial pattern of the population.

Herein, discrete dynamic system modeling approaches enables the modeling and analysis
of the mechanisms governing the regulation of population density. Cellular Automata (CA) is a
computational model where the cells are placed on the lattice and the state of each cell is updated at
time t + 1, based on logical rules that consider the state of the neighborhood cells at time t such that the
outcome is the emergence of spatial patterns at any given moment [4] [5] [6]. Boolean networks (BN),
in turn, are models commonly used in gene expression or signaling pathway studies. They consist of a
collection of variables (the nodes), with binary states determined by other variables in the network
through Boolean functions [7] [8]. There are algorithms that calculate the preimage of the CA trajectory
in a backward direction, thereby unveiling the network of CA dynamics also called global dynamics
[9][10]. For this reasons, CA and BN are considered instances of discrete dynamical systems composed
of parallel-acting components [10,11]. The dynamics of both are driven by transition functions that
determine the state transitions culminating in the system’s trajectory which is a path within the basin
of attraction. Hence, CA are generalizations of BN one another in terms of basins of attraction [9–15].

The Square-Lattice Cellular Automata (SLCA) and a two-dimensional version of Elementary
Cellular Automata (ECA) has been successfully used to simulate avascular and vascular tumor growth
[16–23] and invasion [24–27], tumor interactions with environmental cues [28–34], stromal composition
[34–38] and tissue architecture [39–42]. Similarly, BN has been applied in many fields, including
quantitative System Pharmacology [43], competition in microbiome [44], stability of apoptosis [45,46],
epithelial-mesenchymal transition [47] and target therapy [48].

Here, we argue that once one can find the global dynamics of an CA in terms of basin of attraction,
through an inferred boolean network (IBN) basin of attraction, one could discover the local dynamics of
a CA to model a given population dynamic. The primary dimensional unit in a cell culture plate is the
cell density (cells/mm2), and one can qualitatively characterize it as "high" or "low," like the confluence
in cell plate culture. Given that CA dynamics are based on logical rules about the configuration of
neighborhoods, the changing of these qualitative density states ("low" or "high") in the IBN basin of
attraction could be the substrate for estimating CA rules. Given the above we aim (1) to infer a BN
from the growth curve time series obtained from in vitro co-culture, (2) to estimate the rules of CA
dynamics from the IBN basin of attraction by comparing the density states within each state transition
and reaching a consensus among state transitions, and (3) to implement a CA to simulate spatial
dynamics.

We observed that the binarization of the time series points to a high population density after
the fourth day. The IBN functions let us choose a regulator for each node that is supported by the
literature, and the CA rules estimated from the IBN basin suggest a condition for cells to migrate
or proliferate that is consistent with what has been seen experimentally [1][3]. The migration of
keratinocytes increases smoothly until the fourth day of the simulation, making them denser near
melanoma clusters and limiting melanoma proliferation, so that the melanoma survival probability
curve shape looks like a normal distribution depending on the proliferation capacity. Therefore, the
simulation suggests that the attractor state of cell co-culture population dynamics would be induced
by an increase in keratinocyte migration and survival, as well as the balance of proliferation and death
concerning melanoma.

2. Material and Methods

In this section, we present the methodological approach used for data inference and modeling. We
shall highlight that the modeling process is contingent upon the outcomes derived from the inference.
Figure 1 illustrates the workflow for data analysis and modeling. The source code link can be found at
S5 Source code.
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Figure 1. Workflow of data inference and population dynamic modeling. (A) Cell co-culture
model of keratinocytes and melanoma cells Scale bar: 50 µm [1]. (B) Population growth time-series
binarization. Number 0 indicates a low density of cells (OFF state), and number 1 indicates a high
density of cells (ON state). (C) Inferred Boolean Network Topology Arrows indicate activation and
blunt arrows indicate inhibition. (D) Estimating cellular automata rules from a state graph or transition
table. (E) Implementation of simulation through cellular automata.

2.1. Experimental Data

We use previously published cell proliferation data measured in co-culture [1]. The data are the
density (cells/mm2) of normal human keratinocytes (HaCaT), metastatic melanoma (SK-MEL-147),
at co-culture with the initial proportion of 1:10 (SK-MEL-147:HaCaT) [49] measured along 8 days in
triplicate. To quantify the cell density necessary to achieve the carrying capacity, we introduced the
variable S to express the difference between the carrying capacity (K) and the population density
at each specific time point. This additional variable is justified because the space has a significant
impact on the population dynamics. Hence, the more cells need to reach carrying capacity, less space
is available, and the fewer cells need to reach carrying capacity, more space is available. Consequently,
this variable serves as an initial arithmetic approximation of the space availability. Throughout this
paper T will represent melanoma, H keratinocyte, and S space availability.

2.2. Boolean Network Inference

BN inference involves two steps: 1) binarization, which transforms cell counts per day in binary
discrete data, and 2) network learning. We evaluated three different binarization methods: (1) k-means,
(2) iterative k-means [50] [44] and (3) BASC [51]. The binarization outcome chosen to network learning
shall be the one which point highest density after confluence onset in agreement with Morais et al [1].
We used BoolNet 2.1.8 from R 4.2 [52] to implement the binarization by BASC and k-means, and Python
3.10.2 to implement the binarization by iterative k-means, adapted from Steinway et al [44]. In the
context of this work, the number 0 denotes low density, and the number 1 denotes high density. We
performed BN learning using the BestFit algorithm [53] through the BoolNet package 2.1.8 from R 4.2
[52].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2023                   doi:10.20944/preprints202310.1530.v1

https://doi.org/10.20944/preprints202310.1530.v1


4 of 15

2.3. Estimating the Cellular Automata dynamic rules from BN basins through consensus of state transition
comparison

Here propose a simple method to estimate CA rules from BN basin of attraction. The proposed
approach involves three steps. First, we compare the density states among variables within all
individual transition belonging to a given basin of attraction. Second, we obtain a consensus of all
comparison among state transitions. For instance, while analyzing six state transitions, it is observed
that a specific variable A = 1 and variable B = 0 (A ≥ B) in three of them, while A = 0 and B = 1 (A ≤ B)
in one of them, and A = 0 and B = 0 (A = B) in two of them. The most observed inequalities are
A ≥ B and A = B, and we define the CA rule as A ≥ B. We determine absence of regulation between
variables when >, = and <, have the same frequencies such in case.

2.4. Implementation of Square-Lattice Cellular Automata

The Square-Lattice Cellular Automata (SLCA) was built based on the estimation of CA dynamic
rules from the BN basin (Figure 1). The model consists of a tissue scale, resulting in a single discrete
variable, namely the cells. The model encompasses a dynamic process involving cell proliferation,
death, migration, and survival. This process runs on a two-dimensional lattice (n × n with n = 200).
The criteria for determining lattice size was based on the spatial model developed by Morais et al
[1]. Each vertex can accommodate only one tumor cell. During each iteration, all cells undergo the
actions outlined in Figure 5. The cells were randomly distributed over the lattice in a ratio of 1 T to 10
H according to [1]. We assume a time-step of 12 hours resulting in a total of 16 iteration, corresponding
to 8 days-culture, for each simulation. Section 3.3 describes in detail the state transition rules.

2.5. Spatial configuration, parameter estimation, and population dynamics process probabilities

We applied a convolutional Gaussian filter of size k = 5 × 5 and standard deviation σ2 to estimate
the relative local density of H cells (arbitrary units) in the simulation domain. To calculate the growth
curve of both cell lines we fitted the logistic model (Eq. 1) using the curve fit function of the optimize

module of the Scipy library (version 1.7.1) in Python (version 3.10.2)

N(t) =
K

1 − e−ρ(t−τ)
, (1)

where K denotes carrying capacity, ρ denotes proliferation rates and τ denotes time for half
asymptote.

Throughout the simulations, we calculate the probability of the cells going through those tumor
growth dynamic processes described in section 2.4. Denote i = 1, ..., n as an element of the list ω =
(Proliferation, Death, Migration, Survive) and f the frequency of occurrence of one of the processes in
the list ω, thus

Pr(ωi) =
fωi

∑
n
i=1 fωi

, (2)

for both T and H.

3. Results

3.1. The iterative k-means binarization method demonstrated that both populations are in high density after 4
days

As described in Section 2.2, the time series was binarized, and then we learned a BN. The
binarization by iterative k-means showed a high density of H and T and a low availability of S, after
four days (Figure 1 and in S1 Figure).
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Figure 2. The heatmap represents the binarization of co-culture time series by iterative k-means.

The yellow cells represent 1, which means high density, and the blue cells represent 0, which means
low density. Each row represents the binarized trajectories of H, T, and S, and each column represents
the state transition of the network over eight days.

Table 1 shows the possible Boolean functions for each variable. The possible function for
each variable is highlighted in yellow with its justification. The intention of showing two different
biologically reasonable networks would be to ascertain possible plasticity in the estimated rules for CA
as the BN basin topologies change once a BN has 2n possible state transitions, here n=3 (H, T, and S).

Table 1. Inferred boolean functions through the Best Fit algorithm.

Inferred Boolean Network 1

Node Possible functions Justification

T

T
H
S

Cancer cells have autonomous proliferation [54–57]

H

T
H
S

HaCaT density is higher next to SKMEL-147 and lower far from SKMEL-147 [1].
HaCaT form connections with melanoma cell line rather than adjacent HaCaT [3]

S
T
H
S

Cancer cells do not respond to contact inhibition and other anti-proliferative processes [54–57]

Inferred Boolean Network 2

Node Possible functions Justification

T

T
H
S

Cancer cells have autonomous proliferation [54–57]

H

T
H
S

When no space is available keratinocytes do not increase density

S
T
H
S

Cancer cells do not respond to contact inhibition and other anti-proliferative processes [54–57]

All functions inferred showed non-null error rates. The highlighted functions set the state graph in Figures 3A-3B. The bar
over the node symbol denotes the NOT logical operator. All the inferred boolean functions have error rates equal to 1. The
highlighted functions set the state graph in Figures 3A-3B. The bar over the node symbol denotes the NOT logical operator. All
the inferred boolean functions have error rates equal to 1.

3.2. The network dynamics exhibit two singleton attractors

After we binarized the time series and applied a method of network learning, we generated
the state graph, and observed two singletons (fix points) attractors in both IBN 1 (Figure 3A) and 2
(Figure 3B). Before evaluating the attractors and proceeding with the estimation of CA dynamics rules,
we labeled each transition state as B1, B2, B3, B4, B5, B6, A1, A2. These IDs belongs to the same state
transition in both IBN 1 and 2. The attractor A1 shows T and H in low density, while S is in high
density, which ultimately means high space availability or the population is scattered. The attractor A2

shows H and T in high density and S in low density, which ultimately means low space availability
or that the population is in high density. The IBN 1 has no predecessor state transition from initial
condition among basins of attraction, while the IBN 2 present an small sequence of state transition not.
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A

B

Figure 3. The dynamics of IBN 1 and 2. (A) the topology of the network is shown on the left, and the
state graph of IBN 1 on the right. (B) The topology of the network is shown on the left, and the state
graph of IBN 2 on the right. A1 and A2 denote singleton attractors 1 and 2, respectively, and the letter B
denotes state transitions. The red number represents the density state of H, the blue number represents
the density state of T, and the green number, the space availability state of S.

3.3. Boolean Network Basin provide cellular automata dynamic rules for proliferation and migration

To estimate the CA dynamic rules from BN basins, we analyze the state transitions in terms of
density comparison. We ignore the state transitions that do not have a reasonable biological meaning.
B3 presents a low cell density and low space availability, and B6 presents a high cell density and high
space availability. When we compare the density states between T and S among state transitions
B1, B2, and A1, T < S in two-thirds of these state transitions (orange-dash rectangle at Figure 4).
Additionally, T < H in 2/3 of the aforementioned state transitions (orange-dash rectangle at Figure
4). Thus, from the consensus of the density state comparisons among these state transitions, we
obtained two inequalities: T ≤ S and T ≤ H (Figure 4). In contrast, upon comparing the density states
between T and S among transition states B4, B5, and A2, T ≥ S in two-thirds of these state transitions
(purple-dash rectangle at Figure 4). Furthermore, T ≥ H in 2/3 of those state transitions (purple-dash
rectangle at Figure 4), so by consensus among these state transitions, we obtained two new inequalities:
T ≥ S and T ≥ H (Figure 4).
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Figure 4. Estimate of the CA dynamic rule from the BN basin. One can observe the comparison
within each state transition (B1, B2, B4, B5, A1 and A2) where the number in red indicating the density
state of H, blue indicating T, and green indicating S. The dashed rectangles marks the comparisons
among state transitions belonging to a basin of attraction, and the arrow points to the comparison
consensus among state transitions. The orange-dash rectangle concerns the basin of attraction A1,
while the purple-dash rectangle to A2.

The inequalities T ≤ S and T ≤ H represent a condition in which there is a low amount of T and
a high amount of H or S, which do not favor an increase in density, and according to [3], we determine
that it favors migration. Thus, we set eq. 3 where MT,H denotes migration.

MT,H = (T ≤ S) ∨ (T ≤ H) (3)

The inequalities T ≥ S and T ≥ H represent a condition where a higher density of T and a lower
density H or S, favors density increase. Thus, PT and PH denotes proliferation of T and H in equations
4 and 5, respectively. Due to the lack of data about the resources present in the cell culture media, we
decided to augment equations 4 and 5 with the probability of instantaneous proliferation 1 − N

K [58],
since the logistic model fitted to the growth curves present in Morais et al [1]. If the probability of
instantaneous proliferation is satisfied (1 − N

K ≥ r, where r is a random number) then the cells can
proliferate. Another important condition to simulate cell dynamics is cell death, represented by the
death term DT in eq. 4 and 5, and the survive term SVH that blocks H cell proliferation, as explained
in section 3.4.

PH =

(

1 −
N

K
∨ ((T ≥ S) ∨ (T ≥ H))

)

∧ SVH (4)

PT =

(

1 −
N

K
∨ ((T ≥ S) ∨ (T ≥ H))

)

∧ DT (5)
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3.4. Data from cell lines and growth curves allow us to propose a simple rule to describe survival and death
dynamics

Here, we only could estimate CA rules that are compatible with migration and proliferation. So
to describe the survival and death of cells, we turn to Hayflick’s limit [59–61] concept to H and cancer
stem cell hypothesis [62–67] to T because both can embrace the so-called parameter proliferation
capacity (ρmax). Thus, with each cell division, the proliferation capacity of T and H will decrease by
one unit, ρmax = ρmax − 1. It is well documented that H undergoes a limited number of duplications in
the cell culture plate and does not always reach 100% confluence; thus, once H reaches ρmax = 0, they
survive (SVH), as proposed in eq. 6. We assume that when T reaches ρmax = 0 and in circumstances
where there is no space (DT), the crowding situations might yield cell de-adherence and death [68], as
in eq. 7.

SVH = ρmax = 0 (6)

DT = (ρmax = 0) ∧ (S = 0) (7)

Once H does not migrate, proliferate, or survive, they die, as in eq. 8. Alternately, once T does not
migrate, proliferate, and die, they survive, eq. 9.

DH = MH ∧ PH ∧ SVH (8)

SVT = MT ∧ DT ∧ PT (9)

Figure 5. Flowchart of the CA implementation. First, we set the initial density of cells and a random
initial distribution of them over Lattice. At each iteration, the algorithm updates the amount of T,
H, and empty vertex (S) in all focal cell neighborhoods. The conditions described in eqs. 3 to 9 are
updated in each cell. When there is at least one empty vertex, the cells proliferate or migrate, but when
the proliferation capacity is exhausted, the cells survive or die.

3.5. The parameter estimation are in agreement with experimental data

The values of cells density and the frequency of proliferating, migrating, surviving, and dying
cell in the overall simulation were used to evaluate if the growth curve fit to the logistic model (eq. 1).
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The growth curves fit the logistic model (Figure 6G) and the estimated values for the parameter K, ρ,
and τ are presented at Table 2. Considering each iteration as a ∆t = 12 hours favored the estimation of
ρT ≈ ρH and τT ≈ τH . We shall recall that the results in Figure 6 concern ρmaxT

= 7 and ρmaxH
= 6.

According to Morais et al [1] the values estimated to ρT and ρH are equal as well those estimated to τT

and τH .

Table 2. Table of estimated values for the parameters of the logistic model.

Parameters Melanoma Keratinocytes
K 0.16 0.7

rho 1.63 1.20
tau 2.7 2.2

These estimated values for K, ρ, and τ refer to simulations with N0 = 2000, ρmaxT
= 6, and ρmaxH

= 7.

3.6. The density of H indeed is higher close to T cluster

We implemented the spatial model using CA (sections 2.4, 3.3 and 3.4) and, starting from a given
an initial distribution of cells, on the fourth day we can already see some T clusters surrounded by H,
so this spatial pattern is consolidated on the eighth day (Figures 6A-6C and animation in S3 Video). The
heat map shows H density in the neighborhood of each focal cell (Figure 6F) points to higher yellow
intensity around T clusters. This can be explained by the smooth increase in H migration probability
from the beginning of the simulation (Figure 6H) as well as the increase in T survival probability from
day 4 onward (Figure 6G). Therefore, as T clusters consolidate, more of the H neighborhood lacks
T; hence the probability of migration decrease mostly because the probability of H survive increase
substantially after four days (Figure 6H).

A B C D

E F G H

Figure 6. The spatial population and tumor growth dynamics. (A), (B), and (C) frames correspond
to days 1, 4, and 8. Blue represents T, and red represents H. (D) Growth curves of T and H. E Spatial
distribution of the cells according to the values of ρmax at day 8. In the bar of color at right, the
shades of green to pink represent the ρmax values. (F) Heatmap representing H density over all focal
cell neighborhoods at day 8. In the bar of color at right, the shades of blue to yellow represent the
percentage of occupied vertex by H in all focal cell neighborhoods. (G) Probabilities of T tumor growth
dynamics (H) Probabilities of H tumor growth dynamics.
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4. Discussion

In this study, we used the time series of the growth curve in the co-culture of T and H to infer a BN.
Through BN inference, we were able to determine the boolean functions that led to network dynamics.
These dynamics were shown in a state graph, where we arranged the state transitions according to
the basin of attraction and estimated the CA rules. These estimated CA rules were biologically sound;
hence, they could represent neighborhood or microenvironmental configurations that drive population
dynamics toward the attractor state, as mentioned before.

The binarization of the growth curve data reveals that the population attained a high density
after 4 days. This observation aligns with the findings of Morais et al [1], who reported that the
population achieves confluence after the same 4-day period. The proposed methodology captured
the relationship between the confluence observed on the cell culture plate and the corresponding cell
density. A boolean network of n nodes exhibits 2n state transitions; hence, our time series, consisting
of a sequence of 8 data points, can fully define the system. The occurrence of non-null error rates in
the inferred boolean network arises due to the similarity of the H and T binarized trajectories, also
known an identifiability, nevertheless, this issue can be solved by prior biological knowledge or by
pruning the network nodes according to the context [43].

The BestFit BN learning paradigm searches for possible boolean functions that describe the state
of a given variable (node) at time t + 1 as a function of the network state (the states of all nodes) at time
t. In the heatmap (Figure 2), S is ON when both T and H are OFF, and vice versa, which means that S

inhibits both T and H, which in turn inhibits S, and finally both T and H can "activate" each other.
The IBN 1 in Table 1 and Figure 3A shows a canalizing node and a initial condition with no

predecessor state transiton throughout basin of attraction. The IBN 2 in table Table 1 and Figure 3B, on
the other hand, shows a small number of states before reaching the attractor. However, both networks
(Figures 3A and 3B) have the same attractor. Hence, different BNs can lead to the same attractors. This
indicates that the estimation of CA rules was not affected by changes in the topology of the state graph,
suggesting a system plastic capacity, as in the genetic networks [69].

Indeed melanoma affects keratinocytes phenotypes [2] [3], our approach only captured an
equilibrium state concerning local density of both melanoma and keratinocyte. By comparing
the density states of state transitions B4, B5, and A2, we could estimate the logical sentence
(T ≥ S) ∨ (T ≥ H), suggesting that T will only proliferate where there is more T, since experiments
with model organisms like zebrafish have shown that melanoma tends to cluster [70]. Likewise, we
could estimate the logical sentence (T ≤ S) ∨ (T ≤ H) based on how the density states of states
transition B1, B2, and A1, meaning that either H or T will move away [1] [3]. It is worth highlighting
that these Boolean expressions can be concurrently satisfied in a dynamic context. So, the potential for
cell proliferation and migration is inherently incorporated, which reduces any challenges in modeling
associated with the go-or-grow phenomenon [71–75].

The spatial dynamic shows H more denser nearby T clusters than close to themselves (Figures 6A
and 6B); moreover, the values estimated for ρT,H and τT,H are very similar, corroborating the results
of Morais et al [1] despite the dependence of estimated ρT,H on the initial condition. The growth
curve certainly did not emerge from the dynamics itself, but it is likely hardwired to the instantaneous
probability term present in eqs. 5 and 6 that was employed to represent the resources in the culture
medium.

We could only estimate CA rules for proliferation and migration, then adopt an intrinsic condition
for cells to survive and die. Normal cells like H undergo a limited number of duplications in the cell
culture plate and do not always reach 100% confluence because at each duplication the telomeres
shorten, yielding to the onset of replicative senescence [59–61]. In the case of cancer cells, i.e., T, the
telomeres shorten with doublings, and the cells will enter a state of crisis or death. Both normal and
cancer cells could die whenever there is no space, because in vitro crowding situations lead some cells
to undergo de-adherence and die [68]. Moreover, crowding-induced elimination would facilitate the
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expansion of the malignant clones [76–79]. Due to the duration of the in vitro experiment (see Section
2.1), for simplification, we discarded stem cells with ρmax = ∞ in the model.

The proliferation capacity parameter (ρmax) as a measure of T death shows that cells with a lower
ρmax value tend to be at the edges of the clusters, competing for space with cells with a higher ρmax

value (Figure 6E). As soon as the cells on the periphery die, the others proliferate and thus decrease
their proliferation capacity. In this respect, the ignition of stem cells by space release and/or their
capacity to proliferate more than those with no stemness are in agreement with previously published
theoretical models [62–67], experimental evidence [80], and the amalgamation of experimental data
with mathematical modeling [81] [82].

Probably, if we had implemented a Lattice Gas Cellular Automata (LGCA), by considering that
proliferating T cells could pile up due to the lack of contact inhibition, T proliferation would naturally
be counterbalanced by their death because of mass action in the growth dynamics. Even though we
used a simple SLCA, which doesn’t let us include more than one cell per lattice vertex, this makes it
harder to include the lack of contact inhibition, which is typical of cancer cells. However, even if cancer
cells present a low contact inhibition degree, mechanical factors could restrict their proliferation [83].
The approach using proliferation capacity as a simpler rule to distinguish death from survival allowed
us to observe a decrease in the H

T density ratio, which we hypothesize to be due to death-induced
proliferation (Figure 6G). It is biologically sound because pathways involved in contact inhibition
might go through a transition towards the regulation of autophagy, which in turn can yield survival
and proliferation [84].

Our results suggest that the inference of BN from the co-culture growth curve time series provides
a path to estimate specifics microenvironmental conditions for proliferation and migration in terms
of CA dynamic rules, despite the tumor microenvironment being considered a complex regulatory
network that shapes tumor architecture and growth law [57,85–88]. Even though the spatial population
dynamics model was made using a mix of estimated data from IBN dynamics and observations from
the literature, the results are in line with experimental data. Hitherto, we simulate local dynamics by
running the CA forward for space-time patterns and this was enough to reach our goals, but as future
perspective our approach could be coupled with the software DDLAB (www.ddlab.org) in order to
develop a pipeline to evaluate the dynamic upon or on the network [9,10].

Since either model-driven experimentation or data-driven modeling are important ways to
improve and integrate mathematical, biological, and clinical models, unraveling CA rules from BN
dynamics could be useful to capture any interaction between cells in terms of density patterns and
it deserve room for further refinement. This is mainly because a discrete approach can be linked
with a continuous one [89,90], and important parameters beyond the local or global dynamics can be
estimated. Cell co-culture is an experimental system that can comprise diverse time points, images
of spatial features, and different cell types and densities. This makes it much easier to figure out
how networks work at the tissue scale, especially when it comes to figuring out how to reconstruct
population dynamics.

5. Conclusion

In this work, we introduce a novel approach to cell proliferation dynamics. We present a approach
to estimate the rules of the dynamics of a cellular automaton from the basins of attraction of a Boolean
network and, also, align them with experimental conditions. By establishing a direct connection
between our theoretical model and experimentally observed spatial patterns, we attain a significant
milestone in the field of cellular analysis by effectively connecting computation and experimental
methods. This modeling approach can make a significant advancement in our ability to comprehend
and predict complex biological phenomena.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org
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